High Performance Matrix Computations:
case study: matrix multiplications and BLAS

QOutline

Memory Hierarchies

Cache and its importance in performance
Optimizing matrix multiply for caches
BLAS

Bag of Tricks

o 0k~ WD PE

Supplement: Strassen’s algorithm

Memory Hierarchy

* Most programs have a high degree of locality in their
accesses

 spatial locality: accessing things nearby previous accesses
» temporal locality: reusing an item that was previously accessed

 Memory hierarchy tries to exploit locality

« By taking advantage of the principle of locality:

e present the user with as much memory as is available in the
cheapest technology

* Provide access at the speed offered by the fastest technology

Memory Hierarchy

Pr ocessor
Control Tertiary
/ Secondary Storage
Second Main Storage | | pisk/Tape)
- o Level M (Disk)
2 O S ev emory
Datapath(<. 11 | 8 & cache | | (DRAM)
-y
3 ® 3 (SRAM)
I —
\
Speed (ns): 1s 10s 100s 10,000,000s 10,000,000,000s
(10s ms) (10s sec)
Size (bytes): 100s Ks Ms Gs Ts

Levels of the Memory Hierarchy

gapacityr_
ccess Time :
Cost Xfor Uit
CPU Registers :
100s By?es Registers
<10s ns .
I Instr. Operands i’_rg%s’/ﬁfg;“p"er
Cache
e Cache
-100 ns
1-0.1 cents/bit cache cntl
Blocks 8-128 bytes
Main Memory
M Bytes Memory
200ns- 500ns
$.0001-.00001 cents /bit oS
Disk Pages 512-4K bytes
G Bytes, 10 ms : : :
(10,000,000 ns) Disk / Distributed Memory
10°%- 16 cents/bit I Fil user/operator
lHes Mbytes
Tape
infinite
sec-min Tape / Clusters
10 8

' faster

Larger

ldealized Uniprocessor Model

* Processor names bytes, words, etc. Iin its address space
* These represent integers, floats, pointers, arrays, etc.
» Exist in the program stack, static region, or heap

» Operations include
* Read and write (given an address/pointer)
» Arithmetic and other logical operations

» Order specified by program
* Read returns the most recently written data

o Compiler and architecture translate high level expressions into
“obvious” lower level instructions

» Hardware executes instructions in order specified by compiler

e Cost

o Each operations has roughly the same cost (read, write, add,
multiply, etc.)

Uniprocessors in the Real World

* Real processors have
* registers and caches
« small amounts of fast memory
« store values of recently used or nearby data
« different memory ops can have very different costs
 parallelism
« multiple “functional units” that can run in parallel
 different orders, instruction mixes have different costs
 pipelining
« aform of parallelism, like an assembly line in a factory

* Why is this your problem?

In theory, compilers understand all of this and can
optimize your program; in practice they don't.

Processor-DRAM Gap (latency)

 Memory hierarchies are getting deeper
* Processors get faster more quickly than memory

LOOQ | oo VCPU |,1P0roc
“Moore’s Law, 60%lyr.
100
10

Performance

]]
O NN T OMN~NOODOODO A NMITLWOONO O O
0O O WKWV WMV OO O OO O O O
OO0 OO OO OO0 OOOOOO OO OO
A Ad A d A A A A A A A A A A A A A AN

Matrix-multiply, optimized several ways

N M Wi Muliply [Bra—1/170]

a0

‘Sun Parl. L 1.2

T T T
f _ : : : :

oaal 4 BT L T LS T P . PO
: PHPAG | : : : :

B
(=)
T
i

o
th
[=]
J.*'_
1

i

i

Pariormance [Mkop/=s)

ool S b S T T e SRR i

) ISR SRS U I SRR SRRSO SO SRR]

i3, 3-neslad bops (Sun o, full g}

a i i i i i i i
o 100 200 200 400 §00 00 70O 800

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

9

Cache and Its Importance in Performance

 Motivation:
« Time to run code = clock cycles running code
+ clock cycles waiting for memory

 For many years, CPU’s have sped up an average of 50% per
year over memory chip speed ups.

