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Lecture 1

Hubbard model and QMC simulations

1.1 Introduction

The Hubbard model is a fundamental model to study one of the core problems in materials
science: How do the interactions between electrons in a solid give rise to properties like mag-
netism, superconductivity, and metal-insulator transitions? In this lecture, we introduce the
Hubbard model and outline quantum Monte Carlo (QMC) simulation to study many-electron
systems. Subsequent lectures will describe computational kernels of the QMC simulation.

1.2 Hubbard model

The two-dimensional Hubbard model for simulating the interactions between electrons is de-
fined by the Hamiltonian ([7, 8]):

H = HK +Hμ +HV , (1.2.1)

where HK , Hμ and HV stand for kinetic energy, chemical energy and potential energy, respec-
tively, and are defined as

HK = −t
∑
〈i,j〉,σ

(c†iσcjσ + c†jσciσ),

Hμ = −μ
∑

i

(ni↑ + ni↓)

HV = U
∑

i

(ni↑ − 1
2
)(ni↓ − 1

2
)

and

• i and j label the spatial sites of the lattice. 〈i, j〉 represents the electrons only hopping
to nearest neighboring sites.

• the operators c†iσ and ciσ are the fermion creation and annihilation operators for electrons
located on the ith lattice site with z component of spin σ =↑(up) or ↓(down), respectively.

• The operators niσ = c†iσciσ are the number operators which count the number of electrons
of spin σ on site i.

1
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• t is a hopping parameter for the kinetic energy of the electrons, and is determined by the
overlap of atomic wave functions on neighboring sites,

• The term Uni↑ni↓ represents an energy cost U for the site i has two electrons. It describes
a local repulsion between electrons, referred to as Coulomb interaction.

• μ is the chemical potential parameter which controls the electronic numbers (or density).

Note that the kinetic energyHK and chemical potential energyHμ are quadratic in creation
and destruction operators. The potential energy HV is quartic.

The expected value of a physical observable E of interest, such as density-density correlation,
spin-spin correlation or magnetic susceptibility, is given by

〈E〉 = Tr(EP), (1.2.2)

where P is a distribution operator defined as

P =
1
Z e

−βH, (1.2.3)

and Z is referred to as the partition function defined as

Z = Tr(e−βH), (1.2.4)

and β is proportional to the inverse of the prodcut of the Boltzmann’s constant kB and the
temperature T , i.e.,

β =
1

kBT
.

Therefore, β is called an inverse temperature, in short.
“Tr” is a trace over the Hilbert space describing all the possible occupation states of the

lattice:
Tr(e−βH) =

∑
i

〈ψi|e−βH|ψi〉,

where {|ψi〉} is an orthonormal basis of the Hilbert space. Note that the trace does not depend
on the choice of the basis. A choice of the basis is the so-called “occupation number basis (local
basis)” as described below.

In a classical problem where H = E is the energy, a real variable, then exp(−βE)/Z is the
probability, where Z =

∫
e−βE . In quantum mechanics, as we shall see, we will need to recast

the operator exp(−βH) into a real number. The ”path integral representation” of the problem
to do this was introduced by Richard Feynman.

Remark 1.2.1 The creation operators c†iσ and the annihilation operators ciσ have the anticom-
mutation relations:

{cjσ, c†�σ′} = δj�δσσ′ ,

{c†jσ, c†�σ′} = 0,
{cjσ, c�σ′} = 0,
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where the anticommutator of two operators a and b is defined by ab+ ba, i.e. {a, b} = ab+ ba.
δj� is the common δ-notation, i.e., δj� = 1 if j = �, and otherwise, δj� = 0.

If we choose j = � and σ = σ′ in the second anticommutation relation, we conclude that
(c†jσ)2 = 0. That is, one cannot create two electrons on the same site with the same spin
(Pauli exclusion principle). Thus the anticommutation relations imply the Pauli principle. If
the site or spin indices are different, the anticommutation relations tell us that exchanging
the order of the creation (or destruction) of two electrons introduces a minus sign. In this
way the anticommutation relations also guarantee that the wave function of the particles being
described is antisymmetric, another attribute of electrons (fermions). Bosonic particles (which
have symmetric wave functions) are described by creation and destruction operators which
commute.

Remark 1.2.2 According to Pauli exclusion principle of electrons, there are four possible states
at every site:

|·〉 no particle,
|↑〉 one particle with spin up,
|↓〉 one particle with spin down,
|↑↓〉 two particles with different spin directions.

Therefore the dimension of the Hilbert space is 4N , where N is the number of sites.
A second quantization is also used to describe the states if the spin-direction is omitted:

|0〉 : no particle,
|1〉 : one particle.

The actions of the basic operators on the states are (here we omit the i, σ indices):

c : |0〉 = 0, |1〉 = |0〉,
c† : |0〉 = |1〉, |1〉 = 0,
n : |0〉 = 0, |1〉 = |1〉.

(1.2.5)

The last equation of (1.2.5) shows that the states |0〉 and |1〉 are the eigen-states of the number
operator n = c†c.

Remark 1.2.3 The operator n↑n↓ describes the potential energy of two electrons with different
spin directions at the same site:

n↑n↓ : |·〉 = 0, |↑〉 = 0,
|↓〉 = 0, |↑↓〉 = |↑↓〉, (1.2.6)

and
U(n↑ − 1

2)(n↓ − 1
2) : |·〉 = +U

4 |·〉, |↑〉 = −U
4 |↑〉,

|↓〉 = −U
4 | ↓〉, |↑↓〉 = +U

4 |↑↓〉.
(1.2.7)

These eigenenergies immediately illustrate a key aspect of the physics of the Hubbard model:
The single occupied states |↑〉 and |↓〉 are lower in energy by U (and hence more likely to occur).
These states are the ones which have nonzero magnetic moment m2 = (n↑−n↓)2. One therefore
says that the Hubbard interaction U favors the presence of magnetic moments. As we shall see,
a further question (when t is nonzero) is whether these moments will order in special patterns
from site to site.
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Remark 1.2.4 The operator c†i ci+1 describes the kinetic energy of the electrons on nearest
neighbor sites:

c†i ci+1 : |00〉 = 0, |01〉 = |10〉,
|10〉 = 0, |11〉 = c†i |10〉 = 0.

Therefore, if there is one particle on the i+1th site, and no particle on the ith site, the operator
c†i ci+1 destroies the particle on the i+ 1th site and create one particle on the ith site. We say
the electron hops from site i+ 1 to site i after the action of the operator c†i ci+1.

1.2.1 Hubbard model with no hopping

Let us consider a special case of the Hubbard model, namely, there is only one site and no
hopping, i.e., t = 0. Then the Hamiltonian H is

H = U(n↑ − 1
2
)(n↓ − 1

2
)− μ(n↑ + n↓).

It can be immediately verified that the orthonormal eigen-states ψi of the operator nσ are also
the eigen-states of the Hamiltonian H:

H|·〉 =
U

4
|·〉,

H|↑〉 =
(
U

4
− (μ+

U

2
)
)
|↑〉,

H|↓〉 =
(
U

4
− (μ+

U

2
)
)
|↓〉,

H|↑↓〉 =
(
U

4
− 2μ

)
|↑↓〉.

The Hamiltonian H is diagonalized under the basis {ψi}:

H −→ (〈ψi|H|ψj〉
)

=

⎡⎢⎢⎣
U
4

U
4 −
(
μ+ U

2

)
U
4 −
(
μ+ U

2

)
U
4 − 2μ

⎤⎥⎥⎦ .
Consequently, the operator e−βH is diagonalized:

e−βH −→ e−
Uβ
4 diag

(
1, eβ(U/2+μ), eβ(U/2+μ), e2μβ

)
.

The partition function Z becomes

Z = Tr(e−βH) =
∑

i

〈ψi|e−βH|ψi〉 −→ Z = e−
Uβ
4

(
1 + 2e(

U
2

+μ)β + e2μβ
)
.



5

The related operators He−βH, n↑e−βH, n↓e−βH and n↑n↓e−βH, as necessary for calculating
physical observables E of interest, become

He−βH → e−
Uβ
4 diag

(
U

4
, (−μ− U

4
)eβ(U/2+μ), (−μ− U

4
)eβ(U/2+μ), (

U

4
− 2μ)e2μβ

)
n↑e−βH = e−βH{0, 1, 0, 1} −→ e−

Uβ
4 diag

(
0, eβ(U/2+μ), 0, e2μβ

)
n↓e−βH = e−βH{0, 0, 1, 1} −→ e−

Uβ
4 diag

(
0, 0, eβ(U/2+μ), e2μβ

)
n↑n↓e−βH = e−βH{0, 0, 0, 1} −→ e−

Uβ
4 diag

(
0, 0, 0, e2μβ

)
The traces of these operators are

Tr(He−βH) = e−
Uβ
4

(
U

4
+ 2(−μ− U

4
)eβ(U/2+μ) + (

U

4
− 2μ)e2μβ

)
,

Tr((n↑ + n↓)e−βH) = e−
Uβ
4

(
2eβ(U/2+μ) + 2e2μβ

)
,

Tr(n↑n↓e−βH) = e−
Uβ
4 e2μβ .

By the definition (1.2.2), the following physical observables E can be computed exactly:

1. The one-site density ρ = 〈n↑〉+ 〈n↓〉 to measure the average occupation of each site:

ρ = 〈n↑〉+ 〈n↓〉 =
Tr
(
(n↑ + n↓)e−βH)
Tr(e−βH)

=
2e(

U
2

+μ)β + 2e2μβ

1 + 2e(
U
2

+μ)β + e2μβ
.

In particular, when there is no chemical potential, i.e., μ = 0, then ρ = 1. One refers to
this as “half-filling” because the density is one-half the maximal possible value.

2. The one-site energy E = 〈H〉:

E = 〈H〉 =
Tr(He−βH)

Tr(Z)

=
U

4
− (2μ+ U)e(

U
2

+μ)β + 2μe2μβ

1 + 2e(
U
2

+μ)β + e2μβ
.

In particular, when there is no chemical potential, i.e., μ = 0, then

E =
U

4
− U

2(1 + e−
Uβ
2 )
.

Figure 1.1 shows the plot of E versus U and β.

3. The double occupancy 〈n↑n↓〉 is

〈n↑n↓〉 =
Tr(n↑n↓e−βH)

Tr(Z)
=

e2μβ

1 + 2e(
U
2

+μ)β + e2μβ
.
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Figure 1.1: Potential energy E for t = 0, μ = 0

In particular, when there is no chemical potential, i.e., μ = 0,

〈n↑n↓〉 = 1

2(1 + e
U
2

β)
.

Note that as U or β = 1/T increases, the double occupancy goes to zero.

1.2.2 Hubbard model without Coulomb interaction

When there is no Coulomb interaction, i.e., U = 0, the two spin spaces are independent of each
other (H breaks into two separate pieces in which ↑ and ↓ terms never occur together). In this
case we can consider each spin separately. If the spin is omitted, the Hamiltonian H becomes

H = −t
∑
〈i,j〉

(c†i cj + c†jci)− μ
∑

i

ni.

