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Structured polynomial eigenvalue problems |

Application: vibration analysis of rail tracks excited by high speed trains

Finite element discretization leads to the palindromic eigenvalue problem
()\214% + )\Al + AQ)I = O,
where Ag, Ay € C™", and Al = A; (see Volker's talk).



Palindromic matrix polynomials |

Definition: A matrix polynomial P(\) = A+ AA; + -+ A\ A; is called
T-palindromic (in short: palindromic) if

k
P(A) =) MATL
j=0

Examples:
e P(\) = A+ AB+ XB! + )AL,
o P(\) = AL + XNAT + X2Ap + M3 A1 + A As, where Ay is symmetric;
e palindromic pencils \Z + Z7.

Formal resemblance with linguistic palindroms like “I prefer pi”.



Properties of palindromic matrix polynomials |

General assumption: all matrix polynomials under consideration are re-
gular, i.e., det P(\) # 0.

Spectral symmetry: Palindromic matrix polynomials have a symplectic
spectrum.

e if )y is an eigenvalue of P()), then so is At
e pairing occurs also in algebraic, geometric, and partial multiplicities;

e symmetry degenerates for \j = 1 and \y = —1;

“Palindromic matrix polynomials generalize symplectic matrices”.



How to solve palindromic eigenvalue problems |

Linearization: Mackey, Mackey, M., Mehrmann: linearization theory for
general and structured matrix polynomials (Minisymposium on Thursday)

e Under modest assumptions, any polynomial palindromic eigenvalue pro-
blem can be transformed to a linear palindromic eigenvalue problem.

Example: P(\) = M?Al + MA; + Ag. Then

Al A — A A A
T ._ 0 <11 0 0 0
N+ Z '_)\[Ag AT ]—I—[Al_AOTAO]

is a linearization for P(\) if —1 is not an eigenvalue of P()\).

Benefit: Symplectic spectrum preserved in finite precision arithmetic.



How to solve linear palindromic eigenvalue problemsl

Task: Solve the generalized eigenvalue problem for \Z + Z7.

e T-congruence transformations preserve the structure:
ANZ +Z") = PY(ANZ + Z")P, P invertible

e Numerical stability: Choose P = U unitary if possible.

e Look for condensed forms under simultaneous unitary consimilarity:

ANZ+2Z0) =T "(\Z+ 200U, U unitary

Advantage: We have to store and work on Z only.



Anti-triangular forms |

Theorem: Let Z € C"*". Then there exists a unitary matrix U € C"*"

such that ) )
0 0 Z1n
R
U'ZU = el
o .- . :
i Znl Znn |

is in anti-triangular form.

Consequence: If det(AZ + Z1) # 0 then the eigenvalues of A\Z + Z1 are

<nl <1n <
——— ..., —, (where = := 00).
<1n <nl 0

Question: How do we compute the anti-triangular form numerically?



Method 1: The Laub-trick method |

Theorem: (generalizes a trick by A. Laub for the computation of the Ha-
miltonian Schur form) Let A\Z + Z* € C*"*" be regular and let

Qu Q2 A\ X11 Xi2 n Yii Yoo Wi Wi
Q21 Q2o 0 X 0 Y5 War Way |
be its generalized Schur decomposition, where X;;,Y;; € C"*". If

1
e oAXy +Y) = " Z o(AX11 + Y1)

then _ _
0 1
[ — [ Wi Q1T1Rn] P
Wa QioRn | ! 10
is unitary and
T | 0 YiR,
U ZU = [Ran } .

is in anti-triangular form.



Method 1: The Laub-trick method |

Algorithm: (for regular A\Z + Z1 not having eigenvalues with modulus 1)

1. Compute the generalized Schur decomposition

X1 X Y11 Y] Wi W
\Z4 7T — (11 Qu] ()\[ 11 12]+[ 11 12]) [ 11 12].
[Qm (22 0 Xoo 0 Yo Waor Way

2. Reorder the eigenvalues such that AX;; 4+ Y7; contains all eigenvalues
with [A| > 1.

Wll QﬂRn ]

3.5et U =
c [ W QiyR,

QﬂRn
4. Compute Loy = [Ranl Rang} A T :
QlQRn

N T
B. Set Z = [ Y YHR”].

RnXll ZQQ



Method 1: The Laub-trick method |

Properties:
+ cost is essentially the cost of QZ with reordering;

— only applicable if Z has even dimension and if AZ + Z' does not have
eigenvalues with modulus 1;

— problems if there are eigenvalues with modulus close to £1; ~» QZ might
detect more or less than n eigenvalues A with || > 1.

