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Lecture 1

Self-adaptive direct linear system solvers

1.1 Introduction

In this lecture, we consider one of the computational kernels of the QMC simulations discussed
in Lecture 1: solving the linear system of equations

Mx = b, (1.1.1)

where the coefficient matrix M is the Hubbard matrix as defined in Lecture 2, see equation
(??).

One of main challenges in the multiscale QMC simulation is to develop algorithmic tech-
niques and paradigms that can robustly and efficiently solve numerical linear algebra problems
with underlying multiscale coefficient matrices in a self-adapting fashion to achieve a required
simulation accuracy.

The Hubbard matrix M exhibits the form of a so-called block p-cyclic consistently ordered
matrix [8]. p-cyclic matrices arise in a number of important contexts in applied mathematics,
including numerical solution of boundary value problems for ordinary differential equations [7],
finite-difference equations for the steady-state solution of a parabolic equation with periodic
boundary conditions [6], and computing the stationary solution of Markov chains with periodic
graph structure [5].

It is known that the block Gaussian elimination with and without pivoting for solving
p-cyclic linear systems can be numerically unstable, similar to the case of multiple shooting
method for solving two-point boundary value problems [10, 2] and Markov chain modeling [4].

Block cyclic reduction [1] is a powerful idea to solve such p-cyclic system. However, a
full block cyclic reduction is applicable only for small energy scales, namely, U ≤ 1, due to
emerging ill-condition of the reduced system. A stable p-cyclic linear system solver is based on
the structural orthogonal factorization [9, 2]. Unfortunately, the costs of memory requirements
and flops is prohibitively expensive when the length scales N and L increase.

To take advantage of significant reduction of memory requirement and floating point com-
putations in the block cyclic reduction and numerical stability of the orthogonal factorization
method, and to carefully examine the accuracy needs in our quantum monte carlo simulation,
in this lecture, we present a hybrid method, which we simply call a Self-Adaptive Block cyclic
reduction Orthogonal factorization method, or SABO method for short.

1
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1.2 Block cyclic reduction

Consider the following 16× 16 block cyclic linear system (1.1.1):

Mx = b,

where ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I B1

−B2 I
−B3 I

−B4 I
. . . . . .

−B15 I
−B16 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Correspondingly, partitions of the vectors x and b are comformed to the blocks of M :

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4
...

x15

x16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

b4
...

b15

b16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A-factor-of-four block cyclic reduction (BCR) leads to a 4× 4 block cycle linear system of the
form

M (4)x(4) = b(4),

where

M (4) =

⎡⎢⎢⎢⎣
I B

(4)
1

B
(4)
2 I

B
(4)
3 I

B
(4)
4 I

⎤⎥⎥⎥⎦ , x(4) =

⎡⎢⎢⎣
x4

x8

x12

x16

⎤⎥⎥⎦ , b(4) =

⎡⎢⎢⎢⎣
b
(4)
1

b
(4)
2

b
(4)
3

b
(4)
4

⎤⎥⎥⎥⎦
and

B
(4)
1 = B4B3B2B1

B
(4)
2 = B8B7B6B5

B
(4)
3 = B12B11B10B9

B
(4)
4 = B16B15B14B13

b
(4)
1 = b4 + B4b3 + B4B3b2 + B4B3B2b1

b
(4)
2 = b8 + B8b7 + B8B7b6 + B8B7B6b5

b
(4)
3 = b12 + B12b11 + B12B11b10 + B12B11B10b9

b
(4)
4 = b16 + B16b15 + B16B15b14 + B16B15B14b13

Once the vector x(4) is computed, i.e, the block components x4, x8, x12 and x16 of the
solution x are computed, the rest of block components xi of the solution x can be computed
by the following forward and back substitutions:
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• Forward substitution:

x1 = b1 −B1x16,
x5 = b5 + B5x4,
x9 = b9 + B9x8,

x13 = b13 + B13x12,

x2 = b2 + B2x1,
x6 = b6 + B6x5,

x10 = b10 + B10x9,
x14 = b14 + B14x13,

• Back substitution:

x3 = B−1
4 (x4 − b4),

x11 = B−1
12 (x12 − b12),

x7 = B−1
8 (x8 − b8),

x15 = B−1
16 (x16 − b16),

The use of both forward and back substitutions can minimize the propagation of rounding
errors in the computed x4, x8, x12 and x16.

The pattern for a general factor-of-k reduction is clear. Given an integer k ≤ L, a-factor-
of-k BCR leads to a L(k) × L(k) block cycle linear system:

M (k)x(k) = b(k), (1.2.2)

where Lk = �Lk �,

M (k) =

⎡⎢⎢⎢⎢⎢⎢⎣
I B

(k)
1

−B
(k)
2 I

−B
(k)
3 I

. . . . . .

−B
(k)
Lk

I

⎤⎥⎥⎥⎥⎥⎥⎦ ,

with

B
(k)
1 = BkBk−1 · · ·B2B1

B
(k)
2 = B2kB2k−1 · · ·Bk+2Bk+1

...
B

(k)
Lk

= BLBL−1 · · ·B(Lk−1)k+1,

and the vectors x(k) and b(k) are

x(k) =

⎡⎢⎢⎢⎢⎢⎣
xk

x2k
...
x(Lk−1)k

xL

⎤⎥⎥⎥⎥⎥⎦ and b(k) =

⎡⎢⎢⎢⎢⎢⎢⎣
bk +

∑k−1
t=1 Bk · · ·Bt+1bt

b2k +
∑2k−1

t=k+1 B2k · · ·Bt+1bt
...
b(Lk−1)k +

∑(Lk−1)k−1
t=(Lk−2)k+1 B(Lk−1)k · · ·Bt+1bt

bL +
∑L−1

t=(Lk−1)k+1 BL · · ·Bt+1bt

⎤⎥⎥⎥⎥⎥⎥⎦ .

After the solution vector x(k) of the reduced system (1.2.2) is computed, then the rest of
block components xi of the solution vector x are obtained by forward and back substitutions,
that is to say, when the index t is less than k

2 , the components of block xik+t are obtained by
the forward substitution and otherwise by the back substitution. The pseudo-code is as the
following.
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1. Let � = [k, 2k, · · · , (Lk − 1)k, L]

2. For j = 1, 2, · · · , Lk

(a) x�(j) = x
(k)
j

(b) forward substitution
For i = �(j − 1) + 1, �(j − 1) + 2, . . . , �(j − 1) + �12(�(j) − �(j − 1) − 1)�
with �(0) = 0:

If i = 1, x1 = b1 −B1xL

else xi = bi + Bixi−1

(c) back substitution
For i = �(j)− 1, �(j) − 2, . . . , �(j)− �12 (�(j) − �(j − 1)− 1)�,

xi = B−1
i+1(xi+1 − bi+1).

Remark 1.2.1 If the reduction factor k = L, then Lk = 1. The reduced system is

M (L)xL = b(L),

i.e,

(I + BLBL−1 · · ·B1)xL = bL +
L−1∑
t=1

BL · · ·Bt+1bt.

Remark 1.2.2 There are a number of ways to derive the reduced system (1.2.2). For example,
we can use the block Gaussian elimination. Writing the matrix M of the original system (1.1.1)
as a Lk by Lk block matrix:

M =

⎡⎢⎢⎢⎢⎢⎢⎣
D1 B̂1

−B̂2 D2

−B̂3 D3

. . . . . .
−B̂Lk

DLk

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where Di are k × k black matrices defined as

Di =

⎡⎢⎢⎢⎢⎢⎣
I

−B(i−1)k+2 I

−B(i−1)k+3 I
. . . . . .

−Bik I

⎤⎥⎥⎥⎥⎥⎦ ,

and B̂i are k × k block matrices defined as

B̂i =

⎡⎢⎢⎢⎣
0 0 · · · B(i−1)k+1

0 0 · · · 0
...

...
...

...
0 0 · · · 0

⎤⎥⎥⎥⎦ .
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Define D̂ = diag(D1,D2, · · · ,DLk
), then

D̂−1M =

⎡⎢⎢⎢⎢⎢⎢⎣
I D−1

1 B̂1

−D−1
2 B̂2 I

−D−1
3 B̂3 I

. . . . . .
−D−1

Lk
B̂Lk

I

⎤⎥⎥⎥⎥⎥⎥⎦ .

Note that the matrix D−1
i B̂i is given by

D−1
i B̂i =

⎡⎢⎢⎢⎣
0 0 · · · B(i−1)k+2B(i−1)k+1

0 0 · · · B(i−1)k+3B(i−1)k+2B(i−1)k+1
...

...
...

...
0 0 · · · B(i−1)k+k · · ·B(i−1)k+2B(i−1)k+1

⎤⎥⎥⎥⎦ .

Therefore, M (k) is a submatrix of D̂−1M . There exists a matrix Π, such that

M (k) = ΠT D̂−1MΠ,

where the matrix Π is NL × (NL/k) matrix, whose (i − 1)N + 1 to iN columns are the
(ik − 1)N + 1 to ikN columns of the identity matrix INL.

1.3 Block orthogonal factorization method

Comparing with the Gaussian elimination (LU factorization) method, the block orthogonal
factorization (BOF) method presented in this section is computationally more expensive, but
numerically backward stable.

