
Advances of Numerical Methods for
Hubbard Quantum Monte Carlo Simulations

(Part II)

Zhaojun Bai†,
Wenbin Chen‡,

Richard Scalettar§,
Ichitaro Yamazaki†

†Computer Science,
§Physics, UC Davis

‡ Mathemtics, Fudan University

Outline

1. Hubbard model and quantum monte carlo simulation: an outline (Part I)

2. Hubbard matrix analysis (Part I)

3. Self-adapting direct linear solvers

4. Preconditioned iterative linear solvers

Self-Adapting Direct Linear Solvers

Block LU factorization

• Gaussian elimination
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I B1

−B2 I
.
−BL I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
−B2 I

.
−BL I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I B1

I B2B1
.

I BL−1 · · ·B1

I + BL · · ·B2B1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

• Applicable only for small energy scales, say, U = 0, β = 1.

• The block I + BL · · ·B2B1 grows exponentially

• Pivoting doesn’t help.

• Related work in two-point BVP

Block cyclic reduction

• Block cyclic reduction⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I B1

−B2 I
−B3 I

−B4 I
−B5 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b1

b2

b3

b4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⇒
⎡
⎢⎢⎢⎢⎢⎢⎣

I B1

−B3B2 I
−B5B4 I

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣
x1

x3

x5

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b
(2)
3

b
(2)
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⇒
⎡
⎢⎢⎣ I B1

−B5B4B3B2 I

⎤
⎥⎥⎦

⎡
⎢⎢⎣ x1

x5

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b1

b
(3)
5

⎤
⎥⎥⎥⎦ .

• Buzbee, Golub and Nielson, ...

• Full BCR is usable only for small energy scales, U = 0, 1, 2.

• However, the reduction idea is powerful.

Block QR decomposition

• Block orthogonal factorization:

QT
L−1 · · ·QT

2 QT
1 M = R,

i.e.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I B1

−B2 I
.
−BL I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Qk=⇒

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R1 X X
R2 X X

. X
RL−1 X

RL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

• The method is stable

• But it requires O(N2L) memory and O(N3L) flops,

Hybrid method

Block reduction orthogonal factorization method

1. k-step block reduction:

Mx = b =⇒ M (k)x(k) = b(k)

i.e.,

block L–cyclic system =⇒ block L
k –cyclic system

2. Block orthogonal factorization:

QT
L
k−1 · · ·QT

1 M (k) = R,

3. Forward and back substitutions to find the rest of x:

xi ←− x(k) −→ x

Block reduction orthogonal factorization method

• The order of M (k) is reduced by a factor of k.

• However, the condition number of M(k) increases when k increases.

• Question: how to find the reduction factor k in a self-adapting fashion,
such that the computed solution has the required accuracy for QMC?

Error analysis

• The relative error in the computed block component x̂� of x is essentially
governed by κ(M (k))ε and its propagation in the substitution. Specifically,

‖x� − x̂�‖
‖x�‖ ≤ ‖Bk

2
‖ · · · ‖B2‖ ‖B1‖ κ(M (k))ε

where ε is the machine precision.

Self-adapting reduction factor

By error analysis of x̂� and estimation of κ(M (k)), for a desired accuracy

‖x� − x̂�‖
‖x�‖ ≤ tol.

the reduction factor k is then adaptively determined by

k =

⎢⎢⎢⎢⎢⎣
2
3
ln(tol/ε)
4tτ + ν

⎥⎥⎥⎥⎥⎦

Note: ν =
√

Uτ + ...

Example: t = 1, τ = 1/8, tol = 10−8, ε = 10−16,

U 0 1 2 3 4 5 6
k 24 14 12 10 9 9 8

Performance data

CPU time and and speedup (N = 256, U = 0, t = 1, τ = 1
8)

β L = 8β L(k) k block QR(s) reduced QR(s) speedup
1 8 1 8 3.19 0.0293 108
3 24 1 24 10.8 0.0547 197
5 40 2 20 18.6 0.326 57
7 56 3 19 27.2 0.666 40
9 72 3 24 35.1 0.675 52
12 96 4 24 46.0 1.20 38
14 112 5 23 54.0 1.28 42
16 128 6 22 62.9 1.67 37
18 144 6 24 73.2 1.73 42
20 160 7 23 80.2 2.02 39

All relative errors of the solution vector are less than 10−8

Performance data

Reduced number of block L
k speedup

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

β = [1 : 20]

L
(k

)

L(k) with N=256, L=8β, t=1

U=2
U=4
U=6

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

β = [1 : 20]

S
p
e
e
d
−

u
p

Speed−up with N=256, L=8β, t=1

U=2
U=4
U=6

N = 256, τ = 1/8, L = 8β, t = 1
All relative errors of the solution vectors x̂ are less than 10−8

Preconditioned Iterative Linear Solvers

Preconditioned iterative linear solvers

• Consider the kernel of HQMC

MTMx = b

• Symmetrical preconditioned linear system

R−T (MTM)R−1 · Rx = R−Tb,

where the preconditioner R is constructed such that

1. RTR is a good approximation of MTM in some sense,

2. the cost of constructing R is affordable,

3. the application of R is not expensive, namely the system Rz = c is
much easier to solve than the original system.