« Hence, memory access is the bottleneck to computing fast.
« Definition of a cache:

* Dictionary: a safe place to hide or store things.
« Computer: alevel in a memory hierarchy.

10

Cache Sporting Terms

e Cache Hit: The CPU requests data that is already in the cache.
We want to maximize this. The hit rate is the percentage of cache
ItS.

e Cache Miss: The CPU requests data that is not in cache. We
want to minimize this. The miss time is how long it takes to get
data, which can be variable and is highly architecture dependent.

e Two level caches are common. The L1 cache is on the CPU chip
and the L2 cache is separate. The L1 misses are handled faster
than the L2 misses in most designs.

« Upstream caches are closer to the CPU than downstream caches.
A typical Alpha CPU has L1-L3 caches. Some MIPS CPU'’s do,
too.

11

Cache Benefits

« Data cache was designed with two key concepts in mind
o Spatial Locality

 When an element is referenced its neighbors will be
referenced too

e Cache lines are fetched together

 Work on consecutive data elements in the same cache line
 Temporal Locality

 When an element is referenced, it might be referenced
again soon

e Arrange code so that data in cache is reused often

12

Lessons

» Actual performance of a simple program can be a
complicated function of the architecture

» Slight changes in the architecture or program change the
performance significantly

* To write fast programs, need to consider architecture

 We would like simple models to help us design efficient
algorithms

* Is this possible?

« We will illustrate with a common technigue for improving
cache performance, called blocking or tiling

 |dea: used divide-and-conquer to define a problem that fits in
register/L1-cache/L2-cache

13

Note on Matrix Storage

A matrix is a 2-D array of elements, but memory
addresses are “1-D”

e Conventions for matrix layout
* by column, or “column major” (Fortran default)
* by row, or “row major” (C default)

Column major Row major>

0|5 |10]15 P I
J 1|6 |11]16

2| 7 12|17 s o 10111

S |8|13)18 1213|1415

419]14]19 16 |17 | 18| 19

14

Using a Simple Model of Memory to Optimize

e Assume just 2 levels in the hierarchy, fast and slow

 All data initially in slow memory
 m = number of memory elements (words) moved between fast and

slow memory

t., = time per slow memory operation
f = number of arithmetic operations
t. = time per arithmetic operation <<t

Key to
algorithm
efficiency

« q="f/m |average number of flops per slow element access

/

e Minimum possible time = f* t. when all data in fast

memory

e Actual time

frt+m*t =f*t* (14

t/t [* 1/0)

\

Key to

machine
efficiency

 Larger g means Time closer to minimum f * t,

15

Warm up: Matrix-vector multiplication

{implements y =y + A*x}
fori=1:n
forj=1:n
y(1) = y() + A(1,)*x()

AG,)

y() y(0) x()

16

Warm up: Matrix-vector multiplication

{read x(1:n) into fast memory}
{read y(1:n) into fast memory}
fori=1:n
{read row i of A into fast memory}
forj=1:n
y(1) = y() + A(L))*()
{write y(1:n) back to slow memory}

e m = number of slow memory refs = 3n + n?

« f = number of arithmetic operations = 2n?

e =f/m~=2

« Matrix-vector multiplication limited by slow memory speed

17

“Naive” Matrix Multiply

{implements C = C + A*B}

fori=1ton
forj=1ton
fork=1ton
C(1,)) = C(i,)) + A(i.k) * B(k,))
C(i.) C(i) All)
] [1 B(:.))

[
+

18

“Naive” Matrix Multiply
{implements C = C + A*B}

fori=1ton
{read row i of A into fast memory}
forj=1ton
{read C(i,)) into fast memory}
{read column j of B into fast memory}
fork=1ton
C(1,)) = C(1.)) + A(1,k) * B(k,))
{write C(i,]) back to slow memory}

C(i.) C(i.j) Ali.))