It is easy to see that by multiplying a sequence of orthogonal transformation matrices Qi,
the block cyclic matrix M of the system (1.1.1) can be transformed to an upper triangular,
namely,

QT
L−1 · · · QT

2 QT
1 M = R, (1.3.3)

where

R =

⎡⎢⎢⎢⎢⎢⎣
R11 R12 R1L

R22 R23 R2L

. . . . . .
...

RL−1,L−1 RL−1,L

RLL

⎤⎥⎥⎥⎥⎥⎦ ,

and diagonal blocks R�,� are upper triangular. The orthogonal matrices Q� are defined by

Q� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
. . .

Q
(�)
11 Q

(�)
12

Q
(�)
21 Q

(�)
22

. . .
I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where the blocks Q
(�)
ij is defined by the orthogonal factor of the QR decomposition:

[
M̃��

−B�+1

]
=

[
Q

(�)
11 Q

(�)
12

Q
(�)
21 Q

(�)
22

][
R��

0

]
,

where M̃�� are defined as

• for � = 1, M̃�� = I

• for � = 2, 3, . . . , L− 2, M̃�� = (Q(�−1)
22 )T ,

except for the the last step � = L− 1, we use the QR decomposition:[
M̃L−1,L−1 RL−1,L

−BL I

]
=

[
Q

(L−1)
11 Q

(L−1)
12

Q
(L−1)
21 Q

(L−1)
22

][
RL−1,L−1 ŘL−1,L

0 RLL

]
.

The following is a pseudo-code for the BOF method to solve the block cyclic system (1.1.1).

BOF method

1. Set M11 = I,R1L = B1 and c1 = b1.

2. For � = 1, 2, · · · , L− 2,

(a) Compute the QR decomposition[
M��

−B�+1

]
=

[
Q

(�)
11 Q

(�)
12

Q
(�)
21 Q

(�)
22

] [
R��

0

]
.

(b) Set
[

R�,�+1

M�+1,�+1

]
=

[
Q

(�)
11 Q

(�)
12

Q
(�)
21 Q

(�)
22

]T [
0
I

]

(c) Update
[

R�L

R�+1,L

]
:=

[
Q

(�)
11 Q

(�)
12

Q
(�)
21 Q

(�)
22

]T [
R�L

0

]

(d) Set
[

c�

c�+1

]
:=

[
Q

(�)
11 Q

(�)
12

Q
(�)
21 Q

(�)
22

]T [
c�

b�+1

]
.

3. For � = L− 1,

(a) Compute the QR decomposition[
ML−1,L−1 RL−1,L

−BL I

]
=

[
Q

(L−1)
11 Q

(L−1)
12

Q
(L−1)
21 Q

(L−1)
22

][
RL−1,L−1 RL−1,L

0 RLL

]
.

(b) Set
[

cL−1

cL

]
:=

[
Q

(L−1)
11 Q

(L−1)
12

Q
(L−1)
21 Q

(L−1)
22

]T [
cL−1

bL

]
4. Back substitution to solve the block triangular system Rx = c

(a) Solve RLLxL = cL for xL.
(b) Solve RL−1,L−1xL−1 = cL−1 −RL−1,LxL for xL−1.
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(c) For � = L− 2, L− 3, . . . , 1, solve
R��x� = c� −R�,�+1x�+1 −R�LxL

for x�.

Floating point operations of the BOF method is about 15N3L, with a memory requirement
of 3N2L.

1.4 A hybrid method

To take advantages of block reduction of the BCR method and numerical stability of the BOF
method, and to meet the accuracy needs in the QMC simulation, we propose to use a hybrid
method:

Step 1. Perform a factor-of-k BCR of the original system (1.1.1) to derive a reduced
block cyclic system (1.2.2).

Step 2. Solve the reduced block cyclic system (1.2.2) by using the BOF method.

Step 3. Forward and back substitute to find the rest components xi of the solution x
of the original system:

{xi} ←− x(k) −→ {xj}.

Note that we use both forward and back substitutions to minimize the propagation of
rounding errors induced at steps 1 and 2.

The following is a schematic map of the hybrid method for a 16-block cyclic system with
a reduction factor k = 4.

By step 1, the order of M (k) is reduced by a factor of k. Subsequently, the computational
cost of the BOF method at Step 2 is reduced from O(N3L) to O(N3 L

k ), a factor of k speedup.
The larger k is, the better. However, on the other hand, the condition number of M (k) increases
as k increases, which in turn that the accuracy of the computed solution decreases. A critical
question is how to find a reduction factor k, such that the computed solution has the required
accuracy for the simulation. Furthermore, such a reduction factor k should be determined in
a self-adapting fashion with respect to the changes of underlying problem length and energy
scales.



8

1.5 Self-adaptive reduction factor k

We turn to the question of how to determine the reduction factor k for the BCR step of the
proposed hybrid method.

Since the BOF method is backward stable, by the well-established error analysis of the
linear system, we know that the relative error of the computed solution x̂(k) of the reduced
system (1.2.2) is bounded by κ(M (k))ε, i.e.,

‖δx(k)‖
‖x(k)‖ ≡

‖x(k) − x̂(k)‖
‖x(k)‖ ≤ κ(M (k))ε, (1.5.4)

where ε is the machine precision. For example, see [3, p.120]. For the clearity of notation, we
only use the first-order upper bound and ignore the constant coefficient, which is about 2.

Let us consider the propagation of the errors in the computed solution x̂(k) during the back
and forward substitutions. Let us start with the computed L-th block compoinent x̂L of the
solution vector x,

x̂L = xL + δxL,

where δxL is the computed error, with a related upper bound defined in (1.5.4). By the forward
substitution, the computed first block component x̂1 of the solution x satisfies

x̂1 = b1 −B1x̂L = b1 −B1(xL + δxL) = b1 −B1xL + B1δxL = x1 + δx1,

where δx1 = B1δxL is the error propagated by the error in x̂L. By the relative error bound of
δxL, it yields that the error in the computed x̂1 could be amplified by the factor ‖B1‖, namely,

‖δx1‖
‖x1‖ ≤ ‖B1‖κ(M (k)) ε.

Similarly, we conclude that the relative error of the computed solution x̂2 is bounded by

‖δx2‖
‖x2‖ ≤ ‖B2‖‖B1‖κ(M (k)) ε.

By the end of forward substitution starting with xL, we have that relative error of the computed
solution x k

2
is bounded by

‖δx k
2
‖

‖x k
2
‖ ≤ ‖B k

2
‖ · · · ‖B2‖ ‖B1‖κ(M (k)) ε.

In summary, we conclude that the errors in all computed block components x̂� of the solution
x are bounded by

‖δx�‖
‖x�‖ ≤ ‖B k

2
‖ · · · ‖B2‖ ‖B1‖κ(M (k)) ε

≤ c e
1
2
k(4tΔτ+ν) · ek(4tΔτ+ν)κ(M) ε

= c e
3
2
k(4tΔτ+ν)κ(M) ε (1.5.5)
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for � = 1, 2, . . . , L, where for the second inequality we have use the upper bounds (??) and
(??) for the norm of B� and the condition number of the matrix M (k).

Assume that a desired accuracy of the solution vector x is specified by

‖δx‖
‖x‖ ≤ tol. (1.5.6)

Then by combining the inequalities (1.5.5) and (1.5.6), a plausible choice of the reduction
factor k is

k =

⌊
2
3 ln(tol/ε)
4tτ + ν

⌋
. (1.5.7)

In practice, to balance the number of the matrices B� in the product B
(k)
� , after k is computed

as above, then we compute Lk =
⌈

L
k

⌉
. The final k is adjusted as k =

⌈
L
Lk

⌉
. Here we drop the

factor of ln κ(M) in deciding reduction factor k. The reason is that, as we discussed in section
2.4, κ(M) grows slowly in the range of parameters of interest, it is expected that ln κ(M) is
small.

The proposed reduction factor k is determined in a self-adaptively fashion, since when U
and other energy parameters change, the value of k is determined adaptively to achieve the
desired accuracy.

The following plot shows the reduced number Lk of the blocks for different values of L = 8β
with respect to different values of U , where β = 1, 2, . . . , 20 and t = 1, N = 256. The desired
accuracy is set to be half of the machine precision, i.e., tol = 10−8 and ε = 10−16.

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

β = [1 : 20]

L
(k

)

L(k) with N=256, L=8β, t=1

U=2
U=4
U=6

1.6 Self-adapting block cyclic reduction orthogonal factorization method

A high-level outline of a self-adapting block cyclic reduction orthogonal factorization method,
SABO in short, to solve the linear system (1.1.1) may be condensed as the following:



10

SABO method

1. Determine the reduction factor k by (1.5.7),

2. Reduce (M, b) to (M (k), b(k)) by the BCR,

3. Solve the reduced system M (k)x(k) = b(k) by the BOF method,

4. Use forward and back substitutions to compute the remaining solution com-
ponents.

1.7 Numerical experiments

In all numerical experiments, it is set that the SABO solver (implemented in FORTRAN 90)
has the relative accuracy at the order of

√
ε, i.e.,

‖δx‖
‖x‖ ≤ tol = 10−8.