Questions: Are there other methods?



Method 2: A Jacobi-like method |

Idea: Annihilate one diagonal or two off diagonal pivot elements in the strict
upper anti-triangular part of Z in each Jacobi-step:

*
I S
X kX X

* K K K X K K K

* K X K X K KX K

* K K X

* X X K* X

* K X X X K
* K K K X X X
* K X X

* Kk K K K

* Kk K K KX K
* Kk K K KX K X

This can always be achieved via a unitary consimilarity transformation.



Method 2: A Jacobi-like method |

Diagonal pivots:

— *_
o ® X
x kX
X ko ok Xk
X ko ok ok ok
*X ok ok ok kX
® X X Xk Xx @ X
X k k k k ok ok ok

Consider the colored 2 x 2 subproblem:

2



Method 2: A Jacobi-like method |

Diagonal pivots:

— *_
o ® X
x kX
X ko ok Xk
X ko ok ok ok
*X ok ok ok kX
® X X Xk Xx @ X
X k k k k ok ok ok

Compute the anti-triangular form of the 2 x 2 problem:

Ujr uU21 e o Uip U2 | | © x*
U192 U292 o o Uo1 U9 X ok



Method 2: A Jacobi-like method |

Diagonal pivots:

Then update the n X n matrix.

1

U171

U12

|

U21

U22

1

Uil U21
U2 U2

X

I

*x @

I

* K X X
* K K K X
* X K K K X

Uil U2
U21 U222

U1

U21

* @ X X X X O
* K Kk K K K KX X

1
|
1
* O
* %
L 1

Uy2

U22




Method 2: A Jacobi-like method |

Diagonal pivots:

* KX X KX KX X X
* K Kk K K K KX X

* K X X
* K K K X
* X K K K X

* kX

Then update the n X n matrix.

Uil u21 ¢ o Uil U2 | | © *
U192 U922 o o Uo1 U9 X ok



Method 2: A Jacobi-like method |

Off-diagonal pivots:

F S S S

* X K X*x X

* K X K K K

* K X K KX K X
* K K K K K KX K

t I S S

Question: Why consider two pivots?



Method 2: A Jacobi-like method |

Off-diagonal pivots: assume, we only consider one off-diagonal pivot;

— *_
o ®
* ok ok
X ko ok Xk
X ok ok ok ok
® X X X @ X
X ok ok ok ok
X ok ok ok ok ok ok ok

Consider the colored 2 x 2 problem:

2



Method 2: A Jacobi-like method |

Off-diagonal pivots: assume, we only consider one off-diagonal pivot;

— *_
o ®
* ok ok
X ko ok Xk
X ok ok ok ok
® X X X @ X
X ok ok ok ok
X ok ok ok ok ok ok ok

Compute the anti-triangular form of the 2 x 2 problem:

Uil u21 ¢ o Vi1 Vi2 | | © *
U192 U929 o O V21 V929 X ok



Method 2: A Jacobi-like method |

Off-diagonal pivots: assume, we only consider one off-diagonal pivot;

— *_
o ®
* ok ok
X ko ok Xk
X ok ok ok ok
® X X X @ X
X ok ok ok ok
X ok ok ok ok ok ok ok

We may use different unitary transformation from the left and the right,

Uil u21 ¢ o Vi1 Vi2 | | © *
U192 U929 o O V21 V929 X ok



Method 2: A Jacobi-like method

Off-diagonal pivots: assume, we only consider one off-diagonal pivot;

U171 U271 * - @ U11 U12

V11 V21 V11 V12

U12 U292 ) - @ U271 U29

V12 V22 V21 V22

* X K X

* X K Kx X

* K X K K K

X X @ X X X @

* K K K K K KX K
—

because of the position of the subproblem. ~» more freedom in the parameters

Uil u21 ¢ o Vi1 Vi2 | | © *
U192 U929 o O V21 V929 X ok




Method 2: A Jacobi-like method

U1 U2

V11 V21

U12 U22

V12 V22

Uil U21
| U12 U22

U11 V21
| V12 V22

* X K X

* X Kk K*x X

* @ X X X @
X X @ X X X @

V11 V12
U21 V22

Uil U2

U1 U22 |

* K K K K K X K

k

Off-diagonal pivots: assume, we only consider one off-diagonal pivot;

U1 Uy2

V11 V12

U21 U22

V21 V22

Simultaneously, a second 2 X 2 system — marked by e — will be transformed.




