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High Performance Matrix Computations: 
case study: matrix multiplications and BLAS
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Outline

1. Memory Hierarchies

2. Cache and its importance in performance

3. Optimizing matrix multiply for caches

4. BLAS 

5. Bag of Tricks

6. Supplement: Strassen’s algorithm
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Memory Hierarchy
• Most programs have a high degree of locality in their 

accesses
• spatial locality: accessing things nearby previous accesses
• temporal locality: reusing an item that was previously accessed

• Memory hierarchy tries to exploit locality

• By taking advantage of the principle of locality: 
• present the user with as much memory as is available in the 

cheapest technology
• Provide access at the speed offered by the fastest technology
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Levels of the Memory Hierarchy
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Idealized Uniprocessor Model
• Processor names bytes, words, etc. in its address space

• These represent integers, floats, pointers, arrays, etc.
• Exist in the program stack, static region, or heap

• Operations include
• Read and write (given an address/pointer)
• Arithmetic and other logical operations

• Order specified by program
• Read returns the most recently written data
• Compiler and architecture translate high level expressions into 

“obvious” lower level instructions
• Hardware executes instructions in order specified by compiler

• Cost
• Each operations has roughly the same cost (read, write, add, 

multiply, etc.)
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Uniprocessors in the Real World

• Real processors have
• registers and caches

• small amounts of fast memory
• store values of recently used or nearby data
• different memory ops can have very different costs

• parallelism
• multiple “functional units” that can run in parallel
• different orders, instruction mixes have different costs

• pipelining
• a form of parallelism, like an assembly line in a factory

• Why is this your problem?
In theory, compilers understand all of this and can 

optimize your program; in practice they don’t.
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Processor-DRAM Gap (latency)
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Matrix-multiply, optimized several ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops
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Cache and Its Importance in Performance

• Motivation:
• Time to run code = clock cycles running code 

+  clock cycles waiting for memory
• For many years, CPU’s have sped up an average of 50% per 

year over memory chip speed ups.
• Hence, memory access is the bottleneck to computing fast.
• Definition of a cache:

• Dictionary:  a safe place to hide or store things.
• Computer:  a level in a memory hierarchy.
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Cache Sporting Terms

• Cache Hit:  The CPU requests data that is already in the cache.  
We want to maximize this.  The hit rate is the percentage of cache 
hits.

• Cache Miss:  The CPU requests data that is not in cache.  We 
want to minimize this.  The miss time is how long it takes to get 
data, which can be variable and is highly architecture dependent.

• Two level caches are common.  The L1 cache is on the CPU chip 
and the L2 cache is separate.  The L1 misses are handled faster 
than the L2 misses in most designs.

• Upstream caches are closer to the CPU than downstream caches.  
A typical Alpha CPU has L1-L3 caches.  Some MIPS CPU’s do, 
too.
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Cache Benefits
• Data cache was designed with two key concepts in mind

• Spatial Locality
• When an element is referenced its neighbors will be 

referenced too
• Cache lines are fetched together
• Work on consecutive data elements in the same cache line 

• Temporal Locality
• When an element is referenced, it might be referenced 

again soon
• Arrange code so that data in cache is reused often
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Lessons

• Actual performance of a simple program can be a 
complicated function of the architecture

• Slight changes in the architecture or program change the 
performance significantly

• To write fast programs, need to consider architecture
• We would like simple models to help us design efficient 

algorithms
• Is this possible?

• We will illustrate with a common technique for improving 
cache performance, called blocking or tiling

• Idea: used divide-and-conquer to define a problem that fits in 
register/L1-cache/L2-cache
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Note on Matrix Storage
• A matrix is a 2-D array of elements, but memory 

addresses are “1-D”

• Conventions for matrix layout
• by column, or “column major” (Fortran default)
• by row, or “row major” (C default)
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• Assume just 2 levels in the hierarchy, fast and slow

• All data initially in slow memory
• m = number of memory elements (words) moved between fast and 

slow memory 
• tm = time per slow memory operation
• f = number of arithmetic operations
• tf = time per arithmetic operation << tm

• q = f / m average number of flops per slow element access

• Minimum possible time = f* tf when all data in fast 
memory

• Actual time 

• Larger q means Time closer to minimum f * tf

Using a Simple Model of Memory to Optimize

Key to 
algorithm 
efficiency

f * tf + m * tm = f * tf * (1 + tm/tf * 1/q) 
Key to 
machine 
efficiency 
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Warm up: Matrix-vector multiplication
{implements y = y + A*x}

for i = 1:n

for j = 1:n

y(i) = y(i) + A(i,j)*x(j)

= + *

y(i) y(i)

A(i,:)

x(:)
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Warm up: Matrix-vector multiplication
{read x(1:n) into fast memory}

