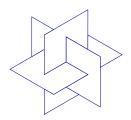
On a nonlinear eigenvalue problem arising in the vibration analysis of high speed trains

Christian Mehl Institut für Mathematik Technische Universität Berlin

joint work with Andreas Hilliges, Volker Mehrmann

SIAM Annual Meeting

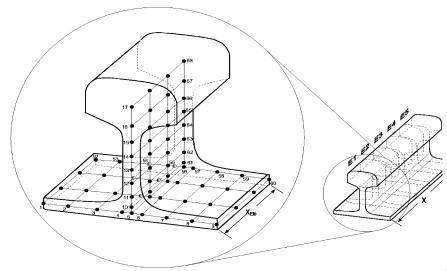
New Orleans, July 13, 2005



Work supported by DFG Research Center $\rm Matheon$ – Mathematics for key technologies

Structured polynomial eigenvalue problems

Application: vibration analysis of rail tracks excited by high speed trains



Finite element discretization leads to the palindromic eigenvalue problem

$$\left(\lambda^2 A_0^T + \lambda A_1 + A_0\right) x = 0,$$

where $A_0, A_1 \in \mathbb{C}^{n \times n}$, and $A_1^T = A_1$ (see Volker's talk).

Palindromic matrix polynomials

Definition: A matrix polynomial $P(\lambda) = A_0 + \lambda A_1 + \cdots + \lambda^k A_k$ is called T-palindromic (in short: **palindromic**) if

$$P(\lambda) = \sum_{j=0}^{k} \lambda^{k-j} A_j^T.$$

Examples:

- $P(\lambda) = A + \lambda B + \lambda^2 B^T + \lambda^3 A^T$;
- $P(\lambda) = A_2^T + \lambda A_1^T + \lambda^2 A_0 + \lambda^3 A_1 + \lambda^4 A_2$, where A_0 is symmetric;
- palindromic pencils $\lambda Z + Z^T$.

Formal resemblance with linguistic palindroms like "I prefer pi".

Properties of palindromic matrix polynomials

General assumption: all matrix polynomials under consideration are regular, i.e., $\det P(\lambda) \not\equiv 0$.

Spectral symmetry: Palindromic matrix polynomials have a symplectic spectrum.

- if λ_0 is an eigenvalue of $P(\lambda)$, then so is λ_0^{-1} ;
- pairing occurs also in algebraic, geometric, and partial multiplicities;
- ullet symmetry degenerates for $\lambda_0=1$ and $\lambda_0=-1$;

"Palindromic matrix polynomials generalize symplectic matrices".

How to solve palindromic eigenvalue problems

Linearization: Mackey, Mackey, M., Mehrmann: linearization theory for general and structured matrix polynomials (Minisymposium on Thursday)

• Under modest assumptions, any polynomial palindromic eigenvalue problem can be transformed to a linear palindromic eigenvalue problem.

Example:
$$P(\lambda) = \lambda^2 A_0^T + \lambda A_1 + A_0$$
. Then

$$\lambda Z + Z^T := \lambda \begin{bmatrix} A_0^T & A_1 - A_0 \\ A_0^T & A_0^T \end{bmatrix} + \begin{bmatrix} A_0 & A_0 \\ A_1 - A_0^T & A_0 \end{bmatrix}$$

is a linearization for $P(\lambda)$ if -1 is not an eigenvalue of $P(\lambda)$.

Benefit: Symplectic spectrum preserved in finite precision arithmetic.

How to solve linear palindromic eigenvalue problems

Task: Solve the generalized eigenvalue problem for $\lambda Z + Z^T$.

• T-congruence transformations preserve the structure:

$$(\lambda Z + Z^T) \mapsto P^T(\lambda Z + Z^T)P$$
, P invertible

- Numerical stability: Choose P=U unitary if possible.
- Look for condensed forms under simultaneous unitary consimilarity:

$$(\lambda Z + Z^T) \mapsto \overline{U}^{-1}(\lambda Z + Z^T)U, \quad U \text{ unitary }$$

Advantage: We have to store and work on Z only.

Anti-triangular forms

Theorem: Let $Z \in \mathbb{C}^{n \times n}$. Then there exists a unitary matrix $U \in \mathbb{C}^{n \times n}$ such that

$$U^T Z U = \left[egin{array}{cccc} 0 & \dots & 0 & z_{1n} \ dots & \ddots & z_{2,n-1} & dots \ 0 & \ddots & \ddots & dots \ z_{n1} & \dots & z_{nn} \end{array}
ight]$$

is in anti-triangular form.