It can be recast as a bilinear form:

H = �c †(−tK − μI)�c,

where K is a matrix to describe the hopping relationship 〈i, j〉, I is the identity matrix, and

�c =

⎡⎢⎢⎢⎣
c1
c2
...
cN

⎤⎥⎥⎥⎦ , �c † = [c†1, c
†
2, · · · , c†N ].
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For the one dimensional (1D) lattice of Nx sites, K is an Nx ×Nx matrix given by

K = Kx =

⎡⎢⎢⎢⎣
0 1 1
1 0 1

. . . . . . . . .
1 1 0

⎤⎥⎥⎥⎦ .
The (1, Nx) and (Nx, 1) elements of K incorporate the so-called “periodic boundary conditions
(PBCs)” in which sites 1 and Nx are connected by t. The use of PBC reduces finite size effects.
For example, the energy on a finite lattice of length N with open boundary conditions (OBCs)
differs from the value in the thermodynamic limit (N → ∞) by a correction of order 1/N
while with PBCs, the correction is order 1/N2. 1 The use of PBCs also makes the system
translationally invariant. The density of electrons per site, and other similar quantities, will
not depend on the site in question. With OBCs quantities will vary with the distance from
the edges of the lattice.

For a two dimensional (2D) rectangle lattice of Nx×Ny sites, K is a NxNy×NxNy matrix
given by

K = Kxy = Iy ⊗Kx +Ky ⊗ Ix,
where Ix and Iy are identity matrices with dimensions Nx and Ny, respectively. ⊗ is the matrix
Kronecker product.

The matrix K of 1D or 2D has the exact eigen-decomposition

K = F T ΛF, F TF = I,

where Λ = diag(λk) is a diagonal eigenvalue matrix, see Lemma 2.3.1.
Let �̃c = F�c and �̃c † = (F�c)†, then the Hamiltonian H is diagonalized:

H = �̃c †(−tΛ− μI)�̃c =
∑

k

εkñk,

where εk ≡ −tλk−μ, and ñk = c̃†k c̃k. As we note in Remark 1.2.4, this transformation preserves
the anticommutation relations, so c̃k still represents fermion operators.

Lemma 1.2.1 If the operator H is in a quadratic form of fermion operators

H = c†Hc,

where H is a Hermitian matrix. Then

Tr(e−βH) =
N∏

k=1

(1 + e−βλk),

where λk are the eigenvalues of H.
1A simple analogy is this: Consider numerical integration of f(x) on an interval a ≤ x ≤ b. The only

difference between the rectangle and trapezoidal rules is in their treatment of the boundary point contributions
f(a) and f(b), yet the integration error changes from linear in the mesh size to quadratic.
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Proof. Since H is Hermitian matrix, there exists a unitary matrix Q such that

Q∗HQ = Λ = diag(λk).

Let c̃ = Qc and ñi = c̃†i c̃i, then we have

H = c̃†Λc̃ =
N∑

i=1

λiñi.

Note that the ñi are independent, then

Tr(e−βH) = Tr

(
N∏

i=1

e−βλiñi

)
=

N∏
i=1

(1 + e−βλi), (1.2.8)

where the last equality can be obtained by an induction argument.
Note that the trace is independent of the basis functions. If we choose the eigen-functions

of the operator ñk as the basis functions, then by Lemma 1.2.1, the partition function Z is
given by

Z =
∏
k

(1 + eβεk).

Consequently, we have the exact expressions for the following physical observables E :
1. the density ρ, the average occupation of each site:

ρ = 〈n〉 = 〈ñ〉 = 1
N

N∑
k=1

〈ñk↑ + ñk↓〉 =
∑

k

(1 + eβεk)−1,

2. the energy E:

E = 〈H〉 =
1
N

∑
k

εk + μ

eβεk + 1
. (1.2.9)

Remark 1.2.5 It can be shown that the operators c̃k obey the same anticommutation relations
as the original operators ci. Hence they too appropriately describe electrons. Indeed, the
original operators create and destroy particles on particular spatial sites i while the new ones
create and destroy with particular momenta k. Either set is appropriate to use, however, the
interaction term in the Hubbard model is fairly complex when written in momentum space.

For the sake of completeness, let us write down the expression for the Green’s function.
This quantity plays a key role in the discussion of the matrices arising in the simulation which
follows

G�,n = 〈c�c†n〉 =
1
N

∑
k

eik·(n−�)(1− fk), (1.2.10)

where fk = 1/[1 + eβ(εk−μ)]. Notice that G is a function of the difference n − �. This is a
consequence of the fact that the Hamiltonian is translationally invariant, that is, with PBCs,
there is no special site which is singled out as the origin of the lattice. All sites are equivalent.
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Figure 1.2: Left: εk for U = 0 and μ = 0. Right: the contour plot of εk

At T = 0 (β =∞), the contours in the right side of Figure 1.2 separate the k values where
the states are occupied fk = 1 (inside the contour) from those where the states are empty
fk = 0 (outside the contour). The contour is often referred to as the “Fermi surface”. There is
actually a lot of interesting physics which follows from the geometry of the contour plot of εk.
For example, one notes that the vector (π, π) connects large regions of the contour in the case
when ρ = 1 and the contour is the rotated square connecting the points (π, 0), (0, π), (−π, 0),
and (0,−π). One refers to this phenomenon as “nesting” and to (π, π) as the “nesting wave
vector”. Because the Fermi surface describes the location where the occupation changes from
0 to 1, the electrons are most active there. If there is a wave vector k which connects big
expanses of these active regions, special order is likely to occur with that wave vector. Thus
the contour plot of εk is one way of understanding the tendency of the Hubbard model to have
antiferromagnetic order (magnetic order at k = (π, π) for half-filling.)

1.3 Determinant QMC

In this section, we develop a computable approximation of the distribution operator P in
(1.2.3) by using a discrete Hubbard-Stratonovich transformation, and then we derive a so-called
determinant QMC (DQMC) to generate samples that follow the distribution. For simplicity,
we will consider the chemical potential μ = 0 which corresponds to the important half-filled-
band case. It turns out that many of the most interesting phenomena of the Hubbard model,
like magnetic ordering and insulating-metal transition, occur at half filling.
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1.3.1 Computable approximation of distribution operator P
The gist of a computable approximation of the distribution operator P defined in (1.2.3) is
on the approximation of the partition function Z. Since the operators HK and HV do not
commute, we apply the Suzuki-Trotter decomposition to approximate Z. Specifically, divide
β into L smaller subintervals τ = β

L , then Z is approximated by

Z = Tr
(
e−βH

)
= Tr

(
L∏

�=1

e−τH
)

= Tr

(
L∏

�=1

e−τHKe−τHV

)
+O(τ2). (1.3.11)

Note that e−τHK is quadratic in the fermion operators and the operators for the spin-up
and spin-down operators are independent. Therefore, it can be recast as

e−τHK = e−τHK+e−τHK− ,

where the operators HK+ and HK− correspond to kinetic energy with spin-up and spin-down
respectively, and are of the forms

HK+ = t�c †↑K�c↑,

HK− = t�c †↓K�c↓.

On the other hand, the potential energy e−τHV is quartic in the fermion operators. We now
try to recast it in a quadratic form. First, note that the number operators ni are independent
on different sites, we have

e−τHV = e−Uτ
∑N

i=1(ni+− 1
2
)(ni−− 1

2
) =

N∏
i=1

e−Uτ(ni+− 1
2
)(ni−− 1

2
).

For treating the term e−Uτ(ni+− 1
2
)(ni−− 1

2
), we use the following so-called discrete Hubbard-

Stratonovich transformation. It replaces the interaction (potential energy) quartic terms
ni+ni− by quadratic ones ni+ − ni−.

Lemma 1.3.1 (Discrete Hubbard-Stratonovich transformation, [2, 4]). If U > 0, then

e−Uτ(ni+− 1
2
)(ni−− 1

2
) = C1

∑
hi=±1

eνhi(ni+−ni−), (1.3.12)

where C1 = 1
2e

−Uτ
4 and cosh ν = e

Uτ
2 .

Proof. On every site i, the particles have four possible states: |·〉, | ↑〉, | ↓〉 and | ↑↓〉. The
following table lists the actions of the operators (ni+ − 1

2)(ni− − 1
2 ) and (ni+ − ni−).
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(ni+ − 1
2)(ni− − 1

2 ) (ni+ − ni−)
|·〉 1

4 |·〉 0 |·〉
|↑〉 −1

4 |↑〉 |↑〉
|↓〉 −1

4 |↓〉 |↓〉
|↑↓〉 1

4 |↑↓〉 0 |↑↓〉

For the operator e−Uτ(ni+− 1
2
)(ni−− 1

2
):

e−Uτ(ni+− 1
2
)(ni−− 1

2
)ψ = e−

Uτ
4 ψ if ψ = |·〉 or | ↑↓〉,

and
e−Uτ(ni+− 1

2
)(ni−− 1

2
)ψ = e

Uτ
4 ψ if ψ = | ↑〉 or | ↓〉.

On the other hand, for the operator C1
∑

hi=±1 e
νhi(ni+−ni−):

C1

∑
hi=±1

eνhi(ni+−ni−)ψ = e−
Uτ
4 ψ and ψ = |·〉 or | ↑↓〉,

and
C1

∑
hi=±1

eνhi(ni+−ni−)ψ =
1
2
e−

Uτ
4 (eν + e−ν)ψ if ψ = | ↑〉 or | ↓〉.

Therefore if we let

cosh ν =
eν + e−ν

2
= e

Uτ
2 ,

then the discrete Hubbard-Stratonovich transformation (1.3.12) holds. �

Remark 1.3.1

• Note that in the proof, U is required to be positive, otherwise no real number ν exists
such that cosh ν = e

Uτ
2 .

• For U < 0, the Hubbard model is called the attractive Hubbard model. A similar discrete
Hubbard-stratonovich transformation also exists, see [5, 6].

• See [12, 16] for other kind of transformations treating the quartic term.

Let us continue to reformulate the term e−τHV . By the following discrete Hubbard-
Stratonovich transformation (1.3.12), we have2

e−τHV =
N∏

i=1

⎛⎝C1

∑
hi=±1

eνhi(ni+−ni−)

⎞⎠ . (1.3.13)

{hi} are so-called auxiliary Hubbard-Stratonovich variables, one for each spatial site. The
collection of all these variables is called the “Hubbard-Stratonovich field” or “configurations”.

2Here we switch the notation: ni+ = ni↑ and ni− = ni↓.
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For the sake of simplicity, let us consider the case N = 2 for the expression (1.3.13):

e−τHV = (C1)2

⎛⎝ ∑
hi=±1

eνhi(n1+−n1−)

⎞⎠⎛⎝ ∑
hi=±1

eνhi(n2+−n2−)

⎞⎠
= (C1)2

∑
hi=±1

e
∑2

i=1 νhi(ni+−ni−)

≡ (C1)2Trhe
∑2

i=1 νhi(ni+−ni−),

where the new notation Trh represents the sum for hi = 1,−1.
In general, we have

e−τHV = (C1)NTrhe
∑N

i=1 νhi(ni+−ni−)

= (C1)NTrh
(
e
∑N

i=1 νhini+e
∑N

i=1 −νhini−
)

≡ (C1)NTrh(eHV+ eHV− ), (1.3.14)

where HV+ and HV− correspond to spin-up and spin-down, respectively, and are of the forms

HV+ =
N∑

i=1

νhini+ = �c †+V (h)�c+,

HV− = −
N∑

i=1

νhini− = −�c †−V (h)�c−,

where V (h) is a diagonal matrix V (h) = ν · diag(h1, h2, . . . , hN ).

Taking into the account of the discretization of the inverse temperature β partitioned into L
“imaginary-time” slices, L = β/τ , the Hubbard-Stratonovich variables hi are changed to have
two subindices h�,i, where i is for the spatial site and � is for the time slice. Correspondingly,
the index � is also introduced for the diagonal matrix V and operators HVσ , i.e.,

hi −→ h�,i, V −→ V�, HVσ −→ H�
Vσ
.