Performance data are collected from an Intel Itanium2 workstation with 1.5GHZ CPU and
2GB core memory.
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Experiment 1. In this experiment, we examine robustness, stability and performance of
the SABO solver when U = 0. The rest of parameters of the coefficient matrix M is set as
N = 16× 16, L = 8β for β = 1, 2, . . . , 20. and t = 1,Δτ = 1

8 .
The following plot first shows the relative error of the computed solutions x̂ by the BOF

method is at the full machine precision O(10−15). It implies two facts: (1) the linear system
at U = 0 is well-conditioned and (2) the BOF is backward stable, Second, the plot also shows
that the relative errors of the computed solutions x̂ by the SABO method are at O(10−8) as
it is prescribed.

0 5 10 15 20

10
−14

10
−12

10
−10

10
−8

β = [1 : 20]

re
la

tiv
e 

so
lu

tio
n 

er
ro

r

block QR method and reduced version with N=256, t=1,Δτ=1/8,U=0

block QR method
reduced block QR method

The reduction factor k, CPU time and speedups of the SABO method over the BOF method
are reported in the following table:

β L = 8β k Lk BOF (sec.) SABO (sec.) speedup (×)
1 8 8 1 3.19 0.0293 108
2 16 16 1 7.06 0.042 168
3 24 24 1 10.8 0.0547 197
4 32 16 2 14.6 0.303 48
5 40 20 2 18.6 0.326 57
6 48 24 2 23.1 0.342 67
7 56 19 3 27.2 0.666 40
8 64 22 3 31.3 0.683 45
9 72 24 3 35.1 0.675 52
10 80 20 4 38.0 1.18 32
11 88 22 4 42.0 1.18 35
12 96 24 4 46.0 1.20 38
13 104 21 5 49.9 1.28 38
14 112 23 5 54.0 1.28 42
15 120 24 5 58.2 1.32 44
16 128 22 6 62.9 1.67 37
17 136 23 6 68.3 1.72 39
18 144 24 6 73.2 1.73 42
19 152 22 7 75.3 1.98 38
20 160 23 7 80.2 2.02 39
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Note that for small β, namely, β ≤ 3, the SABO solver reduces the original system all the
way to one block M (L), i.e., k = L. However, for large β, the reduction factor k is smaller, and
the BCR reduces the original system to 6 or 7 blocks. For example, when β = 20, L = 160, it
reduces to Lk = �16023 �+ 1 = 7 with the reduction factor k = 23.
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Experiment 2. In this experiment, we examine robustness, stability and performance of
the SABO solver for U = 2, 4, 6. The rest of the parameters of the coefficient matrix M are
N = 256, L = 8β with β = 1, 2, . . . , 20. t = 1 and Δτ = 1

8 .
The left of the following plots shows that the relative errors of the computed solution are

all under 10−8 as prescribed. The right plots shows the speedups of the SABO method over
BOF. can we have the detail data too?
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Experiment 3. In this experiment, we examine computational efficiency of the SABO solver
with respect to the parameter L = β/Δτ with β = 1, 2, . . . , 20. and Δτ = 1

8 , 1
16 , 1

32 . The
dimensions of the coefficient matrices M vary from 2, 048 (β = 1,Δτ = 1

8 ) to 163, 840 (β =
20,Δτ = 1

32 ). The other parameters are N = 256, U = 6 and t = 1.
In Experiment 2, we have shown that the performance of the SABO solver for a fixed Δτ .

For large energy scale parameters t, β and U , small Δτ is necessary for the desired accuracy
of the Trotter decomposition. Small Δτ implies large L = β

Δτ . For the SABO solver, small
Δτ implies a large reduction factor k. Therefore the SABO is more efficient for small Δτ as
shown in the following table and plot:

Δτ = 1/8 Δτ = 1/16 Δτ = 1/32
β BOF SABO Lk BOF SABO Lk BOF SABO Lk

1 3.25 0.0293 1 7.25 0.306 2 15.5 0.34 2
2 7.28 0.305 2 15.1 0.596 3 32.9 1.15 4
3 11.2 0.605 3 23.0 1.11 4 47.3 1.36 5
4 15.1 1.10 4 32.0 1.27 5 63.6 1.97 7
5 19.2 1.23 5 39.1 1.85 7 80.3 3.58 8
6 23.0 1.62 6 47.2 3.43 8 97.9 3.03 10
7 27.2 1.87 7 55.4 2.47 9 112 3.54 11
8 32.1 3.38 8 63.4 2.93 10 140 3.95 13
9 35.3 2.38 9 71.1 4.26 12 150 4.57 14
10 39.1 2.86 10 79.3 3.91 13 167 8.06 16
11 43.2 3.08 11 87.6 4.39 14 180 5.40 17
12 47.2 4.39 12 95.7 4.50 15 196 6.00 19
13 51.7 3.71 13 103 8.00 16 209 7.99 20
14 55.3 4.06 14 112 5.61 18 224 7.03 22
15 59.2 4.26 15 120 5.64 19 240 7.05 23
16 63.5 7.54 16 128 7.58 20 258 7.83 25
17 67.3 4.92 17 136 6.23 21 273 8.42 26
18 71.2 5.78 18 144 6.88 23 290 11.2 28
19 75.3 5.58 19 152 12.0 24 305 9.03 29
20 79.3 7.36 20 160 7.49 25 321 9.60 31
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Experiment 4. Finally, we examine the memory limit with respect to the increase of the
lattice size parameter N . The memory requirement of the BOF method is 3N2L = 3N4

xL.
If Nx = Ny = 32, the memory storage of one N × N matrix is 8Mb. Therefore for a 1.5GB
memory machine, L < 63. It implies that when Δτ = 1

8 , β < 8. Therefore, the BOF method
will run out of memory when β ≥ 8. On the other hand, the SABO solver works for L = 8β
and β = 1, 2, . . . , 10 as shown in the following table, where t = 1 and U = 6.

β L k Lk BOF(sec.) SABO (sec.) Speedup (×)
1 8 8 1 148.00 2.10 70
2 16 8 2 322.00 17.8 18
3 24 8 3 509.00 40.1 12.7
4 32 8 4 689.00 64.5 10.6
5 40 8 5 875.00 88.6 9.8
6 48 8 6 1060.00 110.00 9.6
7 56 8 7 1250.00 131.00 9.5
8 64 8 8 out of memory 150.00
9 72 8 9 out of memory 172.00
10 80 8 10 out of memory 200.00
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Lecture 2

Preconditioned iterative linear solvers

2.1 Introduction

As discussed in Lectures 1 and 2, one of the computational kernels of the hybrid quantum
Monte Carlo (HQMC) simulation is to solve the linear system of equations of the form

Ax = b, (2.1.1)

where
A = MT M

and M is the Hubbard matrix as defined in (??).
The SABO method introduced in Lecture 3 solves (2.1.1) with the computational complex-

ity of O(N3L/k), where k the reduction factor of the BCR, k ≤ L. In this lecture, we consider
precoditioned iterative solvers for the goal towarding an optimal linear-scaling solver, namely,
the computational complexity increases linearly with the lattice size N , i.e., O(NL).

2.2 Iterative solvers and preconditioning

We have conducted a preliminary study of applying the GMRES, QMR, and Bi-CGSTAB
methods to solve the coupled linear systems MT y = b for y and Mx = y for x. When there
is no preconditioning, these methods suffer from slow convergence rates or erratic convergence
behaviors. On the other hand, although the convergence of conjugate gradient (CG) to directly
solve the original system (2.1.1) is slow, it is robust in the sense that the norm of its residual
errors decrease steadly.

The following plots show the typical convergence behaviors of GMRES, QMR, Bi-CGSTAB
and CG methods. The parameters of the matrices M are (N,L,U, t, β, μ) = (8×8, 24, 4, 1, 3, 0)
and the configurations h = ±1 with equal probability, and the RHS vector is chosen so that
entries of x is uniformly distributed in [0, 1].
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In this lecture, we focus on the study of preconditioning techniques for the CG method. As
it is well known, the convergence rate of CG is typically improved by a proper preconditioner
R, which symmetrically preconditions the system (2.1.1):

R−1AR−T · RTx = R−1b. (2.2.2)

An ideal preconditioner R satisfies the following three conditions:

1) The cost of constructing R is affordable.

2) The application of R, i.e., solving Rz = r for z, is not expensive.

3) RRT is a good approximation of A.

There is a trade-off between the costs (conditions 1 and 2) and the quality (condition 3). We
shall search for an optimal balance between the cost and the quality for solving the HQMC
system (2.1.1).

Numerical settings in this lecture is as the following: all Hubbard matrices M are generated
with the configurations h�,i = ±1 with equal probability. The RHS vector b is chosen so that
entries of the solution vector x is uniformly distributed in [0, 1]. The stopping criteria used for
the PCG iteration is ‖xk − x‖2/‖x‖2 ≤ 10−3. Numerical experiments reported are performed
on a HP Itanium2 workstation with 1.5GHz CPU and 2GB of main memory.

2.3 Previous work

There have been a few previous studies on preconditioning techniques to improve the conver-
gence rate of preconditioned CG (PCG) for the HQMC application.

One attempt is made to precondition the system with the matrix R = M(U=0) [4, 19]. By
using fast Fourier transform (FFT), computational cost of applying this preconditioner is of
the order Θ(NL log(NL)). However, the quality of the preconditioner is poor. For strongly
interacting systems with U ≥ 4, the convergence rate can be worsened, as shown in the left of
the following plots (plots are the average of 50 solutions, bars indicate the standard deviation.
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It is also suggested to use the preconditioner R such that R = M(t=0) [4]. The B� in the
matrix M becomes diagonal when t = 0. The application of the preconditioner is efficient with
the computational complexity of Θ(NL). However, this preconditioner is also poor quality.
The convergence rate is again worsened for strongly interacting systems, as shown in the left
of the above plots.

