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Abstract. We introduce a dynamically weighted Halley (DWH) iteration for computing the
polar decomposition of a matrix, and prove that the new method is globally and asymptotically
cubically convergent. For matrices with condition number no greater than 1016, the DWH method
needs at most 6 iterations for convergence with the tolerance 10−16. The Halley iteration can be
implemented via QR decompositions without explicit matrix inversion. Therefore, it is an inverse
free and a communication friendly algorithm for the emerging multicore and hybrid high performance
computing systems.
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1. Introduction. We consider the computation of the polar factor U of the
polar decomposition of A ∈ Cn×n:

A = UH, (1.1)

where U is an unitary matrix, UHU = I and H is a Hermitian positive semidefinite
matrix. The polar decomposition is unique if A is nonsingular [20, Chap.8]. Ap-
plications of the polar decomposition include factor analysis, satellite tracking, and
calculation of the nearest orthogonal matrix [18]. Our motivation is from solving
a large scale orthogonal Procrustes problem arising from the subspace alignment in
the first principle molecular dynamics simulation of electronic structure calculations
[2, 9, 13, 14].

The most popular method for computing the polar factor is the scaled Newton
method [20]. Recently, Byers and Xu [5] presented a suboptimal scaling strategy for
the Newton method. They showed that the convergence to within a tolerance of 10−16

can be reached in at most 9 iterations for matrices with condition number no greater
than 1016. Furthermore, they proved that Newton’s method with suboptimal scaling is
backward stable, provided that the matrix inverses are computed in a mixed forward-
backward stable way. The backward stability of Newton’s method with Higham’s
(1,∞)-norm scaling strategy was investigated in [23].

Successful as Newton’s method is, it requires explicit matrix inversion at each
iteration. Besides the potential numerical stability issue in finite precision arithmetic,
explicit matrix inversion is also expensive in communication costs. On the emerging
multicore and heterogeneous computing systems, communication costs have exceeded
arithmetic costs by orders of magnitude, and the gap is growing exponentially over
time [3, 12, 26]. The purpose of this paper is to investigate numerical methods for com-
puting the matrix polar decomposition to minimize the communication costs by using
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communication friendly matrix operations, such as the QR decomposition (without
pivoting) [8].

In fact, inverse free methods for computing the polar decomposition have been
studied in [7, 4]. A QR decomposition based implementation of a variant of scaled
Newton method is investigated. Unfortunately, the numerical instability of such an
inverse free method has been independently discovered by both studies. We have also
observed the numerical instability in our experiments shown in section 5.

In this paper, we first propose a dynamically weighted Halley (DWH) method
for computing the polar decomposition. We prove that the DWH method converges
globally with asymptotically cubic rate. We show that in exact arithmetic, for ma-
trices with condition number κ2(A) ≤ 1016, no more than 6 iterations are needed
for convergence with the tolerance 10−16. We then discuss an implementation of the
DWH method based on the QR decomposition. Extensive numerical tests illustrate
that the QR-based DWH method, the QDWH method in short, is backward stable.
The arithmetic cost of the QDWH method is about 2 to 3 times that of the scaled
Newton method, depending on the implementation one uses. However, the communi-
cation cost of the QDWH method is significantly lower than that of the scaled Newton
method. The QDWH method is an attractive alternative method for the emerging
multi-core and heterogeneous computing architectures.

We note that in this paper we only study the polar decomposition of square and
nonsingular matrices. The QDWH method is readily applicable to rectangular and
singular matrices, whereas the scaled Newton method needs to initially use a rank-
revealing QR factorization to enable its applicability to more generally matrices [20,
p.196].

The rest of this paper is organized as follows. In section 2, we review Newton’s
method and its variants. In section 3 we study Halley’s iteration and derive a dy-
namical weighting scheme. A convergence proof of the new method is given. We
also show the cubic convergence makes acceptable a looser convergence criterion than
that for the scaled Newton iteration. Section 4 discusses implementation issues, in
which we show how the DWH method can be computed based on the matrix QR
decompositions. Numerical examples are shown in section 5. Concluding remarks are
in section 6

Throughout this paper, ‖ · ‖p denotes the matrix or vector p-norm (p = 1, 2,∞)
and ‖ · ‖F the Frobenius norm. ‖ · ‖ denotes a unitarily invariant norm, such as ‖ · ‖2
and ‖ · ‖F . σi(X) denotes the ith singular value of X. σmin(X) and σmax(X) denote
the smallest and largest singular value of X, respectively. κ2(A) denotes the 2–norm
condition number of A: κ2(A) = ‖A‖2‖A−1‖2. α and β denote α = ‖A‖2 = σmax(A)
and β = ‖A−1‖−1

2 = σmin(A). To avoid confusion between the unitary polar factor
and the singular value decomposition (SVD) of A, U always denotes the polar factor
of A. The SVD of A is expressed by A = U∗ΣV H

∗ , so that U = U∗V H
∗ .

2. Newton’s method.

2.1. Newton’s iteration. The most well-known method for computing the uni-
tary polar factor of a nonsingular matrix A is the Newton iteration

Xk+1 =
1
2

(
Xk + X−H

k

)
, X0 = A. (2.1)

It can be shown that the iterates Xk converge quadratically to the polar factor U of
A and all singular values σi(Xk) → 1 as k →∞ [20, Thm 8.12]. However, the initial
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phase of convergence is slow when A is ill-conditioned. In order to speed up the initial
phase, we can apply the scaled Newton (SN) iteration

Xk+1 =
1
2

(
ζkXk + (ζkXk)−H

)
, X0 = A, (2.2)

where ζk is a scaling factor. The frequently used (1,∞)–norm scaling and Frobenius
norm scaling are known to work well in practice [18, 20]. The rigorous convergence
theory is established for the so-called optimal scaling ζopt

k = (σmin(Xk)σmax(Xk))−1/2

[22]. However it is not a practical scaling since it is too expensive to compute σmin(Xk)
and σmax(Xk) at every iteration. Recently, Byers and Xu [5] proposed the following
suboptimal scaling:

ζ0 = 1/
√

αβ, ζ1 =
√

2
√

αβ/(α + β) , ζk = 1/
√

ρ(ζk−1) for k = 2, 3, . . . ,
(2.3)

where α = ‖A‖2, β = ‖A−1‖−1
2 and ρ(ζ) = (ζ + ζ−1)/2. It is called a suboptimal

scaling since at the kth iteration, it minimizes the width of the interval containing all
the singular values of the kth iterate Xk.

Theorem 2.1. [5]. The iterates Xk generated by the scaled Newton iteration
(2.2) with the BX scaling (2.3) converge quadratically to the polar factor U of A.
Moreover, convergence to within a tolerance 10−16 is reached within 9 iterations if
κ2(A) ≤ 1016.

