
1

High Performance Matrix Computations:
case study: matrix multiplications and BLAS

2

Outline

1. Memory Hierarchies

2. Cache and its importance in performance

3. Optimizing matrix multiply for caches

4. BLAS

5. Bag of Tricks

6. Supplement: Strassen’s algorithm

3

Memory Hierarchy
• Most programs have a high degree of locality in their

accesses
• spatial locality: accessing things nearby previous accesses
• temporal locality: reusing an item that was previously accessed

• Memory hierarchy tries to exploit locality

• By taking advantage of the principle of locality:
• present the user with as much memory as is available in the

cheapest technology
• Provide access at the speed offered by the fastest technology

4

Memory Hierarchy

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n-C

hip
C

ache

1s 10,000,000s
(10s ms)

100s

GsMs

Speed (ns): 10s

100sSize (bytes): Ks

Tertiary
Storage

(Disk/Tape)

10,000,000,000s
(10s sec)

Ts

5

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit
Disk
G Bytes, 10 ms
(10,000,000 ns)

10 - 10 cents/bit-5 -6

Capacity
Access Time
Cost

Tape
infinite
sec-min
10 -8

Registers

Cache

Memory

Disk / Distributed Memory

Tape / Clusters

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

6

Idealized Uniprocessor Model
• Processor names bytes, words, etc. in its address space

• These represent integers, floats, pointers, arrays, etc.
• Exist in the program stack, static region, or heap

• Operations include
• Read and write (given an address/pointer)
• Arithmetic and other logical operations

• Order specified by program
• Read returns the most recently written data
• Compiler and architecture translate high level expressions into

“obvious” lower level instructions
• Hardware executes instructions in order specified by compiler

• Cost
• Each operations has roughly the same cost (read, write, add,

multiply, etc.)

7

Uniprocessors in the Real World

• Real processors have
• registers and caches

• small amounts of fast memory
• store values of recently used or nearby data
• different memory ops can have very different costs

• parallelism
• multiple “functional units” that can run in parallel
• different orders, instruction mixes have different costs

• pipelining
• a form of parallelism, like an assembly line in a factory

• Why is this your problem?
In theory, compilers understand all of this and can

optimize your program; in practice they don’t.

8

Processor-DRAM Gap (latency)

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU
19

82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

Time

“Moore’s Law”

• Memory hierarchies are getting deeper
• Processors get faster more quickly than memory

9

Matrix-multiply, optimized several ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

10

Cache and Its Importance in Performance

• Motivation:
• Time to run code = clock cycles running code

+ clock cycles waiting for memory
• For many years, CPU’s have sped up an average of 50% per

year over memory chip speed ups.
• Hence, memory access is the bottleneck to computing fast.
• Definition of a cache:

• Dictionary: a safe place to hide or store things.
• Computer: a level in a memory hierarchy.

11

Cache Sporting Terms

• Cache Hit: The CPU requests data that is already in the cache.
We want to maximize this. The hit rate is the percentage of cache
hits.

• Cache Miss: The CPU requests data that is not in cache. We
want to minimize this. The miss time is how long it takes to get
data, which can be variable and is highly architecture dependent.

• Two level caches are common. The L1 cache is on the CPU chip
and the L2 cache is separate. The L1 misses are handled faster
than the L2 misses in most designs.

• Upstream caches are closer to the CPU than downstream caches.
A typical Alpha CPU has L1-L3 caches. Some MIPS CPU’s do,
too.

12

Cache Benefits
• Data cache was designed with two key concepts in mind

• Spatial Locality
• When an element is referenced its neighbors will be

referenced too
• Cache lines are fetched together
• Work on consecutive data elements in the same cache line

• Temporal Locality
• When an element is referenced, it might be referenced

again soon
• Arrange code so that data in cache is reused often

13

Lessons

• Actual performance of a simple program can be a
complicated function of the architecture

• Slight changes in the architecture or program change the
performance significantly

• To write fast programs, need to consider architecture
• We would like simple models to help us design efficient

algorithms
• Is this possible?

