Lecture Notes on Advances of Numerical Methods
for Hubbard Quantum Monte Carlo Simulation

Part 2, July 31, 2007

ZHAOJUN BAI
WENBIN CHEN
RICHARD SCALETTAR
ICHITARO YAMAZAKI



Contents

1 Self-adaptive direct linear system solvers 1
1.1 Introduction . . . . . . . . . .. L 1
1.2 Block cyclic reduction . . . . . . ... L Lo o 2
1.3 Block orthogonal factorization method . . . . . . . .. ... ... ... ... .. 5
1.4 A hybrid method . . . . . . . .. Lo 7
1.5 Self-adaptive reduction factor & . . . . . . .. ... oo oo 8
1.6 Self-adapting block cyclic reduction orthogonal factorization method . . . . . . 9
1.7 Numerical experiments . . . . . . . . . .. . L L 10

2 Preconditioned iterative linear solvers 17
2.1 Introduction . . . . . . . . . . . e 17
2.2 Tterative solvers and preconditioning . . . . . . .. .. .. L L oL 17
2.3 Previous work . . . . ... 18
2.4 Cholesky factorization . . . . . . . . ... 19
2.5 Incomplete Cholesky factorization . . . .. .. .. .. .. ... ... ...... 21
2.6 Robust Incomplete Cholesky preconditioners . . . . . . ... .. ... ..... 26

2.6.1 RICL. . . . . 27
2.6.2 RIC2. . . . . e 31
2.6.3 RIC3. . . . e 34
2.7 Performance evaluation . . . . . ... ... Lo 39
2.7.1 Moderately interacting systems with U <4 . . . . ... .. .. ..... 39
2.7.2  Strongly interacting systems with U >4 . . . . .. ... ... ... ... 40
273 Extradata . ... ... 41
2.8 Concluding remarks . . . . . . ... L Lo 42

ii



Lecture 1

Self-adaptive direct linear system solvers

1.1 Introduction

In this lecture, we consider one of the computational kernels of the QMC simulations discussed
in Lecture 1: solving the linear system of equations

Mz = b, (1.1.1)

where the coefficient matrix M is the Hubbard matrix as defined in Lecture 2, see equation
(?7).

One of main challenges in the multiscale QMC simulation is to develop algorithmic tech-
niques and paradigms that can robustly and efficiently solve numerical linear algebra problems
with underlying multiscale coefficient matrices in a self-adapting fashion to achieve a required
simulation accuracy.

The Hubbard matrix M exhibits the form of a so-called block p-cyclic consistently ordered
matrix [8]. p-cyclic matrices arise in a number of important contexts in applied mathematics,
including numerical solution of boundary value problems for ordinary differential equations [7],
finite-difference equations for the steady-state solution of a parabolic equation with periodic
boundary conditions [6], and computing the stationary solution of Markov chains with periodic
graph structure [5].

It is known that the block Gaussian elimination with and without pivoting for solving
p-cyclic linear systems can be numerically unstable, similar to the case of multiple shooting
method for solving two-point boundary value problems [10, 2] and Markov chain modeling [4].

Block cyclic reduction [1] is a powerful idea to solve such p-cyclic system. However, a
full block cyclic reduction is applicable only for small energy scales, namely, U < 1, due to
emerging ill-condition of the reduced system. A stable p-cyclic linear system solver is based on
the structural orthogonal factorization [9, 2]. Unfortunately, the costs of memory requirements
and flops is prohibitively expensive when the length scales N and L increase.

To take advantage of significant reduction of memory requirement and floating point com-
putations in the block cyclic reduction and numerical stability of the orthogonal factorization
method, and to carefully examine the accuracy needs in our quantum monte carlo simulation,
in this lecture, we present a hybrid method, which we simply call a Self-Adaptive Block cyclic
reduction Orthogonal factorization method, or SABO method for short.



1.2 Block cyclic reduction

Consider the following 16 x 16 block cyclic linear system (1.1.1):

Mx =0,

where
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Correspondingly, partitions of the vectors « and b are comformed to the blocks of M:
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(BCR) leads to a 4 x 4 block cycle linear system of the
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Once the vector z is computed, i.e,
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the block components x4, xg,x12 and x4 of the

solution x are computed, the rest of block components x; of the solution z can be computed
by the following forward and back substitutions:



e Forward substitution:

r1 = b1 — B, T2 = by + Baxy,
x5 = b5+ Bsay, re = be+ Bgxs,
r9g = by + Boxs, z10 = bio + Bioxg,
r13 = b1z + Biswio, 214 = b+ Biawis,
e Back substitution:
r3 = B4_1(.’/U4 — b4), Ty = BS_ (.21?8 — bg),
r11 = Bpy'(z12 — ba), r15 = Big(z16 — big),

The use of both forward and back substitutions can minimize the propagation of rounding
errors in the computed x4, g, 12 and x4.

The pattern for a general factor-of-k reduction is clear. Given an integer k < L, a-factor-
of-k BCR leads to a L®*) x L®*) block cycle linear system:

MF) k) — pk) (1.2.2)
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After the solution vector z(®) of the reduced system (1.2.2) is computed, then the rest of
block components x; of the solution vector x are obtained by forward and back substitutions,
that is to say, when the index ¢ is less than %, the components of block x;;1; are obtained by
the forward substitution and otherwise by the back substitution. The pseudo-code is as the
following.



1. Let ¢ = [k, 2k, - , (L — 1)k, L]
2. For j=1,2,--- , Ly

(a) @) = 73"
(b) forward substitution
Fori=/((j—1)+ 1,0 —1)+2,....00G — 1)+ [$(¢(j) — €(j — 1) — 1)]
with £(0) = 0:
If i = 1, T1 :b1 _leL
else z; = b; + B;xi—1
(¢) back substitution
For i = £(j) — 1,0(j) = 2,...,£(j) — |3(€() = €(j = 1) = 1)},
z; = B (wit1 — biga).

Remark 1.2.1 If the reduction factor k = L, then L = 1. The reduced system is
MWD g, = pd),

1.e,
L—1
(I +BrBp_1---By)xr = b, + Z By, - Biy1by.
t=1

Remark 1.2.2 There are a number of ways to derive the reduced system (1.2.2). For example,
we can use the block Gaussian elimination. Writing the matriz M of the original system (1.1.1)
as a Ly by Ly block matriz:
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where D; are k X k black matrices defined as
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and El are k X k block matrices defined as
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Define D= diag(Dy,Ds, -+ ,Dr, ), then
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Note that the matriz D;léi s given by

0 0 - Bi—nrtaB-1)r+1

Therefore, M®) is a submatriz of D~YM. There exists a matriz I, such that
M®) =17 D=1 M1,

where the matriz 11 is NL x (NL/k) matriz, whose (i — 1)N + 1 to iN columns are the
(ik — 1)N + 1 to ikN columns of the identity matriz Iy, .

1.3 Block orthogonal factorization method

Comparing with the Gaussian elimination (LU factorization) method, the block orthogonal
factorization (BOF) method presented in this section is computationally more expensive, but
numerically backward stable.

It is easy to see that by multiplying a sequence of orthogonal transformation matrices @;,
the block cyclic matrix M of the system (1.1.1) can be transformed to an upper triangular,
namely,

Ql-1 - Q3Q1 M =R, (1.3.3)
where -~ ~
Ri1 Ria Ry,

Ry Ras Ry,
Rr1r-1 Rrp-irL

Rrr
and diagonal blocks Ry, are upper triangular. The orthogonal matrices @, are defined by

I
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21 22




where the blocks ng) is defined by the orthogonal factor of the QR decomposition:
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where ]\7@ are defined as
o for (=1, My =1
o for (=23,...,L—2, My=(Q% "7,

except for the the last step £ = L — 1, we use the QR decomposition:

ML—LL—I Rr-in | _ (ﬁ_l) (15_1) Rp 1101 RL—I,L
Th e L B

The following is a pseudo-code for the BOF method to solve the block cyclic system (1.1.1).

BOF method

1. Set M11 =1,R1, = By and ¢ = by.
2. For4=1,2,--- ,L —2,
(a) Compute the QR decomposition

EARCEIG

—Byy {

(b) Set |: RZ,E-{-I :| _ Qﬁ Q12 |: 0 :|
Moyt 041 Qggl Q22 I

(©) Update{ Rir }_[ i {RL]
|

Ret,r 21 Q22

()
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3. For /=L -1,

(a) Compute the QR decomposition

(d) Set [ < } =

Cr+1

[ Mrir-1 Rp-ir ] _ Qlﬁ b Q%fl [ Rr_1-1 Rp-1r
(1— -
—BL I Q21 g Q§2 ' 0 Rrr

(b) Set [ Lt ] =

L Q™ Q™| Lk

4. Back substitution to solve the block triangular system Rx = ¢

_ _ T
Q% (15 Y ] [ CL—1 ]

(a) Solve RLLCCL = CL, for xXy,.
(b) Solve RL,17L,1£CL,1 =Cr—-1— RLfl,L$L for Trr—1-



(¢) For{ =L —2,L—3,...,1, solve
Rypxy = co — Rypp17041 — Rypzp
for xz.

