
I.1.(a) Krylov Subspace Projection Methods

1 Introduction

In this lecture, we discuss iterative methods based on Krylov subspace projection for extracting
a few eigenvalues and eigenvectors of a large sparse matrix. Projection techniques are the
foundation of many algorithms. We will first discuss the general framework of the Rayleigh-
Ritz subspace projection procedure, and then discuss the widely used Arnoldi and Lanczos
methods.

2 Rayleigh-Ritz procedure

Let A be an n×n complex matrix and K be an m-dimensional subspace of C
n. An orthogonal

projection technique seeks an approximate eigenpair (λ̃, ũ), with λ̃ in C and ũ in K. This
approximate eigenpair is obtained by imposing the following Galerkin condition :

Aũ − λ̃ũ ⊥ K , (2.1)

or, equivalently,
〈Aũ − λ̃ũ, v〉 = 0 , ∀ v ∈ K. (2.2)

To translate the condition (2.2) into a matrix problem, assume that an orthonormal basis
{v1, v2, . . . , vk} of K is available. Denote V = (v1, v2, . . . , vk), and let ũ = V y. Then, the
condition (2.2) becomes

〈AV y − λ̃V y, vj〉 = 0, j = 1, . . . , k.

Therefore, y and λ̃ must satisfy
Bky = λ̃y, (2.3)

where
Bk = V HAV.

Each eigenvalue λ̃i of Bk is called a Ritz value, and V yi is called Ritz vector, where yi is
the eigenvector of Bk associated with λ̃i. This procedure A is known as the Rayleigh-Ritz

procedure.

Algorithm 2.1 (Rayleigh-Ritz Procedure).

1. Compute an orthonormal basis {vi}i=1,...,k of the subspace K. Let V = (v1, v2, . . . , vk).

2. Compute Bk = V HAV .

3. Compute the eigenvalues of Bk and select k0 desired ones: λ̃i, i = 1, 2, . . . , k0, where
k0 ≤ k.

4. Compute the eigenvectors yi, i = 1, . . . , k0, of Bk associated with λ̃i, i = 1, . . . , k0, and
the corresponding approximate eigenvectors of A, ũi = V yi, i = 1, . . . , k0.

The numerical solution of the small k × k eigenvalue problem in the statements 3 and 4
can be treated by standard algorithms for solving small dense eigenvalue problems. Another
important note is that in the statement 4 one can replace eigenvectors by Schur vectors to
get approximate Schur vectors ũi instead of approximate eigenvectors. Schur vectors can

1

be obtained in a numerically stable way and, in general, eigenvectors are more sensitive to
rounding errors than are Schur vectors.

Alternatively, there is an oblique projection technique. Here we first select two subspaces
L and K and then seek an approximation ũ ∈ K and an element λ̃ ∈ C that satisfy the
Petrov-Galerkin condition :

〈Aũ − λ̃ũ, v〉 = 0, ∀ v ∈ L . (2.4)

The subspace K will be referred to as the right subspace and L as the left subspace. A
procedure similar to the Rayleigh-Ritz procedure can be devised. Let V denote the basis for
the subspace K and W for L. Then, writing ũ = V y, the Petrov-Galerkin condition (2.4) yields
the reduced eigenvalue problem

Bky = λ̃Cky,

where
Bk = WHAV and Ck = WHV.

If Ck = I, then the two bases are called biorthonormal. In order for a biorthonormal pair V
and W to exist the following additional assumption for L and K must hold. For any two bases
V and W of K and L, respectively,

det(WHV) 6= 0 . (2.5)

As can be seen this condition does not depend on the bases selected and is equivalent to
requiring that no vector of K is orthogonal to L.

3 Optimality

We now examine the Rayleigh-Ritz procedure in further detail. Let Q = (Qk, Qu) be an n-by-n
orthogonal matrix, where Qk is n-by-k, and Qu is n-by-(n − k), and span(Qk) = K. Then

T = QT AQ = (Qk, Qu)T A(Qk, Qu) =

(
QT

k AQk QT
k AQu

QT
u AQk QT

u AQu

)
≡
(

Tk Tuk

Tku Tu

)

The Ritz values and Ritz vectors are considered optimal approximations to the eigenvalues
and eigenvectors of A from the selected subsapce K = span(Qk) as justified by the following
theorem.

Theorem 3.1. The minimum of ‖AQk − QkS‖2 over all k-by-k S is attained by S = Tk, in
which case, ‖AQk − QkTk‖2 = ‖Tku‖2.

Proof. Let S = Tk + Z. We will show that ‖AQk − QkS‖2 is minimized when Z = 0. This is
a consequence of

(AQk − QkS)T (AQk − QkS)

= [AQk − Qk(Tk + Z)]T [AQk − Qk(Tk + Z)]

= (AQk − QkTk)
T (AQk − QkTk) − (AQk − QkTk)

T (QkZ)

− (QkZ)T (AQk − QkTk) + (QkZ)T (QkZ)

= (AQk − QkTk)
T (AQk − QkTk) − (QT

k AT Qk − T T
k)Z

− ZT (QT
k AQk − Tk) + ZT Z

= (AQk − QkTk)
T (AQk − QkTk) + ZT Z. (3.6)

2

Furthermore, it is easy to compute the minimum value

‖AQk − QkTk‖2 = ‖(QkTk + QuTku) − QkTk‖2 = ‖QuTku‖2 = ‖Tku‖2,

as expected.

More can be said from the identity (3.6): The conclusion of Theorem 3.1 remains valid if
the spectral norm ‖ · ‖2 is replaced by any unitarily invariant norm, including in particular the
Frobenius norm.

Corollary 3.1. Let A be a symmetric matrix, AT = A, and let Tk = V ΛV T be the eigen-
decomposition of Tk. The minimum of ‖APk − PkD‖ over all n-by-k orthogonal matrices Pk

subject to span(Pk) = span(Qk) and over all diagonal D is also ‖Tku‖2 and is attained by
Pk = QkV and D = Λ.

Proof. If we replace Qk with QkU in the above proof, where U is another orthogonal matrix,
then the columns of Qk and QkU span the same space, and

‖AQk − QkS‖2 = ‖AQkU − QkSU‖2 = ‖A(QkU) − (QkU)(UT SU)‖2.

These quantities are still minimized when S = Tk, and by choosing U = V so that UT TkU is
diagonal.

4 Krylov subspace

As we know, the simplest thing to do is to compute just the largest eigenvalue in absolute
value, along with its eigenvector. The power method is the simplest algorithm suitable for this
task. Starting with a given u0, k iterations of the power method produce a sequence of vectors
u0, u1, u2, . . . , uk. It is easy to see that these vectors span a Krylov Subspace :

Kk+1(A, u0) = span{u0, u1, u2, . . . , uk} = span{u0, Au0, A
2u0, . . . , A

ku0}.

Now, rather than taking uk as our approximate eigenvector, it is natural to ask for the “best”
approximate eigenvector in Kk+1(A, u0). We will see that the best eigenvector (and eigenvalue)
approximations from Kk+1(A, u0) are much better than uk alone.

Charaterization of Kk+1(A, u0):

Kk+1(A, u0) = {q(A)u0 | q ∈ Pk},

where Pk is the set of all polynomial of degree less than k + 1.

Properties of Kk+1(A, u0):

1. Kk(A, u0) ⊂ Kk+1(A, u0).

AKk(A, u0) ⊂ Kk+1(A, u0).

2. If σ 6= 0, Kk(A, u0) = Kk(σA, u0) = Kk(A, σu0).

3. For any κ, Kk(A, u0) = Kk(A − κI, u0).

4. If W is nonsingular, Kk(W
−1AW, W−1u0) = W−1Kk(A, u0).

An explicit Krylov basis {u0, Au0, A
2u0, . . . , A

ku0} is not suitable for numerical computing.
It is extremely ill-conditioned. Therefore, our first task is to replace a Krylov basis with a better
conditioned basis, say an orthonormal basis.