Method 2: A Jacobi-like method

U1 U2

V11 V21

U12 U22

V12 V22

Uil U21
| U12 U22

U11 V21
| V12 V22

* *x @

* X K X

* X Kk K*x X

* @ X X X @
X X @ X X X @

V11 V12
U21 V22

Uil U2

U1 U22 |

* K K K K K X K

U1

U21

V11

V21

Off-diagonal pivots: assume, we only consider one off-diagonal pivot;

Uy2

V12

U22

V22

Use the freedom in the parameters to anti-triangularize the second system as well.




Method 2: A Jacobi-like method |

Off-diagonal pivots:

— *_
o ® Xk
o ® X X
X ok ok Xk
* ok ok ok ok
® X X X @ X
® Xk Xx X @ Xk Xk
X ok ok ok ok ok ok ok

Anti-triangularize the colored /black generalized 2 x 2 problem:

Al



Method 2: A Jacobi-like method |

Off-diagonal pivots:

S

o ® Xk

o ® X X
X ok ok Xk

* ok ok ok ok

® X X X @ X

® Xk Xx X @ Xk Xk
X ok ok ok ok ok ok ok

Anti-triangularize the colored /black generalized 2 x 2 problem:

e Gl ) e ) [



Method 2: A Jacobi-like method |

Off-diagonal pivots:

1 * 1

un U R ® X i o

v Va1 - e ® *x * v Vis
1 * ok ok %k 1
1 * ok k k% 1

o s . - @ % *x % @ % " oo

Vi Vs . * k @ *x X Van Vo
1 * ok * ok Kk kX

Update the n x n matrix.

T
U1l u21 e o oo vl V12 | O sk O *
[Um U22] A[' ']+[0 0] [2121 ’022]_)\[* *]+[* *]




Method 2: A Jacobi-like method |

Off-diagonal pivots:

* K X K KX K X
* K K K K K KX K

F S S S
* X K X*x X
* K X K K K

Update the n x n matrix.

ER R



Method 2: A Jacobi-like method |

Sweep: Annihilate each pivot element at least once.

E.g., cyclic-by-row-sweep:

@) o
X ok

X ok ok

X ok Xk Xk

X ok ok ok Xk
® X X X x @



Method 2: A Jacobi-like method |

Sweep: Annihilate each pivot element at least once.

E.g., cyclic-by-row-sweep:

@) o
O ® x
X ok

X ok Xk Xk

® X Xx X @
® X Xx X @ X



Method 2: A Jacobi-like method |

Sweep: Annihilate each pivot element at least once.

E.g., cyclic-by-row-sweep:

® X X @
* X Kk Kx X
* X% @ X X @




Method 2: A Jacobi-like method |

Sweep: Annihilate each pivot element at least once.

E.g., cyclic-by-row-sweep:

O o

Xk

® Xk O

o -« @ Xk x Xk
X ok Xk ok Xk
® Xk @ Xk x



Method 2: A Jacobi-like method |

Sweep: Annihilate each pivot element at least once.

E.g., cyclic-by-row-sweep:

O @

o ©o

X ok ok

X ok Xk Xk
O @ *x >k >*k Xk
® ® x X Xx X




Method 2: A Jacobi-like method |

Sweep: Annihilate each pivot element at least once.

E.g., cyclic-by-row-sweep:

— *_
@) ® Xk
X ok
X ok Xk Xk
® X x @ X
* %k x %k %k Xk



Method 2: A Jacobi-like method |

Sweep: Annihilate each pivot element at least once.

E.g., cyclic-by-row-sweep:

- *_
O ® x
O ® Xx >k
® X @ X
® Xk @ Xk X
k X ok ok



Method 2: A Jacobi-like method |

Sweep: Annihilate each pivot element at least once.

E.g., cyclic-by-row-sweep:

— *_
O @ =k
® O X
O @ x >k X
® & x X X
* %k x %k %k Xk



Method 2: A Jacobi-like method |

Sweep: Annihilate each pivot element at least once.

E.g., cyclic-by-row-sweep:

* % @ O

X X O O
EOEEE S S
* K K K K X




Method 2: A Jacobi-like method |

Properties of the algorithm:

+ locally and asymptotically quadratically convergent;

+ globally convergent in experiments;

+ converges fast for matrices Z close to anti-triangular form
— expensive in general (cost of 3 sweeps = cost of QZ)

— convergence problems for badly scaled problems

— convergence problems for large n



Method 3: A hybrid method |

Laub-trick:

+ works for moderate sizes of n:
+ essentially cost of QZ;

— problems for eigenvalues with modulus near one;

Jacobi:

+ works nicely if problem is small and eigenvalues do not differ too much
in modulus;

Idea: Combine the positive properties of these two algorithms. Use the
Laub-trick for getting all eigenvalues sufficiently far away from the unit
circle and use Jacobi for the eigenvalues near the unit circle.



