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1 Introduction

1. Scientific computing and computational science

Scientific computing (numerical computing) is about the design and analysis of algo-
rithms and engineering software for solving mathematical problems.

Computational science involves innovative and essential use of high performance com-
putation, and/or the development of computational technologies to advance knowl-
edge or capabilities in scientific and engineering disciplines. A necessary element in
computational science is a strong, close tie to an application discipline. Research in
computation is inherently multidisciplinary and includes, for example, environmental
modeling, simulation of complex physical systems that generate energy, semiconductor
design, modeling DNA sequences and protein structure, and the simulation and anal-
ysis of flow through geologic structures. Ref: [DOE’s computational science graduate
fellowship program].

2. Algorithms as a technology, computational simulation as the third pillar of science

3. General strategy: to replace a difficult problem with an easier one that has the same
solution, or at least a closely related solution.

For example, solve Ax = b. If we can write A = LU , where L and U are lower and
upper triangular matrices, respectively, then it is equivalent to solve Ly = b for y and
Ux = y for x, can be easily computed by forward and back substitution. We will
discuss this in more detail when we study the solution of linear system of equations.

4. Approximation and error are the facts of life in computational science.

Sources of errors:

modeling
data uncertainty,
truncation (discretization),
rounding in finite precision arithmetic
...

For example, let f : R→ R

x→ f(x)

We have an inexact input x̂, and approximate function f̂

total error = f̂(x̂)− f(x)
= [f̂(x̂)− f(x̂)] + [f(x̂)− f(x)]
= computational errors + propagated data errors
= trunction/rounding + (conditioning) × (data error)

5. Absolute error and relative error

Let x̂ be an approximation of x. Then the absolute error is defined by

abserr(x) = |x̂− x|,
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and the relative error (assume that x is a nonzero number) is defined by

relerr(x) = |ρ| := |x̂− x|/|x|.

By the definition of the relative error, x̂ = x(1 + ρ)

Relative error is independent of scaling.

Rule of Thumb: if the relative error is approximately 10−d, then x and x̂ agree to
about d significant digits, and conversely.

6. Forward error and backward error

Suppose that an approximation ŷ to y = f(x) is computed. How should we measure
the “quality” of ŷ?

Ideally, we would like to have the relative forward error relerr(y) = |y− ŷ|/|y| = tiny.

Instead, we can ask “for what set of data have we actually solved our problem?” That
is, for what Δx, do we have ŷ = f(x + Δx) ?

|Δx| (or min |Δ| if there are many such Δx) is called backward error.

Two main motivations for using backward error:

• interprets errors as being equivalent to perturbations in the data,

• reduces the question of bounding or estimating the forward error to perturbation
theory, for which many problems is well understood (and only has to be developed
once, for the given problem, and not for each method.)

7. An algorithm for computing y = f(x) is called (backward) stable if, for any x, it
produces a computed ŷ with a small backward error, that is, ŷ = f(x + Δx) for some
small Δx.

8. Conditioning of problems: the relationship between forward and backward errors for
a problem is governed by the conditioning of the problem, that is, the sensitivity of
the solution to perturbation in the data.

Example: compute y = f(x). Let the computed results in terms of backward error
ŷ = f(x + Δx). Then the absolute error is

ŷ − y = f(x + Δx)− f(x) = f ′(x)Δx + O
(
(Δx)2

)
.

Correspondingly, the relative error is given by

ŷ − y

y
=

x · f ′(x)
f(x)

(
Δx

x

)
+ O((Δ)2).

where

κf (x) =
∣∣∣∣x · f ′(x)

f(x)

∣∣∣∣
The quantity κf (x) is called the condition number of f at x. It measures approxi-
mately how much the relative backward error in x is magnified by evaluating of f at
x.

3



Rule of Thumb:

|relative forward error| ≤ (condition number)× |relative backward error|.

The computed solution to an ill-conditioned (i.e., large condition number) problem
can have a large forward error, even for small backward error!

9. Some desirable qualities of numerical software

• reliability

• robustness

• accuracy

• efficiency (speed)

• maintainability (structure modules, documentation, ... easy to modify)

• portability

• usability (easy of use)

• applicability (functionality)

• ...

Tradeoffs among the different desirable qualities are common. Different priority for
different users.

10. Three programming paradigms for exploiting other experts’ software

• Traditional software libraries and packages

• Scientific computing environment: a much easier-to-use environment, but at the
cost of some performance.

• Templates for assembling complicated algorithms out of simpler building blocks.

Netlib (www.netlib.org) is a valuable resource for free numerical software to solve
all kinds of computational problems.
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2 Floating-Point Arithmetic

1. Floating point representation (scientific notation) of numbers, for example,

− 3.1416 × 101

↑
sign

↑
significant

↑
base

← exponent

For representation on the computer, we prefer base 2 to base 10. The floating point
representation of a nonzero binary number x is of the form

x = ± b0.b1b2 · · · bp−1 × 2E , (1)

(a) It is normalized, i.e., b0 = 1 (the hidden bit)

(b) Precision (= p) is the number of bits in the significant (including the hidden bit).