3

Theorem 4.1. Let the columns of Kj+1 =
(
u0 Au0 . . . Aju0

)
be linearly independent. Let

Kj+1 = Uj+1Rj+1 (4.7)

be the QR factorization of Kj+1. Then there is a (j+1)×j unreduced upper Hessenberg matrix

Ĥj such that

AUj = Uj+1Ĥj . (4.8)

Conversely, if Uj+1 is orthonormal and satisfies (4.8), then

span(Uj+1) = span{u0, Au0, . . . , A
ju0}. (4.9)

Proof. Partitioning the QR decomposition (4.7), we have

(
Kj Aju0

)
=
(
Uj uj+1

)(Rj rj+1

0 rj+1,j+1

)
,

where Kj = UjRj is the QR decomposition of Kj . Then

AKj = AUjRj

or

AUj = AKjR
−1
j = Kj+1

(
0

R−1
j

)
= Uj+1Rj+1

(
0

R−1
j

)
.

It is easy to verify that

Ĥj = Rj+1

(
0

R−1
j

)

is a (j +1)× j unreduced upper Hessenberg matrix. Therefore we complete the proof of (4.8).
Conversely, suppose that Uj+1 satisfies (4.8), then by induction, we can prove the identity

(4.9).

We note that by partitioning,

Ĥj =

(
Hj

hj+1,je
T
j

)
,

the decomposition (4.8) can be written in the following form that will be useful in the sequel:

AUj = UjHj + hj+1,juj+1e
T
j . (4.10)

We call (4.10) an Arnoldi decomposition of order j. The decomposition (4.8) is a
compact form.

5 Arnoldi algorithm

The Arnoldi algorithm for finding a few eigenpairs of a general matrix A combines the Arnoldi
process for building a Krylov subspace with the Raleigh-Ritz procedure.

First, by the Arnoldi decomposition (4.10), we deduce the following process to generate an
orthogonormal basis {v1, v2, . . . , vm} of the Krylov subspace Km(A, v):

4

Algorithm 5.1 (Arnoldi Process).
1. v1 = v/‖v‖2

2. for j = 1, 2, . . . , k
3. compute w = Avj

4. for i = 1, 2, . . . , j
5. hij = vT

i w
6. w = w − hijvi

7. end for
8. hj+1,j = ‖w‖2

9. If hj+1,j = 0, stop
10. vj+1 = wj/hj+1,j

11. endfor

Remark 5.1. (1) Note that the matrix A is only referenced via the matrix-vector multi-
plication Avj . Therefore, it is ideal for large sparse or large dense structured matrices. Any
sparsity or structure of a matrix can be exploited in the matrix-vector multiplication. (2)
The main storage requirement is (m + 1)n for storing Arnoldi vectors {vi} plus the storage
requirement for the matrix A in question or the required matrix-vector multiplication. (3) The
primary arithmetic cost of the procedure is the cost of m matrix-vector products plus 2m2n
for the rest. It is common that the matrix-vector multiplication is the dominant cost. (4) The
Arnoldi procedure breaks down when hj+1,j = 0 for some j. It is easy to see that if the Arnoldi
procedure breaks down at step j (i.e. hj+1,j = 0), then Kj = span(Vj) is invariant subspace of
A. (5) Some care must be taken to insure that the vectors vj remain orthogonal to working
accuracy in the presence of rounding error. The usual technique is reorthogonalization.

Denote
Vk =

(
v1 v2 . . . vk

)

and

Hk =

h11 h12 · · · h1,k−1 h1k

h21 h22 · · · h2,k−1 h2k

h32
. . . h3,k−1 h3k

. . .
...

...
hk,k−1 hkk

.

In the matrix form, the Arnoldi process can be expressed in the following governing relations:

AVk = VkHk + hk+1,kvk+1e
T
k (5.11)

and
V H

k Vk = I and V H
k vk+1 = 0.

Note that the decomposition is uniquely determined by the starting vector v. This is commonly
known as the implicit Q-Theorem.

Since V H
k vk+1 = 0, we have

Hk = V T
k AVk.

Thus, Hk is called the generalized Rayleigh Quotient Matrix corresponding to Vk. Let µ
be an eigenvalue of Hk and y be a corresponding eigenvector y, i.e.,

Hky = µy, ‖y‖2 = 1.

Then the corresponding Ritz pair is (µ, Vky). Applying y to the right hand side of (5.11), the
residual vector for (µ, Vky) is given by

A(Vky) − µ(Vky) = hk+1,kvk+1(e
T
k y).

5

Using the backward error interpretation, we know that (µ, Vky) is an exact eigenpair of A+E,
where ‖E‖2 = |hk+1,k| · |eT

k y|. This gives us a criterion of whether to accept the Ritz pair
(µ, Vky) as an accurate approximate eigenpair of A.1

An outline of Arnoldi’s method for the nonsymmetric eigenvalue problem is as follows.

Algorithm 5.2 (Arnoldi algorithm).

1. Choose a starting vector v;

2. Generate the Arnoldi decomposition of length k by the Arnoldi process;

3. Compute the Ritz pairs and decide which ones are acceptable;

4. If necessary, increase k and repeat.

Example 5.1. We apply the above Arnoldi algorithm to a 100-by-100 random sparse matrix A
with approximately 1000 normally distributed nonzero entries: A = sprandn(100,100,0.1).
All entries of the starting vector v are 1. The following figure illustrates typical convergence
behavior of the Arnoldi algorithm for computing the eigenvalues of such kind of random matrix
A. In this figure, “+” are the eigenvalues of matrix A (computed by eig(full(A))), and the
“◦” are the eigenvalues of the upper Hessenberg matrix H30 (computed by eig(H30)).

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Real Part

Im
ag

in
ar

y
P

ar
t

Eigenvalues of A in "+" and H
30

 in "o"

In this example, we observe that exterior eigenvalues converge first. This is the typical con-
vergence phenomenon of the Arnoldi algorithm (in fact, all Krylov subspace based methods).
There is a general theory for the convergence analysis of the Arnoldi algorithm.

Restarting and Deflation. The algorithm has two nice aspects:

1. Hk is already in the Hessenberg form, so we can immediately apply the QR algorithm to
find its eigenvalues.

2. After we increase k to, say k +p, we only have to orthogonalize p vectors to compute the
(k + p)th Arnoldi decomposition. The work already completed previously is not thrown
away.

Unfortunately, the algorithm has its drawbacks, too:

1Note that because of non-symmetry of A, we generally do not have the nice forward error estimation as the
Lanczos algorithm for symmetric eigenproblem. But a similar error bound involving the condition number of
the corresponding eigenvalue exists.

6

1. If A is large, we cannot increase k indefinitely, since Vk requires nk memory locations to
store.

2. We have little control over which eigenpairs the algorithm finds. In a given application
we will be interested in a certain set of eigenpairs. For example, eigenvalues lying near
the imaginary axis. There is nothing in the algorithm to force desired eigenvectors into
the subspace or the discard undesired ones.

We will now show how to implicitly restart the algorithm with a new Arnoldi decomposition
in which (in exact arithmetic) the unwanted eigenvalues have been purged from Hk.

Implicit Restarting. We begin by asking how to cast an undesired eigenvalue out of an
unreduced Hessenberg matrix H. Let µ be the eigenvalue of H, and suppose we perform one
step of the QR algorithm with shift µ. The first step is to determine an orthogonal matrix U
such that

R = UH(H − µI)

is upper triangular. Since H−µI is singular, R must have a zero on its diagonal. Because H is
unreduced, that zero cannot occur at a diagonal position other than the last, namely rnn = 0.
and the last row of R is zero.

Furthermore, note that U = P12P23 · · ·Pn−1,n, where Pi,i+1 is a rotation in the (i, i + 1)-
plane. Consequently, U is Hessenberg and can be partitioned in the form

U =

(
U∗ u

uk,k−1e
T
k−1 uk,k

)
.