Subsequently, by applying the Suzuki–Trotter approximation (1.3.11) and the expression (1.3.14)
and interchanging the traces, the partition function Z can be approximated by

Z = (C1)NLTrhTr

(
L∏

�=1

e−τHK+e
H�

V+

)(
L∏

�=1

e−τHK− e
H�

V−

)
. (1.3.15)

where for σ = ±,

HKσ = t�c †
σK�cσ,

H�
Vσ

= σ

N∑
i=1

νh�,ini+ = σ�c †
σV�(h�)�cσ
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and V�(h�) is a diagonal matrix V�(h�) = ν · diag(h�,1, h�,2, . . . , h�,N ).

Note that all operators HK+, HK− , H�
V + and H�

V − are quadratic in the fermion operators.
We now turn to an identity, referred to as Hirsch’s argument [4]3:

Hirsch’s argument. If operators H� are in the quadratic form of fermion opera-
tors

H� =
∑
i,j

c†i (H�)ijcj ,

where H� are matrices of real numbers. Then4,

Tr(e−H1e−H2 · · · e−HL) = det(I + e−HLe−HL−1 · · · e−H1). (1.3.16)

By using the identity (1.3.16), the partition function Z described in (1.3.15) is turned into
the following computable form

Zh = (C1)NLTrh det[M+(h)] det[M−(h)], (1.3.17)

where for σ = ± and h = (h1, h2, . . . , hL),

Mσ(h) = I +BL,σ(hL)BL−1,σ(hL−1) · · ·B1,σ(h1), (1.3.18)

B�,σ(h�) are N ×N matrices defined as

B�,σ(h�) = e−tτKeσV�(h�),

which correspond to operators e−τHKe−τH�
Vσ .

In summary, upto a constant, we have a computable approximation of the distribution
operator P:

P (h) =
1
Zh

det[M+(h)] det[M−(h)], (1.3.19)

which is referred to as a probability distribution function (pdf).

Remark 1.3.2 When U = 0, then ν = 0 and Mσ(h) is a constant matrix which does not depend
on the configuration h. The approximation by the Trotter decomposition is exact.

Remark 1.3.3 It is a rather amazing thing that a quantum problem can be re-written as a
classical one. The price for this is that the classical problem is in one higher dimension than
the original quantum one: the degrees of freedom in the quantum problem ci had a single
spatial index i while the Hubbard Stratonovich variables which replace them have an additional
‘imaginary time’ index �. This mapping is by no means restricted to the Hubbard Hamiltonian,
but is generally true for all quantum mechanics problems.

3We are not able to provide a rigorous full proof for this important identity. For the special case L = 1, the
result has been proven in Lemma 1.2.1.

4Note that while ”Tr” is over the quantum mechanical Hilbert space whose dimension is 4N , and the ”det”
is a usual determinant of a N × N matrix. By Pauli exclusion principle, there are 4 possible states in every
lattice: no electron, one electron with spin-up, one electron with spin-down and two electron with different spin.
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1.3.2 Generating states in determinant QMC

At this stage, the computational task becomes a classical Monte Carlo problem: compute
random variables h that follow the probability distribution function P (h), i.e.,

h ∼ P (h). (1.3.20)

The random variables h are referred to as the Hubbard-Stratonovich variables or configurations.
The dimension of the configuration sample space {h} is 2NL. For an efficient Monte Carlo
procedure there are two central questions:

1. How to move to a new configuration h′ from h?

A simple strategy is to flip only at one selected site (�, i)

h′�,i = −h�,i,

and leave the rest components of h unchanged.

2. How to ensure that the accepted sample configuration h follows the desired distribution
P (h)?

This is done by the Metropolis-Hasting algorithm, for example, see [9, p.111].

Combining the answers of these two questions, we have the following so-called determinant
QMC (DQMC) simulation, first presented in [2].
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DQMC:

1. initialize h = (h�,i) = (±1)

2. MC loop (= warmup + measurement steps)

(a) (�, i) loop:
i. set (�, i) = (1, 1)
ii. propose a new configuration h′ by spin-flipping at (�, i): h′�,i = −h�,i

iii. compute the Metropolis ratio

r�,i =
det[M+(h′)] det[M−(h′)]
det[M+(h)] det[M−(h)]

iv. accept or reject: generate a random number r ∼ Uniform[0, 1] and
update

h =

{
h′, if r ≤ min{1, r�,i}
h, otherwise.

v. update Green’s function G(h)(= M(h)−1), if “accepted”
vi. go to the next site (�, i), where
• If � = L and i = N, then � := 1, i = 1;
• If � < L and i = N , then � := �+ 1, i = 1;
• If i < N , then � := �, i := i+ 1.

(b) after the warmup steps, perform physical measurements, see section 1.3.3
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Note that the simple one-site update at the inner loop leads to a simple rank-one up-
dating in one of the block matrices B�,σ(h�). Based on this observation, one can efficiently
compute the Matropolis r�,i and update the Green’s function Gσ(h) = (Mσ(h))−1 for physical
measurements, see Appendix A for detail.

1.3.3 Physical measurements

How is the physics extracted from QMC simulations? Two of the most elementary physical
observables of interest are the density and kinetic energy, which can be obtained from the
single-particle Green’s function,

Gσ
ij = 〈ciσc†jσ〉

= (Mσ(h))−1
ij

= [I +BL,σ(hL)BL−1,σ(hL−1) · · ·B1,σ(h1)]
−1
ij .

The density of electrons of spin σ on site i is

ρi,σ = 〈ni,σ〉 = 〈c†i,σci,σ〉 = 1− 〈ci,σc†i,σ〉 = 1−Gσ
ii,

where the third identity arises from the use of the anticommutation relations in interchanging
the order of creation and destruction operators.

The Hubbard Hamiltonian is translationally invariant, so one expects ρi,σ to be independent
of spatial site i. Likewise, up and down spin species are equivalent. Thus to reduce the
statistical errors, one usually averages all the values and have the code report back

ρ =
1

2N

∑
σ

N∑
i=1

ρi,σ.

We will not emphasize this point further, but such averaging is useful for most observables. 5

As is true in any classical or quantum monte carlo, these expectation values are also averaged
over the sequence of Hubbard-Stratonovich configurations generated in the simulation.

The kinetic energy is obtained from the Green’s function for pairs of sites i, j which are
near neighbors,

〈HK〉 = −t 〈
∑
〈i,j〉,σ

(c†iσcjσ + c†jσciσ)〉 = +t
∑
〈i,j〉,σ

(Gσ
ij +Gσ

ji).

An extra minus sign arose from interchanging the fermion operator order so that the creation
operator was at the right.

Extended physical measurements. Interesting types of magnetic, charge, and supercon-
ducting order, and associated phase transitions, are determined by looking at correlation func-
tions of the form:

c(l) = 〈Oi+lO†
i 〉 − 〈Oi+l〉 〈O†

i 〉 (1.3.21)

where, for example,
5There are some situations where translation invariance is broken, for example if randomness is included in

the Hamiltonian.
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• for spin order in z direction (magnetism):

Oi = ni,↑ − ni,↓ O†
i = ni,↑ − ni,↓

• for spin order in x/y direction (magnetism):

Oi = c†i,↓ci,↑ O†
i = c†i,↑ci,↓

• for charge order:
Oi = (ni,↑ + ni,↓) O†

i = (ni,↑ + ni,↓)

• for pair order (superconductivity):

Oi = ci,↓ci,↑ O†
i = c†i,↑c

†
i,↓

In words, what such correlation functions probe is the relationship between spin, charge, pairing
on an initial site i with that on a site i+ l separated by a distance l. It is plausible that at high
temperatures where there is a lot of random thermal vibration, the values of O†

i and Oi+l will
not ‘know about’ each other for large l. In such a case, the expectation value 〈Oi+lO†

i 〉 factorizes
to 〈Oi+l〉 〈O†

i 〉 and c(l) vanishes. The more precise statement is that at high temperatures c(l)
decays exponentially, c(l) ∝ e−l/ξ. The quantity ξ is called the “correlation length”. On the
other hand, at low temperatures c(l) ∝ α2, a nonzero value, as l → ∞. The quantity α is
called the ‘order parameter’. 6

As one can well imagine from this description, one needs to be very careful in analyzing
data on finite lattices if the l→∞ behavior is what is crucial to determining the physics. The
techniques of ‘finite size scaling’ provide methods for accomplishing this.

How are these correlation functions actually evaluated? As commented above in describing
measurements of the density and kinetic energy, expectation values of two fermion operators are
simply expressed in terms of the Greens function G = M−1. The general rule for expectation
values of more than two fermion creation and destruction operators is that they reduce to
products of expectation values of pairs of creation and destruction operators, the famous
‘Wick’s Theorem’ of many body physics. For example, for spin order in the x/y direction,

〈c(l)〉 = 〈c†i+l,↓ci+l,↑c
†
i,↑ci,↓〉 = G↑

i+l,iG
↓
i,i+l. (1.3.22)

Similarly, for superconducting order,

〈c(l)〉 = 〈ci+l,↓ci+l,↑c
†
i,↑c

†
i,↓〉 = G↑

i+l,iG
↓
i+l,i. (1.3.23)

We conclude with two comments. First, it is useful to look at correlation functions where
the operators Oi+l and O†

i are separated in imaginary time as well as in space. We will come
to this point when we discuss measurements in the hybrid QMC algorithm. Second, one often
considers the Fourier transform of the real space correlation function S(q) =

∑
l e

iql c(l). This
quantity is often referred to as the ‘structure factor’, and is important because it is in fact the
quantity measured by experimentalists. (For example, the scattering rate of a neutron off the
electron spins in a crystal is proportional to S(q) where q is the change in momentum of the
neutron and the c(l) under consideration is the spin correlation function.)

6It is interesting to note what happens right at the critical point Tc separating the high temperature disordered
phase from the low temperature ordered one. In what are termed ‘second order’ phase transitions, the correlation
length diverges ξ ∝ 1/(T − Tc)

ν . Right at Tc the correlation function decays as a power law, c(l) ∝ 1/lη , a
behavior intermediate between its high temperature exponential decay and its low temperature nonzero value.
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1.4 Hybrid QMC

The procedure summarized in section 1.3.2 is the one used in most DQMC codes today. Many
interesting physical results have been obtained with it. However, it has a crucial limitation.
At the heart of the procedure is the need to compute determinants and inverses of matrices
which have a dimension the spatial size of the system, N . Thus the algorithm scales as N3.
In practice, this means simulations are limited to a few hundred sites. In order to circumvent
this bottleneck and develop an algorithm which potentially scales linearly with N , we can
reformulate our problem as the following:

1. replace the discrete Hubbard-Stratonovich field by a continuous one;

2. express the determinant of the dense N ×N matrices Mσ(h) as Gaussian integrals over
NL-dimensional sparse matrices.

We shall now describe each of these steps in detail.

1.4.1 Computable approximation of the distribution operator P
Instead of using discrete Hubbard-Stratonovich transformation as described in section 1.3.1,
one can use a continuous Hubbard-Stratonovich transformation to derive a computable ap-
proximation of the distribution operator P. First, recall the Stratonovich identity:

e
1
2
a2

=
1√
2π

∫ ∞

−∞
e−

1
2
x2−xadx

for any scalar a > 0.

Lemma 1.4.1 (Continuous Hubbard-Stratonovich transformation) For U > 0, we have

e−Uτ(ni+− 1
2
)(ni−− 1

2
) = C2

∫ ∞

−∞
e−τ [x2+(2U)

1
2 x(ni+−ni−)]dx, (1.4.24)

where C2 = (τ
1
2 e−

Uτ
4 )/π

1
2 .

Proof. It is easy to verify that

(ni+ − 1
2
)(ni− − 1

2
) = −1

2
(ni+ − ni−)2 +

1
4
.