Floating point operations of the BOF method is about 15N3L, with a memory requirement
of 3N?L.

1.4 A hybrid method

To take advantages of block reduction of the BCR method and numerical stability of the BOF
method, and to meet the accuracy needs in the QMC simulation, we propose to use a hybrid
method:

Step 1. Perform a factor-of-k BCR of the original system (1.1.1) to derive a reduced
block cyclic system (1.2.2).

Step 2. Solve the reduced block cyclic system (1.2.2) by using the BOF method.

Step 3. Forward and back substitute to find the rest components x; of the solution x
of the original system:

fm} — o® — ey},
Note that we use both forward and back substitutions to minimize the propagation of
rounding errors induced at steps 1 and 2.
The following is a schematic map of the hybrid method for a 16-block cyclic system with

a reduction factor k = 4.
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l Reduce
1 1 ] 1 Solve the reduced system
' ! ! ! by block QR algorithm
4 8 12 16
1 Substitute
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By step 1, the order of M*) is reduced by a factor of k. Subsequently, the computational
cost of the BOF method at Step 2 is reduced from O(N3L) to O(N:%), a factor of k speedup.
The larger k is, the better. However, on the other hand, the condition number of M (%) increases
as k increases, which in turn that the accuracy of the computed solution decreases. A critical
question is how to find a reduction factor k, such that the computed solution has the required
accuracy for the simulation. Furthermore, such a reduction factor k£ should be determined in
a self-adapting fashion with respect to the changes of underlying problem length and energy
scales.



1.5 Self-adaptive reduction factor k&

We turn to the question of how to determine the reduction factor k£ for the BCR step of the
proposed hybrid method.

Since the BOF method is backward stable, by the well-established error analysis of the
linear system, we know that the relative error of the computed solution Z*) of the reduced
system (1.2.2) is bounded by (M ®))e, i.e.,

oz ™) _ [lz® — 20
=@ [l

< k(M*))e, (1.5.4)

where € is the machine precision. For example, see [3, p.120]. For the clearity of notation, we
only use the first-order upper bound and ignore the constant coefficient, which is about 2.
Let us consider the propagation of the errors in the computed solution Z(*) during the back
and forward substitutions. Let us start with the computed L-th block compoinent Z; of the
solution vector x,
T =z + 0z,

where dx, is the computed error, with a related upper bound defined in (1.5.4). By the forward
substitution, the computed first block component Z; of the solution x satisfies

Ty =bi — B1Zp = b1 — Bi(xp + 6xr) = b1 — Bixg + Bidxr = 21 + 0x1,

where dx1 = Bydxy, is the error propagated by the error in Zy,. By the relative error bound of
dxy, it yields that the error in the computed Z; could be amplified by the factor || Bi]|, namely,

< | Bills(M®)e.

Similarly, we conclude that the relative error of the computed solution Zy is bounded by

[9z2 _
2l

< [ Ballll Byl s(M ™) €.

By the end of forward substitution starting with xr, we have that relative error of the computed
solution z is bounded by
2

16 &

e = 1750 N Ball 1By le(M®) .

In summary, we conclude that the errors in all computed block components T, of the solution
x are bounded by

[REA
el

1Byl || Ball || Ballw(m ™) e

ce 2k:(4tA7'+V) k(4tAT+V)H(M) €

= ce2kWATIY) Ly (1.5.5)



for £ = 1,2,..., L, where for the second inequality we have use the upper bounds (??) and
(??) for the norm of By and the condition number of the matrix M*).
Assume that a desired accuracy of the solution vector x is specified by

5
ol 4oy (1.5.6)
]

Then by combining the inequalities (1.5.5) and (1.5.6), a plausible choice of the reduction

factor k is )
£ In(tol/e)
k=|2——171. 1.5.
\‘ dtr + v J (1L5.7)

)

In practice, to balance the number of the matrices By in the product Bék , after k is computed

as above, then we compute Ly = [%] The final k is adjusted as k = {L%} Here we drop the

factor of In k(M) in deciding reduction factor k. The reason is that, as we discussed in section
2.4, k(M) grows slowly in the range of parameters of interest, it is expected that In k(M) is
small.

The proposed reduction factor k is determined in a self-adaptively fashion, since when U
and other energy parameters change, the value of k is determined adaptively to achieve the
desired accuracy.

The following plot shows the reduced number Ly, of the blocks for different values of L = 843
with respect to different values of U, where § =1,2,...,20 and ¢t = 1, N = 256. The desired
accuracy is set to be half of the machine precision, i.e., tol = 107® and ¢ = 10716,

L™ with N=256, L=8p, t=1
20 ;

18r
16}
141
12r

10

L®

4r ——U=2| ]
——U=4
—7— U=6

p=[1:20)

1.6 Self-adapting block cyclic reduction orthogonal factorization method

A high-level outline of a self-adapting block cyclic reduction orthogonal factorization method,
SABO in short, to solve the linear system (1.1.1) may be condensed as the following:
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SABO method

1. Determine the reduction factor k by (1.5.7),

2. Reduce (M, b) to (M®*) b*)) by the BCR,

3. Solve the reduced system M®*)z(*) = p(¥) by the BOF method,
4.

Use forward and back substitutions to compute the remaining solution com-
ponents.

1.7 Numerical experiments

In all numerical experiments, it is set that the SABO solver (implemented in FORTRAN 90)
has the relative accuracy at the order of /e, i.e.,

16
]

Performance data are collected from an Intel Itanium2 workstation with 1.5GHZ CPU and
2GB core memory.

< tol = 1078,
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Experiment 1. In this experiment, we examine robustness, stability and performance of
the SABO solver when U = 0. The rest of parameters of the coefficient matrix M is set as
N =16 x 16, L =80 for =1,2,...,20. and t = 1, A7 = {.

The following plot first shows the relative error of the computed solutions Z by the BOF
method is at the full machine precision O(1071%). It implies two facts: (1) the linear system
at U = 0 is well-conditioned and (2) the BOF is backward stable, Second, the plot also shows
that the relative errors of the computed solutions Z by the SABO method are at O(107%) as
it is prescribed.

block QR method and reduced version with N=256, t=1,At=1/8,U=0

—#— block QR method

-6
07 F reduced block QR method

,_.
Ow

H
Ow

relative solution error

0L

S *

B=1:20]

The reduction factor k, CPU time and speedups of the SABO method over the BOF method
are reported in the following table:

I5; ‘L—Sﬂ‘ k ‘Lk‘BOF sec. ‘SABO sec. ‘speedup( )‘

1 8 8 1 3.19 0.0293 108
2 16 16 | 1 7.06 0.042 168
3 24 24| 1 10.8 0.0547 197
4 32 16 | 2 14.6 0.303 48
) 40 20| 2 18.6 0.326 o7
6 48 24 | 2 23.1 0.342 67
7 o6 19| 3 27.2 0.666 40
8 64 221 3 31.3 0.683 45
9 72 24| 3 35.1 0.675 52
10 80 20 | 4 38.0 1.18 32
11 88 221 4 42.0 1.18 35
12 96 241 4 46.0 1.20 38
13 104 211 5 49.9 1.28 38
14 112 231 5 54.0 1.28 42
15 120 24 1 5 58.2 1.32 44
16 128 221 6 62.9 1.67 37
17 136 231 6 68.3 1.72 39
18 144 241 6 73.2 1.73 42
19 152 221 7 75.3 1.98 38
20 160 23| 7 80.2 2.02 39
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Note that for small 3, namely, 8 < 3, the SABO solver reduces the original system all the
way to one block MY ie., k = L. However, for large 3, the reduction factor k is smaller, and
the BCR reduces the original system to 6 or 7 blocks. For example, when 8 = 20, L = 160, it
reduces to Ly, = |18 | + 1 = 7 with the reduction factor k = 23.
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Experiment 2. In this experiment, we examine robustness, stability and performance of
the SABO solver for U = 2,4,6. The rest of the parameters of the coefficient matrix M are
N =256, L =80 with 3=1,2,...,20. t =1 and AT = {.