Hence

H ′ = RU + µI =

(
Ĥ∗ ĥ
0 µ

)
= UHHU.

In other words, the shifted QR step has found the eigenvalue µ exactly and has deflated the
problem.

In the presence of rounding error we cannot expect the last element of R to be zero. This
means that the matrix Ĥ will have the form

Ĥ ′ = ÛHHÛ =

(
Ĥ∗ ĥ

ĥk,k−1e
T
k−1 µ̂

)
.

We are now going to show how to use the transformation Û to reduce the size of the Arnoldi
decomposition.

By the relation (5.11), we have

AVkÛ = VkÛ(ÛT HkÛ) + hk+1,kvk+1e
T
k Û .

If we partition

V̂k = VkÛ =
(
V̂k−1 v̂k

)

Then

A (V̂k−1 v̂k) = (V̂k−1 v̂k)

(
Ĥ∗ ĥ

ĥk,k−1e
T
k−1 µ̂

)
+ hk+1,kvk+1

(
ûk,k−1e

T
k−1 ûk,k

)
.

Computing the first k − 1 columns of this partition, we get

AV̂k−1 = V̂k−1Ĥ∗ + feT
k−1, (5.12)

7

where f = ĥk,k−1v̂k + hk+1,kûk,k−1vk+1.

The matrix Ĥ∗ is Hessenberg. The vector f is orthogonal to the columns of V̂k−1. Hence
(5.12) is an Arnoldi decomposition of length k − 1. With exact computation, the eigenvalue µ
is not presented in Ĥ∗.

The process may be repeated to remove other unwanted values from H. If the matrix is real,
a pair of complex conjugate eigenvalues can be removed at the same time via an implicit double
shift. The key observation here is that V is zero below its second subdiagonal element, so that
truncating the last two columns and adjusting the residual results in an Arnoldi decomposition
can be done together. Once un-desired eigenvalues have been removed from H, the Arnoldi
decomposition may be expanded again and the process repeats.

Deflation. There are two important additions to the algorithm that are beyond the scope
of this lecture.

1. First, as Ritz pairs converge they can be locked into the decomposition. The procedure
amounts to computing an Arnoldi decomposition of the form

A (V1 V2) = (V1 V2)

(
H11 H12

0 H22

)
+ hk+1,kvk+1e

T
k

When this is done, one can work with the part of decomposition corresponding to V2, thus
saving multiplications by A. (However, care must be taken to maintain orthogonality to
the columns of V1.)

2. The second addition concerns unwanted Ritz pairs. The restarting procedure will tend
to purge the unwanted eigenvalues from H. But the columns of U may have significant
components along the eigenvectors corresponding to the purged pairs, which will then
reappear as the decomposition is expanded. If certain pair are too persistent, it is best
to keep them around by computing a block diagonal decomposition of the form

A (V1 V2) = (V1 V2)

(
H11 0
0 H22

)
+ ηvk+1e

T
k ,

where H11 contains the unwanted eigenvalues. This insures that U2 has negligible compo-
nents along the unwanted eigenvectors. We can then compute an Arnoldi decomposition
by reorthognalizing the relation

AV2 = H22V2 + ηvk+1e
T
m,

where m is the order of H2.

6 The symmetric Lanczos algorithm

The Lanczos algorithm for finding a few eigenpairs of a symmetric matrix A combines the
Lanczos process for building a Krylov subspace with the Raleigh-Ritz procedure.

Let us begin with an observation that in the Arnoldi decomposition (4.10), if A is symmet-
ric, then the upper Hessenberg matrix Hj is symmetric tridiagonal. Therefore, we have the
following simplified process to compute an orthonormal basis of a Krylov subspace:

Algorithm 6.1 (Lanczos process).
1 q1 = v/‖v‖2, β0 = 0; q0 = 0;
2 for j = 1 to k, do
3 w = Aqj ;

8

4 αj = qT
j w;

5 w = w − αjqj − βj−1qj−1;
6 βj = ‖w‖2;
7 if βj = 0, quit;
8 qj+1 = w/βj ;
9 EndDo

Denote
Qk =

(
q1 q2 . . . qk

)

and

Tk =

α1 β1

β1 α2 β2

. . .
. . .

. . .
. . . αk−1 βk−1

βk−1 αk

= tridiag(βj , αj , βj+1),

the k-step Lanczos process yields a fundamental relation

AQk = QkTk + fke
T
k , fk = βkqk+1 (6.13)

and QT
k Qk = I and QT

k qk+1 = 0.
Let µ be an eigenvalue of Tk and y be a corresponding eigenvector y, i.e.,

Tky = µy, ‖y‖2 = 1.

Apply y to the right of (6.13) to get

A(Qky) = QkTky + fk(e
T
k y) = µ(Qky) + fk(e

T
k y). (6.14)

Here µ is a Ritz value, and Qky is the corresponding Ritz vector . Equation (6.14) offers a
quick insight into convergence of the Ritz value and vector.

If fk(e
T
k y) = 0 for some k, then the associated Ritz value µ is an eigenvalue of A with the

corresponding eigenvector Qky. In general, it is unlikely that fk(e
T
k y) = 0, but we hope that

the residual norm ‖fk(e
T
k y)‖2 may be small; and when this happens we expect that µ is going

to be a good approximate to A’s eigenvalue. Indeed, we have the following result.

Lemma 6.1. Let H be (real) symmetric, and Hz − µz = r and z 6= 0. Then

min
λ∈eig(H)

|λ − µ| ≤ ‖r‖2/‖z‖2.

Proof. Let H = UΛUT be the eigen-decomposition of H. Then

(H − µI)z = r ⇒ U(Λ − µI)UT z = r ⇒ (Λ − µI)(UT z) = UT r.

Notice that Λ − µI is diagonal. Thus

‖r‖2 = ‖UT r‖2 = ‖(Λ − µI)(UT z)‖2 ≥ min
λ∈eig(H)

|λ − µ| ‖UT z‖2 = min
λ∈eig(H)

|λ − µ|‖z‖2,

as expected.

The following corollary is a consequence of above Lemma 6.1.

9

Corollary 6.1. There is an eigenvalue λ of A such that

|λ − µ| ≤ ‖fk(e
T
k y)‖2

‖Qky‖2
=

|βk| · |eT
k y|

‖Qky‖2
.

In the absence of roundoff error, ‖Qky‖2 = ‖y‖2 = 1, and thus the denominator ‖Qky‖2 can
be dropped . But numerically the loss of orthogonality in the columns of Qk can destroy this
identity. This loss of orthogonality motivated the developments of various reorthogonalization
strategies.

In summary, we have the following Lanczos algorithm in the simplest form.

Algorithm 6.2 (Simple Lanczos Algorithm).
1. q1 = v/‖v‖2, β0 = 0, q0 = 0;
2. for j = 1 to k do
3. w = Aqj ;
4. αj = qT

j w;

5. w = w − αjqj − βj−1qj−1;
6. βj = ‖w‖2;
7. if βj = 0, quit;
8. qj+1 = w/βj ;
9. Compute eigenvalues and eigenvectors of Tj

10. Test for convergence
11. EndDo

Caveat. All the discussion so far is under the assumption of exact arithmetic. In the pres-
ence of finite precision arithmetic, the numerical behaviors of the Lanczos algorithm could
be significantly different. For example, in finite precision arithmetic, the orthogonality of the
computed Lanczos vectors {qj} is lost when j is as small as 10 or 20. The simplest remedy
(and also the most expensive one) is to implement the the full reorthogonalization, namely
after the step 5, do

w = w −
j−1∑

i=1

(wT qi)qi.

This is called the Lanczos algorithm with full reorthogonalization. (Sometimes, it may be
needed to execute twice). A more elaborate scheme, necessary when convergence is slow and
several eigenvalues are sought, is to use the selective orthogonalization.