(c) Machine epsilon ε = 2−(p−1), the gap between the number 1 and the smallest
floating point number that is greater than 1.

(d) The unit in the last place, ulp(x) = 2−(p−1) × 2E = ε× 2E .
If x > 0, then ulp(x) is the gap between x and the next larger floating point
number. If x < 0, then ulp(x) is the gap between x and the smaller floating
point number (larger in absolute value).

Special numbers: 0, −0, ∞, −∞, NaN = “Not a Number”.

2. IEEE 754 floating point standard (IEEE 1985) essentials:

• consistent representation of floating point numbers by all machines adopting the
standard;

• correctly rounded floating point operations, using various rounding modes;

• consistent treatment of exceptional situation such as division by zero.

3. IEEE single format takes 32 bits long (= 4 bytes):

s E f

sign exponent

�
binary point fraction

←− −→8 ←− −→23

It represents (−1)s · (1.f)×2E−127 (note that the leading 1 in the fraction need not be
stored explicitly, because it is always 1. This hidden bit accounts for the“1.” here).

Special repsentations for 0, ±∞ and NaN:

zero = ± 00000000 00000000000000000000000

±∞ = ± 11111111 00000000000000000000000

NaN = ± 11111111 otherwise

The range of positive normalized numbers is from Nmin = 1.00 · · · 0×2−126 = 2−126 ≈
1.2 × 10−38 to Nmax = 1.11 · · · 1× 2127 = (2− 2−23)× 2127 ≈ 2128 ≈ 3.4 × 1038.
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4. IEEE double format takes 64 bits long (=8 bytes):

s E f

sign exponent

�
binary point fraction

←− −→11 ←− −→52

It represents (−1)s · (1.f)× 2E−1023.

Special repsentations for 0, ±∞ and NaN.

The range of positive normalized numbers is from Nmin = 2−1022 ≈ 2.2 × 10−308 to
Nmax = 1.11 · · · 1× 21023 ≈ 21024 ≈ 1.8 × 10308.

5. IEEE extended format, with at least 15 bits available for the exponent and at least 63
bits for the fractional part of the significant. (Pentium has 80-bit extended format)

6. Precision and machine epsilon of the IEEE formats

Format Precision p Machine epsilon ε = 2−p−1

single 24 ε = 2−23 ≈ 1.2× 10−7

double 53 ε = 2−52 ≈ 2.2× 10−16

extended 64 ε = 2−63 ≈ 1.1× 10−19

7. Rounding

Let a positive real number x is in the normalized range, i.e., Nmin ≤ x ≤ Nmax, and
write in the normalized form

x = (1.b1b2 · · · bp−1bpbp+1 . . .)× 2E ,

Then the closest floating point number less than or equal to x is

x− = 1.b1b2 · · · bp−1 × 2E ,

i.e., x− is obtained by truncating. The next floating point number bigger than x− is

x+ = ((1.b1b2 · · · bp−1) + (0.00 · · · 01)) × 2E ,

therefore, also the next one that bigger than x.

If x is negative, the situtation is reversed.

Correctly rounding modes:

• round down: round(x) = x−;

• round up: round(x) = x+;

• round towards zero: round(x) = x− of x ≥ 0; round(x) = x+ of x ≤ 0;

• round to nearest: round(x) = x− or x+, whichever is nearer to x, except that if
x > Nmax, round(x) =∞, and if x < −Nmax, round(x) = −∞. In the case of tie,
i.e., x− and x+ are the same distance from x, the one with its least significant
bit equal to zero is chosen
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When the round to nearest (IEEE default rounding mode) is in effect,

abserr(x) = |round(x)− x| ≤ 1
2
ulp(x).

and
relerr(x) =

|round(x)− x|
|x| ≤ 1

2
ε.

IEEE single: The maximum relative representation error is 1
2 · 21−24 = 2−24 ≈ 5.96 ·

10−8

IEEE double: The maximum relative representation error is 1
2 · 2−52 ≈ 1.11 × 10−16.

8. Correctly rounded floating point operations

IEEE rules are as follows: if x and y are correctly rounded floating point numbers,
then

fl(x + y) = round(x + y) = (x + y)(1 + δ)
fl(x− y) = round(x− y) = (x− y)(1 + δ)
fl(x× y) = round(x× y) = (x× y)(1 + δ)

fl(x/y) = round(x/y) = (x/y)(1 + δ)

where for the round to nearest,

|δ| ≤ 1
2
ε.

IEEE standard also requires that correctly rounded remainder, and square root oper-
ations be provided.

9. IEEE standard response to exceptions

Event Example Set result to
Invalid operation 0/0, 0×∞ NaN
Division by zero Finite nonzero/0 ±∞
Overflow |x| > Nmax ±∞ or ±Nmax

underflow x 	= 0, |x| < Nmin ±0, ±Nmin or subnormal
Inexact wheneven fl(x ◦ y) 	= x ◦ y correctly rounded value

10. Itanium Chip

In 2000, Intel announced its new IA-64 Itanium chip. The IA-64 complies with the
IEEE standard, and its floating point registers support the 80-bit extended format.
In many aspects, the IA-64 departs radically from the Intel’s previous chips. Most
significantly, as far as floating point is concerned, is the fact that it has 128 floating
point registers (compared with 8 on Pentium). Another significant change is that
the IA-64 includes a fused multiply-add instruction (FMA). The FMA computes the
correctly rounded value

round(a× b + c).