Note that (ni+ − ni−)2 and ni+ − ni− can be diagonalized based on the eigen-states of the
operators niσ, then the Stratonovich identity holds if we replace the scalar α by the operator
ni+ − ni−:

e
Uτ
2

(ni+−ni−)2 =
1√
2π

∫ ∞

−∞
e−

1
2
x2−(Uτ)

1
2 (ni+−ni−)xdx.

Let x′ = x√
2τ

, we have

e
Uτ
2

(ni+−ni−)2 =
√
τ√
π

∫ ∞

−∞
e−τ(x2+(2U)

1
2 (ni+−ni−)x)dx.
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Combining the above equations, we obtain the identity (1.4.24). �

Returning to the approximation of the partition function Z by the Suzuki-Trotter decom-
position (1.3.11), by the continuous Hubbard-Stratonovich identity (1.4.24), we have

e−τH�
V = (C2)N

∫ +∞

−∞
e−τ

∑
i x2

�,ieτ
∑

i(2U)
1
2 x�,ini+e−τ

∑
i(2U)

1
2 x�,ini−dx�,i

≡ (C2)N
∫

[δx]e−SB(x)e
τH�

V+ e
τH�

V− ,

where

SB(x) = τ
∑
�,i

x2
�,i,

H�
V+

=
∑

i

(2U)
1
2x�,ini+ = �c †+V�(x�)�c+,

H�
V− = −

∑
i

(2U)
1
2x�,ini− = −�c †−V�(x�)�c−,

and V�(x�) is a diagonal matrix,

V�(x�) = (2U)
1
2 diag(x�,1, x�,2, . . . , x�,N ).

By an analogous argument as in section 1.3.1, we have the following approximation of the
partition function Z:

Z = Tr

(
L∏

�=1

e−τHKe−τHV

)

= (C2)NL

∫
[δx]e−SB(x)Tr

(
L∏

�=1

e−τHK+eτH
�
V +

)
Tr

(
L∏

�=1

e−τHK− eτH
�
V −

)
.

Note that all the operators e−τH�
K , e−τH�

V + and e−τH�
V − are quadratic in the fermion operators.

Then by the Hirsch’s argument (1.3.16), we derive the following expression for calculating the
partition function Z:

Zx = (C2)NL

∫
[δx]e−SB(x) det

(
I +

L∏
�=1

etτKeτVl(x�)

)
det

(
I +

L∏
�=1

etτKe−τV�(x�)

)

= (C2)NL

∫
[δx]e−SB(x) det[M+(x)] det[M−(x)], (1.4.25)

where for σ = ±,
Mσ(x) = I +BL,σ(xL)BL−1,σ(xL−1) · · ·B1,σ(x1), (1.4.26)

and
B�,σ(x�) = etτKeστV�(x�). (1.4.27)
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By a so-called particle-hole transformation (see Appendix B), we have

det[M−(x)] = e−τ(2U)
1
2
∑

�,i x�,i det[M+(x)]. (1.4.28)

Therefore, the integrand of Zx in (1.4.25) is positive definite7

Consequently, up to a constant, a computable approximation of the distribution operator
P is given by

P (x) =
1
Zx
e−SB(x) det[M+(x)] det[M−(x)]. (1.4.29)

P (x) is referred to as a probability distribution function (pdf).

1.4.2 Hybrid QMC

The computational task becomes how to compute random variables x that follow the proba-
bility distribution function P (x):

x ∼ P (x), (1.4.30)

where x is referred to as the configurations, or a continue Hubbard-Stratonovich variable.
To develop an efficient Monte Carlo method for (1.4.30), we reformulate the pdf P (x).

First, let us recall the following two facts:

1. Let Mσ(x) denote a L× L block matrix8

Mσ(x) =

⎡⎢⎢⎢⎢⎢⎣
I B1,σ(x1)

−B2,σ(x2) I
−B3,σ(x3) I

. . . . . .
−BL,σ(xL) I

⎤⎥⎥⎥⎥⎥⎦ (1.4.31)

≡ I −K[L]V[L](x)Π, (1.4.32)

where B�,σ(x�) are N ×N matrices as defined in (1.4.27).

K[L] = diag(etτK , etτK , . . . , etτK),

V[L](x) = diag(e−στV1(x1), e−στV2(x2), . . . , e−στVL(xL))

and

Π =

⎡⎢⎢⎢⎣
0 −I
I 0

. . . . . .
I 0

⎤⎥⎥⎥⎦ .
7Note that we assume that μ = 0 (half-filling case). Otherwise, there exists “sign problem”: P (x) may be

negative and can not be used as a probability distribution function.
8We use the same notation Mσ(x) to denote the N ×N matrix as defined in (1.4.26), and NL×NL matrix

as defined in (1.4.31). It depends on the context which one we should use.
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Then9

det[Mσ(x)] = det[I +BL,σ(xL)BL−1,σ(xL−1) · · ·B1,σ(x1)]. (1.4.33)

2. If A is a N ×N symmetric and positive definite matrix, then10.∫
e−vT A−1vdv = (

√
π)N det(A

1
2 ), (1.4.34)

The identity can be proven by using the eigendecomposition of A.

Now, by introducing two auxiliary scalar fields Φσ for σ = ±, we have

|det[Mσ(x)]| = det
[
MT

σ (x)Mσ(x)
] 1

2 = π−
NL
2

∫
e−ΦT

σ O−1
σ (x)Φσ , (1.4.35)

where
Oσ(x) = Mσ(x)TMσ(x).

By combining (1.4.25) and (1.4.35), we see the expression (1.4.25) of the partition function
Zx can be recast as the following11

Zx = (C2)NL

∫
[δx]e−SB(x) det[M+(x)] det[M−(x)]

=
(
C2

π

)NL ∫
[δxδΦ+δΦ−]e−(SB(x)+ΦT

+O−1
+ (x)Φ++ΦT

−O−1
− (x)Φ−)

≡
(
C2

π

)NL ∫
[δxδΦσ ]e−V (x,Φσ),

where
V (x,Φσ) = SB(x) + ΦT

+O
−1
+ (x)Φ+ + ΦT

−O
−1
− (x)Φ−. (1.4.36)

Now let us consider how to move the configuration x which satisfies the distribution:

P (x,Φσ) ∝ 1
Zx
e−V (x,Φσ).

Similar to the DQMC method, for each Monte Carlo step, one can try to move x = {x�,i} at
every spatial site i and imaginary time �. An alternative efficient way is to move the entire
configuration x by adding a Gaussian noise

x −→ x+ Δx
9The identity can be easily derived based on the following observation: If a matrix A is a 2× 2 block matrix,

A =

[
A11 A12

A21 A22

]
,

then det(A) = det(A22) det(F11) = det(A11) det(F22), where F11 = A11 − A12A
−1
22 A21 and F22 = A22 −

A21A
−1
11 A12

10The identity can be proven by using the eigen-decomposition of A. For example, see page 97 of [R. Bellman,
Introduction to Matrix Analysis, SIAM Edition, 1997]

11Here we assume that detMσ(x) is positive. Otherwise, we will have the so-called “sign problem”.
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where
Δx = −∂V (x,Φσ)

∂x
Δt+

√
Δtwt,

Δt is one parameter with small value, and wt follows a Gaussian distribution. This method is
called Langevin-Euler moves, for example, see [9, p.192].

Spurred by the popularity of the molecular dynamics (MD) method, Scalettar et al [14]
proposed a hybrid method to move x by combining Monte Carlo and molecular dynamics (MD),
which is referred to as a Hybrid Quantum Monte Carlo (HMQC) simulation. In HQMC, an
additional auxiliary momentum field p = {p�,i} is introduced. By the identity∫ ∞

−∞
ez

2
dz =

√
π,

we see that the partition function Zx can be rewritten as

Zx =
(
C2

π

)NL ∫
[δxδΦσ ]e−V (x,Φσ)

= (C2)NLπ−
3NL

2

∫
[δxδpδΦσ ]e−(

∑
�,i p2

�,i+V (x,Φσ))

≡ (C2)NLπ−
3NL

2

∫
[δxδpδΦσ ]e−H(x,p,Φσ) ≡ ZH ,

where
H(x, p,Φσ) = pT p+ V (x,Φσ). (1.4.37)

In summary, we seek the field configurations {x, p,Φσ} that obey the following probability
distribution:

{x, p,Φσ} ∼ P (x, p,Φσ) =
1
ZH

e−H(x,p,Φσ), (1.4.38)

The hybrid Monte Carlo (HMC) combines the ideas of MD and the Metropolis acceptance-
rejection rule to produce Monte Carlo samples from the target distribution (1.4.38).

1. Φσ is updated by simple MC:
Φσ = MT

σ Rσ.

where Rσ are two vectors of Gaussian random number, each component of which has a
probability distribution proportional to exp(−R2

i,σ).

2. (x, p) is updated by MD:

Take the current x as an initial value x(0), and set p(0) whose entries p�,i are Gaussian
random numbers with probability distribution proportional to exp(−p2

�,i).

Then we move to a new configuration (x(T ), p(T )) satisfying the Hamiltonian equations

ṗ�,i = − ∂H

∂x�,i
= − ∂V

∂x�,i
, (1.4.39)

ẋ�,i =
∂H

∂p�,i
= 2p�,i (1.4.40)
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Note that the fields Φσ and p are auxiliary fields. We first fix the fields Φσ, vary the fields
p, and move (x, p) together. It is possible to use different moving order. We also note that
from Liouville’s theorem, see [1, Chap.3] or [11, Chap.2], we move along a trajectory in which
both H and the differential volume element in phase space are constant and the system is
equilibrium.

The leap-frog method, for example see [3], is a simple and efficient numerical method
to move the configuration (x(0), p(0)) to (x(T ), p(T )) satisfying the Hamiltonian equations
(1.4.39) and (1.4.40).

For a small time step Δt, a molecular dynamics step keeps H constant. One can view this
as a type of Monte Carlo move in which the energy does not change. The Metropolis algorithm
tells us such a move should be accepted with probability one. Unfortunately, we have to use
finite Δt and so H is not precisely constant. In order to keep the simulation from being biased
by this fact, we need to use a Metropolis acceptance-rejection step.

The following is an outline of the Hybrid Quantum Monte Carlo (HQMC) method.
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HQMC

1. Initialize

• x(0) = 0,
• Φσ = MT

σ (x(0))Rσ , where the entries R�,i of the vector Rσ are Gaus-
sian random numbers with the probability distribution proportional to
exp(−R2

i,σ).

2. MC loop (total number of MC steps = warmup steps + measurement steps)

(a) MD: x(0) −→ x(T ) by the leap-frog method, with stepsize Δt.
i. Initialize p: p(0) = (p�,i), where p�,i are Gaussian random numbers

with probability distribution proportional to exp(−p2
i,l). and then p

is evolved through a half time step 1
2Δt:

p�,i(
1
2
Δt) = p�,i(0)− ∂V (x(0),Φσ)

∂x�,i

(
1
2
Δt
)
.

ii. Perform MD steps:

x�,i(t+ Δt)− xi,l(t) = 2p�,i(t+
1
2
Δt)Δt,

p�,i(t+
3
2
Δt)− p�,i(t+

1
2
Δt) = −∂V (x(t+ Δt),Φσ)

∂x�,i
Δt.

(b) Metropolis acceptance-rejection: generate a random number r ∼ Uniform[0, 1]
and update

x(T ) =

{
x(T ), if r ≤ min

{
1, e−H(x(T ),p(T ),Φσ)

e−H(x(0),p(0),Φσ)

}
x(0), otherwise.

(c) Perform heat-bath step: Φσ = MT
σ (x(T ))Rσ , where the entries R�,i of the

vector Rσ are Gaussian random numbers with the probability distribution
proportional to exp(−R2

i,σ),
(d) Perform physical measurements, after warmup steps
(e) set x(0) := x(T ), goto MD step.