• Preconditioned conjugate gradient (PCG) method.

Early work

Earlier work on preconditioning techniques:

• R is the matrix of M with zero potential energy (U = 0)

• R is the matrix of M with zero kinetic energy (t = 0)

• R is the square roots of diagonal elments of MTM .

These preconditioners turned out to be of poor quality, such as high costs
(memory and flops), or slow convergence when N,U, β(L) increase.

Therefore, the questions are

(1) can we have a linear scaling iterative solver in term of the lattice size N?

(2) when U and β increase, whether there is a solver with the number of
iterations grow slowly (not “exponentially” as seen from the previous
work)?

Incomplete Cholesky preconditioners

• Incomplete Cholesky (IC) factorization is one of the most important
preconditioning techniques:

MTM = RTR + E,

where R is an upper triangular matrix and E is the discard matrix.

• If by only imposing a certain sparsity of the preconditioner R (based on
the block structure of M), or by dropping small elements, then typically, it
leads to

– high cost to apply R due to large number of fill-ins,

– low quality (large number of iterations),

– not robust, pivot break-down due to loss of MTM − E > 0.

• Mathematically, provable existence for such an incomplete decomposition
is only for special classes of matrices.

Incomplete Cholesky factorization

• Incomplete Cholesky factorization

A = RRT + S + ST︸ ︷︷ ︸
E

,

where R is a lower-triangular matrix, and the error E is a symmetric and S
is a strictly lower-triangular matrix.

• The ith column of the factorization

ri(i)ri − ei = ai −
i−1∑
j=1

rj(i)rj.

– updating the ith column ai

ai(i : n) := ai(i : n)− i−1∑
j=i

rj(i)rj(i : n).

– compute the pivot ri(i) =
√
ai(i).

– The remaining elements of ri, for j = i + 1, . . . , n,⎧⎪⎪⎨
⎪⎪⎩

ri(j) = ai(j)/ri(i), si(j) = 0 if a sparsity constraint is satisfied,
ri(j) = 0, si(j) = ai(j) otherwise,

• Breakdown when the pivot ai(i) ≤ 0.

Robust IC – version 1

• Goal: avoid the pivot breakdown by imposing

A− E = AT − ET > 0.

• RIC1: diagonal updates of E, such that −E ≥ 0. Thus A− E > 0.

• RIC factorization
A = RRT + S + D + ST︸ ︷︷ ︸

E

,

where R is lower-triangular, D is diagonal, and S is strictly
lower-triangular.

Two approaches: D is constructed statically or dynamically.

• Dynamic approach: by the ith column of the factorization

ai(i) :=
i∑

j=1
rj(i)

2 + di(i),

ai(i + 1 : n) =
i∑

j=1
rj(i)rj(i + 1 : n) + si(i + 1 : n).

– by first updating the ith column ai

ai(i : n) = ai(i : n)− i−1∑
j=1

rj(i)rj(i : n).

– Then, for j = i + 1, . . . , n,
(1) “decide to keep/drop ai(j)”

⎧⎪⎪⎨
⎪⎪⎩

ai(j) = ai(j), si(j) = 0, if τij > σ1,
ai(j) = 0, si(j) = ai(j), otherwise,

where τij = ai(j)/
√
ai(i) + di(i). and σ1 is a dropping threshold.

(2) When si(j) 	= 0, the corresponding diagonal entries di(i) and dj(j)
are updated for imposing −E ≥ 0,

di(i) = di(i)− δi, dj(j) = dj(j)− δj,

where δi and δj are chosen such that δi, δj > 0 and δiδj = si(j)2.

– Compute the ith column of R:

ri(i) =
√
ai(i) + di(i),

ri(i + 1 : n) = ai(i + 1 : n)/ri(i).

• RIC1 is based on simple diagonal updates of E, the construction of R is
computationally efficient.

• If many non-zero entries of R need to be dropped, then RIC1 needs large
number of diagonal updates, and the resulting preconditioner may not be a
good approximation of Cholesky factor. In this situation, static approaches
such as the global shifting of diagonal elements may perform better.