Consequence: If $\det(\lambda Z + Z^T) \not\equiv 0$ then the eigenvalues of $\lambda Z + Z^T$ are $-\frac{z_{n1}}{z_{1n}}, \dots, -\frac{z_{1n}}{z_{n1}}, \quad \text{(where } \frac{z}{0} := \infty).$

Question: How do we compute the anti-triangular form numerically?

Method 1: The Laub-trick method

Theorem: (generalizes a trick by A. Laub for the computation of the Hamiltonian Schur form) Let $\lambda Z + Z^T \in \mathbb{C}^{2n \times 2n}$ be regular and let

$$\begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix} \left(\lambda \begin{bmatrix} X_{11} & X_{12} \\ 0 & X_{22} \end{bmatrix} + \begin{bmatrix} Y_{11} & Y_{12} \\ 0 & Y_{22} \end{bmatrix} \right) \begin{bmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{bmatrix}.$$

be its generalized Schur decomposition, where $X_{11}, Y_{11} \in \mathbb{C}^{n \times n}$. If

$$\mu \in \sigma(\lambda X_{11} + Y_{11}) \implies \frac{1}{\mu} \not\in \sigma(\lambda X_{11} + Y_{11})$$

then

$$U = \begin{bmatrix} W_{11} & Q_{11}^T R_n \\ W_{21} & Q_{12}^T R_n \end{bmatrix}, \qquad \begin{pmatrix} R_n := \begin{bmatrix} 0 & 1 \\ & \ddots & \\ 1 & 0 \end{bmatrix} \end{pmatrix}$$

is unitary and

$$U^T Z U = \begin{bmatrix} 0 & Y_{11}^T R_n \\ R_n X_{11} & * \end{bmatrix}.$$

is in anti-triangular form.

Method 1: The Laub-trick method

Algorithm: (for regular $\lambda Z + Z^T$ not having eigenvalues with modulus 1)

1. Compute the generalized Schur decomposition

$$\lambda Z + Z^T = \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix} \left(\lambda \begin{bmatrix} X_{11} & X_{12} \\ 0 & X_{22} \end{bmatrix} + \begin{bmatrix} Y_{11} & Y_{12} \\ 0 & Y_{22} \end{bmatrix} \right) \begin{bmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{bmatrix}.$$

- 2. Reorder the eigenvalues such that $\lambda X_{11} + Y_{11}$ contains all eigenvalues with $|\lambda| > 1$.
- 3. Set $U = \begin{bmatrix} W_{11} & Q_{11}^T R_n \\ W_{21} & Q_{12}^T R_n \end{bmatrix}$.
- 4. Compute $Z_{22} = \begin{bmatrix} R_n Q_{11} & R_n Q_{12} \end{bmatrix} Z \begin{bmatrix} Q_{11}^T R_n \\ Q_{12}^T R_n \end{bmatrix}$.
- 5. Set $\widetilde{Z}:=\left[egin{array}{cc} 0 & Y_{11}^TR_n \ R_nX_{11} & Z_{22} \end{array}
 ight].$

Method 1: The Laub-trick method

Properties:

- + cost is essentially the cost of QZ with reordering;
- only applicable if Z has even dimension and if $\lambda Z + Z^T$ does not have eigenvalues with modulus 1;
- problems if there are eigenvalues with modulus close to ± 1 ; \rightsquigarrow QZ might detect more or less than n eigenvalues λ with $|\lambda| > 1$.

Questions: Are there other methods?

Idea: Annihilate one diagonal or two off diagonal pivot elements in the strict upper anti-triangular part of Z in each Jacobi-step:

This can always be achieved via a unitary consimilarity transformation.