25

Remark 1.4.1 The Langevin-Euler update is equivalent to a single-step HQMC move [9]. The
MD and Langevin are two alternate methods which both have the virtue of moving all the
variables together. Which is better depends basically on which allows the larger step size, the
fastest evolution of the Hubbard-Stratonovich fields to new values.

To this end, let us consider how to compute the force term ∂V (x,Φσ)
∂x�,i

. By the definition of
V (x,Φσ) in (1.4.36), we first examine

∂[ΦT
σO

−1
σ (x)Φσ]
∂x�,i

= −ΦT
σO

−1
σ (x)

∂Oσ(x)
∂x�,i

O−1
σ (x)Φσ = −XT

σ

∂Oσ(x)
∂x�,i

Xσ ,

where Xσ = O−1
σ (x)Φσ . Since Oσ(x) = MT

σ (x)Mσ(x), it follows that

XT
σ

∂Oσ(x)
∂x�,i

Xσ = 2(Mσ(x)Xσ)T
∂Mσ(x)
∂x�,i

Xσ.

By the expression (1.4.32) of the matrix Mσ(x), we have

∂Mσ(x)
∂x�,i

= −K[L]

∂V[L](x)
∂x�,i

Π.

Note that V[L](x) is a diagonal matrix, and only the (�, i)-diagonal element v�,i,σ = exp(−στ(2U)
1
2x�,i)

depends on x�,i, therefore, we have

XT
σ

∂Oσ(x)
∂x�,i

Xσ = −2
∂v�,i,σ

∂x�,i
(KT

[L]Mσ(x)Xσ)�,i(ΠXσ)�,i.

Therefore, we have

∂V (x,Φσ)
∂x�,i

= 2τx�,i − 2(2U)
1
2 τv�,i,+(KT

[L]M+(x)O−1
+ (x)Φ+)�,i(ΠO−1

+ (x)Φ+)�+1,i

+ 2(2U)
1
2 τv�,i,−(KT

[L]M−(x)O−1
− (x)Φ−)�,i(ΠO−1

− (x)Φ−)�+1,i.

1.4.3 Physical measurements

In section 1.3.3 we described how measurements are made in a determinant QMC code. The
procedure in hybrid QMC is identical in that one expresses the desired quantities in terms of
precisely the same products of Green’s functions. The only difference is that these Green’s
functions are obtained from products of the vectors instead of directly from a matrix for G.
The basic identity is this:

2 〈Xσ,iRσ,j〉 ↔ (Mσ)−1
i,j = Gσ

ij . (1.4.41)

This follows from the fact that

Xσ = O−1
σ (x)Φσ = M−1

σ (x)Rσ

and that the components Ri of Rσ are independently distributed Gaussian random numbers
〈RiRj〉 = 1

2δi,j.
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Hence, the expression for the spin-spin correlation function would become

〈c(l)〉 = 〈c†i+l,↓ci+l,↑c
†
i,↑ci,↓〉 = G↑

i+l,iG
↓
i,i+l ↔ 4 〈R↑,i+lX↑,iR↓,iX↓,i+l〉. (1.4.42)

The only point to be cautious of concerns the evaluation of expectation values of four
fermion operators if the operators have the same spin index. There it is important that two
different vectors of random numbers are used: Rσ,Xσ and R′

σ,X
′
σ . Otherwise the averaging

over the Gaussian random numbers generates additional, unwanted, values: 〈RiRjRkRl〉 =
1
4(δi,jδk,l + δi,kδj,l + δi,lδj,k), whereas 〈R′

iR
′
jRkRl〉 = 1

4δi,jδk,l.
It should be apparent that if the indices i and j are in the same N dimensional block, we

get the “‘equal-time” Green’s function

Gσ = M−1
σ = [I +BL,σBL−1,σ · · ·B1,σ]−1, (1.4.43)

which is the quantity used in traditional determinant QMC.
However, choosing i, j in different N dimensional blocks, we can also access the non-equal

time Green’s function,

G�1,i;�2,j = 〈ci(�1)c†j(�2)〉 = (B�1B�1−1 · · ·B�2+1(I +B�2 · · ·B1BL · · ·B�2+1)−1)ij .

At every measurement step in the HQMC simulation, the equal-time Green’s function
Gij can be obtained from the diagonal block of M−1

σ and the unequal-time Green’s function
G�1,i;�2,j can be computed from the (�1, �2) block submatrix of M−1

σ .
As we already remarked in describing the measurements in determinant QMC, it is often

useful to generalize the definition of correlation functions so that the pair of operators are
separated in imaginary time as well as spatially. The values of the non-equal time Greens
function allow us to evaluate these more general correlation functions c(l, τ). To motivate
their importance we comment that just as the structure factor S(q), the Fourier transform
of the real space correlation function c(l), describes the scattering of particles with change
in momentum q, the Fourier transform of c(l, τ) into what is often called the susceptibility
χ(q, ω), tells us about scattering events where the momentum changes by q and the energy
changes by ω.
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1.5 Appendix A Updating Algorithm in DQMC

In this appendix, we discuss the single-state MC updating algorithm to provide a fast means
to compute the Metropolis ratio in DQMC, as described in section 1.3.2.

A.1 Rank-one updates

Consider matrices M1 and M2 of the forms

M1 = I + FV1 and M2 = I + FV2,

where F is a given matrix. V1 and V2 are diagonal and nonsingular, and moreover, they differ
only at the (1,1)-element, i.e.,

V −1
1 V2 = I + α1e1e

T
1 , α1 =

V2(1, 1)
V1(1, 1)

− 1,

where e1 is the first column of the identity matrix I.
It is easy to see that M2 is a rank-one update of M1:

M2 = I + FV1 + FV1(V −1
1 V2 − I)

= M1 + α1(M1 − I)e1eT1
= M1

[
I + α1(I −M−1

1 )e1eT1
]
.

Therefore, the ratio of the determinants of the matrices M1 and M2 are given by12

r1 =
detM2

detM1
= 1 + α1(1− eT1M−1

1 e1). (1.5.44)

Therefore, computing the ratio r1 is essentially about computing the (1,1)-element of the
inverse of the matrix M1.

By Sherman-Morrison formula, we see that the inverse of the matrix M2 is a rank-one
update of M−1

1 :

M−1
2 =

[
I − α1

r1
(I −M−1

1 )e1eT1

]
M−1

1 = M−1
1 −

(
α1

r1

)
u1v

T
1 , (1.5.45)

where the vectors u1 and v1 are defined by u1 = (I −M−1
1 )e1 and v1 = M−T

1 e1.

Now, let us consider a sequence of matrices Mi+1 generated by the rank-one update:

Mi+1 = I + FVi+1

where
V −1

i Vi+1 = I + αieie
T
i , αi =

Vi+1(i, i)
Vi(i, i)

− 1.

12Here we use the fact that det(I + xyT ) = 1 + yT x for any two column vectors x and y.
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for i = 1, 2, . . . , n− 1. Then by equation (1.5.44), we immediately have

ri =
detMi+1

detMi
= 1 + αi(1− eTi M−1

i ei),

and

M−1
i+1 = M−1

i −
(
αi

ri

)
uiv

T
i ,

where ui = (I −M−1
i )ei and vi = M−T

i ei.
Denote

Uk = [u1, u2, · · · , uk−1] and W = [w1, w2, · · · , wk−1].

then it is easy to see that the inverse of Mk can be written as a rank-(k − 1) update of M−1
1 :

M−1
k = M−1

1 − Uk−1DkW
T
k−1.

where Dk = diag(α1
r1
, α2

r2
, . . . ,

αk−1

rk−1
).

Remark 1.5.1 The discussion on the stability of such continuous updating can be found in
[G.W.Stewart, Modifying pivot elements in Gaussian Elimination, Math. Comp., 28 (126)(1974),
pp.537-542] and [E.L.Yip, A note on the stability of solving a rank-p modification of a linear
system by the Sherman-Morrison-Woodbury formula, SIAM J.Sci.Stat.Comput., 7(2)(1986),
pp.507-513].

A.2 Computing the Metropolis ratio and updating the Green’s function

As we discussed in section 1.3.2, in the DQMC, it is necessary to repeatedly compute the
Metropolis ratio

r =
det[M+(h′)] det[M−(h′)]
det[M+(h)] det[M−(h)]

,

for configurations h′ and h, where Mσ(h) is defined in (1.3.18), namely

Mσ(h) = I +BL,σ(hL)BL−1,σ(hL−1) · · ·B2,σ(h2)B1,σ(h1).

Note that h = (h1, h2, . . . , hL), h′ = (h′1, h′2, . . . , h′L), and each h� or h′� is a N -length vector.
The Green’s function associated with the configuration h is defined as

Gσ(h) = M−1
σ (h)

DQMC update of configuration h. We consider the DQMC simulation where the elements
of configurations h′ and h are the same except at the imaginary time slice � and spatial site i:

h′�,i = −h�,i,

i.e., configuration h′ is obtained by a simple flip at (�, i). This update is done for � = 1, 2, . . . , L
and i = 1, 2, . . . , N .

Let us start with the imginary time slice � = 1:
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• at the spatial site i = 1:
h′1,1 = −h1,1.

By the relationship between Mσ(h′) and Mσ(h) and equation (1.5.44), one can derive
that the Metropolis ratio r11 is given by

r11 = d+d−, (1.5.46)

where for σ = ±,

dσ = 1 + α1,σ

(
1− eT1 M−1

σ (h)e1
)

= 1 + α1,σ (1− (Gσ(h))11) ,

and
α1,σ = e−2σνh1,1 − 1.

Therefore, the gist of computing the Metropolis ratio r11 is to compute the (1, 1)-element
of the inverse of the matrix Mσ(h).

If the Green’s function Gσ(h) has been computed explicitly in advance, then it is essen-
tially “free” to compute the ratio r11. In this case, if the proposed h′ is accepted, then
by the equality (1.5.45), the Green’s function Gσ(h) is updated by a rank-one matrix:

Gσ(h)← Gσ(h) − α1,σ

r11
uσw

T
σ .

where
uσ = (I −Gσ(h))e1 and wσ = GT

σ (h)e1.

• At the site i = 2:
h′1,2 = −h1,2.

By the similar derivation as for the previous case (�, i) = (1, 1), we have

r12 = d+d−, (1.5.47)

where for σ = ±,

dσ = 1 + α2,σ (1− (Gσ(h))12) , α1,σ = e−2σh1,2 − 1.

Correspondingly, if necessary, the Green’s function is updated by the rank-one matrix

Gσ(h)← Gσ(h) − αi

r12
uσw

T
σ .

where
uσ = (I −Gσ(h))e1 and wσ = GT

σ (h)e1.

• It is immediately seen that for the time slice � = 1, we can use same procedure for
computing the Metropolis ratios r1i for i = 3, 4, . . . , N , and updating the Green’s function
Gσ(h).
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• For high performance computing, one may delay the update of the Green’s functions t
to lead to a block high rank update, instead of rank-one update. There is a so-called
“delayed update” technique.

Now, let us consider how to do the DQMC configuration update for the time slice � = 2.
We first notice that the matrices Mσ(h) and Mσ(h′) can be rewritten as

Mσ(h) = B−1
1,σ(h1)M̂σ(h)B1,σ(h1)

Mσ(h′) = B−1
1,σ(h′1)M̂σ(h′)B1,σ(h′1)

where

M̂σ(h) = I +B1,σ(h1)BL,σ(hL)BL−1,σ(hL−1) · · ·B2,σ(h2)

M̂σ(h′) = I +B1,σ(h′1)BL,σ(h′L)BL−1,σ(h′L−1) · · ·B2,σ(h′2).