[
+

B(.)

19

“Naive” Matrix Multiply

Number of slow memory references on unblocked matrix multiply
m = n3 read each column of B n times
+ n? read each row of A once
+ 2n° read and write each element of C once
=nd+ 3n°
Soq=f/m=2n/(n®+ 3n?)

~= 2 for large n, no improvement over matrix-vector multiply

C(i.) C(i.j) Ali.))
B(.,)

[
+
*

Blocked (Tiled) Matrix Multiply

Consider A,B,C to be N by N matrices of b by b subblocks where b=n/Nis
called the block size

fori=1to N

forj=1

toN

{read block C(i,)) into fast memory}
fork=1to N
{read block A(i,k) into fast memory}

{read block B(k,j) into fast memory}

C(i,)) = C(i,)) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}

C(i.))
O

C(i.))
O

m Bk

21

Blocked (Tiled) Matrix Multiply

Recall:
m IS amount memory traffic between slow and fast memory
matrix has nxn elements, and NxN blocks each of size bxb
f is number of floating point operations, 2n3 for this problem
g = f/ m is our measure of algorithm efficiency in the memory system

The amount of memory traffic is
m = N*n? read each block of B N3 times (N3 * n/N * n/N)
+ N*n? read each block of A N2 times
+ 2n? read and write each block of C once
= (2N + 2) * n?

Soq=f/m=2n3/((2N +2)*n?) ~=n/N=Db forlarge n

Hence we can improve performance by increasing the blocksize b
Can be much faster than matrix-vector multiply (g=2) 9o

Limits to Optimizing Matrix Multiply

The blocked algorithm has ratioq ~=b
 The large the block size, the more efficient our algorithm will be

 Limit: All three blocks from A,B,C must fit in fast memory (cache),
so we cannot make these blocks arbitrarily large:

3b?2 <=M, so g ~= b <= sqrt(M/3)

There is a lower bound result that says we cannot do any better than
this (using only algebraic associativity)

Theorem (Hong & Kung, 1981): Any reorganization of this algorithm
(that uses only algebraic associativity) is limited to g = O(sqrt(M))

23

Fast linear algebra kernels: BLAS

« Simple linear algebra kernels such as matrix-matrix multiply

 More complicated algorithms can be built from these basic
kernels.

« The interfaces of these kernels have been standardized as the
Basic Linear Algebra Subroutines (BLAS).

« Early agreement on standard interface (~1980)

» Led to portable libraries for vector and shared memory parallel
machines.

« On distributed memory, there is a less-standard interface called
the PBLAS

24

BLAS: advantages

Clarity: code is shorter and easier to read,
Modularity: gives programmer larger building blocks,

Performance: manufacturers will provide tuned machine-
specific BLAS,

Program portability: machine dependencies are confined to
the BLAS

25

Basic Linear Algebra Subroutines

e History

 BLASL1 (1970s):
e vector operations: dot product, saxpy (y=a*x+y), etc
e m=2*n, f=2*n, q ~1 or less

 BLAS2 (mid 1980s)
e matrix-vector operations: matrix vector multiply, etc
s m=n"2, f=2*n"2, q~2, less overhead
« somewhat faster than BLAS1

 BLAS3 (late 1980s)
e matrix-matrix operations: matrix matrix multiply, etc
e m>=4n"2, f=0(n"3), so g can possibly be as large as n, so BLAS3 is

potentially much faster than BLAS2

» Good algorithms used BLAS3 when possible (e.g., LAPACK)
« See ww.netlib.org/blas, www.netlib.org/lapack

26

Level 1, 2 and 3 BLAS

 Level 1 BLAS Vector-
Vector operations

* Level 2 BLAS Matrix-
Vector operations

* Level 3 BLAS Matrix-
Matrix operations

27

Level 1 BLAS

e Operate on vectors or pairs of vectors

» perform O(n) operations;
e return either a vector or a scalar.