• Robustness: for any v 	= 0,

vT (−E)v =
∑

i,j s.t. si(j) 	=0
(
√

δiv(i)− √
δjv(j))2 ≥ 0,

• To measure the quality of RIC1 preconditioner R, we note that the norm of
the residue

R−1AR−T − I = −R−1(D + S + ST)R−T = −R−1ER−T

can be amplified by the factor of ‖R−1‖2 of the norm of the error matrix E.

• When approximating an ill-conditioned matrix A, especially for strong
interacting energy scale (U = 5, 6), the norm ‖R−1‖ is large, and the
resulting R is often a poor preconditioner.

RIC - version 3

RIC3: Robust Incomplete Cholesky (version 3)

• imposes (1) the structure of E, (2) the sparsification of F , and (3) positive
definitness of MTM − E, i.e.,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

MTM − E = RTR

subject to E = RTF + FTR + S,
MTM − E > 0,

• RIC3 is robust, provable no-pivot-break-down

• RIC3 is of high quality because the residual norm

R−T (MTM)R−1 = I − FR−1 −R−TF −R−TSR−1︸ ︷︷ ︸
is amplified only by ‖R−1‖ if ‖S‖ ≤ ‖F‖/‖R−1‖. Typically, ‖S‖ ≤ ‖F‖2
• RIC3 balances the quality and and construction cost.

• Related work [Ajiz & Jennings’94, Tismenetsky’91, Kaporin ’98].

Numerical experiments

1. A modified Compressed Sparse Row (CSR) format for sparse matrix data
structure is proposed to accommodate the data access pattern in RIC3
factorization.

2. Dropping tolerance value is set 10−2 and 10−4 in RIC3.

3. Stopping criterion for the PCG loop is set to 10−8

4. t = 1, τ = 1
8

and μ = 0.

5. Itanium2 workstation, 1Ghz CPU and 2GB RAM ...

Performance Data

CPU time (N,L, t, β, μ) = (32× 32, 80, 1, 10, 0)

0 1 2 3
0

2

4

6

8

10

12

14

16

U

C
P

U
 ti

m
e

(s
)

RIC1Ls
RIC3L

4 5 6
0

20

40

60

80

100

120

140

160

180

U

C
P

U
 ti

m
e

(s
)

RIC1Ls
RIC3L

RIC1Ls: number of PCG iterations (left) and total CPU time (right) for small
U and (L, t, β, μ) = (80, 1, 10, 0).

64256 576 1024 1600 2304 3136 4096
0

50

100

150

200

250

300

350

400

450

500
Manteuffel’s RIC1Ls

N

N
um

be
r

of
 it

er
at

io
ns

U=0
U=1
U=2
U=3

64256 576 1024 1600 2304 3136 4096
0

10

20

30

40

50

60

70

80
Manteuffel’s RIC1Ls

N

C
P

U
 ti

m
e

(s
)

U=0
U=1
U=2
U=3

RIC3L: number of PCG iterations (left) and total CPU time (right) for small U
and (L, t, β, μ) = (80, 1, 10, 0).

64256 576 1024 1600 2304 3136 4096
0

50

100

150

200

250

300

350

400
Kaporin’s RIC3L

N

N
um

be
r

of
 it

er
at

io
ns

U=0
U=1
U=2
U=3

64256 576 1024 1600 2304 3136 4096
0

10

20

30

40

50

60

70

80

Kaporin’s RIC3L

N

C
P

U
 ti

m
e

(s
)

U=0
U=1
U=2
U=3

RIC1Ls: number of PCG iterations (left) and total CPU time (right) for large
U and (L, t, β, μ) = (80, 1, 10, 0).

64256 576 1024 1600 2304 3136 4096
0

2500

5000

7500

10000

12500

15000
Manteuffel’s RIC1Ls

N

N
um

be
r

of
 it

er
at

io
ns

U=4
U=5
U=6

64256 576 1024 1600 2304 3136 4096
0

500

1000

1500

2000

Manteuffel’s RIC1Ls

N

C
P

U
 ti

m
e

(s
)

U=4
U=5
U=6

RIC3L: number of PCG iterations (left) and total CPU time (right) for large U
and (L, t, β, μ) = (80, 1, 10, 0).

64256 576 1024 1600 2304 3136 4096
0

2000

4000

6000

8000

10000

12000
Kaporin’s RIC3L

N

N
um

be
r

of
 it

er
at

io
ns

U=4
U=5
U=6

64256 576 1024 1600 2304 3136 4096
0

200

400

600

800

1000

1200

1400

1600

1800
Kaporin’s RIC3L

N

C
P

U
 ti

m
e

(s
)

U=4
U=5
U=6

Eigenvalue distributions of M and MR−1:

−2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Relative residual norm from PCG iterations (Left)

0 500 1000 1500 2000 2500
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of PCG iterations

N
or

m
 o

f r
el

at
iv

e
re

si
du

al