The following is a pseudo-code for the scaled Newton iteration with the BX scal-
ing.

Scaled Newton’s method:
1: X0 = A and X−1 + I.
2: ζ0 = 1/

√
αβ and k = 0

3: repeat
4: Xk+1 = (ζkXk + (ζkXk)−H)/2
5: if k = 0 then
6: ζ1 =

√
2
√

αβ/(α + β)
7: else
8: ζk+1 =

√
2/(ζk + 1/ζk)

9: end if
10: k = k + 1
11: until convergence
12: U = Xk

In practice, it is sufficient to use some rough estimates α̂ and β̂ of α and β. For
example, one may take α̂ = ‖A‖F and β̂ = 1/‖A−1‖F . In fact, in [5] it is shown that
for any estimates α̂ and β̂ such that 0 < β̂ ≤ ‖A−1‖−1

2 ≤ ‖A‖2 ≤ α̂ and α̂/β̂ < 1016,
the iteration converges within 9 iterations.

It is proved in [5] that the scaled Newton iteration is backward stable provided
that the inverse X−1

k is computed in a mixed forward-backward stable way, such as
a bidiagonal reduction-based matrix inverse algorithm. In this case, the arithmetic
cost of each iteration will increase to 6n3 instead of 2n3 when the inverse is computed
using the conventional LU factorization with partial pivoting [5].

2.2. Newton iteration variant. The Newton iteration variant is

Yk+1 = 2Yk

(
I + Y H

k Yk

)−1
, Y0 = A. (2.4)
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It can be shown that Yk = X−H
k for k ≥ 1, where Xk is generated by the Newton

iteration (2.1) [21], [20, Sec.8.3]. Note that iteration (2.4) is applicable to singular
and rectangular matrices.

To speed up the convergence, we have a scaled version of iteration (2.4). Substi-
tuting ηkYk into Yk in (2.4) yields the scaled Newton iteration variant (SNV):

Yk+1 = 2ηkYk

(
I + η2

kY H
k Yk

)−1
, Y0 = η0A, (2.5)

where ηk is the scaling factor. A proper choice of ηk is the one such that Y0 = X0 and
Yk = X−∗

k for k ≥ 1, where Xk is generated by the scaled Newton iteration (2.2). It
implies that η0 = ζ0 and ηk = 1/ζk.

Since Y −1
k is not computed in the SNV iteration (2.5), the (1,∞)–norm scaling or

Frobenius norm scaling is not applicable. How to efficiently scale the SNV iteration
(2.5) is listed as Problem 8.27 in [20, p.219]. One solution to the problem is to use
the BX scaling (2.3). This leads to the following iteration for the scaling of the SNV
iteration (2.5):

η0 = 1/
√

αβ, η1 =

√
α + β

2
√

αβ
, ηk =

√
ρ(ηk−1) for k = 2, 3, . . . . (2.6)

From the connection with the Newton iteration it follows from Theorem 2.1 that
Yk → U−H = U as k →∞.

The SN iteration with the BX scaling (2.3) and the SNV iteration with the scal-
ing (2.6) are mathematically equivalent provided that the same scalars α and β are
used. However, the practical implementation of the scaled Newton iteration involves
explicit matrix inverses. This is usually done by means of the LU factorization with
partial pivoting. Pivoting makes necessarily a large amount of data communication
and slows down the total computation time [3, 26]. As pointed out in [20, pp. 219], the
SNV iteration (2.5) can be implemented using a QR decomposition (without column
pivoting). Computing a QR decomposition can be done in a communication friendly
way and great performance has been reported on modern multicore and heterogeneous
systems [15]. Therefore, the QR-based SNV method is an attractive alternative. Un-
fortunately we have observed that SNV iteration (2.5) is not stable for ill-conditioned
matrices, even with the QR-decomposition based implementation (see section 5 for
numerical examples). This instability had been independently reported in early stud-
ies [7, 4]. In the next section, we will exploit an alternative iteration to develop an
inverse free method.

3. Halley’s method. Halley’s iteration for computing the polar factor of a
nonsingular matrix A is

Xk+1 = Xk(3I + XH
k Xk)(I + 3XH

k Xk)−1, X0 = A. (3.1)

It is a member of the Padé family of iterations [22]. It is proven that Xk converges
globally and the asymptotic convergence rate is cubic [10, 11]. However, the initial
steps of the Halley iteration (3.1) could be slow when A is ill-conditioned. For example,
consider the 2× 2 matrix

A = X0 =
[

1
x0

]
, x0 = 10−10. (3.2)
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The polar factor of A is the 2× 2 identity matrix. The kth iterate Xk is given by

Xk =
[

1
xk

]
, xk =

xk−1(3 + x2
k−1)

1 + 3x2
k−1

.

After one Halley’s iteration, we have x1 ≈ 3 × 10−10. It takes 24 iterations for the
iterate Xk to converge to the polar factor within IEEE double precision machine
precision, namely ‖X24 − I‖2 ≤ εM = 2.2× 10−16.

To accelerate the convergence of Halley’s iteration (3.1), let us consider the fol-
lowing dynamically weighted Halley (DWH) iteration:

Xk+1 = Xk(akI + bkXH
k Xk)(I + ckXH

k Xk)−1, X0 = A/α, (3.3)

where α = ‖A‖2 and the triplet (ak, bk, ck) is properly chosen weighting parameters.
To find an optimal weighting triplet (ak, bk, ck) that accelerates the convergence rate
at the (k + 1)st iteration, let Xk = U∗ΣkV H

∗ be the SVD of Xk and `k be such that

[σmin(Xk), σmax(Xk)] ⊆ [`k, 1] ⊂ (0, 1]. (3.4)

with initial σmin(X0) = β/α ≡ `0 and β = 1/‖A−1‖2. Then one step of the DWH
iteration (3.3) yields

Xk+1 = Xk(akI + bkXH
k Xk)(I + ckXH

k Xk)−1

= U∗ΣkV H
∗ (akI + bkV∗Σ2

kV H
∗ )(I + ckV∗Σ2

kV H
∗ )−1

= U∗Σk(akI + bkΣ2
k)(I + ckΣ2

k)−1V H
∗

≡ U∗Σk+1V
H
∗ .

The singular values σi(Xk+1) of Xk+1 are given by

σi(Xk+1) = gk(σi(Xk)), (3.5)

where gk is a rational function defined as

gk(x) = x
ak + bkx2

1 + ckx2
.