The left of the following plots shows that the relative errors of the computed solution are
all under 10~® as prescribed. The right plots shows the speedups of the SABO method over
BOF. can we have the detail data too?

; Reduced QR algorithm with N=256, L=8, t=1 Speed-up with N=256, L=8, t=1
10 T T T T 100 T T T T

0r

801

701

601

50

Speed—up

40

relative solution error

30r

20f

101

—v—U=6

0 5 10 15 20 0 5 10 15 20
B=[1:20] B=[1:20]
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Experiment 3. In this experiment, we examine computational efficiency of the SABO solver
with respect to the parameter L = §/A7 with 8 = 1,2,...,20. and A7 = %, %, % The
dimensions of the coefficient matrices M vary from 2,048 (8 = 1,Ar = %) to 163,840 (8 =
20, At = %) The other parameters are N = 256, U =6 and t = 1.

In Experiment 2, we have shown that the performance of the SABO solver for a fixed Ar.
For large energy scale parameters ¢, 3 and U, small A7 is necessary for the desired accuracy
of the Trotter decomposition. Small A7 implies large L = Aﬁf' For the SABO solver, small
AT implies a large reduction factor k. Therefore the SABO is more efficient for small A7 as
shown in the following table and plot:

AT =1/8 AT =1/16 AT =1/32
g BOF SABO | Ly BOF SABO | Ly BOF SABO | L
1 3.25 0.0293 | 1 7.25 0.306 2 15.5 0.34 2
2 7.28 0.305 2 15.1 0.596 3 32.9 1.15 4
3 11.2 0.605 3 23.0 1.11 4 47.3 1.36 5
4 15.1 1.10 4 32.0 1.27 5 63.6 1.97 7
5 19.2 1.23 5 39.1 1.85 7 80.3 3.58 8
6 23.0 1.62 6 47.2 3.43 8 97.9 3.03 | 10
7 27.2 1.87 7 55.4 247 9 112 3.54 11
8 32.1 3.38 8 63.4 293 |10 140 395 | 13
9 35.3 2.38 9 71.1 4.26 12 150 4.57 14
10 39.1 2.86 10 79.3 3.91 13 167 8.06 16
11 43.2 3.08 11 87.6 4.39 14 180 5.40 17
12 47.2 4.39 12 95.7 4.50 15 196 6.00 19
13 51.7 3.71 | 13 103 8.00 | 16 209 7.99 | 20
14 55.3 4.06 14 112 5.61 18 224 7.03 22
15 59.2 4.26 15 120 5.64 19 240 7.05 23
16 63.5 754 | 16 128 7.58 | 20 258 7.83 | 25
17 67.3 4.92 17 136 6.23 21 273 8.42 26
18 71.2 5.78 18 144 6.88 23 290 11.2 28
19 75.3 5.58 19 152 12.0 24 305 9.03 29
20 79.3 7.36 20 160 7.49 25 321 9.60 | 31

Speed-up with t=1, U=6, N=256, At=[1/8 1/16 1/32]

—k— A1=1/8
—&— A1=1/16
—— A1=1/32 | 4
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Experiment 4. Finally, we examine the memory limit with respect to the increase of the
lattice size parameter N. The memory requirement of the BOF method is 3N2L = 3N§L.
If N, = N, = 32, the memory storage of one N x N matrix is 8Mb. Therefore for a 1.5GB
memory machine, L < 63. It implies that when AT = %, G < 8. Therefore, the BOF method
will run out of memory when 5 > 8. On the other hand, the SABO solver works for L = 80
and 3 =1,2,...,10 as shown in the following table, where t =1 and U = 6.

‘ I} ‘ L ‘ k ‘ Ly, ‘ BOF(sec.) ‘ SABO (sec.) ‘ Speedup (x) ‘
1 8 | 8| 1 148.00 2.10 70
2 116 |8 2 322.00 17.8 18
31248 3 509.00 40.1 12.7
4 132|181 4 689.00 64.5 10.6
5 (40| 8| 5 875.00 88.6 9.8
6 |48 |8 | 6 1060.00 110.00 9.6
715687 1250.00 131.00 9.5
8 |64 | 8| 8 | out of memory 150.00
9 |72 |8 ] 9 | out of memory 172.00
10 | 80 | 8 | 10 | out of memory 200.00
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Lecture 2

Preconditioned iterative linear solvers

2.1 Introduction

As discussed in Lectures 1 and 2, one of the computational kernels of the hybrid quantum
Monte Carlo (HQMC) simulation is to solve the linear system of equations of the form

Az =0, (2.1.1)

where
A=M"M

and M is the Hubbard matrix as defined in (?77).

The SABO method introduced in Lecture 3 solves (2.1.1) with the computational complex-
ity of O(N3L/k), where k the reduction factor of the BCR, k < L. In this lecture, we consider
precoditioned iterative solvers for the goal towarding an optimal linear-scaling solver, namely,
the computational complexity increases linearly with the lattice size N, i.e., O(NL).

2.2 Iterative solvers and preconditioning

We have conducted a preliminary study of applying the GMRES, QMR, and Bi-CGSTAB
methods to solve the coupled linear systems M7y = b for y and Mz = y for . When there
is no preconditioning, these methods suffer from slow convergence rates or erratic convergence
behaviors. On the other hand, although the convergence of conjugate gradient (CG) to directly
solve the original system (2.1.1) is slow, it is robust in the sense that the norm of its residual
errors decrease steadly.

The following plots show the typical convergence behaviors of GMRES, QMR, Bi-CGSTAB
and CG methods. The parameters of the matrices M are (N, L,U,t,3,u) = (8 x8,24,4,1,3,0)
and the configurations h = +1 with equal probability, and the RHS vector is chosen so that
entries of x is uniformly distributed in [0, 1].

17
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) Convergence behavior of GMRES for the solution of Mx=y , Convergence behavior of QMR and Bi-CGSTAB for the solution of Mx=b Convergence behavior of CG for the solution of M'Mx=b
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In this lecture, we focus on the study of preconditioning techniques for the CG method. As
it is well known, the convergence rate of CG is typically improved by a proper preconditioner
R, which symmetrically preconditions the system (2.1.1):

R'AR™T.RTz = R (2.2.2)
An ideal preconditioner R satisfies the following three conditions:
1) The cost of constructing R is affordable.
2) The application of R, i.e., solving Rz = r for z, is not expensive.
3) RRT is a good approximation of A.

There is a trade-off between the costs (conditions 1 and 2) and the quality (condition 3). We
shall search for an optimal balance between the cost and the quality for solving the HQMC
system (2.1.1).

Numerical settings in this lecture is as the following: all Hubbard matrices M are generated
with the configurations hy; = £1 with equal probability. The RHS vector b is chosen so that
entries of the solution vector z is uniformly distributed in [0, 1]. The stopping criteria used for
the PCG iteration is ||zx — x|]2/||z|l2 < 1073. Numerical experiments reported are performed
on a HP Itanium2 workstation with 1.5GHz CPU and 2GB of main memory.

2.3 Previous work

There have been a few previous studies on preconditioning techniques to improve the conver-
gence rate of preconditioned CG (PCG) for the HQMC application.

One attempt is made to precondition the system with the matrix R = My—¢ [4, 19]. By
using fast Fourier transform (FFT), computational cost of applying this preconditioner is of
the order O(N Llog(NL)). However, the quality of the preconditioner is poor. For strongly
interacting systems with U > 4, the convergence rate can be worsened, as shown in the left of
the following plots (plots are the average of 50 solutions, bars indicate the standard deviation.
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It is also suggested to use the preconditioner R such that R = M_g) [4]. The B, in the
matrix M becomes diagonal when ¢ = 0. The application of the preconditioner is efficient with
the computational complexity of ©(NL). However, this preconditioner is also poor quality.
The convergence rate is again worsened for strongly interacting systems, as shown in the left
of the above plots.

Jacobi preconditioner R = /diag(A), that has the application cost of O(NL), is used [12].
The PCG convergence rate is improved consistently as shown in the right of the above plots.
However, the improvement is still insufficient. For example, when (N,L,U,t,3) = (8 X
8,40,4,1,5), PCG solver requires 1,225 iterations and total CPU time of 0.46 seconds. If
100, 000 solutions are required per HQMC simulation, then each simulation requires 12.8 hours
of CPU time. When N is increased to 32 x 32, the number of PCG iterations increases to
2,013, and the total solution time becomes 11.12 seconds, thus making the simulation time to
be 309 hours.