* Saxpy
e y(i) = a * x(i) + y(i), for i=1 to n.

» s stands for single precision, daxpy is for double precision,
caxpy for complex, and zaxpy for double complex,

e sscal y = a * x, for scalar a and vectors X,y

» sdot computes s =S"._; x(i)*y(i)

28

Level 2 BLAS

e Operate on a matrix and a vector;

e return a matrix or a vector;
e O(n?) operations

e sgemv: matrix-vector multiply
e Y=Yy + A*X

 where A is m-by-n, X is n-by-1 and y is m-by-1.

e sger: rank-one update
o A=A+ yXT Le., A(l,)) = A@,)+Y()*x()
 where A is m-by-n, y iIs m-by-1, x is n-by-1,
 strsv: triangular solve
e solves y=T*x for x, where T is triangular

29

Level 3 BLAS

e Operate on pairs or triples of matrices
e returning a matrix;
o complexity is O(n3).

e sgemm: Matrix-matrix multiplication
« C=C +A*B,
« where C is m-by-n, A is m-by-k, and B is k-by-n

e strsm: multiple triangular solve
e solves Y = T*X for X,
 where T is a triangular matrix, and X is a rectangular matrix.

30

Why Higher Level BLAS?

« Can only do arithmetic on data at the top of the

hierarchy

* Higher level BLAS lets us do this

BLAS Memory |Flops Flops/M

Refs emory
Refs

Level 1 3n 2N 213

y=y+aXx

Level 2 n 2 2n? 2

y=y+AX

Level 3 |4n? 2n3 n/2

C=C+AB

31

BLAS for Performance

Intel Pentium 4 w/SSE2 1.7 GHz

2000 — Level 3 BLAS
1500 —+
$ 1000 +
=
500 - Level 2 BLAS
0 1 1 1 Levlel 1 BLAS

10 100 200 300 400 500

Order of vector/Matrices

32

BLAS for Performance

IBM RS/6000-590 (66 MHz, 264 Mflop/s Peak)

250
Level 3 BLAS
200 -
o 150 -
= 100 - Level 2 BLAS
50 -
Level 1 BLAS

|

I I |

10 2000 300 400 500

Order of vector/Matrices

33

Locality in Other Algorithms

* The performance of any algorithm is limited by q
* In matrix multiply, we increase q by changing
computation order
 increased temporal locality

 For other algorithms and data structures, even hand-
transformations are still an open problem

e sparse matrices (reordering, blocking)
 trees (B-Trees are for the disk level of the hierarchy)

* linked lists (some work done here)

34

Tiling (Blocking) Alone Might Not Be Enough _

* Naive and a “naively tiled” code

Square (NxN) Matrix Multiply with Block Size B [333 MHz Ultra-1li]
160 ! ! | | :

140

120

Performance (Mflop/s)
oo
e]

40

20

i I i I i
0 200 400 600 800 1000 1200
Matrix Size (N)

Optimizing In Practice

e Tiling for registers
* loop unrolling, use of named “register” variables

e Tiling for multiple levels of cache

« Exploiting fine-grained parallelism in processor
 superscalar; pipelining

o Complicated compiler interactions

« Automatic optimization an active research area
e BeBOP: www.cs.berkeley.edu/~richie/bebop
 PHIPAC: www. icsi .berkeley.edu/~bilmes/phipac

in particular tr-98-035.ps.gz
« ATLAS: ww.netlib.org/atlas

36

PHIPAC: Portable High Performance ANSIC

N x N Matrix Multiply [Ultra-1/170]
300) T)

Sun Perf, Lib 1.2

250 ”.glﬁfuﬁii” __

15031 |

Performance (Mflop/s)

—
o
S
I
%
b
|

50

b ;Naive C (Séun cc, full é)pt.) _____ R

0 i i i I I i
0 100 200 300 400 500 600 700 800
N

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

37

MFLOPS

ATLAS (pceEMM n = 500)