11. Further Reading

The following article based on lecture notes of Prof. W. Kahan of the University of
California at Berkeley provides an excellent review of IEEE float point arithmetics.
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D. Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys, 18(1):5–48, 1991.

The following recent published textbook gives a broad overview of numerical comput-
ing, with special focus on the IEEE standard for binary floating point arithmetic.

M. Overton. Numerical computing with IEEE floating point arithemetic. SIAM,
Philadelphia, 2001. ISBN 0-89871-482-6. Student price $20.00 directly from
www.siam.org.

To know more about IA-64, and particularly on floating point arithmetic aspects, see

P. Markstein. IA-64 and Elementary Functions. Prentice Hall PTR. 2000

M. Cornea, J. Harrison, and P. Tang, Scientific and Engineering Computation on
Itanium Processors, Intel press, to appear.
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3 Floating Point Arithmetic Error Analysis

1. Let x̂ and ŷ be the floating point numbers and that

x̂ = x(1 + τ1) and ŷ = y(1 + τ2), for |τi| ≤ τ � 1,

where τi could be the relative errors in the process of “collecting/getting” the data
from the original source or the previous operations.

Question: how do the four basic arithmetic operations behave?

(a) Addition and subtraction

fl(x̂ + ŷ) = (x̂ + ŷ)(1 + δ), |δ| ≤ 1
2
ε

= x(1 + τ1)(1 + δ) + y(1 + τ2)(1 + δ)
= x + y + x(τ1 + δ + O(τε)) + y(τ2 + δ + O(τε))

= (x + y)
(

1 +
x

x + y
(τ1 + δ + O(τε)) +

y

x + y
(τ2 + δ + O(τε))

)
≡ (x + y)(1 + δ̂),

where δ̂ can be bounded as follows:

|δ̂| ≤ |x|+ |y||x + y|
(

τ +
1
2
ε + O(τε)

)
.

Three possible cases:
i. If x and y have the same sign, i.e., xy > 0, then |x + y| = |x| + |y|; this

implies

|δ̂| ≤ τ +
1
2
ε + O(τε)� 1.

Thus fl(x̂ + ŷ) approximates x + y well.
ii. If x ≈ −y ⇒ |x + y| ≈ 0, then (|x| + |y|)/|x + y| � 1; this implies that |δ̂|

could be nearly or much bigger than 1. Thus fl(x̂ + ŷ) may turn out to have
nothing to do with the true x+ y. This is so called catastrophic cancellation
which happens when a floating point number is subtracted from another
nearly equal floating point number. Cancellation causes relative errors or
uncertainties already presented in x̂ and ŷ to be magnified.

Example. Computing
√

n + 1−√n straightforward causes substantial loss
of significant digits for large n

n fl(
√

n + 1) fl(
√

n) fl(fl(
√

n + 1) − fl(
√

n)

1.00e+10 1.00000000004999994e+05 1.00000000000000000e+05 4.99999441672116518e-06

1.00e+11 3.16227766018419061e+05 3.16227766016837908e+05 1.58115290105342865e-06

1.00e+12 1.00000000000050000e+06 1.00000000000000000e+06 5.00003807246685028e-07

1.00e+13 3.16227766016853740e+06 3.16227766016837955e+06 1.57859176397323608e-07

1.00e+14 1.00000000000000503e+07 1.00000000000000000e+07 5.02914190292358398e-08

1.00e+15 3.16227766016838104e+07 3.16227766016837917e+07 1.86264514923095703e-08

1.00e+16 1.00000000000000000e+08 1.00000000000000000e+08 0.00000000000000000e+00

Catastrophic cancellation can sometimes be avoided if a formula is properly
reformulated. In the present case, one can compute

√
n + 1−√n almost to

full precision by using the equality
√

n + 1−√n =
1√

n + 1 +
√

n
.
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n fl(1/(
√

n + 1 +
√

n))

1.00e+10 4.999999999875000e-06

1.00e+11 1.581138830080237e-06

1.00e+12 4.999999999998749e-07

1.00e+13 1.581138830084150e-07

1.00e+14 4.999999999999987e-08

1.00e+15 1.581138830084189e-08

1.00e+16 5.000000000000000e-09

In fact, one can show that fl(1/(
√

n + 1 +
√

n)) = (
√

n + 1 − √n)(1 + δ),
where |δ| ≤ 5ε + O(ε2) (try it!)

Example: Consider the function

f(x) =
1− cos x

x2
=

1
2

(
sin(x/2)

x/2

)2

.

Note that 0 ≤ f(x) < 1/2 for all x 	= 0.
Compare the computed values for x = 1.2 × 10−5 using the above two ex-
pressions (assume that the value of cos x rounded to 10 significant figures).

iii. In general, if (|x| + |y|)/|x + y| is not too big, fl(x̂ + ŷ) provides a good
approximation to x + y.