Diagonal pivots:

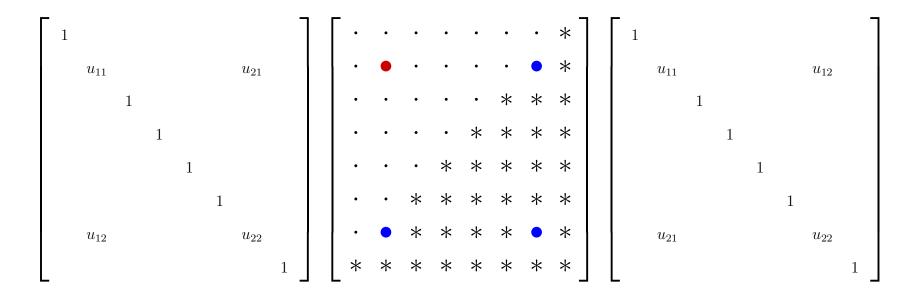
Consider the colored 2×2 subproblem:

Diagonal pivots:

Compute the anti-triangular form of the 2×2 problem:

$$\begin{bmatrix} u_{11} & u_{21} \\ u_{12} & u_{22} \end{bmatrix} \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \begin{bmatrix} \circ & * \\ * & * \end{bmatrix}$$

Diagonal pivots:



Then update the $n \times n$ matrix.

$$\begin{bmatrix} u_{11} & u_{21} \\ u_{12} & u_{22} \end{bmatrix} \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \begin{bmatrix} \circ & * \\ * & * \end{bmatrix}$$

Diagonal pivots:

Then update the $n \times n$ matrix.

$$\begin{bmatrix} u_{11} & u_{21} \\ u_{12} & u_{22} \end{bmatrix} \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \begin{bmatrix} \circ & * \\ * & * \end{bmatrix}$$

Off-diagonal pivots:

Question: Why consider two pivots?

Off-diagonal pivots: assume, we only consider one off-diagonal pivot;

Consider the colored 2×2 problem:

Off-diagonal pivots: assume, we only consider one off-diagonal pivot;

Compute the anti-triangular form of the 2×2 problem:

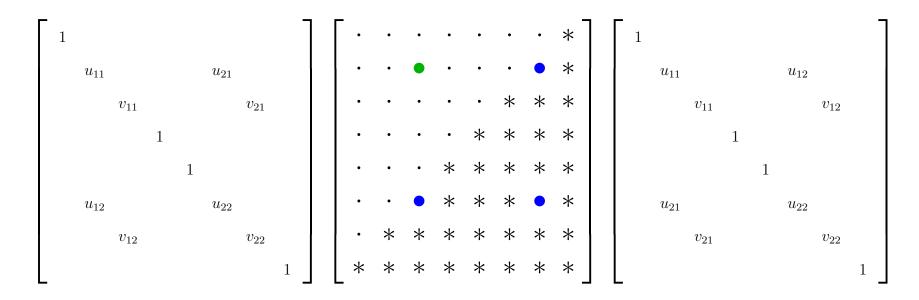
$$\begin{bmatrix} u_{11} & u_{21} \\ u_{12} & u_{22} \end{bmatrix} \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} = \begin{bmatrix} \circ & * \\ * & * \end{bmatrix}$$

Off-diagonal pivots: assume, we only consider one off-diagonal pivot;

We may use different unitary transformation from the left and the right,

$$\begin{bmatrix} u_{11} & u_{21} \\ u_{12} & u_{22} \end{bmatrix} \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} = \begin{bmatrix} \circ & * \\ * & * \end{bmatrix}$$

Off-diagonal pivots: assume, we only consider one off-diagonal pivot;



because of the position of the subproblem. \rightsquigarrow more freedom in the parameters

$$\begin{bmatrix} u_{11} & u_{21} \\ u_{12} & u_{22} \end{bmatrix} \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} = \begin{bmatrix} \circ & * \\ * & * \end{bmatrix}$$

Off-diagonal pivots: assume, we only consider one off-diagonal pivot;

Simultaneously, a second 2×2 system – marked by \bullet – will be transformed.

$$\begin{bmatrix} u_{11} & u_{21} \\ u_{12} & u_{22} \end{bmatrix} \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} = \begin{bmatrix} \circ & * \\ * & * \end{bmatrix}$$
$$\begin{bmatrix} v_{11} & v_{21} \\ v_{12} & v_{22} \end{bmatrix} \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \begin{bmatrix} * & * \\ * & * \end{bmatrix}$$

Off-diagonal pivots: assume, we only consider one off-diagonal pivot;

Use the freedom in the parameters to anti-triangularize the second system as well.

$$\begin{bmatrix} u_{11} & u_{21} \\ u_{12} & u_{22} \end{bmatrix} \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} = \begin{bmatrix} \circ & * \\ * & * \end{bmatrix}$$
$$\begin{bmatrix} v_{11} & v_{21} \\ v_{12} & v_{22} \end{bmatrix} \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \begin{bmatrix} * & * \\ * & * \end{bmatrix}$$