Example 6.1. We illustrate the Lanczos algorithm by a running an example, a 1000-by-1000
diagonal matrix A, most of whose eigenvalues were chosen randomly from a normal Gaussian
distribution. To make the plot easy to understand, we have also sorted the diagonal entries
of A from largest to smallest, so λi(A) = aii with the corresponding eigenvector ei. There are
a few extreme eigenvalues, and the rest cluster near the center of the spectrum. The starting
Lanczos vector v has all equal entries.

Note that there is no loss in generality in experimenting with a diagonal matrix, since
running the Lanczos algorithm on A with starting vector q1 = v/‖v‖2 is equivalent to running
the Lanczos algorithm on QT AQ with starting vector QT q1.

The following figure illustrates convergence of the Lanczos algorithm for computing the
eigenvalues of A. In this figure, the eigenvalues of each Tk are shown plotted in column k, for
k = 1 to 30, with the eigenvalues of A plotted in an extra column at the right. Thus, column
k has k “+”s, one marking each eigenvalue of Tk.

10

0 5 10 15 20 25 30

−3

−2

−1

0

1

2

3

30 steps of Lanczos (full reorthogonalization) applied to A

Lanczos step

E
ig

en
va

lu
es

To understand convergence, consider the largest eigenvalues of each Tk, note that they in-
crease monotonically as k increases; this is a consequence of the Cauchy interlace theorem. A
completely analogous phenomenon occurs with the smallest eigenvalues.

Now we can ask to which eigenvalue of A the eigenvalue λi(Tk) converges as k increases.
Clearly, the largest eigenvalue of Tk, λ1(Tk), ought to converge to the largest eigenvalue of
A, λ1(A). Similarly, the ith largest eigenvalue λi(Tk) of Tk must increase monotonically and
converge to the ith largest eigenvalue λi(A) of A.

In summarizing the discussion, we observe that

1. Extreme eigenvalues, i.e., the largest and smallest ones, converge first, and the interior
eigenvalues converge last.

2. Convergence is monotonic, with the ith largest (smallest) eigenvalues of Tk increasing
(decreasing) to the ith laregst (smallest) eigenvalue of A, provided that the Lanczos
algorithm does not stop prematurely with some βk = 0.

Thick Restarting. To reduce the cost of computing a large subspace, the iteration is
restarted after a fixed number m + 1 of the basis vectors are computed. Instead of using
the implicit restarting scheme as we discussed for the Arnoldi method, we can also use a so-
called thick restarting scheme, and lead to a thick-restart Lanczos method (TRLan). The
TRLan method is based on the observation that the Ritz values first converge to the exterior
eigenvalues of A. At beginning, TRLan selects two indices ℓ and u to indicate those Ritz values
to be kept at both ends of spectrum as showni in the following figure:

θmθ2θ1 θuθ

keep keepdiscard

l

The corresponding kept Ritz vectors are denoted by

Q̂k = [q̂1, q̂2, . . . , q̂k] = QmYk, (6.15)

where
k = ℓ + (m − u + 1), (6.16)

Yk = [y1, y2, . . . , yℓ, yu, yu+1, . . . , ym], (6.17)

11

and yi is the eigenvector of Tm corresponding to θi. TRLan sets these Ritz vectors Q̂k as the
first k basis vectors at the restart and qm+1 as the (k + 1)th basis vector (i.e., q̂k+1 = qm+1).

2

To compute the (k + 2)th basis vector q̂k+2, TRLan computes Aq̂k+1 and orthonormalizes it
against the previous k + 1 basis vectors. That is,

β̂k+1q̂k+2 = Aq̂k+1 − Q̂k(Q̂
H
k Aq̂k+1) − q̂k+1(q̂

H
k+1Aq̂k+1). (6.18)

Note that AQ̂k satisfies the relation:

AQ̂k = Q̂kDk + βmq̂k+1s
H ,

where Dk is the k × k diagonal matrix whose diagonal elements are the kept Ritz values, and
s = Y H

k em. Thus, the coefficients Q̂H
k Aq̂k+1 in (6.18) can be computed efficiently:

Q̂H
k Aq̂k+1 = (AQ̂k)

H q̂k+1 = (Q̂kDk + βmq̂k+1s
H)H q̂k+1

= DkY
H
k (QH

mqm+1) + βms(q̂H
k+1q̂k+1) = βms.

In general, at the ith iteration after the restart, the new basis vector q̂k+i+1 satisfies the
relation:

AQ̂k+i = Q̂k+iT̂k+i + β̂k+iq̂k+i+1e
H
k+i,

where T̂k+i = Q̂H
k+iAQ̂k+i is of the form

T̂k+i =

Dk βms

βmsH α̂k+1 β̂k+1

β̂k+1 α̂k+2 β̂k+2

. . .
. . .

. . .

β̂k+i−2 α̂k+i−1 β̂k+i−1

β̂k+i−1 α̂k+i

.

Note that the three-term recurrence is not valid only for computing the (k + 2)th basis vector
and is resumed afterward.

7 Convergence analysis of the symmetric Lanczos algorithm

In this subsection, we will justify the convergence observation in theory in the absence of
roundoff errors. Throughout this subsection

Kk ≡ Kk(A, v).

An error bound in term of distance between Kk and an eigenvector. First, let us
examine a special case.

Lemma 7.1. Let Ax = λx and x 6= 0. If x ∈ Kk, then λ ∈ eig(Tk).

Proof. Since x ∈ Kk, there is a y such that x = Qky. Apply y to the right of (6.13) to get

λQky = λx = Ax = AQky = QkTky + fke
T
k y.

Notice that fk = βkqk+1. Apply QT
k to the left of the above equation to get λy = Tky, as was

to be shown.
2The ith basis vector bqi computed after the restart is distinguished from the ith basis vector qi computed

before the restart by the hat over it.

12

In general, if an eigenvector x of A is nearly in the Krylov subspace Kk, we would expect
the corresponding eigenvalue be well approximated by the process.

Theorem 7.1. Let Ax = λx and ‖x‖2 = 1. Then Tk has an eigenvalue µ such that

|λ − µ| ≤ ‖A‖2 tan θ(x,Kk).

�
�

�
�

�
�

�
�

�
�3

-

6

origin
θ(x,Kk)

x∈

x⊥

x

Kk

Proof. Write x = x∈ + x⊥, where x∈ = QkQ
T
k x ∈ Kk and x⊥ = (I − QkQ

T
k)x⊥Kk. We have

‖x∈‖2 = cos θ(x,Kk), ‖x⊥‖2 = sin θ(x,Kk).

By λx = Ax, we have

λx∈ + λx⊥ = λx = Ax = Ax∈ + Ax⊥ = AQkQ
T
k x + Ax⊥ = QkTkQ

T
k x + fke

T
k QT

k x + Ax⊥,

multiplying which by QT
k from left yields

λQT
k x∈ = TkQ

T
k x + QT

k Ax⊥ ⇒ TkQ
T
k x − λQT

k x = QT
k Ax⊥.

By Lemma 6.1, we conclude that Tk has an eigenvalue µ such that

|λ − µ| ≤ ‖QT
k Ax⊥‖2/‖QT

k x‖2 ≤ ‖QT
k ‖2‖A‖2‖x⊥‖2/‖x∈‖2 = ‖A‖2 tan θ(x,Kk),

as was to be shown.

The upper bound on the distance between Kk and an eigenvector of A. Let
A = UΛUT be the eigen-decomposition of A, where Λ = diag(λ1, λ2, . . . , λn) and U =
(u1, u2, . . . , un). Assume that

λ1 ≥ λ2 ≥ · · · ≥ λn.

Let Pi
def
= uiu

T
i which is the spectral projector onto span{ui}, and let Pj be the collection of

polynomials of degree no bigger than j.

Theorem 7.2.

tan θ(ui,Kk) = min
f∈Pk−1,f(λi)=1

‖f(A)yi‖2 tan θ(ui, v),

where

yi =

{
(I − Pi)v/‖(I − Pi)v‖2, if v 6= Piv,
0, otherwise.