It is proposed to use an incomplete Cholesky (IC) preconditioner R such that A ~ RRT
and R is lower triangular and has the same block structure of A [19]. Although the PCG
convergence rate is improved considerably, IC preconditioner results in a high memory cost,
i.e., O(N?L) fill-ins in R, and the application of the preconditioner is expensive, i.e., ©(N2L)
computation. Furthermore, such a preconditioner is not robust due to the pivot breakdown.

2.4 Cholesky factorization

The goal of this lecture is to search for robust and efficient IC preconditioning techniques. We
begin with a review of Cholesky factorization of an n x n symmetric positive definite (SPD)
matrix A:

A= RRT, (2.4.3)

where R is lower-triangular with positive diagonal entries, and it is referred to as Cholesky
factor.
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Algorithms. We follow the presentation in [8]. Cholesky factorization (2.4.3) can be com-
puted by using the following partition and factorization:

~T T
o ail;  ay o T11 0 1 0 r11 1
A= [ a A ] N [ o I ] [ 0 Ay —nmrl 0 I, |’ (2.4.4)

By the first columns of the both sides of the factorization, we have

2
ap = Ti1,
ap = Tririi.

Therefore,

i = y/ai,

’I/”\l = 61/7“11.
If we have a Cholesky factorization of the (n — 1) x (n — 1) matrix A; — 7171 :
Ay — 77 = RRT, (2.4.5)

then the Cholesky factor R of A is given by

o T11 0
welm 0]
Therefore, the Cholesky decomposition can be obtained through the repeated application of
(2.4.4) on (2.4.5). The resulting algorithm is referred to as right-looking Cholesky algorithm
because after the first column 71 of R is computed, it is used to update the matrix A; to
compute the remaining columns of R, which are on the right side of r;.

There is a left-looking version of the Cholesky algorithm. By comparing the jth column of
the factorization (2.4.3), we have

J
aj; = E TikTk-
k=1

This says that
j—1

Tjjrj = aj — E Tjka.
k=1

Hence, to compute the jth column r; of R, one first computes

j—1

v = aj — E Tjka,

k=1
and then
ri(J:n) =v(j:n)/Vv(j).
The Cholesky factorizaiton can be computed starting from the 1st column through the nth

colulmn. It is a left-looking implementation since the jth column r; of R is computed through
referencing the computed columns 71,79,...,7;_1 of R, which are on the left of r;.
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Cholesky factorization can fail due to a pivot breakdown, namely, at the jth step, the
diagonal element a;; is non-positive. Otherwise, the operations r;; = ,/a;; and the division by
rj; becomes invalid. When A is SPD, the diagonal element a;; is always positive. Furthermore,
Ay — 77 is SPD because it is a principal submatrix of the SPD matrix X7 AX, where

1 —?IT]

X_|:O In—l

Thus, when A is SPD, there is no pivot breakdown.

HQMC application. When Cholesky factor R of A = M7TM is used to precondition the
HQMC linear system (2.2.2), the preconditioned system is an identity system, i.e., I - RT 2 =
R~'b. The PCG takes one iteration to convergence. However, the cost to construct and to
apply R become impractical for a large system. It is O(N3L) flops to compute R and O(N2L)
memory to store R. For example, when (N, L,U,t, 3, u) = (16 x 16,40,4,1,5,0), PCG solver
requires about 16 seconds of CPU time and about 66MB of memory to store the Cholesky
factor in a sparse format. When N = 32 x 32, it is estimated to require about 17 minutes
of CPU time and 1GB of memory. Therefore, it is not practical to use the exact Cholesky
decomposition as the linear system solver in HQMC simulation.

Note that the preconditioned matrix MR~T becomes orthogonal. The eigenvalues of
MR~ are on the unit circle, as shown in the following plot:

(N,L,U,t,3)=(8x8,8,3,1,1)
25 T T T

‘ : FR()
oL ‘o ° o AMMRT

1
Re(.)

Therefore, one of ways to assess the quality of a preconditioner R is to see how close the
eigenvalues of the preconditioned matrix M R~ are to the unit circle. However, it is prohibitive
for large scale systems.

2.5 Incomplete Cholesky factorization

To reduce the computational and storage costs of Cholesky factorization (2.4.3), a precondi-
tioner R can be constructed based on the following incomplete Cholesky (IC) factorization:

A=RRT +5+57, (2.5.6)
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where R is lower-triangular and is referred to as an IC factor, S is a strictly lower-triangular
matrix!. £ =S+ ST is the error matrix. The sparsity of R is controlled by a sparsity set Z,
a set of ordered pairs of integers from {1,2,...,n} containing no pairs of the form (4,7) and
Tij #£ 0 if (Z,j) € Z.

Algorithms. The IC factor R can be computed based on the following partition and factor-
ization:

ail 6? _ T11 O 1 O 11 ?1T + O 3\,{ (2 5 7)
a; Ay oL || 0 Ay 77T 0 In 500 |° o
Multiplying out the first column of the both sides, we have

2
a1 15

~

a; = 7/”\17“11 +§1.

Therefore, if a;1 > 0,
T11 = v/Q11-

The vector 71 (and s7) is computed as the following: for i <n — 1,

?1(2) =a (i)/rlla :9\1(2) =0, if (27 1) €z (2 5 8)
?1(2) == O, 3\1(2) = al(i)/rn, otherwise. o
If we have an IC factorization of the (n — 1) x (n — 1) matrix A; — 777 :
Ay -l = RiRT + 5, + ST, (2.5.9)

then the IC factorization (2.5.6) of A is given by

o 11 0 o 0 0
R—[ﬂ R1] and S—[gl Sl:|'

Note that when non-zero element a; (i) is discarded, i.e., 71(i) = 0, in (2.5.8), the operations
to update A; with 71(7) in (2.5.9) are eliminated, thus reducing the cost of both storing and
computing the preconditioner R.

The following algorithm computes the IC factor R in a right-looking fashion. On the first
line, R = lower(A), R is initialized as the lower-triangular part of A, and the update of A; is
performed directly in R.

!Therefore, the diagonal elements of A and RR” are the same.
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RicHT-LOOKING IC
R = lower(A)
for j=1,...,n do
rj = Tij, i1 >0
for i=j5+1,....,n do
if (i,j) € Z then
rij = Tij /i
else
Tij = 0
end if
end for
for k=j+1,...,n do
ri(k:n) =ri(k:n) —rgri(k:n)
end for
end for

It is assumed that all computational steps presented in the previous and the rest of al-
gorithms presented in this lecture are performed with regard to the sparsity of matrices and
vectors involved.

Alternately, there is a left-looking IC algorithm. By comparing the jth column in factor-
ization (2.5.6), we have

j
a; = Y T, (2.5.10)

k=1
J
aj(j+1:n)—si(j+1:n) = ripre(d 4+ 1:n). (2.5.11)
k=1
This says that
j—1
2 2
Tjj = Qi — erkv

k=1

j—1
riiri(G+1:n)+s;(j+1:n) = aj(j+1:n)— erkrk(j +1:n).

k=1

Thus, to compute the jth column in IC factorization, one first computes

j—1
v=a; — ZTjka- (2.5.12)
k=1

i = V()

and the rest of non-zero elements in 7; (and s;) is computed based on the sparsity constraint
Z e, fori>j+1,

Then, the jth pivot is

rij =v(i)/rj;, sij =0, (1,4) € Z,
rij =0, sij = v(i)/r;5, otherwise.
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A pseudo-code of the left-looking IC algorithm is as the following:

LEFT-LOOKING IC ALGORITHM
for j=1,...,n do
o :m) = a;(j )
for k=1,..,7j—1do
v(j:n)=vi(j:n)—ripre(j:n)
end for
Tj5 = /55
for i=j5+1,...,n do
if (i,j) € Z then
rij = v(i)/1;
else
Tij =0
end if
end for
end for

The following conditions are often used to define the sparsity set Z:

1. Fizing sparsity pattern (FSP) in advance, i.e., the IC factor R has a prescribed sparsity
pattern Z = {(i,j)}. ri; =01if (4,5) ¢ Z.

A popular sparsity pattern of R is that of the original matrix A, i.e., Z = {(4,7) : a;; #
0 and i > j}.

2. Dropping small elements (DSE), namely, the magnitude of the non-zero elements in the
error factor S is small. In other words, all small elements of R with the relative magnitude
less than or equal to a specified drop threshold ¢ are discarded. The sparsity pattern
Z of R is not known in advance. The fill-ins in R need to be computed and compared
with the drop threshold o. The construction of R could be expensive. Furthermore, the
number of fill-ins in R cannot be estimated in advance.