Off-diagonal pivots:

Anti-triangularize the colored/black generalized 2×2 problem:

$$\left(\lambda \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} + \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}^T\right)$$

Off-diagonal pivots:

Anti-triangularize the colored/black generalized 2×2 problem:

$$\begin{bmatrix} u_{11} & u_{21} \\ u_{12} & u_{22} \end{bmatrix} \left(\lambda \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} + \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}^T \right) \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} = \lambda \begin{bmatrix} \circ & * \\ * & * \end{bmatrix} + \begin{bmatrix} \circ & * \\ * & * \end{bmatrix}$$

Off-diagonal pivots:

$$\begin{bmatrix} 1 & & & & & & & \\ & u_{11} & & & u_{21} & & \\ & & v_{11} & & & v_{21} & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & &$$

Update the $n \times n$ matrix.

$$\begin{bmatrix} u_{11} & u_{21} \\ u_{12} & u_{22} \end{bmatrix} \left(\lambda \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} + \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}^T \right) \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} = \lambda \begin{bmatrix} \circ & * \\ * & * \end{bmatrix} + \begin{bmatrix} \circ & * \\ * & * \end{bmatrix}$$

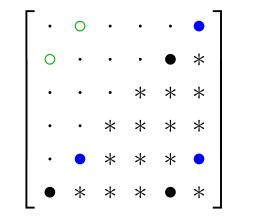
Off-diagonal pivots:

Update the $n \times n$ matrix.

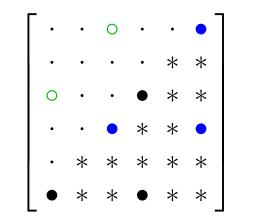
$$\begin{bmatrix} u_{11} & u_{21} \\ u_{12} & u_{22} \end{bmatrix} \left(\lambda \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} + \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}^T \right) \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} = \lambda \begin{bmatrix} \circ & * \\ * & * \end{bmatrix} + \begin{bmatrix} \circ & * \\ * & * \end{bmatrix}$$

Sweep: Annihilate each pivot element at least once.

Sweep: Annihilate each pivot element at least once.



Sweep: Annihilate each pivot element at least once.



Sweep: Annihilate each pivot element at least once.

Properties of the algorithm:

- + locally and asymptotically quadratically convergent;
- + globally convergent in experiments;
- + converges fast for matrices Z close to anti-triangular form
- expensive in general (cost of 3 sweeps $\hat{=}$ cost of QZ)
- convergence problems for badly scaled problems
- convergence problems for large n

Laub-trick:

- + works for moderate sizes of n;
- + essentially cost of QZ;
- problems for eigenvalues with modulus near one;

Jacobi

+ works nicely if problem is small and eigenvalues do not differ too much in modulus;

Idea: Combine the positive properties of these two algorithms. Use the Laub-trick for getting all eigenvalues sufficiently far away from the unit circle and use Jacobi for the eigenvalues near the unit circle.

$$\lambda Z + Z^T = \begin{bmatrix} Q_{11} & Q_{12} & Q_{13} \\ Q_{21} & Q_{22} & Q_{23} \\ Q_{31} & Q_{32} & Q_{33} \end{bmatrix} \begin{pmatrix} \lambda \begin{bmatrix} X_{11} & X_{12} & X_{13} \\ 0 & X_{22} & X_{23} \\ 0 & 0 & X_{33} \end{bmatrix} + \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} \\ 0 & Y_{22} & Y_{23} \\ 0 & 0 & Y_{33} \end{bmatrix} \end{pmatrix} \begin{bmatrix} W_{11} & W_{12} & W_{13} \\ W_{21} & W_{22} & W_{23} \\ W_{31} & W_{32} & W_{33} \end{bmatrix}$$