By (3.4) and (3.5), we have

[σmin(Xk+1), σmax(Xk+1)] ⊆
[

min
`k≤x≤1

gk(x), max
`k≤x≤1

gk(x)
]

. (3.6)

Since the closeness of the iterate Xk+1 to the polar factor is measured by the maximum
distance between singular values σi(Xk+1) and 1, an optimal choice of the triplet
(ak, bk, ck) should make the function gk be bounded

0 < gk(x) ≤ 1 for `k ≤ x ≤ 1, (3.7)

and attain the max-min

max
ak,bk,ck

{
min

`k≤x≤1
gk(x)

}
. (3.8)
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Once these parameters ak, bk and ck are found to satisfy (3.7) and (3.8), all singular
values of Xk are in the interval [`k+1, 1]:

[σmin(Xk+1), σmax(Xk+1)] ⊆ [`k+1, 1] ⊂ (0, 1], (3.9)

where `k+1 = min`k≤x≤1 gk(x).
Let us consider how to solve the optimization problem (3.7) and (3.8). To satisfy

gk(x) > 0, we can impose

ak, bk, ck > 0 (3.10)

and

gk(1) = 1. (3.11)

These conditions ensure that the function gk(x) is positive and continuously differen-
tiable for x > 0, and has a fixed point at 1. Note that (3.11) implies ck = ak + bk− 1.
By the assumptions (3.10) and (3.11), the optimization problem (3.7) and (3.8) can
be stated as follows.

The bounded max-min problem: find ak, bk > 0 such that ak+bk > 1,

0 < gk(x) ≤ 1 for `k ≤ x ≤ 1, (3.12)

and

max
ak,bk>0

{
min

`k≤x≤1
gk(x)

}
. (3.13)

In Appendix A, we show that the solution of the optimization problem (3.12) and
(3.13) is given by

ak = h(`k), bk = (ak − 1)2/4 (3.14)

where

h(`) =
√

1 + d +
1
2

√
8− 4d +

8(2− `2)
`2
√

1 + d
, d = 3

√
4(1− `2)

`4
.

Similar to the SN iteration (2.2) with the BX scaling (2.3), we see that the weighting
parameters ak, bk and ck = ak +bk−1 of the DWH iteration (3.3) can be generated by
simple scalar iterations in which the initial value `0 depends on the extreme singular
values of the original matrix A.

In summary, we derive the following dynamically weighted Halley (DWH) itera-
tion for computing the polar factor of A:

Xk+1 = Xk(akI + bkXH
k Xk)(I + ckXH

k Xk)−1, X0 = A/α. (3.15)

where the weighting parameters ak and bk are generated by the scalar iterations (3.14),

ck = ak + bk − 1

and

`0 =
β

α
, `k =

`k−1(ak−1 + bk−1`
2
k−1)

1 + ck−1`2k−1

for k = 1, 2, . . . , (3.16)
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and α = ‖A‖2 and β = 1/‖A−1‖2.
Before we prove the global convergence property of the DWH iteration (3.3), let

us recall the 2× 2 matrix A defined as (3.2). The kth DWH iterate Xk is given by

Xk =
[

1
xk

]
, xk =

xk−1(ak + bkx2
k−1)

1 + ckx2
k−1

.

Since α = 1 and `0 = 10−10, by (3.14), we have a0 ' 1.17 × 107, b0 ' 3.42 × 1013

and c0 ' 3.42× 1013. After one iteration, x0 is mapped to x1 ' 1.17× 10−3, which is
much closer to the target value 1 than the first iterate computed by Halley’s iteration.
In fact, it only takes 5 DWH iterations to approximate the polar factor within the
machine precision ‖X5 − I‖2 ≤ εM. It is a factor of 5 times faster than the Halley
iteration (3.1).

Theorem 3.1. The iterates Xk generated by the DWH iteration (3.3) converge
cubically to the polar factor U of A.
Proof. Let us first show the convergence of the iterates Xk. This is equivalent to
showing that singular values σ

(k)
i → 1 as k →∞ for all 1 ≤ i ≤ n, where σ

(k)
i denotes

the ith singular value of Xk. By (3.9), we have [σ(k)
min, σ

(k)
max] ⊆ [`k, 1]. Hence it suffices

to prove `k → 1 as k →∞.
Using (3.14), (3.16) and ck = ak + bk − 1, we derive

1
`k+1

− 1 = F (ak, `k)
(

1
`k
− 1

)
,

where

F (a, `) =
((a− 1)`− 2)2

4a + (a− 1)2`2
.

Note that F (a, `) ≥ 0 since a > 0. All we need to show is that there is a positive
constant δ < 1, such that F (ak, `k) ≤ δ for all k. In fact, since 3 ≤ a ≤ 2+`

` (see (6.8)
in Appendix A), F (a, `) is a decreasing function of a:

∂F

∂a
=

4(1 + `)(`2(a− 1)2 − 4)
(`2 + a2`2 + 2a(2− `2))2

≤ 0.

Therefore, we have

F (a, `) ≤ F (3, `) =
(3− 1)2`2 − 4(3− 1)` + 4

(3− 1)2`2 + 4 · 3 =
(1− `)2

`2 + 3
≤ 1

3
= δ.

This completes the proof of the global convergence of the DWH iteration.
Now we consider the asymptotic rate of convergence. By the above argument,

∣∣∣∣
1− `k+1

`k+1

∣∣∣∣ =
∣∣∣∣F (ak, `k)

(
1
`k
− 1

)∣∣∣∣ ≤
∣∣∣∣
(1− `k)2

`2k + 3

(
1
`k
− 1

)∣∣∣∣ =
|1− `k|3

`k(`2k + 3)
.

By the fact `k → 1, we conclude that the DWH is asymptotically cubically convergent.
¤

Remark 1. It is shown in Appendix A that ak satisfies

3 ≤ ak ≤ 2 + `k

`k
for k ≥ 0.
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Hence as `k → 1, (ak, bk, ck) → (3, 1, 3). These are the weighting parameters of the
Halley iteration (3.1).

Remark 2. For the simplicity of exposition, we used the exact extreme singular
values of the original matrix A in the analysis, namely α = σmax(A), β = σmin(A)
and `0 = β/α = 1/κ2(A). In fact, estimates α̂ and β̂ of α and β are sufficient as long
as the following inclusion property holds:

[σmin(A/α̂), σmax(A/α̂)] ⊆ [̂̀0, 1],

where ̂̀
0 = β̂/α̂.

Remark 3. In [11], Gander has observed the slow convergence with respect to
the small singular values in Halley’s iteration. He proposed a choice of static weighting
parameters

ak =
2τ − 3
τ − 2

, bk =
1

τ − 2
, ck =

τ

τ − 2
, (3.17)

where τ is a prescribed parameter. When τ = 3, it is the Halley iteration. It is proved
that for any τ > 2, the resulting method converges globally and quadratically [24].
In practice, Gander [11] suggests taking τ = 2 + εM/δ for δ > 10εM and τ = 2.1 for
εM < δ ≤ 10εM, where εM is the machine epsilon and δ is the convergence tolerance.
This stems from the observation that taking τ close to 2 results in both speed-up and
instability. We here set the tolerance δ small enough, in which case τ = 2.1.