Consequently, the Metropolis ratio r can be written as

r2i =
det[M+(h′)] det[M−(h′)]
det[M+(h)] det[M−(h)]

=
det[M̂+(h′)] det[M̂−(h′)]
det[M̂+(h)] det[M̂−(h)]

.

and the associated Green’s function is updated via a “wrapping”:

Ĝσ(h)← B−1
1,σ(h1)Gσ(h)B1,σ(h1).

We see now that the configurations h2 and h′2 associated with the time slice � = 2 appear
at the same location as the the configurations h1 and h′1 at the time slice � = 1. Therefore, we
can use the same formulation as for the time slice � = 1 to compute the Metropolis ratios r2i

and update the associated Greent’s functions.
When � ≥ 3, it is clear that we can repeat the previous discussion for computing the

Metropolis ratios r�i iand updating the associated Green’s function for the time slices � =
3, 4, . . . , L, and the spatial sites i = 1, 2, . . . , N .

Remark 1.5.2 As we noticed that the main computing costs is on the updating of Green’s
functions. It costs 2N2 flops at each spatial site i. The total cost of one-loop (for the flippings
of all NL sites) is O(2N3L).

One important problem is how to numerically stable and efficient to compute the initial
Green’s function Gσ(h), and to recompute the Green’s functions after a certain number of
updating steps for numerical accuracy. The QR decomposition with pivoting is currently used
in the DQMC implementation [10].
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1.6 Appendix B Particle-Hole Transformation

In this appendix, we give an algebraic derivation for the so-called particle-hole transformation.

B.1 Algebraic identities

we first present a few algebraic identities.

Lemma 1.6.1 For any nonsingular matrix A,

(I +A−1)−1 = I − (I +A)−1.

Lemma 1.6.2 Let the matrices A� be symmetric and nonsingular for � = 1, 2, · · · ,m, then

(I +A−1
m A−1

m−1 · · ·A−1
1 )−1 = I − (I +AmAm−1 · · ·A1)−T .

Theorem 1.6.1 For any square matrices A and B, if there exists a nonsingular matrix Π
such that

ΠA+AΠ = 0 and ΠB −BΠ = 0,

namely, Π anti-commutes with A and commutes with B. Then we have

(I + eA−B)−1 = I −Π−1(I + eA+B)−1Π (1.6.48)

and
det(I + eA−B) = eTr(A−B) det(I + eA+B) (1.6.49)

Proof. First, we prove the inverse identity (1.6.48),

(I + eA−B)−1 = I − (I + e−A+B)−1 = I − (I + eΠ
−1(A+B)Π)−1

= I − (I + Π−1eA+BΠ)−1 = I −Π−1(I + eA+B)−1Π.

Now, let us prove the determinant identity (1.6.49). Note that

I + eA−B = eA−B(I + e−(A−B)) = eA−B(I + e−A+B)

= eA−B(I + eΠ
−1AΠ+Π−1BΠ) = eA−B(I + Π−1eA+BΠ)

= eA−BΠ−1(I + eA+B)Π.

Hence, we have

det(I + eA−B) = det eA−B · detΠ−1 · det(I + eA+B) · detΠ
= eTr(A−B) det(I + eA+B).

For the last equality, we used the identity det eW = eTrW for any square matrix W .
The following theorem gives the relations of the inverses and determinants of the matrices

I + eAe−B and I + eAeB .
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Theorem 1.6.2 For symmetric matrices A and B, if there exists a nonsingular matrix Π such
that

ΠA+AΠ = 0 and ΠB −BΠ = 0.

Then we have
(I + eAe−B)−1 = I −Π−T (I + eAeB)−T ΠT (1.6.50)

and
det(I + eAe−B) = eTr(A−B) det(I + eAeB) (1.6.51)

The following theorem is a generalization of Theorem 1.6.2.

Theorem 1.6.3 Let Mσ = I + eAeσBkeAeσBk−1 · · · eAeσB1 , where A and {B�} are symmetric,
σ = +,−. If there exists a nonsingular matrix Π that anti-commutes with A and commutes
with B�, i.e.,

ΠA+AΠ = 0 and ΠB� −B�Π = 0 for � = 1, 2, . . . , k.

Then we have
M−1

− = I −Π−TM−T
+ ΠT (1.6.52)

and
det(M−) = ekTr(A)−∑k

�=1 Tr(B�) det(M+) (1.6.53)

The following theorem is another generalization of Theorem 1.6.2.

Theorem 1.6.4 Let A and B be symmetric matrices, and W be a nonsingular matrix. If
there exists a nonsingular matrix Π such that it anti-commutes with A and commutes with B,
i.e.,

ΠA+AΠ = 0 and ΠB −BΠ = 0

and furthermore, it satisfies the identity

Π = WΠW T .

Then
(I + eAe−BW )−1 = I −Π−T (I + eAeBW )−TΠT (1.6.54)

and
det(I + eAe−BW ) = eTr(A−B) · detW · det(I + eAeBW ) (1.6.55)
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B.2 Particle-hole transformation in DQMC

1-D lattice. Consider the simple 1-D lattice with Nx site, with

Kx =

⎡⎢⎢⎢⎢⎢⎣
0 1 1
1 0 1

1 0 1
. . . . . . . . .

1 1 0

⎤⎥⎥⎥⎥⎥⎦
Nx×Nx

.

and Nx ×Nx diagonal matrices V� for � = 1, 2, . . . , L.
If Nx is even, then the matrix

Πx = diag(1,−1, 1,−1, . . . , 1,−1)

is anti-commutible with Kx and is commutible with V�, i.e.,

ΠxKx +KxΠx = 0 and ΠxV� − V�Πx = 0 for � = 1, 2, . . . , L.

Then by Theorem 1.6.3, the determinants of the matrices M− and M+ satisfy the relation

det(M−) = e−
∑L

�=1 Tr(V�) det(M+).

For the Green’s functions:

Gσ = M−1
σ = (I + eτtKxeσVLeτtKxeσVL−1 · · · eτtKxeσV1)−1

where σ = + or −, we have
G− = I −ΠxG

T
+Πx.

This is referred to as the particle-hole transformation in the condensed matter physics litera-
ture.

2-D rectangle lattice. Consider a 2-D rectangle lattice with Nx ×Ny sites, where

K = Kx ⊗ I + I ⊗Ky.

and NxNy ×NxNy diagonal matrices V� for � = 1, 2, . . . , L.
If Nx and Ny are even, then the matrix

Π = Πx ⊗Πy

is anti-communtible with K and is communtible with V�:

ΠK +KΠ = 0 and ΠV� − V�Π = 0 for � = 1, 2, . . . , L.

Then by Theorem 1.6.3, we have

det(M−) = e−
∑L

�=1 Tr(V�) det(M+).
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This is the identity we used in equation (1.4.28). Furthermore, for the Green’s functions:

Gσ = M−1
σ = (I + eτtKeσVLeτtKeσVL−1 · · · eτtKeσV1)−1

where σ = + (spin up) or − (spin down), we have

G− = I −ΠGT
+Π.

This is referred to as the particle-hole transformation in the condensed matter physics litera-
ture.

B.3 Particle-hole transformation in HQMC

In the HQMC, we consider the matrix Mσ of the form

Mσ =

⎡⎢⎢⎢⎢⎢⎣
I eτtKeσV1

−eτtKeσV2 I
−eτtKeσV2 I

. . . . . .
−eτtKeσVL I

⎤⎥⎥⎥⎥⎥⎦ = I + eAeσDP

where A = diag(τtK, τtK, . . . , τ tK) and D = diag(V1, V2, . . . , VL) and

P =

⎡⎢⎢⎢⎢⎢⎣
0 I
−I 0

−I 0
. . . . . .

−I 0

⎤⎥⎥⎥⎥⎥⎦ .

It can be verify that for the 1-D or 2-D rectangle lattices, i.e., K = Kx or K = Kx⊗I+I⊗Ky

as defined in B.2, the matrix
Π = I ⊗Πx (1-D)

or
Π = I ×Πx ⊗ Py (2-D)

anti-commutes with A and commutes with D, i.e.,

ΠA+AΠ = 0, ΠD −DΠ = 0,

and furthermore, it satisfies
Π = PΠP T .

Then by Theorem 1.6.4, the determinants of M+ and M− are related by

det(M−) = e−
∑L

�=1 Tr(V�) · det(M+).

Note that detP = 1.
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The Green’s functions G+ = M−1
+ and G− = M−1

− satisfy the relation

G− = I −ΠGT
+Π.

Note that detP = 1.

B.4 An open problem

Beside the 1-D and 2-D rectangle lattices, namely the lattice structure matrices Kx and
K as defined in B.2, are there other types of lattices (and associated structure matrices K)
such that we can apply Theorems 1.6.4 to establish the relationships between the inverses and
determinants in the DQMC? It is known that for the honeycomb lattices, it is true, but for
the triangle lattices, it is false.

A similar question is also valid for the HQMC.

B.5 Some useful basic identities

1. In general, eA+B �= eAeB , and eAeB �= eBeA.

2. (eA)−1 = e−A for every nonsingular matrix A

3. eP
−1AP = P−1eAP

4. (eA)H = eA
H

for every square matrix A

eA is Hermitian of A is Hermitian

eA is unitary of A is skew-Hermitian

5. det eA = eTrA for every square matrix A

6. eA⊗I+I⊗B = eA ⊗ eB
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Lecture 2

Hubbard matrix analysis

For developing robust and efficient algorithmic techniques and high performance software for
the QMC simulations described in the previous lecture, it is important to understand math-
ematical and numerical properties of the underlying matrices, referred to as the Hubbard
matrices, such as eigenvalue distribution and condition number. In this lecture, we study the
dynamics and transitional behaviors of the properties of Hubbard matrices as functions of
multiscale parameters.

2.1 Hubbard matrices

To simplify the notation, we write the matrix M introduced in the HQMC simulation of
Lecture 1 as

M =

⎡⎢⎢⎢⎢⎢⎣
I B1

−B2 I
−B3 I

. . . . . .
−BL I

⎤⎥⎥⎥⎥⎥⎦ , (2.1.1)

and refer to it as “Hubbard matrix”, where

• I is a N ×N unit matrix,

• B� is an N ×N matrix of the form

B� = etτKeV� . (2.1.2)

• scalar t is a hopping parameter and τ = β
L ,

• K is a matrix describing lattice structure,

• V� is an N ×N diagonal matrix, V� = ν · diag(h�,1, h�,2, . . . , h�,N ), and ν is a parameters
defined by cosh ν = e

Uτ
2 . Note that ν = (τU)

1
2 + 1

12(τU)
3
2 +O((τU)2).

• {h�,j} are random variables, referred to as Hubbard-Stratonovich field or configurations.
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The Hubbard matrix M can be compactly written as

M = INL − diag(B1, B2, . . . , BL)Π (2.1.3)

or
M = INL − (IN ⊗B)D[L](P ⊗ IN ), (2.1.4)

where IN and INL are N ×N and NL×NL unit matrices, respectively,

P =

⎡⎢⎢⎢⎣
0 −1
1 0

. . . . . .
1 0

⎤⎥⎥⎥⎦ , Π = P ⊗ IN =

⎡⎢⎢⎢⎣
0 −IN
IN 0

. . . . . .
IN 0

⎤⎥⎥⎥⎦ .
and

B = etτK ,

D[L] = diag(eV1 , eV2 , . . . , eVL).

The Hubbard matrix M displays multi-length scale properties, since the dimensions and
properties of M are characterized by multiple length and energy parameters, and random
variables. Specifically, we have

• Length parameters: N and L

– N is the spatial size. If the density ρ is given, N also measures the number of
electrons being simulated.