Method 3: A hybrid method |

Q11 Q12 Qi3 X1 X2 X Yii Yo Y3 Wi Wiy Wis
NZ+Z0 = | Qo Qo Qo3 A0 Xog Xog |+ 0 Yo Yo Wor Way Was
Q31 @32 Q33 0 0 Xs3 0 0 Ys W31 Wsy Wis

Step 1: Given a tolerance @ > 1 and a regular \Z+Z1 € C?"*?", compute
its generalized Schur decomposition, where the eigenvalues are ordered in
such a way that

o(AX11+ Y1)
U()\XQQ -+ }/22)

1M

A eC: |\ >al,
1
freC:a>>-}

I

O'()\ng -+ YE),g)

1M

1
: < —t.
{rxeC |A\_&}



Method 3: A hybrid method |

Q11 Q12 Qi3 X1 X2 X Yii Yo Y3 Wi Wiy Wis
NZ+Z0 = | Qo Qo Qo3 A0 Xog Xog |+ 0 Yo Yo Wor Way Was
Q31 @32 Q33 0 0 Xs3 0 0 Ys W31 Wsy Wis

Step 2: By the Laub trick, the matrix

Wi QI Ry
Wa QiyRnm
i WSl QlTSRm |

has orthonormal columns. Extend this matrix to a unitary matrix

Wiy Up Qi Ry, |
U:= | Wy U Q%FQRm :
Wi Usy Q3R |




Method 3: A hybrid method |

Q1 Q12 Qi3 X1 X Xy Yii Yo Vi3 Wi Wis Wis
NZ+Z0 = | Qu Qn Qn Al 0 Xoo Xos [ +| 0O Ya Yo War Wy Was
Q31 Q32 @33 0 0 Xs3 0 0 Ya3 Wa1 Wiy Wis
Step 3: Compute
0 0 YR,
U'ZU = 0  Zy 2y :
| Ry X11 Z32 33

where Y/ R,, € C"™* " and R,,X;; € C™ ™ are in anti-triangular form and
Zyy € Cln=2m)x(n=2m) has only eigenvalues in {A € C : a > |A] > 1}



Method 3: A hybrid method |

Q1 Q12 Qi3 X1 X Xy Yii Yo Vi3 Wi Wis Wis
NZ+Z0 = | Qu Qn Qn Al 0 Xoo Xos [ +| 0O Ya Yo War Wy Was
Q31 Q32 @33 0 0 Xs3 0 0 Ya3 Wa1 Wiy Wis
Step 3: Compute
0 0 YR,
U'ZU = 0  Zy 2y :
| Ry X11 Z32 33

where Y/ R,, € C"™* " and R,,X;; € C™ ™ are in anti-triangular form and
Zyy € Cln=2m)x(n=2m) has only eigenvalues in {A € C : a > |A] > 1}

Step 4: Anti-triangularize Zyy by use of the Jacobi-like method.



Numerical experiments |

Performance of Jacobi:

Test: 30 random matrices Z for different sizes n = 10, 20, . . ., 80.

Z=randn (n)+i*randn(n)

Stopping criterion: ¢(Z) < 50 eps, where

e(Z) = max |2ij].



Numerical experiments
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Numerical experiments |

Performance of Jacobi:

Test: 30 random matrices close to anti-triangular form

30 random matrices Z for different sizes n = 10,20, ..., 150 reduced to

anti-triangular form by method 1 plus a random perturbation of order Wlo'

Stopping criterion: ¢(Z) < 50 eps, where

e(Z) = max |2ij].
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Numerical experiments
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Numerical experiments |

Performance of method 3:

Test: 30 matrices Z of size n = 400 such that AZ 4+ Z! has 10 eigenvalues
p with ||| — 1] &~ 100 eps or smaller.

Results:

e for about 50% of the problems, QZ was not able to properly seperate the
eigenvalues with modulus near 1;

e method 3 worked fine producing blocks Zys of size 10 x 10 as expected;

e Jacobi needed an average number of 7.4 sweeps (compared to 9.8 sweeps
for random matrices) for the solution of the 10 x 10 problem