{read y(1:n) into fast memory}

for i = 1:n

{read row i of A into fast memory}

for j = 1:n

y(i) = y(i) + A(i,j)*x(j)

{write y(1:n) back to slow memory}

• m = number of slow memory refs = 3n + n2

• f = number of arithmetic operations = 2n2

• q = f / m ~= 2

• Matrix-vector multiplication limited by slow memory speed
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“Naïve” Matrix Multiply
{implements C = C + A*B}

for i = 1 to n

for j = 1 to n

for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)

= + *
C(i,j) C(i,j) A(i,:)

B(:,j)
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“Naïve” Matrix Multiply
{implements C = C + A*B}
for i = 1 to n

{read row i of A into fast memory}

for j = 1 to n

{read C(i,j) into fast memory}

{read column j of B into fast memory}

for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)

{write C(i,j) back to slow memory}

= + *
C(i,j) A(i,:)

B(:,j)
C(i,j)
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“Naïve” Matrix Multiply
Number of slow memory references on unblocked matrix multiply

m = n3 read each column of B  n times

+ n2 read each row of A once 

+ 2n2 read and write each element of C once

= n3 + 3n2

So q = f / m = 2n3 / (n3 + 3n2)

~= 2 for large n, no improvement over matrix-vector multiply

= + *
C(i,j) C(i,j) A(i,:)

B(:,j)
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Blocked (Tiled) Matrix Multiply

Consider A,B,C to be N by N matrices of b by b subblocks where b=n / N is 
called the block size 

for i = 1 to N

for j = 1 to N

{read block C(i,j) into fast memory}

for k = 1 to N

{read block A(i,k) into fast memory}

{read block B(k,j) into fast memory}

C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}

= + *
C(i,j) C(i,j) A(i,k)

B(k,j)
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Blocked (Tiled) Matrix Multiply

Recall:
m is amount memory traffic between slow and fast memory
matrix has nxn elements, and NxN blocks each of size bxb
f is number of floating point operations, 2n3 for this problem
q = f / m is our measure of algorithm efficiency in the memory system

The amount of memory traffic is 
m =  N*n2 read each block of B  N3 times (N3 * n/N * n/N)

+ N*n2 read each block of A  N3 times
+ 2n2 read and write each block of C once
=  (2N + 2) * n2

So q = f / m = 2n3 / ((2N + 2) * n2) ~= n / N = b for large n

Hence we can improve performance by increasing the blocksize b
Can be much faster than matrix-vector multiply (q=2)
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Limits to Optimizing Matrix Multiply

The blocked algorithm has ratio q ~= b
• The large the block size, the more efficient our algorithm will be
• Limit:   All three blocks from A,B,C must fit in fast memory (cache), 

so we cannot make these blocks arbitrarily large: 
3b2 <= M, so q ~= b <= sqrt(M/3)

There is a lower bound result that says we cannot do any better than 
this (using only algebraic associativity)

Theorem (Hong & Kung, 1981): Any reorganization of this algorithm 
(that uses only algebraic associativity) is limited to q = O(sqrt(M))
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Fast linear algebra kernels: BLAS
• Simple linear algebra kernels such as matrix-matrix multiply 

• More complicated algorithms can be built from these basic 
kernels.

• The interfaces of these kernels have been standardized as the 
Basic Linear Algebra Subroutines (BLAS). 

• Early agreement on standard interface (~1980) 

• Led to portable libraries for vector and shared memory parallel 
machines. 

• On distributed memory, there is a less-standard interface called 
the PBLAS
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BLAS: advantages
• Clarity: code is shorter and easier to read,

• Modularity: gives programmer larger building blocks,

• Performance: manufacturers will provide tuned machine-
specific BLAS,

• Program portability: machine dependencies are confined to 
the BLAS
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Basic Linear Algebra Subroutines
• History

• BLAS1 (1970s): 

• vector operations: dot product, saxpy (y=α*x+y), etc
• m=2*n, f=2*n, q ~1 or less

• BLAS2 (mid 1980s)
• matrix-vector operations: matrix vector multiply, etc
• m=n^2, f=2*n^2, q~2, less overhead 
• somewhat faster than BLAS1

• BLAS3 (late 1980s)
• matrix-matrix operations: matrix matrix multiply, etc
• m >= 4n^2, f=O(n^3), so q can possibly be as large as n, so BLAS3 is 

potentially much faster than BLAS2

• Good algorithms used BLAS3 when possible (e.g., LAPACK)
• See www.netlib.org/blas, www.netlib.org/lapack
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Level 1, 2 and 3 BLAS

• Level 1 BLAS    Vector-
Vector operations

• Level 2 BLAS  Matrix-
Vector operations

• Level 3 BLAS  Matrix-
Matrix operations

+ *

*

+ *
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Level 1 BLAS
• Operate on vectors or pairs of vectors

• perform O(n) operations; 
• return either a vector or a scalar. 