�
�

�
�

�
�

�
�

�
�3

-

J
J

J
J
Ĵ

origin
θ(x, ui)

x = fk−1(A)v

ui

Kk

13

Proof. If v = Piv, no proof is necessary since θ(ui,Kk) = 0. Assume in what follows that
v 6= Piv.

Any x ∈ Kk takes the form x = fk−1(A)v for some fk−1 ∈ Pk−1. Write

x = Pifk−1(A)v + (I − Pi)fk−1(A)v

= fk−1(A)Piv + fk−1(A)(I − Pi)v

= fk−1(λi)Piv + fk−1(A)(I − Pi)v

since PiA = APi (prove it!). Set g(t) = fk−1(t)/fk−1(λi). Thus

tan θ(ui, x) =
‖fk−1(A)(I − Pi)v‖2

‖fk−1(λi)Piv‖2

=
‖[fk−1(A)/fk−1(λi)](I − Pi)v‖2

‖Piv‖2

=
‖g(A)(I − Pi)v‖2

‖(I − Pi)v‖2

‖(I − Pi)v‖2

‖Piv‖2

= ‖g(A)yi‖2 tan θ(ui, v).

Since x ∈ Kk is arbitrary, we have

tan θ(ui,Kk) = min
x∈Kk

tan θ(ui, x) = min
f∈Pk−1,f(λi)=1

‖f(A)yi‖2 tan θ(ui, v),

as expected.

Theorem 7.3.

tan θ(ui,Kk) ≤
ξi

Tk−i(1 + 2δi)
tan θ(ui, v),

where ξ1 = 1 and for i > 1 ξi =
i−1∏
j=1

λj−λn

λj−λi
and δi = λi−λi+1

λi+1−λn
, and Tj(t) is the jth Chebyshev

polynomial (of the first kind).

Proof. Let yi be assigned as in Theorem 7.2. Since A’s eigenvectors uj form an orthonormal
basis of the entire space, we can write

yi =
n∑

j=1

αjuj =
∑

j 6=i

αjuj ,

since yi⊥ui ⇒ αi = 0. It can be proved that
n∑

j=1,j 6=i

|αj |2 = 1 (prove it!). Thus

‖f(A)yi‖2
2 =

n∑

j=1,j 6=i

|f(λj)αj |2 ≤ max
1≤j≤n,j 6=i

|f(λj)|2
n∑

j=1,j 6=i

|αj |2 = max
1≤j≤n,j 6=i

|f(λj)|2. (7.19)

We’d like to have a f ∈ Pk−1 with f(λi) = 1 such that max
1≤j≤n,j 6=i

|f(λj)|2 is as small as possible.

To this end, we again come to Chebyshev polynomials.
Notice we always order λi’s as

λ1 ≥ λ2 ≥ · · · ≥ λn.

Now for the case when i = 1. We choose

f(t) = Tk−1

(
2t − (λ2 + λn)

λ2 − λn

)/
Tk−1(1 + 2δ1),

14

for which max
2≤j≤n

|f(λj)|2 ≤ 1/Tk−1(1 + 2δ1) and f(λ1) = 1. This, together with Theorem 7.2,

conclude the proof.
In general for i > 1, we shall consider polynomials of form

f(t) =
(λ1 − t) · · · (λi−1 − t)

(λ1 − λi) · · · (λi−1 − λi)
g(t), (7.20)

and search a g ∈ Pk−i such that max
i+1≤j≤n

|g(λj)|2 is as small as possible and g(λi) = 1. To this

end, we choose

g(t) = Tk−i

(
2t − (λi+1 + λn)

λi+1 − λn

)/
Tk−i(1 + 2δi),

for which max
1≤j≤n,j 6=i

|g(λj)|2 ≤ 1/Tk−i(1 + 2δi) and g(λi) = 1. This, together with Theorem 7.2

and (7.19) and (7.20), conclude the proof.

The bounds in Theorem 7.3 turn to get more and more complicated as the index i gets bigger
and bigger. Especially it yields nothing about approximating the last eigenvector un. This is
in fact due to the way the theorem is derived, not the intrinsic property of Krylov subspace
approximations; as a matter of fact, the Krylov subspaces favor equally well to eigenspaces
corresponding to both ends of eigenvalues. This can be seen by applying Theorem 7.3 to −A,
noticing that

Kk(A, v) = Kk(−A, v).

Error bounds of the Lanczos algorithm – Kaniel and Saad Theorems. We may
exclude the case when some βi = 0 in the Lanczos Process and then an invariant subspace of
A is found.

Notice that we have q1 = v/‖v‖2 and

AQk = QkTk + fke
T
k = QkTk + βkqk+1e

T
k .

Lemma 7.2. qT
1 Aiqk+1 = 0 = qT

1 Aifk for i < k. Thus qT
1 f(A)qk+1 = 0 = qT

1 f(A)fk for
f ∈ Pk−1.

Proof. We have Aq1 = α1q1 + β1q2. By induction, one can show that

Aiq1 =
i+1∑

j=1

γjqj for i ≤ k.

Thus qT
k+1A

iq1 = 0 when i + 1 < k + 1, i.e., i < k.

Lemma 7.3. For i ≤ k, we have

AiQk = QkT
i
k +

i−1∑

j=0

Ajfkc
T
j = QkT

i
k +

i−1∑

j=0

βkA
jqk+1c

T
j ,

where cj’s are some vectors. Thus qT
1 AiQk = eT

1 T i
k for i ≤ k. Therefore for f ∈ Pk−1, we have

qT
1 f(A)Qk = eT

1 f(Tk).

Proof. By induction.

Denote Tk’s eigenvalues by µ1 ≥ µ2 ≥ · · · ≥ µk, with corresponding (orthonormal) eigen-
vectors y1, y2, . . . , yk.

15

Lemma 7.4. eT
1 yj 6= 0 6= eT

k yj for all j, i.e., yj’s first and last components are not zeros.

Proof. Notice that we assumed βi 6= 0. Since (Tk − µjI)yj = 0, if to the contrary, eT
1 yj = 0

then the first equation yields

β1e
T
2 yj = 0 ⇒ eT

2 yj = 0;

continuing this argument to get yj = 0, that’s impossible since yj is an eigenvector. Similarly
one can show eT

k yj 6= 0.

By the Courant-Fisher Minimax Theorem, we have

µ1 = max
06=y∈Rk

yT Tky

yT y
= max

06=y∈Rk

yT QT
k AQky

yT QT
k Qky

= max
f∈Pk−1,f(A)v 6=0

vT f(A)Af(A)v

vT f(A)2v
.

In general, the Cauchy-Fisher Min-Max Principle yields

µi = max
y⊥ span{y1,y2,...,yj−1}

yT Tky

yT y

= max
Qky⊥ span{Qky1,Qky2,...,Qkyj−1}

yT QT
k AQky

yT QT
k Qky

= max
f∈Pk−1,f(A)v 6=0

f(A)v⊥ span{Qky1,Qky2,...,Qkyj−1}

vT f(A)Af(A)v

vT f(A)2v
.

Lemma 7.5. Let f ∈ Pk−1. Then f(A)v⊥Qkyj if and only if f(µj) = 0.

Proof. Notice that q1 = v/‖v‖2. We have by Lemma 7.3

[f(A)v]T Qkyj = vT f(A)Qkyj = ‖v‖2q
T
1 f(A)Qkyj = ‖v‖2e

T
1 f(Tk)yj = ‖v‖2f(µj)e

T
1 yj ,

from which and Lemma 7.4, the conclusion follows.

With this lemma, we have

µi = max
f∈Pk−1,f(A)v 6=0

f(µ1)=···=f(µj−1)=0

vT f(A)Af(A)v

vT f(A)2v
.

Now we are ready for the main theorem of this section.