3. Fizing number of non-zero elements (FNE) per column. It is similar to the DSE con-
straint except that it keeps a fixed number of non-zero elements of the largest magnitudes
in each column of R.

The existence of IC factorization, for an arbitrary sparsity set Z, is theoretically proven
only for special classes of matrices [14, 13, 23]. For a general SPD matrix A, the non-zero
elements introduced into the error matrix E could result in the loss of positive-definiteness of
the matrix A — F, and the IC factorization does not exist.

HQMC application. Let us show the numerical results of the left-looking IC preconditioner
R with DSE sparsity Z. The Hubbard matrix M is generated with (N, L,t,3,u) = (16 x
16,80,1,10,0). The reported data is an average of successful solutions over 10 trials. The
following table shows memory requirements in MB for storing R, with respect to different

interaction parameter U and the drop tolerance o. “——" indicates that all of 10 solutions
failed due to the pivot breakdown of IC.
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> (N, L,t,3) = (16 x 16,80,1,10). IC with DSE, Memory requirements <
Ul o0 2 4 6
Chol | 133.31 133.31 133.31 133.31
oc=107%]126.60 127.39 127.24 127.13
1075 | 103.33 117.57 11594 ——
107% | 43.80 64.75 —— —
1073 | —— —
1072 | 4.36 — — —
07| —— — — —
Jacobi | 0.33 0.33 0.33 0.33

Correspondingly, the number of PCG iterations are shown below:

> (N, L,t,8) = (16 x 16,80,1,10). IC with DSE, PCG iters. <

Ul o 2 4 6
op=10"%] 1 2 4 7
107° | 2 3 13 ——
1074 6 16 —— ——
1073 | ——  —— —— ——
1072 ] 32 —— —— ——
10| ——  —— —— ——
Jacobi | 157 1,292 10,843 19,560

Finally, the following table records the CPU time, where in each cell, the first number is the
time for the construction of the IC preconditioner R and the second number is the time of
PCG iteraiton.

> (N, L,t,3) = (16 x 16,80, 1,10). IC with DSE, CPU time <
U | 0 2 4 6
Chol | 20.37/0.07 20.43/0.07 20.44/0.07 20.43/0.07
o1 =107% | 18.97/0.07 19.17/0.14 19.09/0.30 19.07/0.48
107° | 13.20/0.11 16.92/0.20 16.41/0.80 ——
1074 | 2.95/0.17  5.72/0.58 — ——
1073 —— —— —— ——
1072 | 0.01/0.16 —— —— ——
1071 —— —— —— ——
Jacobi | 0.00/0.23  0.00/1.90 0.00/15.92 0.00/28.86

By these tables, we observe that the IC factorization breaks down frequently, especially in the
case of strongly interactive system, i.e., U > 4. It clearly indicates that the IC preconditioner
R is not a robust preconditioner for the HQMC simulation.

Modified IC. To overcome the pivot breakdown, one can try to first make a small pertur-
bation of A, say by simple diagonal perturbation, and then compute its IC factorization:

A+aDy=RRT +5+ 57, (2.5.13)
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where D4 = diag(A). The scalar « is chosen to avoid the breakdown of IC. R is referred to as
an IC, preconditioner [13].

If the shift « is chosen is such that A + aD 4 is diagonally dominant, then it is provable
that the IC factorization (2.5.13) exists. The following table records the performance of I1C,
based on the left-looking algorithm:

> (N, L,t,3) = (16 x 16,80, 1,10). IC,, diagonal dominant, ¢ = 0.007 <

U | 0o 1 2 3 4 5 6
Shift a 074 163 211 249 311 346  3.90
Storage R (MB) 353 321 315 304 281 280 280
Workspace W (MB) | 1.48 1.37 135 131 124 123 123
PCG iters 69 304 826 3,184 7,753 11,331 14,756
P-time 0.07 0.06 006 012 005 005  0.05
S-time 025 1.07 288 177 2562 3748  48.88
Total CPU 032 113 293 189 2567 37.53  48.94

With the choice of the shift a such that A + « - diag(A) is diagonally dominant, the pivot
breakdown is avoided. However, the quality of the resulting preconditioner R is poor. In
practice, better performance can be easily achieved with the shift «, which is much smaller
than the one to make A diagonally dominant. The following table records the significant
performance improvements of the IC, preconditioner R computed with the shift o = 0.007:

> (N, L,t, 8) = (16 x 16,80,1,10). IC,, o = 0.007, o = 0.007 <

U | 0 1 2 3 4 5 6
Storage R (MB) 452 534 548 553 554 553 550
Workspace W (MB) | 1.81 2.08 2.13 214 215 214 213
PCG iters 16 41 99 314 643 932 1,089
P-time 0.09 012 012 012 012 012 0.12
S-time 008 023 055 1.77 382 525 6.11
Total CPU 018 0.35 0.68 1.89 3.95 537 6.23

Unfortunately, there is no general approach for an optimal choice of the shift a. It is
computed by a trial-and-error approach in PETSc [17].

2.6 Robust Incomplete Cholesky preconditioners

In the IC factorization (2.5.6), the discarded elements of R are simply moved to the error
matrix . It may result in the loss of the positive definiteness of the matrix A — F, and lead
to the pivot breakdown.

To avoid the pivot breakdown, the error matrix E needs to come into the picture. It should
be updated dynamically during the construction of the IC factorization such that the matrix
A — FE is preserved to be symmetric positive definite. Specifically, we seek an IC factorization
satisfying that

for an arbitrary sparsity set Z, there exists a nonsingular lower triangular matrix
R of the sparsity pattern Z, such that

A=RR" +E, (2.6.14)



27

ie. A—FE > 0.

In the rest of this lecture, we will discuss several approaches to construct an IC factor R to
satisfy (2.6.14). The resulting preconditioner R is referred to as a robust incomplete Cholesky
(RIC) preconditioner.

2.6.1 RIC1

A sufficient condition for the existence of an IC factorization is to ensure that the error matrix
—F is symmetric positive semi-definite, i.e. —E = —ET > 0. If we write

E=S-D+587,
where S is strictly lower-triangular and D is diagonal, then an IC factorization can be con-
structed such that

A=RRT"+S5—-D+ ST
(2.6.15)
s.t

—(S—D+ST) >0,
where R is lower-triangular. The factorization (2.6.15) is referred to as RIC—version 1, or RIC1

in short.

Algorithms. The RICI factorization can be computed by using the following partition and
factorization:

an at _| ™ 0 1 0 r1 7L /rn n —iln 5T . (2.6.16)
ar Ay m/ri1 In— 0 Cy 0  In 51 —Dq

where C1 = Ay + Dy —7171 /r?,. By the factorization, we see that 71 (and 57) can be computed
by dropping small elements of a1, i.e., for i <n —1,

?1(2) :al(i), :9\1(1) =0, if Ti1 > O,
{ F() =0,  51() =ai(i), otherwise, (26.17)
where o is the drop threshold,
1/2

a1(i)?

(an +di)(a)) +di})

Til =

and agil ) and dS ) are the ith diagonal elements of A; and D1, respectively.
To ensure —E = —(S — D + ST) > 0, when there is a discarded element @ (i) assigned to

51(7), the diagonal elements dj; and dill ) are updated
diy = dy1 + d11, dﬁl-” = dﬁl-” + diis (2.6.18)

where 611 and 6;; are chosen such that d11,0; > 0 and 6110, = 81(4)2. Initially, it is set that
(1)
din=d;’ =0.
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Subsequently, the pivot r1; is determined by

r11 =V an +dn.
If we have RIC1 factorization of the (n — 1) x (n — 1) matrix Cy:
Ci = RlR? + 51 — ﬁl + Sf, (2.6.19)

then the RIC1 factorization (2.6.15) is given by

T11 0 di1 0 0 0
R_[’ﬂ/ﬁl Rl]’ D_[ 0 D1+1A71]’ S_[fs\l Sl]'
Thus, RIC1 decomposition can be obtained through the repeated application of (2.6.16) on
(2.6.19).
The following algorithm computes RIC1 factor R in right-looking fashion. In the algorithm,
0si = Tij(ay + dyi) and 6j; = 75(a;; + djj) are chosen so that they result in a same factor of
increase, i.e., (1 + 7;;), in the corresponding diagonal elements.