• We will illustrate with a common technique for improving
cache performance, called blocking or tiling

• Idea: used divide-and-conquer to define a problem that fits in
register/L1-cache/L2-cache

14

Note on Matrix Storage
• A matrix is a 2-D array of elements, but memory

addresses are “1-D”

• Conventions for matrix layout
• by column, or “column major” (Fortran default)
• by row, or “row major” (C default)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

0

4

8

12

16

1

5

9

13

17

2

6

10

14

18

3

7

11

15

19

Column major Row major

15

• Assume just 2 levels in the hierarchy, fast and slow

• All data initially in slow memory
• m = number of memory elements (words) moved between fast and

slow memory
• tm = time per slow memory operation
• f = number of arithmetic operations
• tf = time per arithmetic operation << tm

• q = f / m average number of flops per slow element access

• Minimum possible time = f* tf when all data in fast
memory

• Actual time

• Larger q means Time closer to minimum f * tf

Using a Simple Model of Memory to Optimize

Key to
algorithm
efficiency

f * tf + m * tm = f * tf * (1 + tm/tf * 1/q)
Key to
machine
efficiency

16

Warm up: Matrix-vector multiplication
{implements y = y + A*x}

for i = 1:n

for j = 1:n

y(i) = y(i) + A(i,j)*x(j)

= + *

y(i) y(i)

A(i,:)

x(:)

17

Warm up: Matrix-vector multiplication
{read x(1:n) into fast memory}

{read y(1:n) into fast memory}

for i = 1:n

{read row i of A into fast memory}

for j = 1:n

y(i) = y(i) + A(i,j)*x(j)

{write y(1:n) back to slow memory}

• m = number of slow memory refs = 3n + n2

• f = number of arithmetic operations = 2n2

• q = f / m ~= 2

• Matrix-vector multiplication limited by slow memory speed

18

“Naïve” Matrix Multiply
{implements C = C + A*B}

for i = 1 to n

for j = 1 to n

for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)

= + *
C(i,j) C(i,j) A(i,:)

B(:,j)

19

“Naïve” Matrix Multiply
{implements C = C + A*B}
for i = 1 to n

{read row i of A into fast memory}

for j = 1 to n

{read C(i,j) into fast memory}

{read column j of B into fast memory}

for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)

{write C(i,j) back to slow memory}

= + *
C(i,j) A(i,:)

B(:,j)
C(i,j)

20

“Naïve” Matrix Multiply
Number of slow memory references on unblocked matrix multiply

m = n3 read each column of B n times

+ n2 read each row of A once

+ 2n2 read and write each element of C once

= n3 + 3n2

So q = f / m = 2n3 / (n3 + 3n2)

~= 2 for large n, no improvement over matrix-vector multiply

= + *
C(i,j) C(i,j) A(i,:)

B(:,j)

21

Blocked (Tiled) Matrix Multiply

Consider A,B,C to be N by N matrices of b by b subblocks where b=n / N is
called the block size

for i = 1 to N

for j = 1 to N

{read block C(i,j) into fast memory}

for k = 1 to N

{read block A(i,k) into fast memory}

{read block B(k,j) into fast memory}

C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}

= + *
C(i,j) C(i,j) A(i,k)

B(k,j)

22

Blocked (Tiled) Matrix Multiply

Recall:
m is amount memory traffic between slow and fast memory
matrix has nxn elements, and NxN blocks each of size bxb
f is number of floating point operations, 2n3 for this problem
q = f / m is our measure of algorithm efficiency in the memory system

The amount of memory traffic is
m = N*n2 read each block of B N3 times (N3 * n/N * n/N)

+ N*n2 read each block of A N3 times
+ 2n2 read and write each block of C once
= (2N + 2) * n2

So q = f / m = 2n3 / ((2N + 2) * n2) ~= n / N = b for large n

Hence we can improve performance by increasing the blocksize b
Can be much faster than matrix-vector multiply (q=2)

23

Limits to Optimizing Matrix Multiply

The blocked algorithm has ratio q ~= b
• The large the block size, the more efficient our algorithm will be
• Limit: All three blocks from A,B,C must fit in fast memory (cache),

so we cannot make these blocks arbitrarily large:
3b2 <= M, so q ~= b <= sqrt(M/3)

There is a lower bound result that says we cannot do any better than
this (using only algebraic associativity)

Theorem (Hong & Kung, 1981): Any reorganization of this algorithm
(that uses only algebraic associativity) is limited to q = O(sqrt(M))

24

Fast linear algebra kernels: BLAS
• Simple linear algebra kernels such as matrix-matrix multiply

• More complicated algorithms can be built from these basic
kernels.

• The interfaces of these kernels have been standardized as the
Basic Linear Algebra Subroutines (BLAS).

• Early agreement on standard interface (~1980)

• Led to portable libraries for vector and shared memory parallel
machines.