– L is the number of blocks, it is set by the inverse of the temperature.

• Energy-scale parameters: t, U and β

– t determines the hopping of electrons between different atoms in the solid and thus
measures the material’s kinetic energy.

– U measures the strength of the interactions between the electrons, that is the po-
tential energy.

– β is the inverse-temperature.

• The parameter connecting length and energy scales: τ = β/L.

– τ is a discretization parameter, a measure of the accuracy of the Suzuki-Trotter
decomposition.

• Configuration random variables h�,j.

In more complex situations other energy scales also enter, such as the frequency of ionic
vibrations (phonons) and the strength of the coupling of electrons to those vibrations.

In summary, the matrix M has the following features.
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Figure 2.1: A typical MD trajectory in a HQMC simulation.

• M incorporates multiple structural scales: The inverse temperature β determines the
number of blocks L = β/τ , where τ is a discretization stepsize. Typically L = 10 to
102. The dimension of the individual blocks is set by N the number of spatial sites. In
a typical 2D simulations N = Nx × Ny ∝ 102 ∼ 103. Thus the dimension of the M is
104 ∼ 105.

• M incorporates multiple energy scales: The parameter t determines the kinetic energy
of the electrons, and the interaction energy scale U determines the potential energy.

• M is a function of NL random variables h�i, the so-called Hubbard-Stratonovich field.
The goal of the simulation is to determine the configurations of these variables which
make large contributions to operator expectation values, and then to sum over those con-
figurations. Therefore, the associated matrix computation problems, such as computing
M−1b, need to be solved 104 to 105 times in a full simulation, see Figure 2.1, where at
every step, we have the matrix computation problems.

The matrix computation problems which enter quantum simulations are the following:

1. Computation of the ratio of the determinants of the form det(M̂ )

det(M)
, where M̂ is a low-rank

update of M , see the Metropolis accept/reject decision in the DQMC algorithm and
Appendix A of Lecture 1.

2. Solution of linear systems of the form MTMx = b, see HQMC algorithm for molecular
dynamics steps in Lecture 1.

3. Computation of specific elements of the inverse (M−1)ij , for computing physical observ-
ables, such as energy, density, magnetic and moments, see sections 1.3.3 and 1.4.3.

One of computational challenges is to increase the spatial dimension N = Nx × Ny from
O(102) to O(103), that is, to do a 1000 electron QMC simulation. Such an increase would
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have a tremendous impact on our understanding of strongly interacting materials because it
would allow for the first time the simulation of systems incorporating a reasonable number
of the mesoscopic structures, such as a “checkerboard” electronic crystal1 and stripes stripe
structure arising from removing electrons from the filling of one electron per site in the Hubbard
model2

2.2 Basic Properties

In this section, we exploit basic properties of the Hubbar matrix M as defined in (2.1.1).

1. A block LU factorization of M is given by

M = LU, (2.2.5)

where

L =

⎡⎢⎢⎢⎢⎢⎣
I
−B2 I

−B3 I
. . . . . .

−BL I

⎤⎥⎥⎥⎥⎥⎦
and

U =

⎡⎢⎢⎢⎢⎢⎣
I B1

I B2B1

. . .
...

I BL−1 · · ·B1

I +BLBL−1 · · ·B1

⎤⎥⎥⎥⎥⎥⎦
2. Note that the inverses of the factors L and U are given by

L−1 =

⎡⎢⎢⎢⎢⎢⎣
I
B2 I
B3B2 B3 I

...
. . . . . . . . .

BLBL−1 · · ·B2 · · · BLBL−1 BL I

⎤⎥⎥⎥⎥⎥⎦
and

U−1 =

⎡⎢⎢⎢⎢⎢⎣
I −B1F

I −B2B1F
. . .

...
I −BL−1 · · ·B1F

F

⎤⎥⎥⎥⎥⎥⎦
where F = (I +BLBL−1 · · ·B2B1)−1. Therefore, the inverse of M is explicitly given by

M−1 = U−1L−1 = W−1Z, (2.2.6)
1T. Hanaguri et al. Nature 430, 1001 (2004)
2S.R. White et al., Phys. Rev. Lett. 80, 1272(1998).
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where

W = diag(I +B1BL · · ·B2, I +B2B1BL · · ·B3, . . . , I +BLBL−1 · · ·B1)

and

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I −B1BL · · ·B3 −B1BL · · ·B4 · · · −B1BL −B1

B2 I −B2B1BL · · ·B4 · · · −B2B1BL −B2B1

B3B2 B3 I · · · −B3B2B1BL −B3B2B1
...

...
...

...
...

...
BL−1 · · ·B2 BL−1 · · ·B3 BL−1 · · ·B4 · · · I −BL−1 · · ·B2B1

BL · · ·B2 BL · · ·B3 BL · · ·B4 · · · BL I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

In other words, the (i, j) block submatrix, denoted as {M}−1
ij , of M−1 is given by

{M−1}i,j = (I +Bi · · ·B1BL · · ·Bi+1)−1Zij

where

Zij =

⎧⎨⎩
BiBi−1 · · ·Bj+1, i > j
I, i = j
−Bi · · ·B1BL · · ·Bj+1, i < j

.

3. By the LU factorization (2.2.5), the following determinant identity holds:

det(M) = det(I +BLBL−1 · · ·B1). (2.2.7)

2.3 Matrix exponential B = etτK

In this section, we discuss how to compute the matrix exponential B = etτK when K defines
a standard 2-D Nx ×Ny rectangle lattice, i.e., .

K = Iy ⊗Kx +Ky ⊗ Ix,

where Ix and Iy are unit matrices of dimensions Nx and Ny, respectively, and Kx and Ky are
Nx ×Nx and Ny ×Ny matrices of the form

Kx,Ky =

⎡⎢⎢⎢⎢⎢⎣
0 1 1
1 0 1

. . . . . . . . .
1 0 1

1 1 0

⎤⎥⎥⎥⎥⎥⎦ .

First, by a straightforward calculation, we can verify the following lemma.

Lemma 2.3.1 The eigenvalues of K are

κij = 2(cos θi + cos θj), (2.3.8)



43

where

θi =
2iπ
Nx

, for i = 0, 1, 2, . . . , Nx − 1

θj =
2jπ
Ny

, for j = 0, 1, 2, . . . , Ny − 1.

The corresponding eigenvectors are
vij = uj ⊗ ui,

where

ui =
1√
Nx

[1, eiθi , ei2θi , . . . , ei(Nx−1)θi ]T ,

uj =
1√
Ny

[1, eiθj , ei2θj , . . . , ei(Ny−1)θj ]T .

We now turn to the computation of the matrix exponential B = etτK .3 By the definition
of K, the matrix exponential etτK can be written as the product of two matrix exponentials:

B = etτK = (Iy ⊗ etτKx)(etτKy ⊗ Ix) = etτKy ⊗ etτKx . (2.3.9)

By Lemma 2.3.1, we can use the FFT to compute B. The computational complexity of
formulating the matrix B explicitly is O(N2). The complexity of matrix-vector multiplication
is O(N(logNx + logNy)).

Checkerboard approximation. In practice, we use an approximation of the matrix ex-
ponential B = etτK , when τ is sufficiently small. The method is referred to as checkerboard
approximation4 . It only costs O(N). For simplicity, assume that Nx and Ny are even. Write
Kx as

Kx = K(1)
x +K(2)

x ,

where

K(1)
x =

⎡⎢⎢⎢⎣
D

D
. . .

D

⎤⎥⎥⎥⎦ , K(2)
x =

⎡⎢⎢⎢⎢⎢⎣
0 1

D
. . .

D
1 0

⎤⎥⎥⎥⎥⎥⎦ , D =
[

0 1
1 0

]
.

Note that for any scalar α �= 0, the matrix exponential eαD is given by

eαD =
[

coshα sinhα
sinhα coshα

]
.

3A survey of the numerical methods to compute the matrix exponential is [Clever Moler and Charles Van
Loan, Nineteen Dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Review,
45(2003),3-49.]

4It is particularly useful for different hopping tij at different lattices, i.e., t is not a constant.
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Therefore, we have

eαK
(1)
x =

⎡⎢⎢⎢⎣
eαD

eαD

. . .
eαD

⎤⎥⎥⎥⎦ , eαK
(2)
x =

⎡⎢⎢⎢⎢⎢⎣
coshα sinhα

eαD

. . .
eαD

sinhα coshα

⎤⎥⎥⎥⎥⎥⎦ .

Since K(1)
x does not commute with K(2)

x , we use the approximation

eαKx = eαK
(1)
x eαK

(2)
x +O(α2),

where α is a scalar. Similarly, we have the approximation

eαKy = eαK
(1)
y eαK

(2)
y +O(α2),

Subsequently, the matrix B has the approximation

B = etτKy ⊗ etτKx

= (etτK
(1)
y etτK

(2)
y )⊗ (etτK

(1)
x etτK

(2)
x ) +O(t2τ2)

≈ (etτK
(1)
y etτK

(2)
y )⊗ (etτK

(1)
x etτK

(2)
x ) ≡ B̂ (2.3.10)

There are 16 nonzero elements in every row and column of the matrix B̂. Therefore, if coshα
and sinhα are computed in advance, the cost to construct the the matrix B̂ is 16N .

Note the the approximation (2.3.10) of B is not symmetric. A symmetric approximation
of B is given by

B̂ = (e
tτ
2

K
(2)
y etτK

(1)
y e

tτ
2

K
(2)
y )⊗ (e

tτ
2

K
(2)
x etτK

(1)
x e

tτ
2

K
(2)
x ).

In this case, there are 36 nonzero elements in every row and column.

Matrix-vector multiplication. Let us consider the computation of the matrix-vector mul-
tiplication B̂x. Let x be a vector of the dimension N = Nx×Ny and X be an Nx×Ny matrix,
such that

x = vec(X).

Then we have
B̂x = vec(etτK

(2)
x etτK

(1)
x XetτK

(1)
y etτK

(2)
y ). (2.3.11)

It can be verify that the cost of the matrix-vector multiplication B̂x is 12N . It can be further
reduced by rewriting the block eαD as

eαD = coshα
[

1 tanhα
tanhα 1

]
.

Using this trick, the cost of the matrix-vector multiplication B̂x is 9N .
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2.4 Eigenvalue distribution of M

The study of eigenvalues of a cyclic matrix can be traced back to the work of Frobenius (1912),
Romanovsky (1936) and Varga (1962). The following theorem characterizes the eigenvalue
distribution of the Hubbard matrix M .

Theorem 2.4.1 For each eigenpair (μ,w) of the matrix BL · · ·B2B1, there are L correspond-
ing eigenpairs (λM

� , v
M
� ) of the matrix M given by

λM
� = 1− λ� and vM

� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(BL · · ·B3B2)−1λL−1
� w

(BL · · ·B3)−1λL−2
� w

...
B−1

L λ�w

w

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where

λ� = μ
1
L ei

(2�+1)π
L ,

for � = 0, 1, . . . , L− 1.

The theorem can be verified by checking (I −M)vM
� = λ�v

M
� .

2.4.1 The case U = 0

When the Hubbard system without Coulomb interaction, U = 0, we have

B1 = B2 = · · · = BL = B = etτK .

In this case, the eigenvalues of the matrix M are known explicitly.

Theorem 2.4.2 When U = 0, the eigenvalues of the matrix M are

λ(M) = 1− etτκijei
(2�+1)π

L , (2.4.12)

for 0 ≤ � ≤ L− 1, where κij is defined in (2.3.8). Furthermore,

max |1− λ(M)| = e4tτ and min |1− λ(M)| = e−4tτ .