RIGHT-LOOKING RIC1 ALGORITHM
R = lower(A)
D = 0 (default)
for j=1,...,n do
for i=j5+1,...,n do
7ij = |rigl/ [(rae + daa) (rg; + djy)]'?
if Tij S o then
Tij = 0
dii = dii + Tij(rii + dis)
djj = djj + 7ij(rjj + djj)
end if
end for
rig = /Ty + djs
for i=j5+1,...,n do
Tij = Tij /T
end for
for k=j+1,...,n do
re(k:n) =ri(k:n) —ryri(k:n)
end for
end for

Alternatively, RIC1 can be computed by a left-looking algorithm. By comparing the jth
column of (2.6.15), we have

S
<
<

I
M-

2 .
Tik — djj

B
Il

1

M)~

aj(j+1:n) = rigre(J F1:n)+s;(j+1:n).

i
I
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This says that
7—1
2 _ 2
=i =ag = Y T
k=1

j—1
riiri(G+1:n)+s;(G+1:n)=a;(j+1:n)— erkrk(j +1:n).
k=1

Thus one first computes
7j—1
v = aj — E Tjkrk'
k=1

Then, small elements of v are kept in the jth column s;, i.e., for i > j +1,

(2.6.20)

Sijzo, ifTij>O',
sij =v(i), v(i) =0, otherwise,

where

Tij =

o(i)? V2
[(an‘ + dii)(ajj + djj) .

To ensure —E = —(S — D + ST) > 0, when there is a discarded element assigned to s;;, the
corresponding diagonal elements d;; and d;; are updated

di; = dy; + 04, djj = djj + (5jj, (2.6.21)

where d;; and §;; are chosen such that d;,0;; > 0 and 6;0;; = s?j. Initially, di1 = alz(z1 ) — 0.
Subsequently, the jth column 7; of the IC factor R is given by

rij = Vagj+dj,
ri(j+1:n) = v(j+1:n)/rj.

Finally, for every non-zero element 7;; in r;, the corresponding diagonal element a;; is updated,
i.e., for our illustration, this update is performed on d;;,

o 2
dii = d” — Tij'

The following algorithm computes RIC1 factor R in a left-looking fashion.
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LEFT-LOOKING RIC1 ALGORITHM
D = 0 (default)
for j=1,...,n do
o in) = ay(j: m)
for k=1,...,7—1do
vi+1l:n)=v(E+1:n)—rppre(j+1:n)
end for
for i=j5+1,...,n do
7i5 = |o()/[(aii + dis)(az; + djj)]H?
if Tij <o then
v(i) =0
dii = dis + Tij(ai + dig)
djj = djj + 7ij(aj; + djj)
end if
end for
rij = \/aj; +djj
for i=j5+1,...,n do
rij = v(i)/rj;
di; = di; — T?j
end for
end for

The RIC1 preconditioning techniques are first studied in [1, 9]. It is a simple diagonal
updating scheme. The construction cost is only slightly higher than the IC preconditioner. To
measure the quality of RIC1 preconditioner R, we note that the norm of the residue

R'MRT - T=-RYS-D+SHRT (2.6.22)

could be amplified by a factor of ||[R™!||? of the error matrix £ = S — D 4+ ST. When a large
number of diagonal updates are introduced, The norm of E could be large. Therefore, the
quality of the RIC1 preconditioner could be poor as we have seen in our HQMC application.

HQMC application. We examine the performance of the RIC1 preconditioner R for differ-
ent interaction parameter U. The dropping threshold for the small element is ¢ = 0.005. With
this dropping tolerance, the resulting RIC1 preconditioner R is of about the same sparsity as
IC,, preconditioner in Section 2.5.

> (N, L,t,8) = (16 x 16,80,1,10). RICI, right-looking, o = 0.005 <
U | o 1 2 3 4 5 6

Storage R (MB) | 4.48 5.20 5.25 5.25 5.21 5.15 5.09
Workspace (MB) | 1.63 1.87 1.89 1.89 1.87 1.85 1.83

PCG itrs. 21 57 135 491 1,086 1,466 1,873
P-time 0.21 0.24 0.25 0.25 0.25 024 0.24
S-time 0.10 0.30 0.71 2.55 5.62 7.55 9.59
Total CPU 032 054 096 2.80 5.86 7.79 9.83

We note that the RIC1 preconditioner based PCG is slower than the IC, preconditioner
based PCG, see section 2.7. However, RIC1 is provable robust.
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2.6.2 RIC2

Tismenetsky proposed a way to improve the quality of the RIC1 preconditioner R [21]. Instead
of writing the error matrix F as E = S — D + ST, it begins with setting the error matrix

E =RFT + FRT,
and compute an IC decomposition of the form
A= RR" + RFT + FRT, (2.6.23)

where R is lower-triangular, and F' is strictly lower-triangular. Note that the factorization
(2.6.23) can be equivalently written as

A+FFT =R+ F)R+F)T

Therefore, the existence of R for an arbitrary sparsity constrant Z is guaranteed.
With the factorization (2.6.23), the residue becomes

RIYART = —FR T _R1FT,

112 as in the

Hence, the norm of the residue is amplified by the order of || R~|, instead of || R~
RIC1. We refer (2.6.23) as RIC—version 2 factorization, or RIC2 in short.

Algorithms. RIC2 factorization (2.6.23) can be constructed by using the following partition
and factorization:

A = [‘i“ a{}
ay Ay

. T11 0 1 0 11 ?t{ + 11 0 0 .]?IT + 9 0 T11 ’I/”\?
B o Ia 0 Gy 0 In 0 0 0 fi 0 0 0

(2.6.24)
where C7 = A7 — ?1?1T — ?U?IT — fl?lT. By the factorization, we have

1 = yain-

The vectors 77 and fl are computed by dropping small elements of a1 (7)/r11, i.e., for i <n—j,

ﬁ(i):al(i)/rn, ﬁ(i)zo, if \61(2‘)]/7“11 >0,
f1(i) =0, fi(@) =ai(i)/r11, otherwise,
If an RIC2 factorization of the (n — 1) x (n — 1) matrix C is given by
Cy = RiRY + R F] + R RT, (2.6.25)

then the RIC2 factorization of A is given by

11 0 0 0 :|
R=1| 2 , F=] ~ .
[ r1 R ] [ fi Fi
Thus, RIC2 decomposition can be obtained through the repeated application of (2.6.24) on
(2.6.25).

The following algorithm computes the RIC2 factor R in a right-looking fashion, where f;
is discarded after it is used to update Aj:

|
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RIGHT-LOOKING RIC2 ALGORITHM
R = lower(A)
for j=1,...,n do
"5 = /Tii
for i=j5+1,....,n do
if |aij|/rj; > o then

rij = Tij/Ti

fij =0
else
Tij = 0
fij =rij/ri
end if
end for

for k=j+1,...,n do
ri(k:n) =r(k:n) =1 (rj(k:n)+ f;(k:n))
r(k:n) =r(k:n) — fijrij(k:n)
end for
end for

Alternatively, the RIC2 can be computed by a left-looking algorithm. By comparing the
jth column in factorization (2.6.23), we have

J

aj =Y (rjere + rinfe + finrk)- (2.6.26)
k=1
This says that
j—1
rij(rj+ 1) = a; = > _(rjere + riefe + Firre)-
k=1

Thus, to compute the jth column in RIC2 factorization, one first computes

v=aj;— Y (rjkrk +rikfe + fikre). (2.6.27)

Then, the jth pivot is given by
rii = V(i)
and the rest of the non-zero elements in r; and f; are computed by dropping small elements

of v, i.e., fori>j+1,

rij = v(i)/rj5, fij =0, if |v(2)|/rj; > o,
rij =0, fij = v(i)/rs, otherwise.

The following algorithm computes the RIC2 factor R in a left-looking fashion.
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LEFT-LOOKING RIC2 ALGORITHM
for j=1,....,n do
v(j:n)=a;(j:n)
for k=1,..,5—1do
v(j:n)=v(:n) = n)+ fili:n))
0(j:n) = v(j :n) = Frly  m)
end for
rij =V v(j)
for i=j5+1,...,n do
if |v(i)|/rj; > o then
rij = v(i)/75
fij =0
else
Tij = 0
fij = (@) /r;
end if
end for
end for

Notice that in the above algorithm, the columns fi,..., fj—1 are required to compute 7;.
When A is SPD, the diagonal element a1; > 0 and

araf

Clel— +f/i\1]?1T>0.

a1

Thus, the pivot breakdown is avoided. In other words, the matrix A — E of RIC2 factoriza-
tion (2.6.23) is SPD,
A—RFT —FRT >0, (2.6.28)

and the factorization is robust.
HQMC application. The following table shows the numerical results with RIC2 precondi-
tioner computed by the left-looking algorithm. It is under the same setting as in RIC1, except

the drop threshold for the small elements is ¢ = 0.012. With this drop threshold, the resulting
RIC2 preconditioner R is of about the same sparsity as the RIC1 preconditioner.