(b) Multiplication and Division are very well-behaved.

fl(x̂ ∗ ŷ) = (x̂× ŷ)(1 + δ) = xy(1 + τ1)(1 + τ2)(1 + δ) ≡ xy(1 + δ̂×),
fl(x̂/ŷ) = (x̂/ŷ)(1 + δ) = (x/y)(1 + τ1)(1 + τ2)−1(1 + δ) ≡ xy(1 + δ̂÷),

where
δ̂× = τ1 + τ2 + δ + O(τε), δ̂÷ = τ1 − τ2 + δ + O(τε).

Thus |δ̂×| ≤ 2τ + 1
2ε + O(τε) and |δ̂÷| ≤ 2τ + 1

2ε + O(τε).

2. Forward and backward error analysis

We illustrate the basic idea through a simple example. Consider the computation of
an inner product of two vector x, y ∈ R3

xT y
def= x1y1 + x2y2 + x3y3,

assuming already xi’s and yj’s are floating point numbers. It is likely that fl(x · y) is
computed in the following order.

fl(xT y) = fl( fl(fl(x1y1) + fl(x2y2)) + fl(x3y3) ).

Adopting the floating point arithmetic model, we have

fl(xT y) = fl( fl(x1y1(1 + ε1) + x2y2(1 + ε2)) + x3y3(1 + ε3) )
= fl( (x1y1(1 + ε1) + x2y2(1 + ε2))(1 + δ1) + x3y3(1 + ε3) )
= ( (x1y1(1 + ε1) + x2y2(1 + ε2))(1 + δ1) + x3y3(1 + ε3) )(1 + δ2)
= x1y1(1 + ε1)(1 + δ1)(1 + δ2) + x2y2(1 + ε2)(1 + δ1)(1 + δ2)

+x3y3(1 + ε3)(1 + δ2),

where |εi| ≤ 1
2ε and |δj | ≤ 1

2ε.

Now there are two ways to interpret the errors in the computed fl(xT y):
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(a) We have
fl(xT y) = xT y + E,

where E = x1y1(ε1 + δ1 + δ2) + x2y2(ε2 + δ1 + δ2) + x3y3(ε3 + δ2) + O(ε2). It
implies that

|E| ≤ 1
2
ε(3|x1y1|+ 3|x2y2|+ 2|x3y3|) + O(ε2) ≤ 3

2
ε · |x|T |y|+ O(ε2).

This bound on E tells the worst case difference between the exact x · y and its
computed value. Such an error analysis is so-called Forward Error Analysis.

(b) We can also write

fl(xT y) = x̂T ŷ = (x + Δx)T (y + Δy),

where1

x̂1 = x1(1 + ε1), ŷ1 = y1(1 + δ1)(1 + δ2) ≡ y1(1 + δ̂1),
x̂2 = x2(1 + ε2), ŷ2 = y2(1 + δ1)(1 + δ2) ≡ y2(1 + δ̂2),
x̂3 = x3(1 + ε3), ŷ3 = y3(1 + δ2) ≡ y3(1 + δ̂3).

It can be seen that |δ̂1| = |δ̂2| ≤ ε+O(ε2) and |δ̂3| ≤ 1
2ε. This says the computed

value fl(xT y) is the exact inner product of a slightly perturbed x̂ and ŷ. Such an
error analysis is so-called Backward Error Analysis.

3. Further Reading

A classical book on error analysis, where the notion of backward error analysis is
invented, is

J.H. Wilkinson. Rounding Errors in Algebraic Process. Prentice-Hall, Englewood,
NJ, 1964. Reprinted by Dover, New York, 1994.

A contemporary treatment of error analysis and its applications to numerical analysis
is

N.J. Higham, Accuracy and stability of Numerical Algorithms. second edition,
SIAM, Philadelphia, 2002.

1There are many ways to distribute factors (1 + εi) and (1 + δj) to xi and yj . In this case it is even
possible to make either x̂ ≡ x or ŷ ≡ y.
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4 Vector and Matrix Norms

1. A vector norm on Cn is a mapping that maps each x ∈ Cn to a real number ‖x‖,
satisfying

(a) ‖x‖ > 0 for x 	= 0, and ‖0‖ = 0 (positive definite property)

(b) ‖αx‖ = |α| ‖x‖ for α ∈ C (absolute homogeneity)

(c) ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

• Commonly used vector p-norms: Let x = (x1, x2, · · · , xn)T .

‖x‖p def=

(
n∑

i=1

|xi|p
)1/p

, 1 ≤ p <∞.

Most commonly used vector norms:

‖x‖1 =
n∑

i=1

|xi|, “Manhattan” or “taxi cab” norm

‖x‖2 =

(
n∑

i=1

|xi|2
)1/2

, Euclidean length

‖x‖∞ = max
1≤i≤n

|xi|.

• The geometry of the closed unit “ball”: {x ∈ C2 : ‖x‖ ≤ 1} corresponding to
each norm.