Jacobi preconditioner R =
√

diag(A), that has the application cost of Θ(NL), is used [12].
The PCG convergence rate is improved consistently as shown in the right of the above plots.
However, the improvement is still insufficient. For example, when (N,L,U, t, β) = (8 ×
8, 40, 4, 1, 5), PCG solver requires 1, 225 iterations and total CPU time of 0.46 seconds. If
100, 000 solutions are required per HQMC simulation, then each simulation requires 12.8 hours
of CPU time. When N is increased to 32 × 32, the number of PCG iterations increases to
2, 013, and the total solution time becomes 11.12 seconds, thus making the simulation time to
be 309 hours.

It is proposed to use an incomplete Cholesky (IC) preconditioner R such that A ≈ RRT

and R is lower triangular and has the same block structure of A [19]. Although the PCG
convergence rate is improved considerably, IC preconditioner results in a high memory cost,
i.e., Θ(N2L) fill-ins in R, and the application of the preconditioner is expensive, i.e., Θ(N2L)
computation. Furthermore, such a preconditioner is not robust due to the pivot breakdown.

2.4 Cholesky factorization

The goal of this lecture is to search for robust and efficient IC preconditioning techniques. We
begin with a review of Cholesky factorization of an n × n symmetric positive definite (SPD)
matrix A:

A = RRT , (2.4.3)

where R is lower-triangular with positive diagonal entries, and it is referred to as Cholesky
factor.
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Algorithms. We follow the presentation in [8]. Cholesky factorization (2.4.3) can be com-
puted by using the following partition and factorization:

A =
[

a11 âT
1

â1 A1

]
=

[
r11 0
r̂1 In−1

] [
1 0
0 A1 − r̂1r̂

T
1

] [
r11 r̂T

1

0 In−1

]
. (2.4.4)

By the first columns of the both sides of the factorization, we have

a2
11 = r11,

â1 = r̂1r11.

Therefore,

r11 =
√

a11,

r̂1 = â1/r11.

If we have a Cholesky factorization of the (n− 1)× (n− 1) matrix A1 − r̂1r̂
T
1 :

A1 − r̂1r̂
T
1 = R1R

T
1 , (2.4.5)

then the Cholesky factor R of A is given by

R =
[

r11 0
r̂1 R1

]
.

Therefore, the Cholesky decomposition can be obtained through the repeated application of
(2.4.4) on (2.4.5). The resulting algorithm is referred to as right-looking Cholesky algorithm
because after the first column r1 of R is computed, it is used to update the matrix A1 to
compute the remaining columns of R, which are on the right side of r1.

There is a left-looking version of the Cholesky algorithm. By comparing the jth column of
the factorization (2.4.3), we have

aj =
j∑

k=1

rjkrk.

This says that

rjjrj = aj −
j−1∑
k=1

rjkrk.

Hence, to compute the jth column rj of R, one first computes

v = aj −
j−1∑
k=1

rjkrk,

and then
rj(j : n) = v(j : n)/

√
v(j).

The Cholesky factorizaiton can be computed starting from the 1st column through the nth
colulmn. It is a left-looking implementation since the jth column rj of R is computed through
referencing the computed columns r1, r2, . . . , rj−1 of R, which are on the left of rj.
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Cholesky factorization can fail due to a pivot breakdown, namely, at the jth step, the
diagonal element ajj is non-positive. Otherwise, the operations rjj = √ajj and the division by
rjj becomes invalid. When A is SPD, the diagonal element a11 is always positive. Furthermore,
A1 − r̂1r̂

T
1 is SPD because it is a principal submatrix of the SPD matrix XT AX, where

X =
[

1 −r̂T
1

0 In−1

]
.

Thus, when A is SPD, there is no pivot breakdown.

HQMC application. When Cholesky factor R of A = MT M is used to precondition the
HQMC linear system (2.2.2), the preconditioned system is an identity system, i.e., I · RT x =
R−1b. The PCG takes one iteration to convergence. However, the cost to construct and to
apply R become impractical for a large system. It is O(N3L) flops to compute R and O(N2L)
memory to store R. For example, when (N,L,U, t, β, μ) = (16 × 16, 40, 4, 1, 5, 0), PCG solver
requires about 16 seconds of CPU time and about 66MB of memory to store the Cholesky
factor in a sparse format. When N = 32 × 32, it is estimated to require about 17 minutes
of CPU time and 1GB of memory. Therefore, it is not practical to use the exact Cholesky
decomposition as the linear system solver in HQMC simulation.

Note that the preconditioned matrix MR−T becomes orthogonal. The eigenvalues of
MR−T are on the unit circle, as shown in the following plot:
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Therefore, one of ways to assess the quality of a preconditioner R is to see how close the
eigenvalues of the preconditioned matrix MR−T are to the unit circle. However, it is prohibitive
for large scale systems.

2.5 Incomplete Cholesky factorization

To reduce the computational and storage costs of Cholesky factorization (2.4.3), a precondi-
tioner R can be constructed based on the following incomplete Cholesky (IC) factorization:

A = RRT + S + ST , (2.5.6)
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where R is lower-triangular and is referred to as an IC factor, S is a strictly lower-triangular
matrix1. E = S + ST is the error matrix. The sparsity of R is controlled by a sparsity set Z,
a set of ordered pairs of integers from {1, 2, . . . , n} containing no pairs of the form (i, i) and
rij �= 0 if (i, j) ∈ Z.

Algorithms. The IC factor R can be computed based on the following partition and factor-
ization:[

a11 âT
1

â1 A1

]
=

[
r11 0
r̂1 In−1

] [
1 0
0 A1 − r̂1r̂

T
1

] [
r11 r̂T

1

0 In−1

]
+

[
0 ŝT

1

ŝ1 0

]
. (2.5.7)

Multiplying out the first column of the both sides, we have

a11 = r2
11,

â1 = r̂1r11 + ŝ1.

Therefore, if a11 > 0,
r11 =

√
a11.

The vector r̂1 (and ŝ1) is computed as the following: for i ≤ n− 1,{
r̂1(i) = â1(i)/r11, ŝ1(i) = 0, if (i, 1) ∈ Z
r̂1(i) = 0, ŝ1(i) = â1(i)/r11, otherwise.

(2.5.8)

If we have an IC factorization of the (n− 1)× (n − 1) matrix A1 − r̂1r̂
T
1 :

A1 − r̂1r̂
T
1 = R1R

T
1 + S1 + ST

1 , (2.5.9)

then the IC factorization (2.5.6) of A is given by

R =
[

r11 0
r̂1 R1

]
and S =

[
0 0
ŝ1 S1

]
.

Note that when non-zero element â1(i) is discarded, i.e., r̂1(i) = 0, in (2.5.8), the operations
to update A1 with r̂1(i) in (2.5.9) are eliminated, thus reducing the cost of both storing and
computing the preconditioner R.

The following algorithm computes the IC factor R in a right-looking fashion. On the first
line, R = lower(A), R is initialized as the lower-triangular part of A, and the update of A1 is
performed directly in R.

1Therefore, the diagonal elements of A and RRT are the same.
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Right-looking IC

R = lower(A)
for j = 1, . . . , n do

rjj = √rjj, if rjj > 0
for i = j + 1, . . . , n do

if (i, j) ∈ Z then
rij = rij/rjj

else
rij = 0

end if
end for
for k = j + 1, . . . , n do

rk(k : n) = rk(k : n)− rkjrj(k : n)
end for

end for

It is assumed that all computational steps presented in the previous and the rest of al-
gorithms presented in this lecture are performed with regard to the sparsity of matrices and
vectors involved.

Alternately, there is a left-looking IC algorithm. By comparing the jth column in factor-
ization (2.5.6), we have

ajj =
j∑

k=1

r2
jk, (2.5.10)

aj(j + 1 : n)− sj(j + 1 : n) =
j∑

k=1

rjkrk(j + 1 : n). (2.5.11)

This says that

r2
jj = ajj −

j−1∑
k=1

r2
jk,

rjjrj(j + 1 : n) + sj(j + 1 : n) = aj(j + 1 : n)−
j−1∑
k=1

rjkrk(j + 1 : n).

Thus, to compute the jth column in IC factorization, one first computes

v = aj −
j−1∑
k=1

rjkrk. (2.5.12)

Then, the jth pivot is
rjj =

√
v(j),

and the rest of non-zero elements in rj (and sj) is computed based on the sparsity constraint
Z, i.e., for i ≥ j + 1, {

rij = v(i)/rjj , sij = 0, (i, j) ∈ Z,
rij = 0, sij = v(i)/rjj , otherwise.
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A pseudo-code of the left-looking IC algorithm is as the following:

Left-looking IC Algorithm

for j = 1, . . . , n do
v(j : n) = aj(j : n)
for k = 1, .., j − 1 do

v(j : n) = vj(j : n)− rjkrk(j : n)
end for
rjj = √ajj

for i = j + 1, . . . , n do
if (i, j) ∈ Z then

rij = v(i)/rjj

else
rij = 0

end if
end for

end for

The following conditions are often used to define the sparsity set Z:

1. Fixing sparsity pattern (FSP) in advance, i.e., the IC factor R has a prescribed sparsity
pattern Z = {(i, j)}. rij = 0 if (i, j) /∈ Z.