Gander’s iteration switches from iteration (3.15) with static weighting parameter
(3.17) to the standard Halley iteration (3.1) after a certain number of iterations.
To find the appropriate switching strategy, it is noticed that about s = − log(`0)
steps are needed for the smallest singular value to increase to the size of 1, where
`0 = β/α = σmin(X0). Therefore, the switching is done after s iterations using
τ = 2.1. In summary, Gander’s method is as follows.

Gander’s method:
1: X0 = A/α, `0 = β/α
2: k = 0, τ = 2.1, s = − log(`0)
3: a = (2τ − 3)/(τ − 2), b = 1/(τ − 2) and c = τ/(τ − 2)
4: while k < s do
5: Xk+1 = Xk(aI + bXH

k Xk)(I + cXH
k Xk)−1

6: k = k + 1
7: end while
8: repeat
9: Xk+1 = Xk(3I + XH

k Xk)(I + 3XH
k Xk)−1

10: k = k + 1
11: until convergence
12: U = Xk

Unfortunately, the convergence of Gander’s iteration can still be slow. For the 2× 2
matrix in (3.2), Gander’s iteration needs 14 iterations to converge. In section 5, we
see that as many as 20 iterations are needed for some cases.

To derive a stopping criterion for the DWH iteration (3.15), we note that once
convergence has set in, `k ' 1 so that (ak, bk, ck) ' (3, 1, 3). Therefore, we will just
need to consider a proper stopping criterion for Halley’s iteration (3.1). We first have
the following Lemma.
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Lemma 3.2. For Halley’s iteration (3.1), if ‖Xk − U‖2 = ‖I − Σk‖2 = ε < 2/3,
then up to first order of ε,

2− 3ε

(1 + ε)(2 + ε)
‖Xk+1 −Xk‖ ≤ ‖Xk − U‖ ≤ 2 + 3ε

(1− ε)(2− ε)
‖Xk+1 −Xk‖.

Proof. Writing Xk = U∗ΣkV∗ we have

Xk+1 −Xk = Xk(3I + XH
k Xk)(I + 3XH

k Xk)−1 −Xk

= 2Xk(I −XH
k Xk)(I + 3XH

k Xk)−1

= 2U∗(I − Σ2
k)Σk(I + 3Σ2

k)−1V H
∗ . (3.18)

Taking an unitarily invariant norm and using ‖AB‖ ≤ ‖A‖ · ‖B‖2 [20, Sec B.7], we
get

‖Xk+1 −Xk‖ ≤ 2‖U∗(I − Σk)V H
∗ ‖ · ‖Σk(I + Σk)(I + 3Σ2

k)−1‖2
= 2‖Xk − U‖ · ‖Σk(I + Σk)(I + 3Σ2

k)−1‖2. (3.19)

Recalling that Σk = diag{σ1, . . . , σn} and ‖I − Σk‖2 = maxi |1− σi| = ε, we have

1− ε ≤ ‖Σk‖2(= max
i

σi) ≤ 1 + ε, 2− ε ≤ ‖I + Σk‖2(= max
i

(1 + σi)) ≤ 2 + ε,

and up to first order in ε, 1/(4+6ε) ≤ ‖(I+3Σ2
k)−1‖2(= maxi 1/(1+3σ2

i )) ≤ 1/(4−6ε).
Using these three inequalities we get

‖Σk(I + Σk)(I + 3Σ2
k)−1‖2 ≤ (1 + ε)(2 + ε)

4− 6ε
.

Plugging this into (3.19) yields the lower bound in the result. The upper bound
is obtained similarly by noticing from (3.18) that Xk − U = (Xk+1 − Xk)(V∗(I +
Σk)Σk(I + 3Σ2

k)−1V H
∗ )−1/2 and taking norms. ¤

Note that Lemma 3.2 implies

(1−O(ε))‖Xk+1 −Xk‖ ≤ ‖Xk − U‖ ≤ (1 + O(ε))‖Xk+1 −Xk‖.

Hence when ε = ‖Xk − U‖ ¿ 1, we have

‖Xk+1 −Xk‖ ' ‖Xk − U‖. (3.20)

Now, by U∗(Σk − I)V H
∗ = Xk − U , we have

‖Xk+1 − U‖ = ‖U∗(Σk(3I + Σ2
k)(I + 3Σ2

k)−1 − I)V H
∗ ‖

= ‖U∗(Σk − I)3(I + 3Σ2
k)−1V H

∗ ‖
≤ ‖Xk − U‖3 · ‖(I + 3XH

k Xk)−1‖2,

where we used the inequality ‖AB‖ ≤ ‖A‖ · ‖B‖2 again. Now, close to convergence
‖Xk − U‖2 ¿ 1, by (3.20) we have

‖Xk+1 − U‖ . ‖Xk+1 −Xk‖3 · ‖(I + 3XH
k Xk)−1‖2.
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This suggests that we accept Xk+1 when

‖Xk+1 −Xk‖F ≤
(

εM
‖(I + 3XH

k Xk)−1‖2

)1/3

. (3.21)

Close to convergence XH
k Xk ' I, so the test (3.21) is effectively

‖Xk+1 −Xk‖F ≤ (4εM)1/3
. (3.22)

For the quadratically convergent methods such as scaled Newton’s method (2.2)
and its variant (2.5), the following stopping criterion is suggested in [20, Sec.8.7]:

‖Xk+1 −Xk‖F ≤ (2εM)1/2
. (3.23)

In [5] it is noted that theoretically the scaled Newton iteration with the BX scaling
converges in at most 9 steps for any matrices of condition number less than 1016. The
basic observation in [5] is that it can be shown that ‖Xk − U‖2 ≤ bk, where bk is
obtained by a scalar iteration that can be computed easily. Hence finding the first k
for which |1−bk| < 10−16 provides an upper bound on the number of iteration counts.

We can derive a similar result for the DWH iteration (3.15). By the interval (3.9)
that bounds the singular values of the iterate Xk, we have

‖Xk − U‖2 = max |1− σmin(Xk)| ≤ |1− `k|.
Hence, by finding the first k such that |1 − `k| < 10−16, we derive the number of
iterations needed for the DWH iteration to convergence. Specifically, by using the
scalar recursion (3.16) with `0 = 1/κ2(A), we have the following bounds for the
number of DWH iterations:

κ2(A) 101 102 105 108 1010 1012 1016

SN, SNV 5 6 7 8 8 9 9
DWH 3 4 5 5 5 5 6

The result suggests that the DWH iteration converges within at most 6 steps for any
matrix with the condition number κ2(A) ≤ 1016. The number of DWH iterations is
about one third less than the number of scaled Newton iterations (2.2) with the BX
scaling (2.3).