The following plot shows the eigenvalue distributions of the matrix M with the parameters

N = 4× 4, L = 8, U = 0, β = 1, t = 1.

The dimension of the matrix M is NL = 4 × 4 × 8 = 128. Theorem 2.4.2 can be used to
interpret the distribution. It has a ring structure, centered at (1, 0). On every ring there are
L = 8 circles. We can also view the eigenvalues distribute on L = 8 rays, centered at (1, 0).
The eigenvalues κij of the matrix K only have 5 different values. There are total 40 circles,
with some multiple eigenvalues.
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Let us examine the eigenvalue distributions of M under the variation of the parameters
N,L,U and t.

1. Lattice size N : the following plot shows the eigenvalue distributions when N = 4 × 4
and N = 16× 16. Other parameters are set as U = 0, L = 8 and t = 1. Note that there
are more points on each ray, due to the fact that there are different values of κij when
N = 16 × 16 than N = 4× 4.
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2. Block number L: the following plot shows the eigenvalue distribution for block numbers
L = 8 and L = 64. Other parameters are set as N = 4 × 4, U = 0 and t = 1. As we
observe that as L increases, the number of rays increases, and the range of the eigenvalue
distribution on each ray shrinks and becomes more clustered.
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3. Block number L and t: the following plot shows the eigenvalue distributions for different
pari (L, t) = (8, 1) and (64, 8). Other parameters are set as N = 4 × 4 and U = 0.
By Theorem 2.4.2, we know that the points on the one ring are equal to L. When L
increases, the points on each ring increase. At the same time, since τ = 1

L , the range of
|1 − λ(M)| is [e−

4t
L e

4t
L ], the range will shrink when L increases. If we fix t

L , the range
will still keep same. This is shown in the plot.
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2.4.2 The case U �= 0

Unfortunately, there is no explicit expression for the eigenvalues of the matrix M when U �= 0.
The following plot shows that as U increases, the range of eigenvalues on each ray is widen.
Other parameters are set as N = 4× 4, L = 8, t = 1.



48

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
U=0
U=6

2.5 Condition number of M

In this section, we study the condition number of the Hubbard matrix M defined in (2.1.1).

2.5.1 The case U = 0

When U = 0, M is a deterministic matrix and furthermore, B1 = B2 = · · · = BL = etτK ≡ B.
First, we have the following lemma about the the eigenvalues of the matrix MTM .

Lemma 2.5.1 When U = 0, the eigenvalues of MTM are

λ�(MTM) = 1 + 2λ(B) cos θ� + (λ(B))2, (2.5.13)

where
θ� =

(2�+ 1)π
L

for � = 0, 1, · · · , L− 1.

The result is based on the following fact. For any real number a, the eigenvalues of the
matrix

A(a) =

⎡⎢⎢⎢⎣
1 + a2 −a a
−a 1 + a2 −a

. . . . . . . . .
a −a 1 + a2

⎤⎥⎥⎥⎦ .
are

λ(A(a)) = 1− 2a cos θ� + a2.

Note that for any real number a,

sin2 θ ≤ 1− 2a cos θ + a2 ≤ (1 + |a|)2,
Therefore, we have the following inequalities

maxλ�(MTM) ≤ (1 + max |λ(B)|)2 and minλ�(MTM) ≥ sin2 π

L
.
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By these inequalities, the norms of M and M−1 are bounded by

‖M‖ = maxλ�(MTM)
1
2 ≤ 1 + max |λ(B)|,

and
‖M−1‖ =

1

minλ�(MTM)
1
2

≤ 1
sin π

L

. (2.5.14)

Note that B = etτK and λmax(K) = 4, we have the following upper bound of the condition
number κ(M) of M .

Theorem 2.5.1 When U = 0,

κ(M) = ‖M‖ ‖M−1‖ ≤ 1 + e4tτ

sin π
L

= O(L). (2.5.15)

Therefore, when U = 0, the matrix M is well-conditioned.

2.5.2 The case U is sufficient small

We now consider the situation when U �= 0. By the representation of M in (2.1.3), we have

‖M‖ ≤ 1 + max
�
‖B�‖ ‖P‖ = 1 + max

�
‖B�‖ ≤ 1 + e4tτ+ν . (2.5.16)

where cosh ν = e
Uτ
2 , or approximately, ν ≈ (τU)1/2.

To bound ‖M−1‖, we first consider when U is small. In this situation, we can treat the
matrix M as a small perturbation of the matrix M at U = 0. We have the following result.

Theorem 2.5.2 If U is sufficient small such that

eν < 1 + sin
π

L
, (2.5.17)

then

κ(M) = ‖M‖ ‖M−1‖ ≤ 1 + e4tτ+ν

sin π
L + 1− eν .

Proof: M can be expanded at U = 0, denoted by M0:

M = M0 + diag(B −B�)Π,

where B = etτK . Note that ‖Π‖ = 1, then if ‖M−1
0 diag(B −B�)‖ < 1, then we have

‖M−1‖ ≤ ‖M−1
0 ‖

1− ‖M−1
0 diag(B −B�)‖

. (2.5.18)

Since Why???
‖M−1

0 diag(B)‖ ≤ 1
sin π

L

,
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we have
‖M−1

0 diag(B −B�)‖ ≤ ‖M−1
0 diag(B)‖‖diag(I − eV�)‖ ≤ eν − 1

sin π
L

.

Now, if
eν − 1
sin π

L

< 1

i.e,
eν < 1 + sin

π

L
,

by (2.5.18) and (2.5.14), we have

‖M−1‖ ≤
1

sin π
L

1− eν−1
sin π

L

=
1

sin π
L + 1− eν .

This completes the proof.
Note that the Taylor expansion of ν gives the expression

ν =
√
Uτ +

(Uτ)
3
2

12
+O(U2τ2). (2.5.19)

Then to the first-order approximation, the conditon (2.5.17) is

√
U ≤ π

β

√
τ +O(τ), or U ≤ π2

β2
τ +O(τ

3
2 ). (2.5.20)

Therefore, to the first order approximation, we have

κ(M) ≤ L(1 + e4tτ+ν)
π − β√Uτ − Uβ/2 +O(U

3
2βτ

1
2 ).

By the inequality, we conclude that when U is sufficient small enough, M is well-conditioned
and κ(M) = O(L).

2.5.3 The case U = �= 0

In general, it is still an open problem for a rigorous sharp upper bound κ(M) for general
U �= 0. The following plot shows the averages of the condition numbers of M for 100 H-S
field configurations h�,i = ±1, uniform two-point distribution, where N = 16, L = 8β with
β = [1 : 10], and t = 1.
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The above plot reveals two key issues concerning the transition from well-conditioned to
ill-conditioned behaviors:

1. When U �= 0, the condition number increases much more rapidly than the linear rise
which we know analytically at U = 0.

2. Not only does the condition number increase with U , but also so do its fluctuations over
the 100 chosen field configurations.

The first observation tells us the parameter L is critical to the difficult of our numerical
linear algebra solvers. The second suggests that widely varying condition number might be
encountered in the course of a simulation, and therefore that a solver might need to have the
ability to adopt different solution strategies on the fly.

2.6 Condition number of M (k)

For an integer k ≤ L, a structure-preserving factor-of-k reduction of the matrix M leads a
matrix M (k) of the form

M (k) =

⎡⎢⎢⎢⎢⎢⎢⎣
I B

(k)
1

−B(k)
2 I

−B(k)
3 I

. . . . . .

−B(k)
Lk

I

⎤⎥⎥⎥⎥⎥⎥⎦ .
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where Lk = �Lk � is the number of blocks and

B
(k)
1 = BkBk−1 · · ·B2B1

B
(k)
2 = B2kB2k−1 · · ·Bk+2Bk+1

...
B

(k)
Lk

= BLBL−1 · · ·B(Lk−1)k+1.

First we have the following observation: the inverse of M (k) is a “submatrix” of the inverse
of M . Specifically, since M and M (k) have the same block cyclic structure, by the expression
(2.2.6), we immediately have the following expression for the (i, j) block of {M (k)}−1

i,j :

{M (k)}−1
i,j = (I +B

(k)
i · · ·B(k)

1 B
(k)
L · · ·B(k)

i+1)
−1Z

(k)
i,j

where

Z
(k)
i,j =

⎧⎪⎨⎪⎩
B

(k)
i B

(k)
i−1 · · ·B(k)

j+1, i > j

I, i = j

−B(k)
i · · ·B(k)

1 B
(k)
L · · ·B(k)

j+1, i < j

,

By the definition of B(k)
i , and if i �= L(k)

{M (k)}−1
i,j = (I +Bik · · ·B1BL · · ·Bi∗k+1)−1

⎧⎨⎩
Bi∗k · · ·Bj∗k+1, i > j
I, i = j
−Bi∗k · · ·B1BL · · ·Bj∗k+1, i < j

.

Hence if i �= L(k),
{M (k)}−1

i,j = {M−1}i∗k,j∗k.

If i = L(k), we have

{M (k)}−1
i,j = (I +BL · · ·B1)−1

{
BL · · ·Bj∗k+1, j < L
I, j = L

.

Hence if i = L(k),
{M (k)}−1

L(k),j
= {M−1}L,j∗k.

We now turn to the discussion of the condition number of the matrix M (k). We have the
following two immediate results:

1. Since an upper bound of the norm of the matrix B(k)
� is given by

‖B(k)
� ‖ ≤ e(4tτ+ν)k.

we have
‖M (k)‖ ≤ 1 + e(4tτ+ν)k . (2.6.21)

2. Since (M (k))−1 is a “submatrix” of M−1, we have

‖(M (k))−1‖ ≤ ‖M−1‖. (2.6.22)
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By combining (2.6.21) and (2.6.22), we have

κ(M (k)) = ‖M (k)‖ ‖(M (k))−1‖

≤ ‖M (k)‖
‖M‖ ‖M‖‖M

−1‖ =
‖M (k)‖
‖M‖ κ(M)

≤ 1 + e(4tτ+ν)k

‖M‖ κ(M).

In summary, we have
κ(M (k)) ≤ ce(4tτ+ν)kκ(M), (2.6.23)

where c is some constant. It shows that the condition number of M (k) is bounded by the
product of the condition number of M and a quantity involving reduction factor k.

For further details, let us first examine the case where U = 0 and the reduction factor
k = L. In this case, the matrix M is reduced to a single block

M (L) = I +BL · · ·B2B1 = I +B · · ·BB = I +BL = I + (etτK)L = I + etβK .

Then the condition number of M (L) is given by the eigendecomposition of the matrix K:

κ(M (L)) =
1 + e4tβ

1 + e−4tβ
.

Note that M (L) is extremely ill-conditioned when β is large.
When U = 0 and the reduction factor k < L, and Lk = L

k is an integer, then we have the
following result

κ(M (k)) ≤ 1 + e4tτk

sin π
Lk

.

The inequality can be proved in a similar way as the proof of Lemma 2.5.1. We believe the
bound is still true even when L/k is not an integer. The following figure shows condition
numbers of M (k) with respect to the reduction factor k when U = 0. The computational and
estimated results fit well.
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In general, when U �= 0, we have the bound (2.6.23). The following figure shows the
condition numbers of a few sample matrices M (k) (solid lines), and the upper bound (2.6.23)
(circle dashed line). for U = 4 and U = 6. The condition number κ(M) of M uses the mean
of the condition numbers of the sample matrices M .
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It is clear that the upper bound ek(4tτ+ν)κ(M) is overestimated, partially due to the over-
estimation of the norm of M (k). We observe that the condition number of M (k) is closer to the
quantity

√
ek(4tτ+ν)κ(M), shown as the diamond dashed line of the plots. This is a subject of

further study.