A popular sparsity pattern of R is that of the original matrix A, i.e., Z = {(i, j) : aij �=
0 and i > j}.

2. Dropping small elements (DSE), namely, the magnitude of the non-zero elements in the
error factor S is small. In other words, all small elements of R with the relative magnitude
less than or equal to a specified drop threshold σ are discarded. The sparsity pattern
Z of R is not known in advance. The fill-ins in R need to be computed and compared
with the drop threshold σ. The construction of R could be expensive. Furthermore, the
number of fill-ins in R cannot be estimated in advance.

3. Fixing number of non-zero elements (FNE) per column. It is similar to the DSE con-
straint except that it keeps a fixed number of non-zero elements of the largest magnitudes
in each column of R.

The existence of IC factorization, for an arbitrary sparsity set Z, is theoretically proven
only for special classes of matrices [14, 13, 23]. For a general SPD matrix A, the non-zero
elements introduced into the error matrix E could result in the loss of positive-definiteness of
the matrix A− E, and the IC factorization does not exist.

HQMC application. Let us show the numerical results of the left-looking IC preconditioner
R with DSE sparsity Z. The Hubbard matrix M is generated with (N,L, t, β, μ) = (16 ×
16, 80, 1, 10, 0). The reported data is an average of successful solutions over 10 trials. The
following table shows memory requirements in MB for storing R, with respect to different
interaction parameter U and the drop tolerance σ. “−−” indicates that all of 10 solutions
failed due to the pivot breakdown of IC.
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 (N,L, t, β) = (16 × 16, 80, 1, 10). IC with DSE, Memory requirements �
U 0 2 4 6

Chol 133.31 133.31 133.31 133.31
σ = 10−6 126.60 127.39 127.24 127.13

10−5 103.33 117.57 115.94 −−
10−4 43.80 64.75 −− −−
10−3 −− −− −− −−
10−2 4.36 −− −− −−
10−1 −− −− −− −−

Jacobi 0.33 0.33 0.33 0.33

Correspondingly, the number of PCG iterations are shown below:


 (N,L, t, β) = (16× 16, 80, 1, 10). IC with DSE, PCG iters. �
U 0 2 4 6

σ1 = 10−6 1 2 4 7
10−5 2 3 13 −−
10−4 6 16 −− −−
10−3 −− −− −− −−
10−2 32 −− −− −−
10−1 −− −− −− −−

Jacobi 157 1, 292 10, 843 19, 560

Finally, the following table records the CPU time, where in each cell, the first number is the
time for the construction of the IC preconditioner R and the second number is the time of
PCG iteraiton.


 (N,L, t, β) = (16 × 16, 80, 1, 10). IC with DSE, CPU time �
U 0 2 4 6

Chol 20.37/0.07 20.43/0.07 20.44/0.07 20.43/0.07
σ1 = 10−6 18.97/0.07 19.17/0.14 19.09/0.30 19.07/0.48

10−5 13.20/0.11 16.92/0.20 16.41/0.80 −−
10−4 2.95/0.17 5.72/0.58 −− −−
10−3 −− −− −− −−
10−2 0.01/0.16 −− −− −−
10−1 −− −− −− −−

Jacobi 0.00/0.23 0.00/1.90 0.00/15.92 0.00/28.86

By these tables, we observe that the IC factorization breaks down frequently, especially in the
case of strongly interactive system, i.e., U ≥ 4. It clearly indicates that the IC preconditioner
R is not a robust preconditioner for the HQMC simulation.

Modified IC. To overcome the pivot breakdown, one can try to first make a small pertur-
bation of A, say by simple diagonal perturbation, and then compute its IC factorization:

A + αDA = RRT + S + ST , (2.5.13)
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where DA = diag(A). The scalar α is chosen to avoid the breakdown of IC. R is referred to as
an ICp preconditioner [13].

If the shift α is chosen is such that A + αDA is diagonally dominant, then it is provable
that the IC factorization (2.5.13) exists. The following table records the performance of ICp

based on the left-looking algorithm:


 (N,L, t, β) = (16× 16, 80, 1, 10). ICp, diagonal dominant, σ = 0.007 �

U 0 1 2 3 4 5 6
Shift α 0.74 1.63 2.11 2.49 3.11 3.46 3.90
Storage R (MB) 3.53 3.21 3.15 3.04 2.81 2.80 2.80
Workspace W (MB) 1.48 1.37 1.35 1.31 1.24 1.23 1.23
PCG iters 69 304 826 3, 184 7, 753 11, 331 14, 756
P-time 0.07 0.06 0.06 0.12 0.05 0.05 0.05
S-time 0.25 1.07 2.88 1.77 25.62 37.48 48.88
Total CPU 0.32 1.13 2.93 1.89 25.67 37.53 48.94

With the choice of the shift α such that A + α · diag(A) is diagonally dominant, the pivot
breakdown is avoided. However, the quality of the resulting preconditioner R is poor. In
practice, better performance can be easily achieved with the shift α, which is much smaller
than the one to make Â diagonally dominant. The following table records the significant
performance improvements of the ICp preconditioner R computed with the shift α = 0.007:


 (N,L, t, β) = (16 × 16, 80, 1, 10). ICp, α = 0.007, σ = 0.007 �

U 0 1 2 3 4 5 6
Storage R (MB) 4.52 5.34 5.48 5.53 5.54 5.53 5.50
Workspace W (MB) 1.81 2.08 2.13 2.14 2.15 2.14 2.13
PCG iters 16 41 99 314 643 932 1, 089
P-time 0.09 0.12 0.12 0.12 0.12 0.12 0.12
S-time 0.08 0.23 0.55 1.77 3.82 5.25 6.11
Total CPU 0.18 0.35 0.68 1.89 3.95 5.37 6.23

Unfortunately, there is no general approach for an optimal choice of the shift α. It is
computed by a trial-and-error approach in PETSc [17].

2.6 Robust Incomplete Cholesky preconditioners

In the IC factorization (2.5.6), the discarded elements of R are simply moved to the error
matrix E. It may result in the loss of the positive definiteness of the matrix A− E, and lead
to the pivot breakdown.

To avoid the pivot breakdown, the error matrix E needs to come into the picture. It should
be updated dynamically during the construction of the IC factorization such that the matrix
A−E is preserved to be symmetric positive definite. Specifically, we seek an IC factorization
satisfying that

for an arbitrary sparsity set Z, there exists a nonsingular lower triangular matrix
R of the sparsity pattern Z, such that

A = RRT + E, (2.6.14)
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i.e. A− E > 0.

In the rest of this lecture, we will discuss several approaches to construct an IC factor R to
satisfy (2.6.14). The resulting preconditioner R is referred to as a robust incomplete Cholesky
(RIC) preconditioner.

2.6.1 RIC1

A sufficient condition for the existence of an IC factorization is to ensure that the error matrix
−E is symmetric positive semi-definite, i.e. −E = −ET ≥ 0. If we write

E = S −D + ST ,

where S is strictly lower-triangular and D is diagonal, then an IC factorization can be con-
structed such that {

A = RRT + S −D + ST

s.t. −(S −D + ST ) ≥ 0,
(2.6.15)

where R is lower-triangular. The factorization (2.6.15) is referred to as RIC–version 1, or RIC1
in short.

Algorithms. The RIC1 factorization can be computed by using the following partition and
factorization:[

a11 âT
1

â1 A1

]
=

[
r11 0

r̂1/r11 In−1

] [
1 0
0 C1

] [
r11 r̂T

1 /r11

0 In−1

]
+

[ −d11 ŝT
1

ŝ1 −D1

]
, (2.6.16)

where C1 = A1 +D1− r̂1r̂
T
1 /r2

11. By the factorization, we see that r̂1 (and ŝ1) can be computed
by dropping small elements of â1, i.e., for i ≤ n− 1,{

r̂1(i) = â1(i), ŝ1(i) = 0, if τi1 > σ,
r̂1(i) = 0, ŝ1(i) = â1(i), otherwise,

(2.6.17)

where σ is the drop threshold,

τi1 =

[
â1(i)2

(a11 + d11)(a
(1)
ii + d

(1)
ii )

]1/2

,

and a
(1)
ii and d

(1)
ii are the ith diagonal elements of A1 and D1, respectively.

To ensure −E = −(S −D + ST ) ≥ 0, when there is a discarded element â1(i) assigned to
ŝ1(i), the diagonal elements d11 and d

(1)
ii are updated

d11 := d11 + δ11, d
(1)
ii := d

(1)
ii + δii, (2.6.18)

where δ11 and δii are chosen such that δ11, δii > 0 and δ11δii = ŝ1(i)2. Initially, it is set that
d11 = d

(1)
ii = 0.
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Subsequently, the pivot r11 is determined by

r11 =
√

a11 + d11.

If we have RIC1 factorization of the (n− 1)× (n− 1) matrix C1:

C1 = R1R
T
1 + S1 − D̂1 + ST

1 , (2.6.19)

then the RIC1 factorization (2.6.15) is given by

R =
[

r11 0
r̂1/r11 R1

]
, D =

[
d11 0
0 D1 + D̂1

]
, S =

[
0 0
ŝ1 S1

]
.