• saxpy
• y(i) = a * x(i) + y(i), for i=1 to n. 
• s stands for single precision, daxpy is for double precision, 

caxpy for complex, and zaxpy for double complex, 

• sscal y = a * x, for scalar a and vectors x,y

• sdot computes s = S n
i=1 x(i)*y(i) 
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Level 2 BLAS
• Operate on a matrix and a vector; 

• return a matrix or a vector;
• O(n2) operations

• sgemv: matrix-vector multiply
• y = y + A*x
• where A is m-by-n, x is n-by-1 and y is m-by-1. 

• sger: rank-one update 
• A = A + y*xT, i.e., A(i,j) = A(i,j)+y(i)*x(j) 
• where A is m-by-n, y is m-by-1, x is n-by-1, 
• strsv: triangular solve 
• solves y=T*x for x, where T is  triangular
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Level 3 BLAS

• Operate on pairs or triples of matrices
• returning a matrix;
• complexity is O(n3).

• sgemm: Matrix-matrix multiplication
• C = C +A*B, 
• where C is m-by-n, A is m-by-k, and B is k-by-n

• strsm: multiple triangular solve
• solves Y = T*X for X, 
• where T is a triangular matrix, and X is a rectangular matrix.
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Why Higher Level BLAS?
• Can only do arithmetic on data at the top of the 

hierarchy

• Higher level BLAS lets us do this
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BLAS for Performance

Intel Pentium 4 w/SSE2 1.7 GHz
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BLAS for Performance

IBM RS/6000-590 (66 MHz, 264 Mflop/s Peak)
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Locality in Other Algorithms
• The performance of any algorithm is limited by q

• In matrix multiply, we increase q by changing 
computation order

• increased temporal locality

• For other algorithms and data structures, even hand-
transformations are still an open problem

• sparse matrices (reordering, blocking)
• trees (B-Trees are for the disk level of the hierarchy)
• linked lists (some work done here)
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Tiling (Blocking) Alone Might Not Be Enough
• Naïve and a “naïvely tiled” code



36

Optimizing in Practice
• Tiling for registers

• loop unrolling, use of named “register” variables

• Tiling for multiple levels of cache

• Exploiting fine-grained parallelism in processor
• superscalar; pipelining

• Complicated compiler interactions

• Automatic optimization an active research area
• BeBOP: www.cs.berkeley.edu/~richie/bebop
• PHiPAC: www.icsi.berkeley.edu/~bilmes/phipac

in particular tr-98-035.ps.gz
• ATLAS: www.netlib.org/atlas
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PHiPAC: Portable High Performance ANSI C

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops
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ATLAS (DGEMM n = 500)

• ATLAS is faster than all other portable BLAS implementations and
it is comparable with machine-specific libraries provided by the 
vendor. (being incorporated in MATLAB)
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Summary
• Performance programming on uniprocessors requires

• understanding of fine-grained parallelism in processor 
• produce good instruction mix

• understanding of memory system
• levels, costs, sizes
• improve locality

• Blocking (tiling) is a basic approach 
• Techniques apply generally, but the details (e.g., block size) are 

architecture dependent
• Similar techniques are possible on other data structures and 

algorithms
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Supplement: Strassen’s aglorithm



Conventional Block Matrix Multiply

2 by 2 block matrix multiply: 

C A B A B
C A B A B
C A B A B
C A B A B

11 11 11 12 21

12 11 12 12 22

21 21 11 22 21

22 21 12 22 22

= +
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= +
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where



Strassen’s algorithm

P A A B B
P A A B
P A B B
P A B B
P A A B
P A A B B
P A A B B

1 11 22 11 22

2 21 22 11

3 11 12 22

4 22 21 11

5 11 12 22

6 21 11 11 12

7 12 22 21 22

= + +

= +

= −

= −

= +

= − +

= − +

( )( )
( )

( )
( )

( )
( )( )
( )( )

C P P P P
C P P
C P P
C P P P P

11 1 4 5 7

12 3 5

21 2 5

22 1 3 2 6

= + − +

= +

= +

= + − +

Strassen does it with 7 multiplies (but many more adds)

One matrix multiply is replaced by 14 matrix additions



Strassen’s algorithm
• The count of arithmetic operations is:

• Current world’s record is O(n^2.376…)

• In reality the use of Strassen’s algorithm is limited by
• Additional memory required for storing the P matrices.

• More memory accesses are needed.

 Mult Add Complexity 

Regular 8 4 2n3+O(n2) 

Strassen 7 18 4.7n 2.8 + O(n2) 
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