4. QR-based implementations. In this section, we examine an implemen-
tation of the DWH iteration (3.15) using the QR decomposition. The QR-based
implementation is more desirable than those involving explicit inverses for enhanc-
ing parallelizability. Numerical examples suggest that it also improves the numerical
stability, see section 5.

First, we have the following basic result to connect the QR decomposition and
the term X(I +η2XHX)−1 that appears in the SNV iteration (2.5) and DWH (3.15).

Theorem 4.1. [28],[20, p.219]. Let
[

ηX
I

]
=

[
Q1

Q2

]
R be a QR decomposition

of
[

ηX
I

]
. Then

Q1Q
H
2 = ηX(I + η2XHX)−1. (4.1)

Proof. By the polar decomposition
[

ηX
I

]
= UH, (4.2)
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we have H2 = I + η2XHX and H = (I + η2XHX)1/2. Note that
[

Q1

Q2

]
and U span

the column space of
[

ηX
I

]
and they are orthogonal matrices. Then it follows that

[
Q1

Q2

]
= UW (4.3)

for some orthogonal matrix W . By (4.2) and (4.3), we have
[

Q1

Q2

]
=

[
ηX
I

]
(I + η2XHX)−1/2W.

The identity (4.1) can now be verified by a straightforward calculation. ¤
By Theorem 4.1, we immediately derive that the SNV iteration (2.5) is mathemat-

ically equivalent to the following iteration, referred to as a QR-based scaled Newton
variant (QSNV):





[
ηkXk

I

]
=

[
Q1

Q2

]
R,

Xk+1 = 2Q1Q
H
2 ,

(4.4)

with the initial X0 = A, where the scaling factor βk is defined as (2.6). The following
is a pseudo-code of the QSNV iteration:

QSNV algorithm:
1: X0 = A, η0 = 1/

√
αβ, k = 0

2: k = 0
3: repeat

4: compute QR decomposition
[

ηkXk

I

]
=

[
Q1

Q2

]
R

5: Xk+1 = 2Q1Q
H
2

6: if k = 0 then
7: η1 =

√
(α + β)/(2

√
αβ)

8: else
9: ηk+1 =

√
(ηk + 1/ηk)/2

10: end if
11: k = k + 1
12: until convergence
13: U = Xk

Similarly, for the DWH iteration (3.15), we first note that iteration (3.15) can be
equivalently rewritten as

Xk+1 =
bk

ck
Xk + (ak − bk

ck
)Xk(I + ckXH

k Xk)−1, X0 = A/α, (4.5)

where the weighting triplet (ak, bk, ck) is defined as (3.14). By Theorem 4.1, iteration
(4.5) can be written using the QR decomposition as follows, referred to as the QR-
based dynamically weighted Halley (QDWH) iteration:





[ √
ckXk

I

]
=

[
Q1

Q2

]
R,

Xk+1 = bk

ck
Xk + 1√

ck

(
ak − bk

ck

)
Q1Q

H
2 .

(4.6)
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The following is a pseudo-code of the QDWH iteration.
QDWH algorithm:

1: X0 = A/α, `0 = β/α
2: k = 0
3: repeat
4: ak = h(`k), bk = (ak − 1)2/4, ck = ak + bk − 1

5: compute QR decomposition
[ √

ckXk

I

]
=

[
Q1

Q2

]
R

6: Xk+1 = (bk/ck)Xk + (1/
√

ck) (ak − bk/ck)Q1Q
H
2

7: `k+1 = `k(ak + bk`2k)/(1 + ck`2k)
8: k = k + 1
9: until convergence

10: U = Xk

For practical implementation, we need to provide estimates α̂ and β̂ of the largest
and smallest singular values α and β of the original matrix A for the QSNV and
QDWH methods. We can simply use α̂ = ‖A‖F ≥ α = ‖A‖2. However, an estimate
of β = σmin(A) is a nontrivial task [6, 16, 17]. For the SN method, the estimate
β̂ = 1/‖A−1‖F is suggested in [5]. However this is not practical for the QSNV and
QDWH methods since A−1 is not calculated explicitly. By the inequality ‖A‖1/

√
n ≤

‖A‖2 ≤
√

n‖A‖1, we have β = σmin(A) = ‖A−1‖−1
2 ≥ (

√
n‖A−1‖1)−1. Therefore, we

may use the lower bound of β as an estimate, i.e.,

β̂ = (γ
√

n)−1, (4.7)

where γ is the LAPACK 1-norm estimate of A−1 [19, Chap.15]. In section 5 we will
examine the effect of the choice of β̂ on the convergence of the QDWH method. The
numerical examples suggest that it is harmless to use a rough estimate of β̂ ensuring
that ̂̀

0 = β̂/α̂ is a lower bound of σmin(X0).
To end this section, let us consider the arithmetic cost of the QDWH method.

Note that the QSNV and QDWH iterations share the same computational kernel,
namely

(a) compute
[

ηX
I

]
=

[
Q1

Q2

]
R, and

(b) form X̂ = Q1Q
H
2 .

A straightforward implementation is to first compute the QR decomposition of the
2n × n matrix by a dense QR decomposition using the LAPACK routine DGEQRF
[1]. The cost is 10

3 n3 flops. Then we form Q1 and Q2 explicitly by using DORGQR.
Its cost is 10

3 n3 flops. Finally, we compute the product Q1Q
H
2 by the matrix-matrix

multiplication routine DGEMM in BLAS, the cost is 2n3 flops. Therefore, the arithmetic
cost of each QDHW iteration is 26

3 n3 flops. Since it generally takes at most 6 iterations
to converge, the total cost of the QDWH method is at most 52n3 flops.

In contrast, the cost of each SN iteration is 2n3 flops if the matrix inversion
is computed by LU factorization-based routines DGETRF and DGETRI in LAPACK.
Together with the fact that it generally needs at most 9 steps to converge, the total
cost of the SN method is at most 18n3 flops. Therefore, the cost of the QDWH method
is about three times more than that of the SN method.

To guarantee backward stability of the SN iteration, the matrix inversion needs
to be calculated using a bidiagonal reduction-based matrix inversion algorithm as
described in [5]. It increases the cost to 6n3 flops per iteration. This makes the total
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cost up to 54n3 flops. In this case, the costs of the SN and QDWH methods are about
the same.

We note that it is possible to reduce the cost of the QDWH method by exploiting
the diagonal block in the QR decomposition step. We can first compute the QR
decomposition of ηX, then carefully reduce the augmented matrix into a triangular
form. In this way, the cost of per QDWH iteration is reduced to (16/3)n3 flops. Thus
the cost of 6 iterations of QDWH iterations is thereby bounded by 32n3 flops. We
plan to report the detail of this algorithm and its parallel implementation in future
work.