Thus, RIC1 decomposition can be obtained through the repeated application of (2.6.16) on
(2.6.19).

The following algorithm computes RIC1 factor R in right-looking fashion. In the algorithm,
δii = τij(aii + dii) and δjj = τij(ajj + djj) are chosen so that they result in a same factor of
increase, i.e., (1 + τij), in the corresponding diagonal elements.

Right-looking RIC1 Algorithm

R = lower(A)
D = 0 (default)
for j = 1, . . . , n do

for i = j + 1, . . . , n do
τij = |rij |/[(rii + dii)(rjj + djj)]1/2

if τij ≤ σ then
rij = 0
dii = dii + τij(rii + dii)
djj = djj + τij(rjj + djj)

end if
end for
rjj =

√
rjj + djj

for i = j + 1, . . . , n do
rij = rij/rjj

end for
for k = j + 1, . . . , n do

rk(k : n) = rk(k : n)− rkj rj(k : n)
end for

end for

Alternatively, RIC1 can be computed by a left-looking algorithm. By comparing the jth
column of (2.6.15), we have

ajj =
j∑

k=1

r2
jk − djj ,

aj(j + 1 : n) =
j∑

k=1

rjkrk(j + 1 : n) + sj(j + 1 : n).
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This says that

r2
jj − djj = ajj −

j−1∑
k=1

r2
jk,

rjjrj(j + 1 : n) + sj(j + 1 : n) = aj(j + 1 : n)−
j−1∑
k=1

rjkrk(j + 1 : n).

Thus one first computes

v = aj −
j−1∑
k=1

rjk rk.

Then, small elements of v are kept in the jth column sj, i.e., for i ≥ j + 1,{
sij = 0, if τij > σ,
sij = v(i), v(i) = 0, otherwise,

(2.6.20)

where

τij =
[

v(i)2

(aii + dii)(ajj + djj)

]1/2

.

To ensure −E = −(S −D + ST ) ≥ 0, when there is a discarded element assigned to sij , the
corresponding diagonal elements dii and djj are updated

dii := dii + δii, djj := djj + δjj , (2.6.21)

where δii and δjj are chosen such that δii, δjj > 0 and δiiδjj = s2
ij. Initially, d11 = d

(1)
ii = 0.

Subsequently, the jth column rj of the IC factor R is given by

rjj =
√

ajj + djj,

rj(j + 1 : n) = v(j + 1 : n)/rjj.

Finally, for every non-zero element rij in rj , the corresponding diagonal element aii is updated,
i.e., for our illustration, this update is performed on dii,

dii := dii − r2
ij.

The following algorithm computes RIC1 factor R in a left-looking fashion.
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Left-looking RIC1 Algorithm

D = 0 (default)
for j = 1, . . . , n do

v(j : n) = aj(j : n)
for k = 1, . . . , j − 1 do

v(j + 1 : n) = v(j + 1 : n)− rjkrk(j + 1 : n)
end for
for i = j + 1, . . . , n do

τij = |v(i)|/[(aii + dii)(ajj + djj)]1/2

if τij ≤ σ then
v(i) = 0
dii = dii + τij(aii + dii)
djj = djj + τij(ajj + djj)

end if
end for
rjj =

√
ajj + djj

for i = j + 1, . . . , n do
rij = v(i)/rjj

dii = dii − r2
ij

end for
end for

The RIC1 preconditioning techniques are first studied in [1, 9]. It is a simple diagonal
updating scheme. The construction cost is only slightly higher than the IC preconditioner. To
measure the quality of RIC1 preconditioner R, we note that the norm of the residue

R−1AR−T − I = −R−1(S −D + ST )R−T (2.6.22)

could be amplified by a factor of ‖R−1‖2 of the error matrix E = S −D + ST . When a large
number of diagonal updates are introduced, The norm of E could be large. Therefore, the
quality of the RIC1 preconditioner could be poor as we have seen in our HQMC application.

HQMC application. We examine the performance of the RIC1 preconditioner R for differ-
ent interaction parameter U . The dropping threshold for the small element is σ = 0.005. With
this dropping tolerance, the resulting RIC1 preconditioner R is of about the same sparsity as
ICp preconditioner in Section 2.5.


 (N,L, t, β) = (16 × 16, 80, 1, 10). RIC1, right-looking, σ = 0.005 �
U 0 1 2 3 4 5 6
Storage R (MB) 4.48 5.20 5.25 5.25 5.21 5.15 5.09
Workspace (MB) 1.63 1.87 1.89 1.89 1.87 1.85 1.83
PCG itrs. 21 57 135 491 1, 086 1, 466 1, 873
P-time 0.21 0.24 0.25 0.25 0.25 0.24 0.24
S-time 0.10 0.30 0.71 2.55 5.62 7.55 9.59
Total CPU 0.32 0.54 0.96 2.80 5.86 7.79 9.83

We note that the RIC1 preconditioner based PCG is slower than the ICp preconditioner
based PCG, see section 2.7. However, RIC1 is provable robust.
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2.6.2 RIC2

Tismenetsky proposed a way to improve the quality of the RIC1 preconditioner R [21]. Instead
of writing the error matrix E as E = S −D + ST , it begins with setting the error matrix

E = RF T + FRT ,

and compute an IC decomposition of the form

A = RRT + RF T + FRT , (2.6.23)

where R is lower-triangular, and F is strictly lower-triangular. Note that the factorization
(2.6.23) can be equivalently written as

A + FF T = (R + F )(R + F )T

Therefore, the existence of R for an arbitrary sparsity constrant Z is guaranteed.
With the factorization (2.6.23), the residue becomes

R−1AR−T − I = −FR−T −R−1F T .

Hence, the norm of the residue is amplified by the order of ‖R−1‖, instead of ‖R−1‖2 as in the
RIC1. We refer (2.6.23) as RIC–version 2 factorization, or RIC2 in short.

Algorithms. RIC2 factorization (2.6.23) can be constructed by using the following partition
and factorization:

A =
[

a11 âT
1

â1 A1

]
=

[
r11 0
r̂1 In−1

] [
1 0
0 C1

] [
r11 r̂T

1

0 In−1

]
+

[
r11 0
r̂1 0

] [
0 f̂T

1

0 0

]
+

[
0 0
f̂1 0

] [
r11 r̂T

1

0 0

]
(2.6.24)

where C1 = A1 − r̂1r̂
T
1 − r̂1f̂

T
1 − f̂1r̂

T
1 . By the factorization, we have

r11 =
√

a11.

The vectors r̂1 and f̂1 are computed by dropping small elements of â1(i)/r11, i.e., for i ≤ n− j,{
r̂1(i) = â1(i)/r11, r̂1(i) = 0, if |â1(i)|/r11 > σ,

f̂1(i) = 0, f̂1(i) = â1(i)/r11, otherwise,

If an RIC2 factorization of the (n − 1) × (n − 1) matrix C1 is given by

C1 = R1R
T
1 + R1F

T
1 + F1R

T
1 , (2.6.25)

then the RIC2 factorization of A is given by

R =
[

r11 0
r̂1 R1

]
, F =

[
0 0
f̂1 F1

]
.

Thus, RIC2 decomposition can be obtained through the repeated application of (2.6.24) on
(2.6.25).

The following algorithm computes the RIC2 factor R in a right-looking fashion, where f1

is discarded after it is used to update A1:
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Right-looking RIC2 Algorithm

R = lower(A)
for j = 1, . . . , n do

rjj = √rjj

for i = j + 1, . . . , n do
if |aij |/rjj > σ then

rij = rij/rjj

fij = 0
else

rij = 0
fij = rij/rjj

end if
end for
for k = j + 1, . . . , n do

rk(k : n) = rk(k : n)− rkj (rj(k : n)+ fj(k : n))
rk(k : n) = rk(k : n)− fkj rj(k : n)

end for
end for

Alternatively, the RIC2 can be computed by a left-looking algorithm. By comparing the
jth column in factorization (2.6.23), we have

aj =
j∑

k=1

(rjkrk + rjkfk + fjkrk). (2.6.26)

This says that

rjj(rj + fj) = aj −
j−1∑
k=1

(rjkrk + rjkfk + fjkrk).

Thus, to compute the jth column in RIC2 factorization, one first computes

v = aj −
j−1∑
k=1

(rjkrk + rjkfk + fjkrk). (2.6.27)

Then, the jth pivot is given by
rjj =

√
v(j),

and the rest of the non-zero elements in rj and fj are computed by dropping small elements
of v, i.e., for i ≥ j + 1,{

rij = v(i)/rjj , fij = 0, if |v(i)|/rjj > σ,
rij = 0, fij = v(i)/rii, otherwise.

The following algorithm computes the RIC2 factor R in a left-looking fashion.



33

Left-looking RIC2 Algorithm

for j = 1, . . . , n do
v(j : n) = aj(j : n)
for k = 1, .., j − 1 do

v(j : n) = v(j : n)− rjk(rk(j : n) + fk(j : n))
v(j : n) = v(j : n)− fjkrk(j : n)

end for
rjj =

√
v(j)

for i = j + 1, . . . , n do
if |v(i)|/rjj > σ then

rij = v(i)/rjj

fij = 0
else

rij = 0
fij = v(i)/rjj

end if
end for

end for

Notice that in the above algorithm, the columns f1, . . . , fj−1 are required to compute rj .
When A is SPD, the diagonal element a11 > 0 and

C1 = A1 − â1â
T
1

a11
+ f̂1f̂

T
1 > 0.