Step 1: Given a tolerance $\alpha>1$ and a regular $\lambda Z+Z^T\in\mathbb{C}^{2n\times 2n}$, compute its generalized Schur decomposition, where the eigenvalues are ordered in such a way that

$$\sigma(\lambda X_{11} + Y_{11}) \subseteq \{\lambda \in \mathbb{C} : |\lambda| \ge \alpha\},\$$

$$\sigma(\lambda X_{22} + Y_{22}) \subseteq \{\lambda \in \mathbb{C} : \alpha > |\lambda| > \frac{1}{\alpha}\},\$$

$$\sigma(\lambda X_{33} + Y_{33}) \subseteq \{\lambda \in \mathbb{C} : |\lambda| \le \frac{1}{\alpha}\}.$$

$$\lambda Z + Z^{T} = \begin{bmatrix} Q_{11} & Q_{12} & Q_{13} \\ Q_{21} & Q_{22} & Q_{23} \\ Q_{31} & Q_{32} & Q_{33} \end{bmatrix} \begin{pmatrix} \lambda \begin{bmatrix} X_{11} & X_{12} & X_{13} \\ 0 & X_{22} & X_{23} \\ 0 & 0 & X_{33} \end{bmatrix} + \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} \\ 0 & Y_{22} & Y_{23} \\ 0 & 0 & Y_{33} \end{bmatrix} \end{pmatrix} \begin{bmatrix} W_{11} & W_{12} & W_{13} \\ W_{21} & W_{22} & W_{23} \\ W_{31} & W_{32} & W_{33} \end{bmatrix}$$

Step 2: By the Laub trick, the matrix

$$\begin{bmatrix} W_{11} & Q_{11}^T R_m \\ W_{21} & Q_{12}^T R_m \\ W_{31} & Q_{13}^T R_m \end{bmatrix}$$

has orthonormal columns. Extend this matrix to a unitary matrix

$$U := \begin{bmatrix} W_{11} & U_{12} & Q_{11}^T R_m \\ W_{21} & U_{22} & Q_{12}^T R_m \\ W_{31} & U_{32} & Q_{13}^T R_m \end{bmatrix}.$$

$$\lambda Z + Z^T = \begin{bmatrix} Q_{11} & Q_{12} & Q_{13} \\ Q_{21} & Q_{22} & Q_{23} \\ Q_{31} & Q_{32} & Q_{33} \end{bmatrix} \begin{pmatrix} \lambda \begin{bmatrix} X_{11} & X_{12} & X_{13} \\ 0 & X_{22} & X_{23} \\ 0 & 0 & X_{33} \end{bmatrix} + \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} \\ 0 & Y_{22} & Y_{23} \\ 0 & 0 & Y_{33} \end{bmatrix} \end{pmatrix} \begin{bmatrix} W_{11} & W_{12} & W_{13} \\ W_{21} & W_{22} & W_{23} \\ W_{31} & W_{32} & W_{33} \end{bmatrix}$$

Step 3: Compute

$$U^{T}ZU = \begin{bmatrix} 0 & 0 & Y_{11}^{T}R_{m} \\ 0 & Z_{22} & Z_{23} \\ R_{m}X_{11} & Z_{32} & Z_{33} \end{bmatrix},$$

where $Y_{11}^T R_m \in \mathbb{C}^{m \times m}$ and $R_m X_{11} \in \mathbb{C}^{m \times m}$ are in anti-triangular form and $Z_{22} \in \mathbb{C}^{(n-2m)\times (n-2m)}$ has only eigenvalues in $\{\lambda \in \mathbb{C} : \alpha > |\lambda| > \frac{1}{\alpha}\}$.

$$\lambda Z + Z^T = \begin{bmatrix} Q_{11} & Q_{12} & Q_{13} \\ Q_{21} & Q_{22} & Q_{23} \\ Q_{31} & Q_{32} & Q_{33} \end{bmatrix} \begin{pmatrix} \lambda \begin{bmatrix} X_{11} & X_{12} & X_{13} \\ 0 & X_{22} & X_{23} \\ 0 & 0 & X_{33} \end{bmatrix} + \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} \\ 0 & Y_{22} & Y_{23} \\ 0 & 0 & Y_{33} \end{bmatrix} \end{pmatrix} \begin{bmatrix} W_{11} & W_{12} & W_{13} \\ W_{21} & W_{22} & W_{23} \\ W_{31} & W_{32} & W_{33} \end{bmatrix}$$

Step 3: Compute

$$U^{T}ZU = \begin{bmatrix} 0 & 0 & Y_{11}^{T}R_{m} \\ 0 & Z_{22} & Z_{23} \\ R_{m}X_{11} & Z_{32} & Z_{33} \end{bmatrix},$$

where $Y_{11}^T R_m \in \mathbb{C}^{m \times m}$ and $R_m X_{11} \in \mathbb{C}^{m \times m}$ are in anti-triangular form and $Z_{22} \in \mathbb{C}^{(n-2m)\times (n-2m)}$ has only eigenvalues in $\{\lambda \in \mathbb{C} : \alpha > |\lambda| > \frac{1}{\alpha}\}$.