• On distributed memory, there is a less-standard interface called
the PBLAS

25

BLAS: advantages
• Clarity: code is shorter and easier to read,

• Modularity: gives programmer larger building blocks,

• Performance: manufacturers will provide tuned machine-
specific BLAS,

• Program portability: machine dependencies are confined to
the BLAS

26

Basic Linear Algebra Subroutines
• History

• BLAS1 (1970s):

• vector operations: dot product, saxpy (y=α*x+y), etc
• m=2*n, f=2*n, q ~1 or less

• BLAS2 (mid 1980s)
• matrix-vector operations: matrix vector multiply, etc
• m=n^2, f=2*n^2, q~2, less overhead
• somewhat faster than BLAS1

• BLAS3 (late 1980s)
• matrix-matrix operations: matrix matrix multiply, etc
• m >= 4n^2, f=O(n^3), so q can possibly be as large as n, so BLAS3 is

potentially much faster than BLAS2

• Good algorithms used BLAS3 when possible (e.g., LAPACK)
• See www.netlib.org/blas, www.netlib.org/lapack

27

Level 1, 2 and 3 BLAS

• Level 1 BLAS Vector-
Vector operations

• Level 2 BLAS Matrix-
Vector operations

• Level 3 BLAS Matrix-
Matrix operations

+ *

*

+ *

28

Level 1 BLAS
• Operate on vectors or pairs of vectors

• perform O(n) operations;
• return either a vector or a scalar.

• saxpy
• y(i) = a * x(i) + y(i), for i=1 to n.
• s stands for single precision, daxpy is for double precision,

caxpy for complex, and zaxpy for double complex,

• sscal y = a * x, for scalar a and vectors x,y

• sdot computes s = S n
i=1 x(i)*y(i)

29

Level 2 BLAS
• Operate on a matrix and a vector;

• return a matrix or a vector;
• O(n2) operations

• sgemv: matrix-vector multiply
• y = y + A*x
• where A is m-by-n, x is n-by-1 and y is m-by-1.

• sger: rank-one update
• A = A + y*xT, i.e., A(i,j) = A(i,j)+y(i)*x(j)
• where A is m-by-n, y is m-by-1, x is n-by-1,
• strsv: triangular solve
• solves y=T*x for x, where T is triangular

30

Level 3 BLAS

• Operate on pairs or triples of matrices
• returning a matrix;
• complexity is O(n3).

• sgemm: Matrix-matrix multiplication
• C = C +A*B,
• where C is m-by-n, A is m-by-k, and B is k-by-n

• strsm: multiple triangular solve
• solves Y = T*X for X,
• where T is a triangular matrix, and X is a rectangular matrix.

31

Why Higher Level BLAS?
• Can only do arithmetic on data at the top of the

hierarchy

• Higher level BLAS lets us do this

B L A S M e m o r y
R e f s

F l o p s F l o p s / M
e m o r y
R e f s

L e v e l 1
y = y + α x

3 n 2 n 2 / 3

L e v e l 2
y = y + A x

n 2 2 n 2 2

L e v e l 3
C = C + A B

4 n 2 2 n 3 n / 2

Registers

L 1
Cache

L 2
Cache

Local
Memory

Remote
Memory

Secondary
Memory

32

BLAS for Performance

Intel Pentium 4 w/SSE2 1.7 GHz

0

500

1000

1500

2000

10 100 200 300 400 500
Order of vector/Matrices

M
flo

p/
s

Level 3 BLAS

Level 2 BLAS

Level 1 BLAS

33

BLAS for Performance

IBM RS/6000-590 (66 MHz, 264 Mflop/s Peak)

0

50

100

150

200

250

10 100 200 300 400 500
Order of vector/Matrices

M
flo

p/
s

Level 3 BLAS

Level 2 BLAS

Level 1 BLAS

34

Locality in Other Algorithms
• The performance of any algorithm is limited by q

• In matrix multiply, we increase q by changing
computation order

• increased temporal locality

• For other algorithms and data structures, even hand-
transformations are still an open problem

• sparse matrices (reordering, blocking)
• trees (B-Trees are for the disk level of the hierarchy)
• linked lists (some work done here)

35

Tiling (Blocking) Alone Might Not Be Enough
• Naïve and a “naïvely tiled” code

36

Optimizing in Practice
• Tiling for registers

• loop unrolling, use of named “register” variables

• Tiling for multiple levels of cache

• Exploiting fine-grained parallelism in processor
• superscalar; pipelining

• Complicated compiler interactions

• Automatic optimization an active research area
• BeBOP: www.cs.berkeley.edu/~richie/bebop
• PHiPAC: www.icsi.berkeley.edu/~bilmes/phipac

in particular tr-98-035.ps.gz
• ATLAS: www.netlib.org/atlas

37

PHiPAC: Portable High Performance ANSI C

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

38

ATLAS (DGEMM n = 500)