Theorem 7.4.

0 ≤ λi − µi ≤ (λi − λn)

[
ζi

Tk−i(1 + 2δi)
tan θ(ui, v)

]2

,

where ζ1 = 1 and for i > 1, ζi = max
i+1≤ℓ≤n

i−1∏
j=1

∣∣∣µj−λℓ

µj−λi

∣∣∣.

Proof. We first show that 0 ≤ λi − µi. By Courant-Fischer Max-min Theorem, we have

µi = max
dim(S)=i

min
06=y∈S

yT Tky

yT y
= max

dim(S)=i
min

06=y∈S

yT QT
k AQky

yT QT
k Qky

= max
dim(QkS)=i

min
06=Qky∈QkS

yT QT
k AQky

yT QT
k Qky

≤ max
dim(S′)=i

min
06=x∈S′

xT Ax

xT x
= λi,

16

as expected. We now prove the other bound. We have

λi − µi =
vT f(A)λif(A)v

vT f(A)2v
− max

f∈Pk−1,f(A)v 6=0

f(µ1)=···=f(µj−1)=0

vT f(A)Af(A)v

vT f(A)2v

= min
f∈Pk−1,f(A)v 6=0

f(µ1)=···=f(µi−1)=0

vT f(A)(λiI − A)f(A)v

vT f(A)2v
.

Expand v =
n∑

j=1
γjuj . Then

vT f(A)2v =
n∑

j=1

|γj |2|f(λj)|2

≥ |γi|2|f(λi)|2,

vT f(A)(λiI − A)f(A)v =
n∑

j=1

|γj |2|f(λj)|2(λi − λj)

=
i−1∑

j=1

|γj |2|f(λj)|2(λi − λj) +
n∑

j=i+1

|γj |2|f(λj)|2(λi − λj)

≤
n∑

j=i+1

|γj |2|f(λj)|2(λi − λj)

≤ (λi − λn)
n∑

j=i+1

|γj |2|f(λj)|2.

Thus we have

0 ≤ λi − µi ≤ (λi − λn) min
f∈Pk−1

f(µ1)=···=f(µi−1)=0

n∑
j=i+1

|γj |2|f(λj)|2

|γi|2|f(λi)|2

≤ (λi − λn) min
g∈Pk−1,g(λi)=1

g(µ1)=···=g(µi−1)=0

max
i+1≤j≤n

|g(λj)|2[tan θ(ui, v)]2,

where g(t) = f(t)/f(λi). In the case when i = 1,

0 ≤ λ1 − µ1 ≤ min
g∈Pk−1,g(λi)=1

max
2≤j≤n

|g(λj)|2[tan θ(ui, v)]2,

a standard practice with Chebyshev polynomial completes the proof. For i > 1, the g ∈ Pk−1

with g(µ1) = · · · = g(µi−1) = 0 and g(λi) = 1 takes the form

g(t) =
(µ1 − t) · · · (µi−1 − t)

(µ1 − λi) · · · (µi−1 − λi)
h(t),

where h ∈ Pk−i with h(λi) = 1. We have

max
i+1≤j≤n

|g(λj)|2 ≤ ζ2
i max

i+1≤j≤n
|h(λj)|2.

17

Hence
0 ≤ λi − µi ≤ (λi − λn)ζ2

i min
h∈Pk−i,h(λi)=1

max
i+1≤j≤n

|h(λj)|2[tan θ(ui, v)]2.

Again by the standard practice with Chebyshev polynomial, the proof is completed.

Exercises

7.1. Apply Theorem 7.3 to −A, and derive corresponding bounds.

7.2. Prove Lemma 7.3.

8 The nonsymmetric Lanczos method

The nonsymmetric Lanczos method is an oblique projection method for solving the non-
Hermitian eigenvalue problem,

Ax = λx and yHA = λyH , (8.21)

where A is a nonsymmetric matrix.
With two starting vectors q1 and p1, the Lanczos method builds a pair of biorthogonal bases

for the Krylov subspaces Kj(A, q1) and Kj(AH , p1), provided that the matrix-vector multipli-
cations Az and AHz for an arbitrary vector z are available. The inner loop of Lanczos method
uses two three-term recurrences. Therefore, it is cheaper in terms of memory requirements and
references, compared to the Arnoldi method. The Lanczos method provides approximations
for both right and left eigenvectors. When estimating errors and condition numbers of the
computed eigenpairs, it is crucial that both the left and right eigenvectors are available. How-
ever, there are risks of breakdown and numerical instability with the method. In this section,
we will start with the basic Lanczos method and its properties, and then present a number of
numerical schemes for improving numerical stability and accuracy of the method.

Algorithm. The nonsymmetric Lanczos method as presented in Algorithm 8.1 is a two-
sided iterative algorithm with starting vectors p1 and q1. It can be viewed as biorthogonaliz-
ing, via a two-sided Gram-Schmidt procedure, two Krylov sequences {q1, Aq1, A

2q1, . . .} and
{p1, A

Hp1, (A
H)2p1, . . . , }. The two sequences of vectors {qi} and {pi} are generated using the

three-term recurrences:

βj+1qj+1 = Aqj − αjqj − γjqj−1, (8.22)

γ̄j+1pj+1 = AHpj − ᾱjpj − β̄jpj−1. (8.23)

The vectors {qi} and {pi} are called Lanczos vectors, which are the bases of Kj(A, q1) and
Kj(AH , p1), respectively, and are biorthogonal, namely, pH

k qℓ = 0 if k 6= ℓ and pH
k qℓ = 1 if

k = ℓ. In matrix notation, at the jth step, the Lanczos method generates two n × j matrices
Qj and Pj : Qj = (q1, q2, . . . , qj), Pj = (p1, p2, . . . , pj) and Tj = tridiag(βj , αj , γj+1), and they
satisfy the governing relations:

AQj = QjTj + βj+1qj+1e
H
j , (8.24)

AHPj = PjT
H
j + γ̄j+1pj+1e

H
j , (8.25)

PH
j Qj = Ij . (8.26)

In addition, PH
j qj+1 = 0 and pH

j+1Qj = 0. The relation (8.26) shows that the Lanczos vectors
(bases) are bi-orthonormal. But note that none of Qj and Pj is unitary. In the Lanczos bases,
the matrix A is represented by a non-Hermitian tridiagonal matrix,

PH
j AQj = Tj . (8.27)

18

At any step j, we may compute eigensolutions of Tj ,

Tjz
(j)
i = θ

(j)
i z

(j)
i and (w

(j)
i)HTj = θ

(j)
i (w

(j)
i)H .

Eigenvalues of A are approximated by the eigenvalues θ
(j)
i of Tj , which are called Ritz values.

To each Ritz value θ
(j)
i the corresponds right and left Ritz vectors are

x
(j)
i = Qjz

(j)
i and y

(j)
i = Pjw

(j)
i . (8.28)

The approximations of Ritz values and vectors to the eigenvalues and eigenvectors of the
original matrix A can be estimated by the norms of the residuals:

r
(j)
i = Ax

(j)
i − θ

(j)
i x

(j)
i , (8.29)

(s
(j)
i)H = (y

(j)
i)HA − θ

(j)
i (y

(j)
i)H . (8.30)

Moreover, by (8.24), the right residual vector becomes

r
(j)
i = βj+1qj+1(e

H
j z

(j)
i) . (8.31)

and by (8.25), the left residual vector becomes

(s
(j)
i)H = γj+1p

H
j+1((w

(j)
i)Hej) . (8.32)

Therefore, as in the Hermitian case, the residual norms are available without explicitly com-

puting the Ritz vectors x
(j)
i and y

(j)
i .

A Ritz value θ
(j)
i is considered to be convergent if both residual norms are small. There

are more discussions on convergence.