5. Numerical examples. This section shows several numerical experiments to
demonstrate the numerical behaviors of the QDWH method. Let Û be a computed
polar factor of A. Then the Hermitian factor of the polar decomposition is computed
by Ĥ = 1

2 (ÛHA + (ÛHA)H). The accuracy of the computed polar decomposition
is tested by the residual norm res = ‖A − ÛĤ‖F /‖A‖F . A method is said to have
behaved in a numerically backward stable way when the residual norm is smaller than
cεM for a moderate constant c, where εM is the machine precision [20, p.209].

All numerical experiments were performed in MATLAB 7.4.0 and run on a PC
with a Core 2 Duo processor. The machine epsilon εM ' 2.2 × 10−16. The stopping
criterion (3.22) is used for the cubically convergent methods, namely Halley, Gander,
DWH and QDWH iterations. For the quadratically convergent Newton-type methods,
namely SN, NV, SNV and QSNV iterations, the stopping criterion (3.23) is applied.
Since A−1 is computed explicitly in the scaled Newton iteration, the estimates of
extreme singular values are α̂ = ‖A‖F and β̂ = 1/‖A−1‖F . Otherwise, we use the
estimates α̂ = ‖A‖F and β̂ as in (4.7).

Example 1. In this example, we show the effectiveness of the dynamical weighting.
Let A be 20× 20 diagonal matrices such that the diagonal elements form a geometric
series with a11 = 1/κ and ann = 1. The condition numbers of the matrices A are
κ = 10, 102, 105, . . . , 1020. The reason for picking a diagonal matrix is to minimize the
effects of rounding errors. The following data shows the iteration counts and residual
norms of three variants of Halley’s method:

κ 10 102 105 1010 1015 1020

Halley (3.1) 5 7 14 24 35 45
iter Gander (3.17) 6 7 9 14 18 24

DWH (3.3) 4 4 5 5 6 6
Halley (3.1) 4.7e-16 5.4e-16 2.4e-16 1.1e-16 1.0e-16 1.1e-16

res Gander (3.17) 7.6e-16 7.5e-16 8.0e-16 7.4e-16 8.0e-16 6.4e-16
DWH (3.3) 4.9e-16 3.8e-16 3.1e-16 5.7e-16 6.6e-16 5.4e-16

From the table we see that Gander’s iteration is faster than Halley’s iteration, but
still increases substantially with the increase of the condition numbers. The DWH
iteration converges the fastest, all within 6 steps as predicted in section 3.

Example 2. The purpose of this example is to show that three variants of the
Newton iteration are numerically unstable. Consider the simple 3× 3 matrix

A = U∗ΣV T
∗ ,

where Σ = diag{108, 1, 10−8},

U∗ =




sin θ 0 cos θ
0 1 0

− cos θ 0 sin θ


 and V∗ =




sin θ cos θ 0
− cos θ sin θ 0

0 0 1


 , θ = π/3.
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The following table shows that three variants of Newton’s iteration, namely the NV
iteration (2.4), SNV iteration (2.5), and QSNV iteration (4.4), are numerically un-
stable. The QR-based implementation in the QSNV iteration improves the backward
stability, but it is still not numerically backward stable to machine precision.

SN NV SNV QSNV DWH QDWH
iter 9 31 9 9 6 6
res 1.1e-16 4.9e-3 5.1e-3 1.1e-9 3.1e-11 3.3e-16

The instability of the SNV method, including QSNV, has been observed in previous
studies [7, 4]. This numerical observation led us to give up the QSNV, the natural
candidate for an inverse-free iteration, and turned to the study of a Halley-type iter-
ation. We note that from the last column of the previous table, the QDWH method
performed in a backward stable manner to machine precision.

Example 3. This example is to show the numerical stability and convergence rate
of the QDWH method, and compare with the SN method. The bidiagonal reduction-
based matrix inversion method is used in the SN method to guarantee the numerical
backward stability. Test matrices were generated as follows. We construct 3 groups of
20× 20 matrices using the MATLAB function gallery(′randsvd′, 20, kappa), where
the condition number kappa is set to be 102, 108, 1015, respectively. The following
table shows the minimum and maximum numbers of iterations and residual norms
from 100 test runs.

κ2(A) 102 108 1015

min max min max min max
iter QDWH 4 5 5 5 6 6

SN 6 6 8 8 9 9
res QDWH 4.2e-16 7.8e-16 2.9e-16 6.7e-16 2.8e-16 7.1e-16

SN 4.3e-16 6.5e-16 3.1e-16 6.1e-15 3.4e-16 1.2e-15
We observe that both SN and QDWH methods exhibit excellent numerical sta-

bility. The QDWH method needs about 2/3 as many iterations as the SN method
does, as discussed in section 3. We have also tested many other types of matrices,
such as extremely ill-conditioned Hilbert matrices. In all our experiments, the QDWH
method converged within 6 iterations and performed in a backward stable manner.

Example 4. In this example, we investigate the impact of the choice of estimates
α̂ and β̂ of extreme singular values α = σmax(A) and β = σmin(A) on the convergence
of the QDWH method. Since ‖A‖F /

√
n ≤ ‖A‖2 ≤ ‖A‖F , α̂ = ‖A‖F is a safe and

reliable choice (see Remark 2). Hence we focus on the effect of misestimating β, or
equivalently, `0 = β/α. Let A ∈ R20×20 be generated by using randsvd as in Example
3 with κ2(A) = 108, and let α̂ = ‖A‖F and X0 = A/α̂. The following table shows
the convergence rate and stability of the QDWH method with the estimates ̂̀

0 from
10−9σmin(X0), severely underestimated, to 109σmin(X0), severely overestimated:

̂̀
0/σmin(X0) 10−9 10−6 10−3 1 103 106 109

iter 6 6 6 5 12 18 24
res 5.8e-16 6.2e-16 7.3e-16 5.8e-16 6.1e-16 8.2e-16 9.3e-16

These results suggest that taking ̂̀
0 too large slows down the convergence substan-

tially, but taking small ̂̀
0 is essentially harmless on the convergence rate and numerical

stability. We further performed many tests for other types of matrices and drew the
same conclusion. Hence in practice, it is important to make sure that β̂ ≤ σmin(A)
if possible. This observation has led us to use the safe estimate in (4.7). Why such
crude estimates of σmax(A) and σmin(A) work so well is a topic of future study.
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6. Conclusion. A dynamical weighting scheme for the Halley iteration is intro-
duced in this paper. It is proven that the DWH method is globally and asymptotically
cubically convergent. The DWH method is an inverse free method and is based on
QR decompositions. Extensive numerical results show that the QDWH performed in
the same backward stable way as the the scaled Newton method. The QDWH method
is more expensive in arithmetic cost than the scaled Newton iteration with LU-based
inversions, and is about the same if the scaled Newton iteration is implemented us-
ing the bidiagonal reduction-based matrix inversions. The QR-based implementation
makes the QDWH a communication-friendly algorithm, which is desirable for the
emerging multicore and heterogeneous computing systems. Theoretical proof of the
numerical backward stability of the QDWH method is a subject of future study.