• ATLAS is faster than all other portable BLAS implementations and
it is comparable with machine-specific libraries provided by the
vendor. (being incorporated in MATLAB)

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

AMD A
th

lon-6
00

DEC ev
56

-53
3

DEC ev
6-5

00
HP90

00
/73

5/1
35

IB
M PPC60

4-1
12

IB
M Power2

-16
0

IB
M Power3

-20
0

Pen
tiu

m Pro
-20

0
Pen

tiu
m II-

26
6

Pen
tiu

m III
-55

0

SGI R
10

00
0ip

28
-20

0

SGI R
12

00
0ip

30
-27

0

Sun
 U

ltr
aS

parc
2-2

00

Architectures

M
FL

O
PS

Vendor BLAS
ATLAS BLAS
F77 BLAS

Source: Jack Dongarra

39

Summary
• Performance programming on uniprocessors requires

• understanding of fine-grained parallelism in processor
• produce good instruction mix

• understanding of memory system
• levels, costs, sizes
• improve locality

• Blocking (tiling) is a basic approach
• Techniques apply generally, but the details (e.g., block size) are

architecture dependent
• Similar techniques are possible on other data structures and

algorithms

40

Supplement: Strassen’s aglorithm

Conventional Block Matrix Multiply

2 by 2 block matrix multiply:

C A B A B
C A B A B
C A B A B
C A B A B

11 11 11 12 21

12 11 12 12 22

21 21 11 22 21

22 21 12 22 22

= +

= +

= +

= +

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

2221

1211

2221

1211

2221

1211

BB
BB

AA
AA

CC
CC

where

Strassen’s algorithm

P A A B B
P A A B
P A B B
P A B B
P A A B
P A A B B
P A A B B

1 11 22 11 22

2 21 22 11

3 11 12 22

4 22 21 11

5 11 12 22

6 21 11 11 12

7 12 22 21 22

= + +

= +

= −

= −

= +

= − +

= − +

()()
()

()
()

()
()()
()()

C P P P P
C P P
C P P
C P P P P

11 1 4 5 7

12 3 5

21 2 5

22 1 3 2 6

= + − +

= +

= +

= + − +

Strassen does it with 7 multiplies (but many more adds)

One matrix multiply is replaced by 14 matrix additions

Strassen’s algorithm
• The count of arithmetic operations is:

• Current world’s record is O(n^2.376…)

• In reality the use of Strassen’s algorithm is limited by
• Additional memory required for storing the P matrices.

• More memory accesses are needed.

 Mult Add Complexity

Regular 8 4 2n3+O(n2)

Strassen 7 18 4.7n 2.8 + O(n2)

	 ��High Performance Matrix Computations: �case study: matrix multiplications and BLAS��
	Outline
	Memory Hierarchy
	Memory Hierarchy
	Levels of the Memory Hierarchy
	Idealized Uniprocessor Model
	Uniprocessors in the Real World
	Processor-DRAM Gap (latency)
	Matrix-multiply, optimized several ways
	Cache and Its Importance in Performance
	Cache Sporting Terms
	Cache Benefits
	Lessons
	Note on Matrix Storage
	 Using a Simple Model of Memory to Optimize
	Warm up: Matrix-vector multiplication
	Warm up: Matrix-vector multiplication
	“Naïve” Matrix Multiply
	“Naïve” Matrix Multiply
	“Naïve” Matrix Multiply
	Blocked (Tiled) Matrix Multiply
	Blocked (Tiled) Matrix Multiply
	Limits to Optimizing Matrix Multiply
	BLAS: advantages
	Basic Linear Algebra Subroutines
	Level 1, 2 and 3 BLAS
	Why Higher Level BLAS?
	BLAS for Performance
	BLAS for Performance
	Locality in Other Algorithms
	Tiling (Blocking) Alone Might Not Be Enough
	Optimizing in Practice
	PHiPAC: Portable High Performance ANSI C
	ATLAS (DGEMM n = 500)
	Summary
	Supplement: Strassen’s aglorithm
	Conventional Block Matrix Multiply
	Strassen’s algorithm
	Strassen’s algorithm