• Norm equivalence: Let ‖ · ‖α and ‖ · ‖β be any two vector norms. There are
constants c1, c2 > 0 such that

c1‖ · ‖α ≤ ‖ · ‖α ≤ c2‖ · ‖α
for examples, it can be easily proved that

‖x‖1 ≤
√

n‖x‖2, ‖x‖2 ≤ ‖x‖1, ‖x‖1 ≤ n‖x‖∞,
‖x‖∞ ≤ ‖x‖1, ‖x‖2 ≤

√
n‖x‖∞, ‖x‖∞ ≤ ‖x‖2.

• Cauchy-Schwarz inequality:

|xHy| ≤ ‖x‖2‖y‖2.

Hölder inequality:
|xHy| ≤ ‖x‖p‖y‖q,

where 1 ≤ p, q <∞ and 1
p + 1

q = 1.

2. A matrix norm on Cm×n is a mapping that maps each A ∈ Cm×n to a real number
‖A‖, satisfying

(a) ‖A‖ > 0 for A 	= 0, and ‖0‖ = 0 (positive definite property)

(b) ‖αA‖ = |α| ‖A‖ for α ∈ C (absolute homogeneity)
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(c) ‖A + B‖ ≤ ‖A‖+ ‖B‖ (triangle inequality)

Commonly used matrix norms:

• The Frobenius Norm ‖ · ‖F: For A = (aij) ∈ Cm×n,

‖A‖F def=

⎛⎝ m∑
i=1

n∑
j=1

|aij |2
⎞⎠1/2

=
√

tr(AHA).

• The induced (operator) norm ‖ · ‖: Any vector norm ‖ · ‖ that is generic
induced a (matrix) norm on Cm×n, denoted by the same notation,

‖A‖ def= max
x �=0

‖Ax‖
‖x‖ = max

‖x‖=1
‖Ax‖

Then it can be verified that ‖A‖ so defined is indeed a norm on Cm×n;

– ‖A‖1, ‖A‖2, and ‖A‖∞ are frequently used induced norm, induced by the
vector 1, 2, and ∞-norms respectively.

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij | = max absolute column sum,

‖A‖2 =
√

the largest eigenvalue of A∗A = the largest singular value of A,

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij | = max absolute row sum.

– Useful property: ‖Ax‖ ≤ ‖A‖ ‖x‖.
– “Geometry” of ‖A‖: the maximal factor by which A can “strech” a vector.

• ‖A‖22 ≤ ‖A‖1‖A‖∞.
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5 Frequently Used Matrix Decompositions

1. LU decomposition (Gaussian Elimination). If A is nonsingular, then there exist
permutations P , a unit lower triangular matrix L, and a nonsingular upper triangular
matrix U such that

PA = LU.

Special cases:

(a) Cholesky decomposition. A matrix A is symmetric positive definite if and only if
there exists a unique nonsingular upper triangular matrix R, with positive diag-
onal entries, such that

A = RT R.

(b) LDLT factorization If AT = A is nonsingular, then there exists a permutation
P , a unit lower triangular matrix L, and a block diagonal matrix D with 1-by-1
and 2-by-2 blocks such that

PAP T = LDLT .

Applications:

• Solve Ax = b.

• ...

2. QR decomposition (Gram-Schmidt orthogonalization). Let A be m-by-n with m ≥
n. Suppose that A has full column rank. Then there exist a unique m-by-n orthogonal
matrix Q (QT Q = I) and a unique n-by-n upper triangular matrix R with positive
diagonal rii > 0 such that

A = QR.

Applications:

• Find an orthonormal basis of the subspace spanned by the columns of A.

• Solve the linear least squares problem minx ‖Ax− b‖2.
3. Schur decomposition. Let A be of order n. Then there is an n× n unitary matrix

U (UHU = I) such that
A = UTUH ,

where T is upper triangular. By appropriate choice of U , the eigenvalues of A, which
are the diagonal elements of T , may be made to appear in any order.

Applications:

• Compute eigenvalues and eigenvectors of A.

• ...

4. Singular Value Decomposition (SVD). Let A be an m-by-n matrix with m ≥ n.
Then we can write

A = UΣV T ,
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where U is m-by-n orthogonal matrix (UT U = In) and V is n-by-n orthogonal matrix
(V T V = I), and Σ = diag(σ1, σ2, . . . , σn), where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. (If m < n,
the SVD can be defined by considering AT ).

The columns u1, u2, . . . , un of U are called left singular vectors of A. The columns
v1, v2, . . . , vn of V are called right singular vectors. The σ1, σ2, . . . , σn are called sin-
gular values.

Applications:

• Suppose that A is m-by-n with m ≥ n and has full rank, with A = UΣV T being
A’s SVD. Then the pseudo-inverse can also be written as

A† ≡ (AT A)−1AT = V Σ−1UT .

(If m < n, then A† = AT (AAT )−1)

• Suppose that
σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0,

Then the rank of A is r. The range space of A is span(u1, u2, · · · , ur). and the
null space of A is span(vr+1, vr+2, . . . , vn).