Appendix A: solving the max-min problem. In this appendix, we consider
the solution of the optimization problem (3.12) and (3.13), restated as follows:

Let

g(x; a, b) =
x(a + bx2)

1 + (a + b− 1)x2
,

where (a, b) ∈ D = {(a, b) | a > 0, b > 0 and a + b > 1}. Let ` be a
prescribed constant and 0 < ` ≤ 1. Find (a∗, b∗) ∈ D such that

0 < g(x; a∗, b∗) ≤ 1 for ` ≤ x ≤ 1, (6.1)

and (a∗, b∗) attains the max-min

max
(a,b)∈D

{
min

`≤x≤1
g(x; a, b)

}
. (6.2)

We note that in [25], Nie describes a scheme to reformulate the problem as a standard
semidefinite programming (SDP) problem so that we can solve it by using a SDP
software, such as SeDuMi [27]. In this appendix, we provide an analytic solution of
the problem.

A.1 Properties of function g and partition of D. First we note that
g(x; a, b) is a continuously differentiable odd function of x. The first and second
partial derivative of g(x; a, b) with respect to x are

∂xg(x; a, b) =
b(a + b− 1)x4 − (a(a + b− 1)− 3b)x2 + a

(1 + (a + b− 1)x2)2
(6.3)

and

∂xxg(x; a, b) =
2(a− 1)(a + b)x((a + b− 1)x2 − 3)

(1 + (a + b− 1)x2)3
. (6.4)

The derivative of g(x; a, b) with respect to a is given by

∂ag(x; a, b) =
x(1− x2)(1 + bx2)
(1 + (a + b− 1)x2)2

. (6.5)

Note that g(x; a, b) is a strictly increasing function of a on 0 < x < 1.
By some basic algebra manipulation, we derive the following lemma.
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Fig. 6.1. Partition of domain D .

Lemma 6.1. If a > Γ ≡ 1
2 (1 − b +

√
1 + 34b + b2), then g(x; a, b) has two real

positive critical points 0 < xm(a, b) ≤ xM (a, b). Otherwise, g(x; a, b) has no real
critical points. Furthermore, xm(a, b) > 1 if and only if 1 < a < 3 and b > a− 2, and
xM (a, b) > 1 if and only if 1 < a < 3 or b < a− 2.

In view of Lemma 6.1, we partition D into the following four domains:
• DI = {(a, b) | a > b + 2}.
• DII = {(a, b) | Γ ≤ a ≤ b + 2, b ≥ 1}.
• DIII = {(a, b) | 1− b < a < Γ}.
• DIV = {(a, b) | Γ ≤ a ≤ b + 2, b < 1}.

These four domains are illustrated by Figure 6.1.

A.2 Excluding domains DI, DIII and DIV. We show that domains DI, DIII,
and DIV can be immediately excluded for further considerations since when (a, b) are
in these domains, either the condition (6.1) is violated or there is no maximum value
satisfying (6.2).

When (a, b) ∈ DI, g(x; a, b) has the critical points xm(a, b) < 1 and xM (a, b) > 1.
By (6.3), we have ∂xg(1; a, b) < 0. Noting that g(1; a, b) = 1, there must be a x such
that ` < x ≤ 1 and g(x; a, b) > 1. This violates the constraint (6.1). Hence, domain
DI is excluded from further consideration.

When (a, b) ∈ DIII, g(x; a, b) has no critical point. By (6.3), we have ∂xg(x; a, b) >
0 for x ∈ [0, 1], so g(x; a, b) is strictly increasing on [0, 1]. In addition, g(0; a, b) = 1
and g(1; a, b) = 1. Therefore, the condition (6.1) is satisfied. However, it follows from
(6.5) that h(a, b) = min`≤x≤1 g(x; a, b) is a strictly increasing function of a. Note
that DIII is right-end open with respect to a, i.e., the boundary curve a = Γ is not
included. Therefore, h(a, b) will not have a maximum on DIII.1 Hence domain DIII

can be removed from consideration.
Finally, when (a, b) ∈ DIV, the critical points satisfy xm(a, b), xM (a, b) > 1. Sim-

ilar to the discussion of domain DIII, we can show that ∂xg(x; a, b) > 0 on x ∈ [0, 1],
and g(0; a, b) = 1 and g(1; a, b) = 1. Hence the condition (6.1) is satisfied. By (6.5),

1Here we are using a basic result from calculus that says a strictly increasing function f(x) has
no maximum value on a right-open interval.
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h(a, b) = minl≤x≤1 g(x; a, b) is a strictly increasing function of a. Note that DIV in-
cludes the boundary line a = b + 2. Therefore, h(a, b) has the maximum (w.r.t. a)
only at the boundary line a = b + 2. On the boundary line, g(x; b + 2, b) is an in-
creasing function of b since ∂bg(x; b + 2, b) > 0. Hence, H(b) = min`≤x≤1 g(x; b + 2, b)
is a strictly increasing function of b. However, since DIV does not include the point
(a, b) = (3, 1), H(b) has no maximum. Consequently, domain DIV can be removed
from consideration.

A.3 Searching on domain DII. Let us focus on domain DII. When (a, b) ∈
DII, the critical points satisfy xm(a, b), xM (a, b) ≤ 1. By (6.4), we have ∂xxg(x; a, b) <
0 at x = xm(a, b) and ∂xxg(x; a, b) > 0 at x = xM (a, b). Therefore, we have

Lemma 6.2. When (a, b) ∈ DII, g(x; a, b) has the local maximum at xm(a, b), and
the local minimum at xM (a, b), respectively.

A.3.1 Further partition of DII. To examine the condition under which (6.1)
is satisfied, let us further divide domain DII into two subdomains:

• Da
II = {(a, b) | (a, b) ∈ DII and xm(a, b) < `}.

• Db
II = {(a, b) | (a, b) ∈ DII and xm(a, b) ≥ `}.

