Review and catch up
e Frequently Used Matrix Decompositions
e What else in the Handout



Frequently Used Matrix Decompositions

“Big four”:
1. LU factorization
Gaussian elimination, ...

2. QR decomposition
Gram-Schmidt orthogonalization, ...

3. Schur decomposition
Eigendecomposition, ....

4. Singular value decomposition
CS decomposition, ...



L U decomposition (Gaussian Elimination)

If A 1s nonsingular, then there exist permutations P, a unit lower triangular
matrix L, and a nonsingular upper triangular matrix U such that

PA=LU.
Special cases:

(a) Cholesky decomposition. A matrix A is symmetric positive definite
If and only if there exists a unique nonsingular upper triangular matrix R,
with positive diagonal entries, such that

A=R'R.

(b) LDL ! factorization If A” = A is nonsingular, then there exists a
permutation P, a unit lower triangular matrix L, and a block diagonal
matrix D with 1-by-1 and 2-by-2 blocks such that

PAP' = LDIL'.



Applications:
e Solve Ax =b.

Matlab demo: lugui.m, bslashtx.m



QR decomposition(Gram-Schmidt orthogonalization)

Let A be m-by-n with m > n. Suppose that A has full column rank. Then
there exist a unique m-by-n orthogonal matrix Q (Q' Q) = I) and a unique
n-by-n upper triangular matrix R with positive diagonal r;; > 0 such that

A= QR.
Applications:
e Find an orthonormal basis of the subspace spanned by the columns of A.
e Solve the linear least squares problem min, || Ax — b||5.

Matlab demo: grsteps.m



Schur decomposition

Let A be of order n. Then there is an n x n unitary matrix U (U"”U = I) such

that
A=U0TU",

where 7" is upper triangular. By appropriate choice of U, the eigenvalues of A,
which are the diagonal elements of 7', may be made to appear in any order.

Applications:
e Compute eigenvalues and eigenvectors of A.

Matlab demo: eigsvdgui . m



Singular Value Decomposition (SVD)

Let A be an m-by-n matrix with m > n. Then we can write
A=UxV",

where U is m-by-n orthogonal matrix (U'U = I,,)) and V is n-by-n
orthogonal matrix (V!V = I), and © = diag(cy, 09, . . ., 0,,), where

012> 092> >0, 2> 0.

If m < n, the SVD can be defined by considering A”.

The columns wq, us, . .., u, 0f U are called left singular vectors of A. The
columns vy, v9, ..., v, of V are called right singular vectors. The
o1,09,...,0, are called singular values.



Applications:

e Suppose that A is m-by-n with m > n and has full rank, with A = UXV?
being A’s SVD. Then the pseudo-inverse can also be written as

Al = (ATA) AT = vy~ lUT,
(If m < n, then AT = AT(AAT)"1)
e Suppose that

0-120-22"'ZO-T>O-7”—|—1:“':O-R:O7
Then the rank of A is r. The range space of A is span(uy, uo, - - -, u,). and
the null space of A is span(v, .1, vya0, ..., v,).

o | Allz = 01(= Omax)

o Let A bem x nwithm > n. Then
(a) eigenvalues of ATA = VX2V T are 0?,i=1,2,...,n. The
corresponding eigenvectors are the right singular vectors v;,
i=1,2,... n
(b) eigenvalues of AAT = UX2UT are 02,7 =1,2,...,nand m — n zeros.
The left singular vectors u;, i = 1, 2, ..., n are corresponding eigenvectors
for the eigenvalues o?. One can take any m — n other orthogonal vectors



that are orthogonal to uq, us, . . ., u, as the eigenvectors for the eigenvalues
0.

e Optimal rank-k approximation:

min |A = Bll2 = [[A — Ayll2 = 0§41,
B:mXxn

rank(B) = k

where A, = UY, V!, 3, = diag(oy, 09, ...,0%,0,...,0)
Note that A, can be written in a compact form as

Ap = Ui Vi
where U, and V}. are the first £ columns of U and V/, respectively,
>, = diag(oy, 09, . .., 03). Therefore, A, is represented by

mk + k +nk = (m +n + 1)k elements, in contrast, A is represented by
mn elements.

Application: image compression.

(m+n+1)k
mn

compression ratio =




Matlab’s M-scripts:

> >
> >
> >
> >
> >
>>
> >
>>
> >
> >
> >
> >

load clown.mat;

[m,n] =size (X) ;
figure (1) ;
colormap (map) ;
imag (X) ;

[UI SIV] =SVd (X) /

k = 20;

X20 = U(:,1:k)*S(1:k,1:k)*V(:

figure(2) ;
colormap (map) ;
image (X20) ;

compression ratio

,1:k)

(m+n) *k/ (m*n)



Output:

anginal image comprassion @lio= 004

o0 100 1560 =200 230 300 o0 100 1560 =200 230 300

comression ralio = 0.16 comprassion @lio= 024
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=00
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What esein the Handout

. Approximation and error are the facts of life in matrix computing
Floating-point arithmetic

Rounding error analysis

. Vector and matrix norms

. The landscape of linear systems solvers

o g A W N P

. A general framework for iterative projection methods for solving Az = b

e Steepest descent = Conjugate Gradient (CG) method
e Minimal residual =~ GMRES

7. The concept of preconditioning

8. A general framework for iterative projection methods for solving Ax = A\x

e Arnoldi method
e Lanczos methods