• ‖A‖2 = σ1(≡ σmax)

• Let A be m× n with m ≥ n. Then
(a) eigenvalues of AT A are σ2

i , i = 1, 2, . . . , n. The corresponding eigenvectors
are the right singular vectors vi, i = 1, 2, . . . , n.
(b) eigenvalues of AAT are σ2

i , i = 1, 2, . . . , n and m − n zeros. The left singu-
lar vectors ui, i = 1, 2, . . . , n are corresponding eigenvectors for the eigenvalues
σ2

i . One can take any m − n other orthogonal vectors that are orthogonal to
u1, u2, . . . , un as the eigenvectors for the eigenvalues 0.

• Optimal rank-k approximation:

min
B : m× n

rank(B) = k

‖A−B‖2 = ‖A−Ak‖2 = σk+1,

where Ak = UΣkV
T , Σk = diag(σ1, σ2, . . . , σk, 0, . . . , 0)

Note that Ak can be written in a compact form as

Ak = UkΣ̂kV
T
k ,

where Uk and Vk are the first k columns of U and V , respectively, Σ̂k = diag(σ1, σ2, . . . , σk).
Therefore, Ak is represented by mk+k+nk = (m+n+1)k elements, in contrast,
A is represented by mn elements.
Application: image compression.

compression ratio =
(m + n + 1)k

mn
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Matlab’s M-scripts:

>> load clown.mat;
>> [m,n]=size(X);
>> figure(1);
>> colormap(map);
>> imag(X);
>> [U,S,V]=svd(X);
>> k = 20;
>> X20 = U(:,1:k)*S(1:k,1:k)*V(:,1:k)’;
>> figure(2);
>> colormap(map);
>> image(X20);
>> compression_ratio = (m+n)*k/(m*n)

Output:
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6 Iterative Linear Solvers – Basics

1. The landscape of linear system solvers

Direct Iterative
(A = LU) (u = Av)

Nonsymmetric pivoting LU GMRES,...

Symm.pos.def. Cholesky Conjugate Gradient

2. A general framework for iterative projection methods

Given the linear system of equations

Ax = b

where A is an n×n real matrix, b and n vector. The basic idea of projection techniques
is to extract an approximate solution from subspaces of Rn. Let W and V be two
m-dimensional subspaces of Rn, and x0 is a “good” initial guess of the solution, then
the projection technique is to

Find x̃ ∈ x0 +W such that b−Ax̃⊥V. (2)

Write x̃ = x0 + z, z ∈ W and define initial residual r0 = b − Ax0. Notice that
b−Ax̃ = b−A(x0 + z) = r0 −Az. Then the formulation (2) is equivalent to

Find z ∈ W such that r0 −Az⊥V. (2a)

This is a basic projection step in its most general form. Most standard techniques use
a succession of such projections. Typically, a new projection step uses a new pair of
subspaces W and V (updated from the previous step) and an initial guess x0 equal to
the most recent approximation. This simple framework is common to many numerical
computing.

Definition 1 If W = V, then it is called orthogonal projection method. Otherwise,
it is called oblique projection method.

Matrix Representation Let V = [v1, v2, . . . , vm] be an n × m matrix whose
columns form a basis of V, and similarly W = [w1, w2, . . . , wm] an n × m matrix
whose columns form a basis of W. Then any approximation solutions in x0 +W can
be written as

x̃ = x0 + z = x0 + Wy, i.e., z = Wy,

and orthogonality implies V T (r0 −Az) = 0; thus

V T AWy = V T r0 ⇒ y = (V T AW )−1V T r0,

provided V T AW is invertible. Putting it all together, we have

x̃ = x0 + W (V T AW )−1V T r0.

Now, we have a prototype projection method:

17



0. Let x0 be an initial approximation
1. Iterate until convergence:
2. Select a pair of subspaces V and W
3. Generate basis matrices V and W for V and W
4. r0 ← b−Ax0

5. y ← (V T AW )−1V T r0

6. x0 ← x0 + Wy

There are two important remarks:

1. In many practical algorithms to be discussed below, the matrix V T AW does not
have to be formed explicitly. It is available as a by-product of Steps 2 and 3,
e.g., the Arnoldi process.

2. The method is defined only when V T AW is nonsingular, which is not guaranteed
to be true even when A is nonsingular.

The following theorem states that there are two important special cases where the
nonsingularity of V T AW is guaranteed.

Theorem 1 Let A, W, and V satisfy either one of the following two conditions:

(a) A is symmetric positive definite (SPD) and W = V, or

(b) A is nonsingular, and V = AW.

Then the matrix V T AW is invertible for any basis matrices W and V of W and V,
respectively.

Optimality We now discuss two important optimality results that are satisfied by
the approximate solutions in some cases.

Theorem 2 Assume that A is SPD and that V = W. Then a vector x̃ is the result
of (2) if and only if

‖x∗ − x̃‖A = min
x∈x0+W

‖x∗ − x‖A,

where ‖x∗ − x‖A =
√

(x∗ − x)T A(x∗ − x), and x∗ is the exact solution to Ax = b.
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x0 x̃

x∗

x0 +W

Proof: Notice that (A(·), ·) is an inner product onRn since A is SPD. Thus ‖x∗−x‖A
over all possible x ∈ x0 +W is minimized at x̃ if and only if x∗ − x̃⊥AW, i.e.,

(A(x∗ − x̃), w) = (b−Ax̃,w) = 0 for any w ∈ W = V.
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This is (2).