> (N, L,t, 8) = (16 x 16,80, 1,10). RIC2, left-looking, o = 0.012 <

U \ 0 1 2 3 4 5 6
Storage R (MB) 482 508 518 526 530 529  5.32
Worksspace (MB) | 128.90 128.64 128.53 128.45 127.41 127.26 127.60
PCG iters 16 36 73 194 344 453 539
P-time 179 18 1.8 190 190 190 188
S-time 012 027 057 152 270 357 424
Total CPU 191 213 245 342 460 547  6.11

We note that the quality of RIC2 is much better than RIC1, as indicated by the number
of PCG iterations and total CPU time. However, we also note that the costs of CPU and
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workspace to construct RIC2 preconditioner increase significantly. This potentially limits the
applicability of the RIC2 for large scale systems.

The right-looking algorithm reduces the workspace by a factor of more than 10 as shown
in the following table, but with significantly more CPU time in computing the preconditioner.
Therefore, the right-looking algorithm is not competitive in terms of the total CPU cost.

> (N, L,t,3) = (16 x 16,80, 1,10). RIC2, right-looking, o = 0.012 <
U | o 1 2 3 4 5 6
Storage R (MB) | 4.82 508 518 526 530 529 532
Workspace (MB) | 10.65 10.63 10.63 10.63 10.63 10.63 10.17

PCG iters 16 36 73 194 344 453 939
P-time 19.29 19.29 19.31 19.31 19.34 19.28 19.19
S-time 0.12 0.27 057 152 270 357 424
Total CPU 19.43 19.58 19.90 20.84 22.06 22.87 23.45

Note that the left-looking and right-looking RIC2 result in the same preconditioner. There-
fore, the storage requirement for the preconditioner R and the CPU time (S-time) of the PCG
iterations are the same in the above two tables.

2.6.3 RIC3

Kaporin proposed a scheme to reduce the cost of computing the RIC2 factorization (2.6.23)
by additional sparsity on F' with a secondary dropping threshold oo < o1 [10]. Specifically,
Kaporin proposes to write the error matrix

E=RF'+FR" + E,

where E represents the error from imposing the secondary sparsity constraint. To maintain
the robustness, similar to RIC1 factorization, by writing

E=S-D+57,

the diagonal elements D are updated to guarantee the semi-positive definiteness of —F.
In summary, one constructs a preconditioner R based on the following factorization

{ A=RRT" +RFT + FRT + S — D+ ST,
s.t

2.6.29
—(S-D+5T) >0, ( )

where R is lower-triangular, F' and S are strictly lower-triangular, and D is diagonal. The
sparsity of R and F' are controlled by the primary drop threshold ¢ and the secondary drop
threshold o9, respectively. We called this as the RIC—version 3, or RIC3 in short.

The RIC3 factorization (2.6.29) often results in a good preconditioner R when |[|S|| and
|D|| are small enough. Specifically, when ||E|| < |F||/||R~|, the norm of the residue

RIART - I=-FRT-R'W —RYS—D+SHRT

is amplified at most by the factor of about ||[R7!|| of the norm ||F||. At the same time, the
cost of constructing the RIC3 preconditioner is significantly reduced from that to construct
the RIC2 preconditioner.
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Algorithms. The RIC3 factorization (2.6.29) can be constructed by using the following
partitioning and factorization:

~T T
o ail al T11 O 1 0 11 Tl
A S R | E S A

ar Ay
T11 0 0 ]?11“ + 0 0 11 ?? + —d11 :9\?
0 0 0 fi 0 0 0 51 —-Dy
L (2.6.30)
where C7 = A1 + Dy — ?1?1T —7rf1 — fl?lT. Multiplying out the first column, we have

2
ailz = 7“11_d117

~

ay = rru+ firn + s
If we let
v =71+ f1,

then the vector v; (and 51) are computed by imposing the sparsity constraint on a; with the
secondary drop tolerance o9, i.e., for : <n — 1,

v1(i) = a1(i), 51(7) =0, if 751 > o9,
v1(i) =0, 51(7) =a1(7), otherwise,
where
1/2

a1(i)?

(alt) +d) (@ +dn)

Til =

and agil ) and alz(z1 ) denote the ith diagonal elements of A; and D;, respectively. To ensure

—E = —(S— D+ 87) > 0, when a discarded element @ (i) is assigned to the position (i),
(1)

the corresponding diagonal element dqi1 and d;;” are updated,

d11 = d11 + (511, dz(zl) = dz(zl) + 5@'1’7
where 611 and 6;; are chosen such that d11,0; > 0 and 6110, = 81(4)2. Initially, it is set that

dii = djj =0.
Subsequently, the pivot r1; is given by

ri1 = vai +di.

Finally, 7 and fl is updated by imposing the primary sparsity constraint on v; with the
dropping threshold oy, i.e., for i < n — j,

{ Ri(0) = vi()/rn, fili) =0, if | F1(3)|/ri > on,

r1(i) =0, fi(i) =wv1(i)/r11, otherwise,
Therefore, if we have RIC3 factorization of the (n — 1) x (n — 1) matrix C1,

Ci = RlR’{ + RlFlT + FlR? + 51 — 131 + S{, (2.6.31)
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then the RIC3 factorization is given by

11 0 0 0 0 0 dll 0
R=| . , F=1] ~ , S=| < , D= ~ .
|:T1 R1:| |:f1 F1:| |:81 51:| |: 0 Di+D;
Thus, the RIC3 decomposition can be computed by the repeated application of (2.6.30) on
(2.6.31).
The following algorithm computes the RIC3 factor R in a right-looking fashion, where §;;

and d;; are chosen in the same way as in the RIC1 algorithms. Therefore, it results in the
same factor of increase of the diagonal elements.

RIGHT-LOOKING RIC3 ALGORITHM
R =lower(A), D =0,
for j=1,....,n do
for i=j5+1,...,n do
7ij = [rigl /(@i + did) (ag; + djj)]"?
if Tij < g9 then
Tij = 0
dii = dis + Tij(ai + dig)
djj = djj + Tij(aj; + djj)
end if
end for
rjj = Vg + djj
for i=j5+1,...,n do
if ’Tij‘/?”jj > o1 then

Tij = Tig[Tjj

fij =0
else
Tij = 0
fij = rij/7jj
end if
end for

for k=j+1,...,n do
re(k:n) =ri(k:n) —ri(rj(k:n) + f;(k:n))
ri(k:n) =r(k:n) — frrj(k:n)

end for
end for
In the right-looking RIC3 algorithm, the jth column f; of I’ can be discarded after it is used
to update the remaining column rj41,...,7,.

Alternatively, the RIC3 factorization can be computed by a left-looking algorithm. By
comparing the jth column in factorization (2.6.29), we have
J
aj; =Y (riy + 2f5m58) — djj,
k=1
i
aj(j+1:n)=si(j+1:n)+ Z(Tjka(j +1:n)+rjpfe(+1:n)+ firre(f +1:n)).
k=1
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This says that

j—1
7“]2-]- + djj =ajj — Z(TJQ]C + 2fjk7”jk)a
k=1
j—1
Pt 1 m) 450+ 1n) = g+ 1em) — S (rgaeG + 12 m) + fari + 15 m),
k=1

where tp = ri + fr. Thus, to compute the jth column of R, one first computes,

j—1

v=a; — Z(Tjk(Tk + frx) + fixr)-

k=1

Then, the sparsity of v is imposed with the secondary drop threshold o9, i.e. for i > j + 1,

Sij = 0, if Tij > 02,
sij =v(i), v(i) =0, otherwise,

where

_[ (i)’ v
Y i + dig)(ag; +djy) |

To ensure —E = —(§ — D + ST) > 0, if a discarded element @ (i) is entered into the position
51(7), the diagonal elements d;; and d;; are updated,

di; = dy + 64, djj = djj + (5jj,
where §;; and ¢;; are chosen such that d;,d;; > 0 and d;0,; = s?j. Initially, it is set that
dii =djj; = 0.
Subsquently, the jth pivot is given by
rij =/ v(J) + djj,

and the rest of non-zero elements in r; and f; are computed by imposing the primary sparsity
constraint on v with the primary drop threshold oy, i.e. for i > j + 1,

rij =v(i)/rjj, fij =0, if ()| /r; > o1
rij =0, fij = v(i)/r;j, otherwise.

The following algorithm to compute RIC3 factor R in left-looking fashion.