Algorithm 8.1. Nonsymmetric Lanczos Method

(1) choose starting vectors q1 and p1 such that pT
1 q1 = 1

(2) r = Aq1;
(3) s = AHp1 ;
(4) for j = 1, 2, . . . , until convergence,
(5) αj = pH

j r;

(6) r = r − qjαj ;
(7) s = s − pjᾱj ;
(8) if (‖r‖ = 0 and/or ‖s‖ = 0), stop;
(9) ωj = rHs;
(10) if (ωj = 0), stop;

(11) βj+1 = |ωj |1/2;
(12) γj+1 = ω̄j/βj+1;
(13) qj+1 = r/βj+1;
(14) pj+1 = s/γj+1;

(15) compute eigentriplets (θ
(j)
i , z

(j)
i , w

(j)
i) of Tj ;

(16) test for convergence;
(17) re-biorthogonalize if necessary;
(18) r = Aqj+1;
(19) s = AHpj+1;
(20) r = r − qjγj+1;

(21) s = s − pjβj+1;

(22) end for

(23) compute approximate eigenvectors x
(j)
i and y

(j)
i .

19

We now comment on some of the steps in Algorithm 8.1:

(1) The initial starting vectors p1 and q1 are best selected by the user to embody any available
knowledge concerning A’s wanted eigenvectors. In the absence of such knowledge, one
may simply choose q1 with randomly distributed entries and let p1 = q1.

(2), (3) and (18), (19) The matrix-vector multiplication routines for Az and AHz of an arbi-
trary vector z must be provided in these steps. These are usually the computational
bottleneck. See the discussion of convergence properties below for implementation notes
in the shift-invert case.

(8) This is one of two cases where the method breaks down. In fact, this is a good breakdown.
Say if r is null, then the Lanczos vectors {q1, q2, . . . , qj} span a (right) invariant subspace
of A. All eigenvalues of Tj are the eigenvalues of A. One can either exit the algorithm or
continue the algorithm by taking the vector qj+1 to be any vector orthogonal to the left
Lanczos vectors {p1, p2, . . . , pj} and set βj+1 = 0. Similar treatment can be done when
s is null or both r and s are null. Therefore, this case should not really be regarded as a
“failure” of the algorithm. It merely gives us freedom of choices.

In practice, an exact null vector is rare. It might happen that the norms of r and/or s
are tiny. A proper tolerance value for the detection of nearly null vector should be given.
A default tolerance value is ǫ, the machine precision.

(10) If ωj = rHs = 0 before either r or s vanishes, the method breaks down completely. In
most cases we may continue finding new vectors in the Krylov subspaces Kj+k(A, r) and
Kj+k(AH , s) for some integer k > 0, and add a block outside the three diagonals of Tj ;
this so-called a lookahead procedure as implemented in QMRPACK. If, however our
starting vectors q1 and p1 have different minimal polynomials, even this does not help,
and we have a mismatch, also called an incurable breakdown.

In practice, the exact breakdown is rare. A near breakdown occurs more often, i.e., ωj

is non-zero but extremely small in absolute value. Near breakdowns cause stagnation.
Any criterion for detecting a near breakdown stops too early in certain applications and
too late in others. A reasonable compromise criterion for detecting near breakdowns in
an eigenvalue problem is to stop if |ωj | ≤

√
ǫ‖r‖2‖s‖2.

(11) – (14) Several different scalings of the vectors qj and pj have been proposed. Here qj and
pj are scaled such that pH

j qj = 1 for all j. Specifically, βj and γj are given equal absolute
values, and the sub-diagonals βj are taken real and positive. The choice βj = 1 avoids
scaling the pj vectors, but unfortunately is highly susceptible to overflow. The choice
of βj = γj =

√
ωj leads to a complex symmetric tridiagonal matrix Tj . The choice of

scaling such that the vectors qj and pj have unity norms is also a popular alternative.

The condition numbers of the Lanczos vectors Qj and Pj can be monitored by the scalars
{ωi}. In fact, it can be shown that

cond(Qj) = ‖Qj‖2‖Q†
j‖2 ≤

j∑

i=1

ω−1
i ,

where Q†
j denotes the generalized inverse of Qj . The bound also applies to cond(Pj).

(15) For each step j, the eigen-decomposition of the tridiagonal matrix Tj (8.27) is computed,
which is potentially very costly when j gets large. A simple way to reduce the cost is to
solve the eigen-problem periodically, say every 10 steps.

20

One may use the general QR method to compute the eigensolution of Tj . If the scaling is
chosen so that Tj is a complex symmetric tridiagonal matrix, a QL algorithm is available
that exploits this special structure. However, due to the loss of unitary transformation
in the QL algorithm, care must be taken to monitor and maintain numerical stability;

(16) Computation halts once bases Qj and Pj have been determined so that eigenvalues θ
(j)
i

of Tj (8.27) approximate all the desired eigenvalues of A with small residuals, which are
calculated according to the equations (8.31) and (8.32). There are more discussions on
convergence properties later.

If there is no re-biorthogonalization, then in finite precision arithmetic after a Ritz value
converges to an eigenvalue of A, copies of this Ritz value may appear at later Lanczos
steps. For example, a cluster of Ritz values of the reduced tridiagonal matrix, Tj , may
approximate a single eigenvalue of the original matrix A. A “spurious” value is a simple
Ritz value that is also an eigenvalue of the matrix of order j − 1 obtained by deleting
the first row and column from Tj . Such spurious value should be discarded from con-
sideration. Eigenvalues of Tj which are not “spurious” are accepted as approximations
to eigenvalues of the original matrix A and are tested for convergence. It is called the
identification test.

(17) As in the Hermitian case, in the presence of finite precision arithmetic, the computed
Lanczos vectors {qi} and {pi} starts to lose the biorthogonality quickly. One may use
the two-sided modified Gram-Schmidt process to re-biorthogonalize them. Specifically,
the following loop may be applied at this step:

for i = 1, 2, . . . , j
qj+1 = qj+1 − qi(p

H
i qj+1);

pj+1 = pj+1 − pi(q
H
i pj+1);

end for

This is called the full re-biorthogonalization. However, it is in general very costly in
terms of memory references and flops, and becomes a computational bottleneck.

(23) The approximate eigenvectors of the original matrix A are only calculated after the test

in step (16) indicates convergence of Ritz values θ
(j)
i to the desired eigenvalues of A.

The bases Qj and Pj are used to get the approximate eigenvectors x
(j)
i = Qjz

(j)
i and

y
(j)
i = Pjw

(j)
i for each i that is flagged as converged.

The residuals (8.29) and (8.30) should be checked again using x
(j)
i and y

(j)
i . This is the

actual residual norms. Note that the actual norms can be much bigger than the estimated
ones computed at step (16).

It is adviced to compute approximate eigenvectors x
(j)
i and y

(j)
i using the computed

Lanczos vectors Qj and Pj only if a certain level of biorthogonality is enforced in the
implementation of the algorithm (see step (17)).

Convergence properties. A theory of convergence can be based on the theory of polynomi-
als as in the Hermitian case, but with two additional complications. First the eigenvalues may

be complex, and the Ritz values θ
(j)
i do not necessarily move monotonously out towards the

ends of the spectrum with increasing j. Second A may be defective (possessing an eigenvalue
whose algebraic multiplicity is strictly greater than its geometric multiplicity). Assuming exact
computation, the tridiagonal matrix Tj is also defective after a sufficient number of steps j.

21

In floating point computation with machine precision ǫ, an eigenvalue of multiplicity m is per-
turbed by up to O(ǫ1/m), which is much larger than ǫ for m > 1. Barring these complications,
eigenvalues that are peripheral in the spectrum, seen as a set in the complex plane, converge
first.