The corresponding methods are steepest descent method and conjugate gradient (CG)
method.

Theorem 3 Let A be an arbitrary square matrix and assume V = AW. Then a
vector x̃ is the result of (2) if and only if

‖b−Ax̃‖2 = min
x∈x0+W

‖b−Ax‖2.
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Ax0 Ax̃

b

Ax0 + AW

Proof: ‖b − Ax‖2 over all possible x ∈ x0 + W is minimized at x̃ if and only if
b−Ax̃⊥AW, i.e.,

(b−Ax̃, v) = 0 for any v ∈ AW = V.

This is (2).

The corresponding methods are minimal residual residual (MR) method and general-
ized minimal residual (GMRES) method.

3. One-Dimensional Projection Processes are defined when

W = span{w} and V = span{v},
where w and v are two vectors. In this case, the new approximation takes form

x ← x + z = x + αw

and the condition (2a) implies vT (r −Az) = vT (r − αAw) = 0, and thus

α =
vT r

vT Aw
.

Following are two popular choices of w and v.

(a) Steepest Descent This is for SPD A, and at each step v = w = r, the residual
vector. This yields

Steepest Descent Algorithm:

1. Pick an initial guess x0

2. Until convergence for k = 0, 1, 2, . . . do
3. rk = b−Axk

4. αk = rT
k rk

rT
k

Ark

5. xk+1 = xk + αkrk

6. EndDo
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Alternatively, we can view that each step of the above iteration minimizes

f(x) def= ‖x∗ − x‖2A = (x∗ − x)T A(x∗ − x),

over all vectors of the form x − α(∇f(x)), where ∇f(x) is the gradient of f at
x. Recall that the negative of the gradient direction is locally the direction that
yields the fastest rate of decrease for f .
Now we show that the convergence of the steepest descent is guaranteed when A
is SPD.

Theorem 4 Let A be SPD, and let λmin and λmax be its smallest and largest
eigenvalues respectively. Then for the Steepest Descent Algorithm

‖x∗ − xk+1‖A ≤
(

λmax − λmin

λmax + λmin

)
‖x∗ − xk‖A =

(
κ(A) − 1
κ(A) + 1

)
‖x∗ − xk‖A,

where x∗ is the exact solution to Ax = b. κ(A) = λmax/λmin is the condition
number of A.
Thus the Steepest Descent Algorithm converges for any initial guess.

(b) Minimal Residual (MR) Iteration This is for matrix A not necessary sym-
metric but A + AT is SPD2. At each step take w = r and v = Ar.

Minimal Residual (MR) Iteration:

1. Pick an initial guess x0

2. Until convergence for k = 0, 1, 2, . . . do
3. rk = b−Axk

4. αk = rT
k

Ark

rT
k

AT Ark

5. xk = xk + αkrk

6. EndDo

Alternatively, we can view that each step of the MR iteration minimizes

f(x) def= ‖r‖22 = ‖b−Ax‖22
over all vectors of the form x− αr.

Theorem 5 Assume that A + AT is SPD, and let μ = λmin

(
A+AT

2

)
, and σ =

‖A‖2. Then for the MR iteration

‖rk+1‖2 ≤ (1− μ2/σ2)1/2‖rk‖2.

Thus the MR iteration converges for any initial guess.

2This is equivalent to say that A is positive definite. A real matrix A said to be positive definite if
uT Au > 0 for any 0 �= u ∈ R. It can be shown that if A is real positive definite, then A is nonsingular, in
addition, uT Au ≥ λmin

(
1
2
(A + AT )

)
uT u.
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7 Iterative Linear Solvers – Krylov subspace methods I

1. Krylov Subspace. Given a vector v ∈ Rn, the Krylov subspace is defined as

Km ≡ Km(A, v) = span{v,Av,A2v, . . . , Am−1v}.
Note that if x ∈ Km, then x = p(A)v, where p(A) is a polynomial of degree not
exceeding m− 1.

2. Arnoldi procedure is an algorithm for building an orthogonal basis of the Krylov
subspace Km(A, v) using a modified Gram-Schmidt orthogonalization process.3

Arnoldi Procedure – Modified Gram-Schmidt Version

1. v1 = v/‖v‖2
2. for j = 1, 2, . . . ,m
3. compute w = Avj

4. for i = 1, 2, . . . , j
5. hij = vT

i w
6. w := w − hijvi

7. end for
8. hj+1,j = ‖w‖2
9. If hj+1,j = 0, Stop
10. vj+1 = w/hj+1,j

11. endfor

Proposition 1 Assume that the Arnoldi procedure does not stop before the m-th step.
Then the vectors {v1, v2, . . . , vm} form an orthonormal basis of the Krylov subspace
Km(A, v)

Denote Vm = [v1, v2, . . . , vm] and Hm = (hij) = Upper Hessenberg. Then in the ma-
trix form, the Arnoldi procedure can be expressed in the following governing relations:

AVm = VmHm + hm+1,mvm+1e
T
m

and V T
m Vm = Im and V T

m AVm = Hm. This is often referred to as an order-m Arnoldi
decomposition.