Note that in the above algorithm, the columns fy, fo, ...

LEFT-LOOKING RIC3 ALGORITHM
D=0,
for j=1,...,n do

v(j i n) = a;(j : m)

for k=1,....,k—1do

v(jin) =0 :n) = rip(re(i:n) + fi(i

v(j:n) =v(j:n)— firr(i:n)
end for
for i=j5+1,...,n do
7ij = [(@)]/[(ai + dii) (a5 + djj)]'/?
if Tij < o9 then
v(i) =0
dii = di; + Tij(aii + di;)
djj = djj + 7ij(aj; + djj)
end if
end for
rij = Vo)) +djj
for i=j5+1,...,n do
if |v(i)|/rj; > o1 then
rij = v(i)/7j;
fij =0
else
Tij = 0
fij = (@) /75
end if
end for
end for

column ;.
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, fj—1 are needed to compute the jth

HQMC application. The following table shows the numerical results with the RIC3 pre-
conditioner computed by the left-looking algorithm. The experimental setting is the same as
used for RIC1 and RIC2, except the drop thresholds are o1 = 0.01 and o9 = 07. With these
drop thresholds, the resulting RIC3 preconditioner R is of about the same sparsity as the RIC1

and RIC2 preconditioners.

> (N, L,t,3) = (16 x 16,80, 1,10). RIC3, left-looking, o1 = 0.01, 09 = 07 <

U 0 1 2 3 4 ) 6
Storage R (MB) 4.85 517 523 523 523 521 520
Workspace (MB) | 42.15 46.17 43.47 41.09 39.13 37.36 35.85
PCG iters 13 35 80 253 500 666 803
P-time 0.86 1.14 108 103 099 095 0.92
S-time 0.0r 019 044 138 273 3.63 437
Total CPU 092 133 152 241 3.72 458 5.29
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The right-looking RIC3 algorithm significantly reduces the workspace as shown in the fol-
lowing table. but with the increase of CPU time for computing the preconditioner. Therefore,
the right-looking algorithm is not competitive in term of total CPU time requriement.

> (N, L,t,3) = (16 x 16,80,1,10). RIC3, right-looking, o1 = 0.01, 05 = 67} <
U | o 1 2 3 4 5 6
Storage R (MB) | 4.85 517 523 523 523 521 5.20
Workspace (MB) | 9.34  9.30 929 929 9.29 9.30 9.30

P-time 3.96 435 4.12 391 374 3.58 3.44
S-time 0.07 0.19 044 138 273 3.63 4.37
Total CPU 4.07 445 4,57 520 643 6.15 7.79

Note that the left-looking and right-looking RIC3 algorithms result in the same precondi-
tioner. Therefore, the storage requirement for the preconditioner R and the CPU time of the
PCQG iterations are the same in the above two tables.

2.7 Performance evaluation

The numerical results presented in the previous sections indicate that the IC, and RIC3 pre-
conditioners are the most competitive ones for solving the HQMC linear system (2.1.1). In this
section, we evaluate the performance of the IC, and RIC3 preconditioners for solving HQMC
linear systems (2.1.1) with respect to the different parameters.

2.7.1 Moderately interacting systems with U < 4

We examine the performance of the PCG solver for moderate interacting systems, namely U <
4. The following plots show the number of PCG iterations with the IC, preconditioner (left)
and the RIC3 preconditioner (right). The plots show that for the both preconditioners, with
respect to the lattice size N, the number of PCG iterations stays the same when U = 0,1, 2,
and grows slowly whtn U = 3 with the changes of the lattice size N.

ICp RIC3
400 : : : ‘ ‘ 400 = ‘ ‘
- U=0 322
- U=1 =
350 u=2 350 u=2
- U=3 uU=3
300 d 3001
2501 4 2501
g @
© 200 (200
8 8]
I a
150 150
100 100
50 50
——
ol ! ! ! ! | o T ? ? : ’ ?
64256 576 1024 1600 2304 3136 4096 64256 576 1024 1600 2304 3136 4096
N N

Consequently, it indicates the linear-scaling of total CPU of PCG iterations. The following
plots show the total CPU time of the PCG solvers for different lattice sizes IN. The black dash
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lines indicate the linear-scaling when the CPU time at N = 40 x 40 is used as the reference
point. The rest of parameters are (L,t, 3, 1) = (80,1, 10,0).
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From these performance data, we conclude that when U < 4, the HQMC linear sys-
tem (2.2.2) is relatively well-conditioned. The quality of IC, and RIC3 preconditioners are
comparable. The IC, has twice as much fill-ins as RIC3, but the number of PCG iterations
with IC,, is only half of that with RIC3. 1C, slightly outperforms RIC3.

2.7.2 Strongly interacting systems with U > 4

For strongly interacting systems, namely U > 4, we observe that RIC3 slightly outperforms
the IC, in terms of total CPU time of PCG solver. The following plots show the number of
PCG iterations grows linearly with respect to the lattice sizes N. The rest of parameters are
(L,t,B,u) = (80,1,10,0).
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N N

Subsequently, the total CPU time of PCG solver scales in the order of N2, as shown in the
following plots (left — IC,, and right — RIC3). The dash line indicates the desired linear-scaling
when the CPU time at N = 40 x 40 is used as the reference point.
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In summary, for strongly interacting system, namely U = 4,5, or 6, the linear system of
equations is ill-conditioned. A linear-scaling PCG solver remains an open problem.

2.7.3 Extra data

IC,. For the record, the following tables are the observed optimal performance of the IC,
based PCG solver with the proper chosen dropping threshold values.

>1Cp: (N,L,t,B) = (16 x 16,80,1,10) <
U | o 1 2 3 4 5 6

Storage R (MB) 431 13.68 13.58 13.51 13.39 13.25 13.13
Workshpace (MB) | 1.74  4.86  4.83 4.80 4.77 472  4.68

PCG iters. 16 18 40 127 254 325 436
P-time 0.09 050 049 049 049 048 047
S-time 0.0r 018 039 122 242 3.06 4.07
Total CPU 0.16 0.69 088 1.71 290 354 454

> ICy: (N, L,t,3) = (32 x 32,80,1,10) <
U |0 1 2 3 4 5 6
Storage R (MB) [ 4585 5426 54.13 53.66 53.12 52.63 52.26
Workspace (MB) | 16.48 19.28 19.25 19.09 1891 18.75 18.62

PCG iters. 22 18 36 143 748 1,153 1,527
P-time 172 200 198 196 193 1.92 1.91
S-time 0.81 0.74 147 5.77 29.78 45.58 59.98

Total CPU 253 27 345 773 31.71 4750 61.88
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RIC3. For the record, the following tables are the observed optimal performance of the RIC3
based PCG solver with the proper chosen dropping threshold values.

> RIC3: (N,L,t,53) = (16 x 16,80,1,10) <
U |0 1 2 3 4 5 6

Storage R (MB) | 4.85 5.17 522 524 522 521 5.22
Workspace MB) | 42.15 46.23 43.32 41.07 39.09 37.41 35.93
PCG iters. 13 36 79 247 471 628 797
P-time 086 095 0.8 0.8 081 078 0.75
S-time 0.0r 016 036 113 216 287 3.64
Total CPU 092 111 126 199 297 3.65 4.40

> RIC3: (N, L,t,3) = (32 x 32,80,1,10) <
U \ 0 1 2 3 4 5 6

Storage R (MB) 19.56  20.75 2098 2096 2091 20.87 20.86
Workspace (MB) | 166.99 183.54 172.82 163.42 155.28 148.73 143.13
PCQG iters. 13 32 7 282 1,355 2,217 2,686
P-time 3.57 3.92 3.72 3.52 3.35 3.21 3.10
S-time 0.24 0.61 1.47 5.24  25.63 4190 50.61
Total CPU 3.81 4.53 5.19 8.87 2898 4511 53.71

2.8 Concluding remarks

It remains an open problem to search a linear-scaling preconditioner for strongly interaction
systems. We have observed that in this situtation, the residual norm stagnates after initial
rapid decline. The following plotthe relative residual norm of the PCG iteration to achieve the
solution error ||z — z||2/||x|]2 < 1073, when (N, L,U,t, 3, 1) = (32 x 32,80,6,1,10,0).
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The plateau is largely due to the the slow decay of the components of the resiudal vector
associated with the small eigenvalues of the preconditioned matrix R~'AR™T. Several tech-
niques have been proposed to deflate these components from the residual vector as a way to
avoid the plateau of the convergence, see [2, 6, 5, 15, 16] and references within. It remains to
be studied about the applicability of these techniques to our HQMC applications.
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