An inherent difficulty of a non-Hermitian eigen-problem is that there is no practically com-

putable bound on the distance from θ
(j)
i to an eigenvalue of A. It is possible though to bound

the distance, ‖F‖, to the nearest matrix, A − F , with eigen-triplet (θ
(j)
i , x

(j)
i , y

(j)
i). Approx-

imate information about both left and right eigenvectors has many uses, such as revealing

the conditioning (or sensitivity) of an eigenvalue. Recall that residual vectors r
(j)
i and s

(j)
i as

defined in (8.29) and (8.30). Next observe that the biorthogonality condition (8.26) implies

that (s
(j)
i)Hx

(j)
i = (y

(j)
i)Hr

(j)
i = 0. Together these relations imply that

F =
r
(j)
i (x

(j)
i)H

‖x(j)
i ‖2

2

+
y

(j)
i (s

(j)
i)H

‖y(j)
i ‖2

2

(8.33)

is the desired perturbation such that

(A − F)x
(j)
i = x

(j)
i θ

(j)
i , (8.34)

(y
(j)
i)H(A − F) = θ

(j)
i (y

(j)
i)H , (8.35)

and ‖F‖2
F = ‖r(j)

i ‖2
2/‖x

(j)
i ‖2

2 + ‖s(j)
i ‖2

2/‖y
(j)
i ‖2

2. Using the standard perturbation analysis, one
can derive estimated error bounds on the accuracy of approximate eigenvalues and eigenvectors
to the exact eigenvalues and eigenvectors of A. To this end, we should point out all these results
are under the assumption of exact arithmetic. In the presence of finite precision arithmetic
and the losses in biorthogonality, those results are generally optimistic.

9 Symmetric definite eigenvalue problems

Most iterative methods for solving large sparse standard eigenvalue problem, such as Lanczos
method and Arnoldi method, can be modified to treat the generalized eigenvalue problems.
Let us focus on the generalized symmetric definite eigenvalue problem, namely Ax = λBx,
where A and B are symmetric, and B is positive definite.

If we can compute the sparse Cholesky factorization of B explicitly, then as shown in the
previous section, it is equivalent solve the standard symmetric eigenvalue problem

Cy = λy ⇐⇒ (L−1AL−H)(LHx) = λ(LHx).

One can use the Lanczos method for C. It is straightforward.
Note that the required matrix-vector multiplication w = Cq for some q in the Lanczos

process can be done in the following three stages:

1. solve LHz1 = q1 for z1;
2. compute z2 = Az1;
3. solve Lw = z2 for w.

This approach is usually very satisfactory and is a standard working practice, particularly,
when B is a banded matrix with narrow bandwidth.

On the other hand it is possible to use Lanczos on B−1A, again implicitly. This option is
valuable when B cannot be factored conveniently. In this case, the Lanczos method must be
reformulated.

22

First note that the matrix B−1A is symmetric with respect to B, namely,

〈B−1Ax, y〉B = 〈x, B−1Ay〉B,

where the inner product 〈x, y〉B is defined as yT Bx, known as B-inner product. ‖ · ‖B is the
corresponding B-norm ‖x‖B =

√
xT Bx.

Mathematically the extension of the Lanczos process in B-inner product is immediate:

Algorithm 9.1 (Lanczos Process in B-inner product for B−1A).
1. q1 = v/‖v‖B, β0 = 0; q0 = 0;
2. for j = 1 to k, do
3. w = B−1Aqj ;
4. αj = 〈w, qj〉B;
5. w = w − αjqj − βj−1qj−1;
6. βj = ‖w‖B;
7. if βj = 0, quit;
8. qj+1 = w/βj ;
9. EndDo

The governing relations are B−1AQk = QkTk + βkqk+1e
T
k , or

AQk = BQkTk + βkBqk+1e
T
k , (9.36)

and
QT

k BQk = Ik, QT
k Bqk+1 = 0. (9.37)

Let µ be an eigenvalue of Tk and y be the corresponding eigenvector y, i.e.,

Tky = µy, ‖y‖2 = 1.

Then applying y to the right hand side of (9.36), we have

AQky = BQkTky + βkBqk+1e
T
k y = µBQky + βkBqk+1e

T
k y.

The Ritz value is µ and the Ritz vector is Qky. The residual vector r is

r = AQky − µBQky = βkBqk+1(e
T
k y).

The norm of residual vector can be used as a stopping criterion.
We now show that the above Lanczos process can be further simplified. Note that

1. αj = 〈w, qj〉B = qT
j Bw = qT

j BB−1Aqj = qT
j Aqj , and

2. ‖w‖2
B = wT Bw = wT (Aqj −αjBqj −βj−1Bqj−1) = wT Aqj . The last equality is obtained

by the fact that w(= βjqj+1) is generated to be B-orthogonal to all previous Lanczos
vectors q1, q2, . . . , qj .

In summary, we have the following Lanczos method for the eigenvalue problem of a definite
pencil A − λB with positive definite B.

Algorithm 9.2 (Lanczos Algorithm for a symmetric definite pair (A, B)).
1. choose an initial vector q1 of B-norm unity;
2. for j = 1 to k, do
3. v = Aqj ;
4. αj = qT

j v;

5. w = B−1v − αjqj − βj−1qj−1;

23

6. βj =
√

wT v;
7. if βj = 0, quit (an invariant subspace found);
8. qj+1 = w/βj ;
9. Compute eigenvalues and eigenvectors of Tj ;
10. Test for convergence;
11. EndDo

Shift-and-invert spectral transformation. The above two approaches are efficient if only
the exterior eigenvalues are sought. If the interesting eigenvalues are interior ones, then the
common approach is to first use the shift-and-invert spectral transformation. Let σ is a shift
which close to the desired eigenvalues. Then the generalized eigenvalue problem Ax = λBx is
equivalent to

[
(A − σB)−1B

]
x =

1

λ − σ
x.

Note that the coefficient matrix
[
(A − σB)−1B

]
is B-symmetric.

Exercises

9.1. Verify that 〈x, y〉B is an inner product, where B is symmetric positive definite.

10 Further reading

Krylov subspace projection methods are covered extensively in

• Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. van der Vorst (editors). Templates for
the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia,
2000.

The implicitly restarted Arnoldi method is proposed in

• D. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method,
SIMAX, Vol. 13, pp.357–385, 1992.

MATLAB function eigs is an implementation of the implicitly restarted Arnoldi algorithm for
finding a few eigenpairs. The Fortran software package is ARPACK3. See

• R. Lehoucq, D. C. Sorensen and C. Yang. ARPACK User’s Guide, SIAM, 1998.

An excellent reference on symmetric Lanczos method, theory and practice, is

• B. N. Parlett, The Symmetric Eigenvalue Problem, reprinted (with some revision) by
SIAM Press, 1998.

The thick restarting symmetric Lanczos algorithm is described in

• K. Wu and H. Simon, Thick-restart lanczos method for large symmetric eigenvalue prob-
lems, SIAM J. Mat. Anal. Appl., 22:602–616, 2000.

A recent development can be found in

• I. Yamazaki, Z. Bai, H. Simon, L.-W. Wang and K. Wu, Adaptive projection subspace
dimension for the thick-restart Lanczos method, 2009 (submitted)4

3http://www.caam.rice.edu/software/ARPACK
4http://www.cs.ucdavis.edu/∼bai

24

A Fortran implementation of the nonsymmetric Lanczos procedure with look-ahead to cure
breakdowns is available in QMRPACK5. The algorithm is described in

• R. Freund and N. Nachtigal. QMR: a quasi-minimal residual method for non-Hermitian
linear system, Numer. Math. 60:315–339,1991.

A set of MATLAB routines for implementing the adaptive block Lanczos method can be used
to implement Algorithm 8.1 by defining the blocksize as one at the initial step. Optional
re-biorthogonalization schemes are available. An adaptive blocksize scheme is used for the
treatment of (near) breakdown and/or multiple or closely clustered eigenvalues of interest. See

• Z. Bai, D. Day and Q. Ye, ABLE: an adaptive block Lanczos method for non-Hermitian
eigenvalue problems, SIMAX, Vol.20, pp. 1060–1082, 1999.

5http://www.netlib/linalg/qmrpack.tgz

25