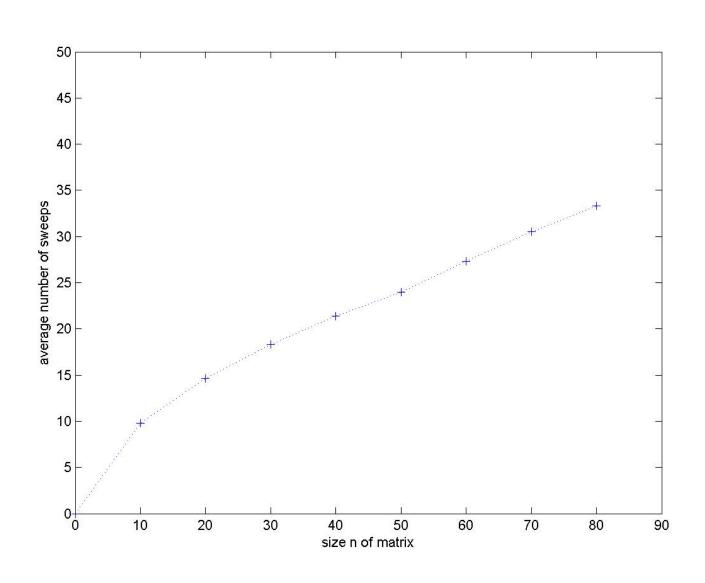
Step 4: Anti-triangularize Z_{22} by use of the Jacobi-like method.

Performance of Jacobi:

Test: 30 random matrices Z for different sizes $n = 10, 20, \dots, 80$.

Stopping criterion: $e(Z) < 50 \, \mathrm{eps}$, where

$$e(Z) := \max_{i+j \le n} |z_{ij}|.$$



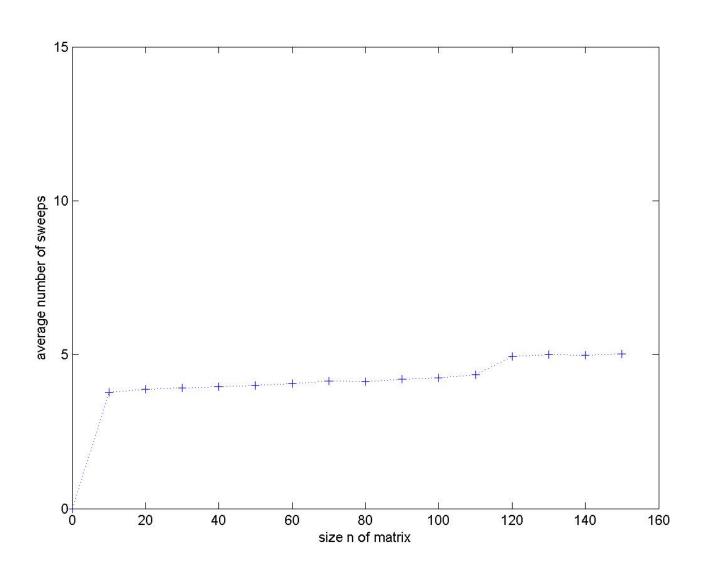
Performance of Jacobi

Test: 30 random matrices close to anti-triangular form

30 random matrices Z for different sizes $n=10,20,\ldots,150$ reduced to anti-triangular form by method 1 plus a random perturbation of order $\frac{1}{100}$.

Stopping criterion: $e(Z) < 50 \, \mathrm{eps}$, where

$$e(Z) := \max_{i+j \le n} |z_{ij}|.$$



Performance of method 3:

Test: 30 matrices Z of size n=400 such that $\lambda Z + Z^T$ has 10 eigenvalues μ with $||\mu|-1|\approx 100$ eps or smaller.

Results:

- for about 50% of the problems, QZ was not able to properly seperate the eigenvalues with modulus near 1;
- method 3 worked fine producing blocks Z_{22} of size 10×10 as expected;
- ullet Jacobi needed an average number of 7.4 sweeps (compared to 9.8 sweeps for random matrices) for the solution of the 10×10 problem