Source: Jack Dongarra

900.0
B Vendor BLAS
800.0 B ATLAS BLAS
mF77 BLAS
700.0
600.0
500.0 -
400.0 -
300.0
200.0
100.0
0.0 -
) rgb \(]’
(\Q} 663 Q;o 63\'& &,\' q/,'\' fb'q/ O'q/ \\,'1/ \\\59 (bﬂ/ 051/ q/ﬂ/
O %) K) /\(b @\ Q} Q& . 9% . > <
of @Oe <§</O 9000 &K S & & & § & &
X < < 3
Architectures 9 9 60

« ATLAS is faster than all other portable BLAS implementations and
it is comparable with machine-specific libraries provided by the
vendor. (being incorporated in MATLAB)

38

Summary

e Performance programming on uniprocessors requires
» understanding of fine-grained parallelism in processor
e produce good instruction mix
» understanding of memory system
» levels, costs, sizes
e improve locality

 Blocking (tiling) is a basic approach

» Techniques apply generally, but the details (e.g., block size) are
architecture dependent

» Similar techniques are possible on other data structures and
algorithms

39

Supplement: Strassen’s aglorithm

40

Conventional Block Matrix Multiply

2 by 2 block matrix multiply:

|

where

C11 C12 _ A11 A12
Ca czzHAﬂ Azzj(

Cii=AyuBy, +ALBy
C, = AB, + A,By,
Cy = AyBy +AyB;,
Cp = AyBp, + AyB,,

Bll
BZl

Strassen’s algorithm

Strassen does it with 7 multiplies (but many more adds)

P = (A +A,)(B,; +By) C,=P+P,—-P.+P,
32 — (A21 + AZZ)Bll C D D

= +
% = A11(Blz - Bzz) C12 B 33 35
34:A22(le_811) 21~ 2 F >
5 = (A +A,)B,, C22 = 31 T :)3 o I:)2 + I:)6

D6 = (A21 - All)(Bll T B12)
2 = (A12 - Azz)(le T Bzz)

One matrix multiply is replaced by 14 matrix additions

Strassen’s algorithm
* The count of arithmetic operations is:

Mult Add Complexity

Regular 8 4 2n3+0(n2)

Strassen 7 18 4.7n 28 + O(n2)

e Current world’s record is O(n"2.376...)

* In reality the use of Strassen’s algorithm is limited by
« Additional memory required for storing the P matrices.

 More memory accesses are needed.

	 ��High Performance Matrix Computations: �case study: matrix multiplications and BLAS��
	Outline
	Memory Hierarchy
	Memory Hierarchy
	Levels of the Memory Hierarchy
	Idealized Uniprocessor Model
	Uniprocessors in the Real World
	Processor-DRAM Gap (latency)
	Matrix-multiply, optimized several ways
	Cache and Its Importance in Performance
	Cache Sporting Terms
	Cache Benefits
	Lessons
	Note on Matrix Storage
	 Using a Simple Model of Memory to Optimize
	Warm up: Matrix-vector multiplication
	Warm up: Matrix-vector multiplication
	“Naïve” Matrix Multiply
	“Naïve” Matrix Multiply
	“Naïve” Matrix Multiply
	Blocked (Tiled) Matrix Multiply
	Blocked (Tiled) Matrix Multiply
	Limits to Optimizing Matrix Multiply
	BLAS: advantages
	Basic Linear Algebra Subroutines
	Level 1, 2 and 3 BLAS
	Why Higher Level BLAS?
	BLAS for Performance
	BLAS for Performance
	Locality in Other Algorithms
	Tiling (Blocking) Alone Might Not Be Enough
	Optimizing in Practice
	PHiPAC: Portable High Performance ANSI C
	ATLAS (DGEMM n = 500)
	Summary
	Supplement: Strassen’s aglorithm
	Conventional Block Matrix Multiply
	Strassen’s algorithm
	Strassen’s algorithm