Thus, the pivot breakdown is avoided. In other words, the matrix A − E of RIC2 factoriza-
tion (2.6.23) is SPD,

A−RF T − FRT > 0, (2.6.28)

and the factorization is robust.

HQMC application. The following table shows the numerical results with RIC2 precondi-
tioner computed by the left-looking algorithm. It is under the same setting as in RIC1, except
the drop threshold for the small elements is σ = 0.012. With this drop threshold, the resulting
RIC2 preconditioner R is of about the same sparsity as the RIC1 preconditioner.


 (N,L, t, β) = (16× 16, 80, 1, 10). RIC2, left-looking, σ = 0.012 �
U 0 1 2 3 4 5 6
Storage R (MB) 4.82 5.08 5.18 5.26 5.30 5.29 5.32
Worksspace (MB) 128.90 128.64 128.53 128.45 127.41 127.26 127.60
PCG iters 16 36 73 194 344 453 539
P-time 1.79 1.86 1.88 1.90 1.90 1.90 1.88
S-time 0.12 0.27 0.57 1.52 2.70 3.57 4.24
Total CPU 1.91 2.13 2.45 3.42 4.60 5.47 6.11

We note that the quality of RIC2 is much better than RIC1, as indicated by the number
of PCG iterations and total CPU time. However, we also note that the costs of CPU and
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workspace to construct RIC2 preconditioner increase significantly. This potentially limits the
applicability of the RIC2 for large scale systems.

The right-looking algorithm reduces the workspace by a factor of more than 10 as shown
in the following table, but with significantly more CPU time in computing the preconditioner.
Therefore, the right-looking algorithm is not competitive in terms of the total CPU cost.


 (N,L, t, β) = (16 × 16, 80, 1, 10). RIC2, right-looking, σ = 0.012 �
U 0 1 2 3 4 5 6
Storage R (MB) 4.82 5.08 5.18 5.26 5.30 5.29 5.32
Workspace (MB) 10.65 10.63 10.63 10.63 10.63 10.63 10.17
PCG iters 16 36 73 194 344 453 539
P-time 19.29 19.29 19.31 19.31 19.34 19.28 19.19
S-time 0.12 0.27 0.57 1.52 2.70 3.57 4.24
Total CPU 19.43 19.58 19.90 20.84 22.06 22.87 23.45

Note that the left-looking and right-looking RIC2 result in the same preconditioner. There-
fore, the storage requirement for the preconditioner R and the CPU time (S-time) of the PCG
iterations are the same in the above two tables.

2.6.3 RIC3

Kaporin proposed a scheme to reduce the cost of computing the RIC2 factorization (2.6.23)
by additional sparsity on F with a secondary dropping threshold σ2 � σ1 [10]. Specifically,
Kaporin proposes to write the error matrix

E = RF T + FRT + Ê,

where Ê represents the error from imposing the secondary sparsity constraint. To maintain
the robustness, similar to RIC1 factorization, by writing

Ê = S −D + ST ,

the diagonal elements D are updated to guarantee the semi-positive definiteness of −Ê.
In summary, one constructs a preconditioner R based on the following factorization{

A = RRT + RF T + FRT + S −D + ST ,

s.t. −(S −D + ST ) > 0,
(2.6.29)

where R is lower-triangular, F and S are strictly lower-triangular, and D is diagonal. The
sparsity of R and F are controlled by the primary drop threshold σ1 and the secondary drop
threshold σ2, respectively. We called this as the RIC–version 3, or RIC3 in short.

The RIC3 factorization (2.6.29) often results in a good preconditioner R when ‖S‖ and
‖D‖ are small enough. Specifically, when ‖Ê‖ ≤ ‖F‖/‖R−1‖, the norm of the residue

R−1AR−T − I = −FR−T −R−1F T −R−1(S −D + ST )R−T

is amplified at most by the factor of about ‖R−1‖ of the norm ‖F‖. At the same time, the
cost of constructing the RIC3 preconditioner is significantly reduced from that to construct
the RIC2 preconditioner.
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Algorithms. The RIC3 factorization (2.6.29) can be constructed by using the following
partitioning and factorization:

A =
[

a11 âT
1

â1 A1

]
=

[
r11 0
r̂1 In−1

] [
1 0
0 C1

] [
r11 r̂T

1

0 In−1

]
+[

r11 0
r̂1 0

] [
0 f̂T

1

0 0

]
+

[
0 0
f̂1 0

] [
r11 r̂T

1

0 0

]
+

[ −d11 ŝT
1

ŝ1 −D1

]
(2.6.30)

where C1 = A1 + D1 − r̂1r̂
T
1 − r̂1f̂1 − f̂1r̂

T
1 . Multiplying out the first column, we have

a11 = r2
11 − d11,

â1 = r̂1r11 + f̂1r11 + ŝ1.

If we let
v1 = r̂1 + f̂1,

then the vector v1 (and ŝ1) are computed by imposing the sparsity constraint on â1 with the
secondary drop tolerance σ2, i.e., for i ≤ n− 1,{

v1(i) = â1(i), ŝ1(i) = 0, if τi1 > σ2,
v1(i) = 0, ŝ1(i) = â1(i), otherwise,

where

τi1 =

[
â1(i)2

(a(1)
ii + d

(1)
ii )(a11 + d11)

]1/2

,

and a
(1)
ii and d

(1)
ii denote the ith diagonal elements of A1 and D1, respectively. To ensure

−Ê = −(S −D + ST ) ≥ 0, when a discarded element â1(i) is assigned to the position ŝ1(i),
the corresponding diagonal element d11 and d

(1)
ii are updated,

d11 := d11 + δ11, d
(1)
ii := d

(1)
ii + δii,

where δ11 and δii are chosen such that δ11, δii > 0 and δ11δii = ŝ1(i)2. Initially, it is set that
dii = djj = 0.

Subsequently, the pivot r11 is given by

r11 =
√

a11 + d11.

Finally, r̂1 and f̂1 is updated by imposing the primary sparsity constraint on v1 with the
dropping threshold σ1, i.e., for i < n− j,{

r̂1(i) = v1(i)/r11, f̂1(i) = 0, if |f̂1(i)|/r11 > σ1,

r̂1(i) = 0, f̂1(i) = v1(i)/r11, otherwise,

Therefore, if we have RIC3 factorization of the (n − 1)× (n − 1) matrix C1,

C1 = R1R
T
1 + R1F

T
1 + F1R

T
1 + S1 − D̂1 + ST

1 , (2.6.31)
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then the RIC3 factorization is given by

R =
[

r11 0
r̂1 R1

]
, F =

[
0 0
f̂1 F1

]
, S =

[
0 0
ŝ1 S1

]
, D =

[
d11 0
0 D1 + D̂1

]
.

Thus, the RIC3 decomposition can be computed by the repeated application of (2.6.30) on
(2.6.31).

The following algorithm computes the RIC3 factor R in a right-looking fashion, where δii

and δjj are chosen in the same way as in the RIC1 algorithms. Therefore, it results in the
same factor of increase of the diagonal elements.

Right-looking RIC3 Algorithm

R = lower(A), D = 0n

for j = 1, . . . , n do
for i = j + 1, . . . , n do

τij = |rij |/[(aii + dii)(ajj + djj)]1/2

if τij ≤ σ2 then
rij = 0
dii = dii + τij(aii + dii)
djj = djj + τij(ajj + djj)

end if
end for
rjj =

√
ajj + djj

for i = j + 1, . . . , n do
if |rij |/rjj > σ1 then

rij = rij/rjj

fij = 0
else

rij = 0
fij = rij/rjj

end if
end for
for k = j + 1, . . . , n do

rk(k : n) = rk(k : n)− rkj(rj(k : n) + fj(k : n))
rk(k : n) = rk(k : n)− fkjrj(k : n)

end for
end for

In the right-looking RIC3 algorithm, the jth column fj of F can be discarded after it is used
to update the remaining column rj+1, . . . , rn.

Alternatively, the RIC3 factorization can be computed by a left-looking algorithm. By
comparing the jth column in factorization (2.6.29), we have

ajj =
j∑

k=1

(r2
jk + 2fjkrjk)− djj,

aj(j + 1 : n) = sj(j + 1 : n) +
i∑

k=1

(rjkrk(j + 1 : n) + rjkfk(j + 1 : n) + fjkrk(j + 1 : n)).
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This says that

r2
jj + djj = ajj −

j−1∑
k=1

(r2
jk + 2fjkrjk),

rjjtj(j + 1 : n) + sj(j + 1 : n) = aj(j + 1 : n)−
j−1∑
k=1

(rjktk(j + 1 : n) + fjkrk(j + 1 : n)),

where tk = rk + fk. Thus, to compute the jth column of R, one first computes,

v = aj −
j−1∑
k=1

(rjk(rk + fk) + fjkrk).

Then, the sparsity of v is imposed with the secondary drop threshold σ2, i.e. for i ≥ j + 1,{
sij = 0, if τij > σ2,
sij = v(i), v(i) = 0, otherwise,

where

τij =
[

v(i)2

(aii + dii)(ajj + djj)

]1/2

.