When (a, b) ∈ Da
II, by Lemma 6.2, we know that g(x; a, b) does not have a local

maximum on [`, 1]. Since a differentiable function on a closed interval takes its max-
imum at either the endpoints or the local maximum, we have max`≤x≤1 g(x; a, b) =
max{g(`; a, b), g(1; a, b)}. Noting that g(1; a, b) = 1, we have

Lemma 6.3. For (a, b) ∈ Da
II, g(`; a, b) ≤ 1 is the necessary and sufficient condi-

tion to meet (6.1).
We now show that the condition “g(`; a, b) ≤ 1” is violated for (a, b) in a subset

of Da
II. Consider the case g(`; a, b) = 1. It implies that a = b − `− 1/l ≡ a1(b). Let

us partition Da
II into two subdomains; one is on the left of the line a1(b), including on

the line, and the other is on the right of the line a1(b):
• Da,1

II = {(a, b) | (a, b) ∈ Da
II and a ≤ a1(b)}.

• Da,2
II = {(a, b) | (a, b) ∈ Da

II and a > a1(b)}.
When (a, b) ∈ Da,1

II , by (6.5), g(`; a, b) is a strictly increasing function of a. Since
g(`; a1(b), b) = 1, it follows that for any ∆a ≥ 0, we have g(`; a1(b) − ∆a, b) ≤ 1.
Using Lemma 6.3 and noting that any point in Da,1

II can be written as (a1(b)−∆a, b)
for some ∆a ≥ 0, it follows that the condition (6.1) is met.

When (a, b) ∈ Da,2
II , we have g(`; a, b) > 1 and so (6.1) is violated since g(`; a1(b)+

∆a, b) > 1 for any ∆a > 0. Therefore, domain Da,2
II can be excluded for further

consideration.
Next consider (a, b) ∈ Db

II. By Lemma 6.2, g(x; a, b) is increasing on [`, xm(a, b)],
decreasing on [xm(a, b), xM (a, b)], and increasing on [xM (a, b), 1]. Therefore, it follows
that

max
`≤x≤1

g(x(a, b); a, b) = max{g(xm(a, b); a, b), g(1; a, b)}.

Noting that g(1; a, b) = 1, we have the following result.
Lemma 6.4. For (a, b) ∈ Db

II, g(xm(a, b); a, b) ≤ 1 is the necessary and sufficient
condition to meet (6.1).

We show that the condition g(xm(a, b); a, b) ≤ 1 is violated for (a, b) in a subset of
Db

II. Consider the case g(xm(a, b); a, b) = 1, which implies a = 2
√

b + 1 ≡ a2(b). Let
us partition Db

II into two subdomains: one is on the left of the curve a2(b), including
the curve, and the other is on the right of the curve a2(b):
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• Db,1
II = {(a, b) | (a, b) ∈ Da

II and a ≤ a2(a)}.
• Db,2

II = {(a, b) | (a, b) ∈ Da
II and a > a2(a)}.

By the same argument as the one we used to exclude domain Da,2
II , we can show

that (6.1) is satisfied in Db,1
II but not in Db,2

II . Therefore Db,2
II can be excluded.

A.3.2 Searching optimal solution in Da,1
II and Db,1

II . For (a, b) ∈ Da,1
II , by

(6.5) h(a, b) = min`≤x≤1 g(x; a, b) is a strictly increasing function of a. Noting that
Da,1

II has a closed boundary line with respect to a, it follows that h(a, b) can take the
maximum (w.r.t. a) only on the (boundary) line a1(b).

Similarly for (a, b) ∈ Db,1
II , using (6.5) we see that h(a, b) can take the maximum

(w.r.t. a) only at the (boundary) curve a2(b).
In addition, we observe that a1(b) is the tangent line of the curve a2(b) at

(â, b̂) ≡ ( 2+`
` , 1

`2 ). This also means that xm = ` at this point. Furthermore, we
can verify that
(i) ∂bxm(a, b) < 0 along a1(b).
(ii) ∂bxm(a, b) < 0 along a2(b).
By (i) we conclude that the right-side boundary of Da,1

II is a = a1(b) on b ∈ (̂b,∞).
Similarly, by (ii), the right-side boundary of Db,1

II is a = a2(b) on b ∈ [1, b̂]. Moreover, it
is easy to show that ∂bg(x; a1(b), b) < 0 on ` < x < 1. Therefore min`≤x≤1 g (x; a1(b), b)
is a strictly decreasing function of b, so it does not reach its maximum on the left-
open interval b ∈ (̂b,∞). Hence the segment of the curve a1(b) for b ∈ (̂b,∞) can be
removed from consideration.

Thus, we only need to focus on the segment of the curve a = a2(b) for b ∈ [1, b̂].
Write the function a = a2(b) as a function of a:

b2(a) = (a− 1)2/4, 3 ≤ a ≤ â. (6.6)

Note that the function g(x; a, b2(a)) is increasing on x ∈ [`, xm(a, b)], decreasing on
x ∈ [xm(a, b), xM (a, b)] and increasing on x ∈ [xM (a, b), 1]. Hence it follows that
min`≤x≤1 g(x; a, b2(a)) is taken either at the endpoint x = ` or at the local minimum
x = xM (a, b):

min
`≤x≤1

g(x; a, b2(a)) = min{s1(a), s2(a)}, (6.7)

where

s1(a) ≡ g(`; a, b2(a)) =
`(4a + (a− 1)`2)

4 + (a− 1)(3 + a)`2
,

s2(a) ≡ g(xM (a, b); a, b2(a)) =
4a3/2

(3 + a)
√

(a + 3)(a− 1)
.

The following Lemma is readily verified.
Lemma 6.5. s1(a) is an increasing function, and s2(a) is a decreasing function

of a on a ∈ [3, â]. In addition, s1(3) ≤ s2(3) and s1(â) ≥ s2(â).
Lemma 6.5 implies that there exists a∗ ∈ [3, â] such that

s1(a∗) = s2(a∗). (6.8)

Solving (6.8) for a∗ yields

a∗ =
√

1 + d +
1
2

√
8− 4d +

8(2− `2)
`2
√

1 + d
, where d = 3

√
4(1− `2)

`4
.
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Note that Lemma 6.5 also implies that min`≤x≤1 g(x; a, b2(a)) is increasing on a ∈
[3, a∗] and decreasing on a ∈ [a∗, â] with respect to a. Therefore, min`≤x≤1 g(x; a, b2(a))
is maximized at a = a∗. By (6.6), the optimal value of b is given by b∗ = 1

4 (a∗ − 1)2.
Consequently, (a∗, b∗) attains the max-min in (6.2) and

max
a,b∈D

{ min
`≤x≤1

g(x; a, b)} = g(`; a∗, b∗) = g(xM (a∗, b∗); a∗, b∗) =
`(a∗ + b∗`2)

1 + (a∗ + b∗ − 1)`2
,

which is used to update ` as in (3.16). We note that if ` = 1, the solution gives a∗ = 3
and b∗ = 1, which is consistent because plugging this into (3.3) results in the Halley
iteration (3.1).
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