To ensure −Ê = −(S −D + ST ) ≥ 0, if a discarded element â1(i) is entered into the position
ŝ1(i), the diagonal elements dii and djj are updated,

dii := dii + δii, djj := djj + δjj,

where δii and δjj are chosen such that δii, δjj > 0 and δiiδjj = s2
ij. Initially, it is set that

dii = djj = 0.
Subsquently, the jth pivot is given by

rjj =
√

v(j) + djj,

and the rest of non-zero elements in rj and fj are computed by imposing the primary sparsity
constraint on v with the primary drop threshold σ1, i.e. for i ≥ j + 1,{

rij = v(i)/rjj , fij = 0, if |v(i)|/rjj > σ1

rij = 0, fij = v(i)/rjj , otherwise.

The following algorithm to compute RIC3 factor R in left-looking fashion.
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Left-looking RIC3 Algorithm

D = 0n

for j = 1, . . . , n do
v(j : n) = aj(j : n)
for k = 1, . . . , k − 1 do

v(j : n) = v(j : n)− rjk(rk(j : n) + fk(j : n))
v(j : n) = v(j : n)− fjkrk(j : n)

end for
for i = j + 1, . . . , n do

τij = |v(i)|/[(aii + dii)(ajj + djj)]1/2

if τij ≤ σ2 then
v(i) = 0
dii = dii + τij(aii + dii)
djj = djj + τij(ajj + djj)

end if
end for
rjj =

√
v(j) + djj

for i = j + 1, . . . , n do
if |v(i)|/rjj > σ1 then

rij = v(i)/rjj

fij = 0
else

rij = 0
fij = v(i)/rjj

end if
end for

end for

Note that in the above algorithm, the columns f1, f2, . . . , fj−1 are needed to compute the jth
column rj .

HQMC application. The following table shows the numerical results with the RIC3 pre-
conditioner computed by the left-looking algorithm. The experimental setting is the same as
used for RIC1 and RIC2, except the drop thresholds are σ1 = 0.01 and σ2 = σ2

1. With these
drop thresholds, the resulting RIC3 preconditioner R is of about the same sparsity as the RIC1
and RIC2 preconditioners.


 (N,L, t, β) = (16 × 16, 80, 1, 10). RIC3, left-looking, σ1 = 0.01, σ2 = σ2
1 �

U 0 1 2 3 4 5 6
Storage R (MB) 4.85 5.17 5.23 5.23 5.23 5.21 5.20
Workspace (MB) 42.15 46.17 43.47 41.09 39.13 37.36 35.85
PCG iters 13 35 80 253 500 666 803
P-time 0.86 1.14 1.08 1.03 0.99 0.95 0.92
S-time 0.07 0.19 0.44 1.38 2.73 3.63 4.37
Total CPU 0.92 1.33 1.52 2.41 3.72 4.58 5.29
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The right-looking RIC3 algorithm significantly reduces the workspace as shown in the fol-
lowing table. but with the increase of CPU time for computing the preconditioner. Therefore,
the right-looking algorithm is not competitive in term of total CPU time requriement.


 (N,L, t, β) = (16× 16, 80, 1, 10). RIC3, right-looking, σ1 = 0.01, σ2 = σ2
1 �

U 0 1 2 3 4 5 6
Storage R (MB) 4.85 5.17 5.23 5.23 5.23 5.21 5.20
Workspace (MB) 9.34 9.30 9.29 9.29 9.29 9.30 9.30
P-time 3.96 4.35 4.12 3.91 3.74 3.58 3.44
S-time 0.07 0.19 0.44 1.38 2.73 3.63 4.37
Total CPU 4.07 4.45 4.57 5.20 6.43 6.15 7.79

Note that the left-looking and right-looking RIC3 algorithms result in the same precondi-
tioner. Therefore, the storage requirement for the preconditioner R and the CPU time of the
PCG iterations are the same in the above two tables.

2.7 Performance evaluation

The numerical results presented in the previous sections indicate that the ICp and RIC3 pre-
conditioners are the most competitive ones for solving the HQMC linear system (2.1.1). In this
section, we evaluate the performance of the ICp and RIC3 preconditioners for solving HQMC
linear systems (2.1.1) with respect to the different parameters.

2.7.1 Moderately interacting systems with U < 4

We examine the performance of the PCG solver for moderate interacting systems, namely U <
4. The following plots show the number of PCG iterations with the ICp preconditioner (left)
and the RIC3 preconditioner (right). The plots show that for the both preconditioners, with
respect to the lattice size N , the number of PCG iterations stays the same when U = 0, 1, 2,
and grows slowly whtn U = 3 with the changes of the lattice size N .
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Consequently, it indicates the linear-scaling of total CPU of PCG iterations. The following
plots show the total CPU time of the PCG solvers for different lattice sizes N . The black dash
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lines indicate the linear-scaling when the CPU time at N = 40 × 40 is used as the reference
point. The rest of parameters are (L, t, β, μ) = (80, 1, 10, 0).
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From these performance data, we conclude that when U < 4, the HQMC linear sys-
tem (2.2.2) is relatively well-conditioned. The quality of ICp and RIC3 preconditioners are
comparable. The ICp has twice as much fill-ins as RIC3, but the number of PCG iterations
with ICp is only half of that with RIC3. ICp slightly outperforms RIC3.

2.7.2 Strongly interacting systems with U ≥ 4

For strongly interacting systems, namely U ≥ 4, we observe that RIC3 slightly outperforms
the ICp in terms of total CPU time of PCG solver. The following plots show the number of
PCG iterations grows linearly with respect to the lattice sizes N . The rest of parameters are
(L, t, β, μ) = (80, 1, 10, 0).
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Subsequently, the total CPU time of PCG solver scales in the order of N2, as shown in the
following plots (left – ICp, and right – RIC3). The dash line indicates the desired linear-scaling
when the CPU time at N = 40× 40 is used as the reference point.
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In summary, for strongly interacting system, namely U = 4, 5, or 6, the linear system of
equations is ill-conditioned. A linear-scaling PCG solver remains an open problem.

2.7.3 Extra data

ICp. For the record, the following tables are the observed optimal performance of the ICp

based PCG solver with the proper chosen dropping threshold values.


 ICp: (N,L, t, β) = (16× 16, 80, 1, 10) �

U 0 1 2 3 4 5 6
Storage R (MB) 4.31 13.68 13.58 13.51 13.39 13.25 13.13
Workshpace (MB) 1.74 4.86 4.83 4.80 4.77 4.72 4.68
PCG iters. 16 18 40 127 254 325 436
P-time 0.09 0.50 0.49 0.49 0.49 0.48 0.47
S-time 0.07 0.18 0.39 1.22 2.42 3.06 4.07
Total CPU 0.16 0.69 0.88 1.71 2.90 3.54 4.54


 ICp: (N,L, t, β) = (32× 32, 80, 1, 10) �

U 0 1 2 3 4 5 6
Storage R (MB) 45.85 54.26 54.13 53.66 53.12 52.63 52.26
Workspace (MB) 16.48 19.28 19.25 19.09 18.91 18.75 18.62
PCG iters. 22 18 36 143 748 1, 153 1, 527
P-time 1.72 2.00 1.98 1.96 1.93 1.92 1.91
S-time 0.81 0.74 1.47 5.77 29.78 45.58 59.98
Total CPU 2.53 2.75 3.45 7.73 31.71 47.50 61.88
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RIC3. For the record, the following tables are the observed optimal performance of the RIC3
based PCG solver with the proper chosen dropping threshold values.


 RIC3: (N,L, t, β) = (16 × 16, 80, 1, 10) �
U 0 1 2 3 4 5 6
Storage R (MB) 4.85 5.17 5.22 5.24 5.22 5.21 5.22
Workspace MB) 42.15 46.23 43.32 41.07 39.09 37.41 35.93
PCG iters. 13 36 79 247 471 628 797
P-time 0.86 0.95 0.89 0.86 0.81 0.78 0.75
S-time 0.07 0.16 0.36 1.13 2.16 2.87 3.64
Total CPU 0.92 1.11 1.26 1.99 2.97 3.65 4.40


 RIC3: (N,L, t, β) = (32 × 32, 80, 1, 10) �
U 0 1 2 3 4 5 6
Storage R (MB) 19.56 20.75 20.98 20.96 20.91 20.87 20.86
Workspace (MB) 166.99 183.54 172.82 163.42 155.28 148.73 143.13
PCG iters. 13 32 77 282 1, 355 2, 217 2, 686
P-time 3.57 3.92 3.72 3.52 3.35 3.21 3.10
S-time 0.24 0.61 1.47 5.24 25.63 41.90 50.61
Total CPU 3.81 4.53 5.19 8.87 28.98 45.11 53.71

2.8 Concluding remarks

It remains an open problem to search a linear-scaling preconditioner for strongly interaction
systems. We have observed that in this situtation, the residual norm stagnates after initial
rapid decline. The following plotthe relative residual norm of the PCG iteration to achieve the
solution error ‖xk − x‖2/‖x‖2 < 10−3, when (N,L,U, t, β, μ) = (32 × 32, 80, 6, 1, 10, 0).
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The plateau is largely due to the the slow decay of the components of the resiudal vector
associated with the small eigenvalues of the preconditioned matrix R−1AR−T . Several tech-
niques have been proposed to deflate these components from the residual vector as a way to
avoid the plateau of the convergence, see [2, 6, 5, 15, 16] and references within. It remains to
be studied about the applicability of these techniques to our HQMC applications.
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