Furthermore, if we denote Vm+1 = [Vm, vm+1] and Ĥm =

[
Hm

hm+1,meT
m

]
, i.e., Ĥm is

a m + 1 by m upper triangular matrix, then an order-m Arnoldi decomposition can
also be written in the following compact form

AVm = Vm+1Ĥm.

Remarks:

• The Arnoldi procedure breaks down when hj+1,j = 0 for some j. It is easy to
see that if the Arnoldi procedure breaks down at step j (i.e. hj+1,j = 0), then
Kj is invariant subspace of A.

3Warning: Some care must be taken to insure that the vectors vj remain orthogonal to working accuracy
in the presence of rounding error. The usual technique is called reorthogonalization.
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• Note that the matrix A is only referenced via the matrix-vector multiplication
Avj . Therefore, it is ideal for large sparse or large dense structure matrices.
Any sparsity or structure of a matrix can be exploited in the matrix-vector
multiplication.

• The main storage requirement is (m+1)n for storing Arnoldi vectors {vi} plus the
storage requirement for the matrix A in question or the required matrix-vector
multiplication.

• The primary arithmetic cost of the procedure is the cost of m matrix-vector prod-
ucts plus 2m2n for the rest. It is common that the matrix-vector multiplication
is the dominant cost.

3. Full Orthogonalization Method (FOM). Given an initial guess x0 to the original
linear system Ax = b, we now consider an orthogonal projection method with

W = V = Km(A, r0)

where r0 = b−Ax0. Following the general framework of a projection method, an ap-
proximate xm is sought from the affine subspace x0 +Km of dimension m by imposing
the Galerkin condition

b−Axm ⊥ Km.

With v1 = r0/‖r0‖2, Arnoldi procedure generates an orthogonal basis Vm of Km and
furthermore,

V T
m AVm = Hm and V T

m r0 = V T
m (βv1) = βe1,

where β = ‖r0‖2. As a result, the approximate solution is given by

xm = x0 + Vmym = x0 + βVmH−1
m e1.

Unfortunately, FOM fails if Hm is singular! In practice, GMRES method to be dis-
cussed below is a more robust variant of FOM.

The residual vector of xm is given as the following

b−Axm = b−A(x0 + Vmym)
= r0 −AVmym

= βv1 − VmHmym − hm+1,mvm+1(eT
mym)

= Vm(βe1 −Hmym)− hm+1,mvm+1(eT
mym)

= −hm+1,mvm+1(eT
mym).

Hence
‖b−Axm‖2 = hm+1,m|eT

mym|
Therefore, we observe that an elegant feature of the method is that the residual norm
can be cheaply computed. There is no need to form the approximate solution xm until
its accuracy is satisfied.

Restarted FOM: As m increases, the computational cost increases at least as O(m2n).
The memory cost increases as O(mn). For large n this limits the largest value of m
that can be used. The popular remedy is to restart the algorithm periodically for a
fix m.
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Restarted FOM:

1. compute r0 = b−Ax0, β = ‖r0‖2 and v1 = r0/β
2. call Arnoldi procedure with A, v1 and m
3. compute ym = H−1

m (βe1) and xm = x0 + Vmym

4. test for convergence, if satisfied, then Stop
5. set x0 := xm and go to 1.

4. The Generalized Minimum Residual (GMRES) method4 based on taking

W = Km(A, r0) and V = AW = AKm(A, r0).

We have two ways to derive the GMRES method.

• The first way exploits the optimality property. Note that any vector x in x0+Km

can be written as x = x0 + Vmy, where y is an m-vector. Define

J(y) = ‖b−Ax‖2 = ‖b−A(x0 + Vmy)‖2 (3)

Then using the Arnoldi decomposition, we have

b−Ax = b−A(x0 + Vmy) = r0 −AVmy

= βv1 − Vm+1Ĥmy = Vm+1(βe1 − Ĥmy).

Since the column vectors of Vm+1 are orthonormal, then

J(y) = ‖b−A(x0 + Vmy)‖2 = ‖βe1 − Ĥmy‖2.
Therefore, the GMRES approximation xm is the unique vector xm = x0 + Vmy,
where y the solution of the least squares problem

min
y
‖βe1 − Ĥmy‖2.

This least squares problem is inexpensive to compute since m is typically small.
• The second way to derive the GMRES algorithm is to use the framework of the

projection technique. This is to be presented at the class.

Breakdown of GMRES: Since the least squares problem always has solution, the only
possibility of the breakdown of the GMRES is in the Arnoldi procedure when hj+1,j

at some step j. However, in this case, the residual norm of xj is zero, b − Axj = 0.
xj is the exact solution. This is called lucky breakdown. In fact, we have

Proposition 2 Let A be a nonsingular matrix. Then the GMRES algorithm breaks
down at step j, i.e., hj+1,j = 0, if and only if the approximate solution xj is exact.

Restarting GMRES method: Similar to the FOM, the GMRES method becomes
impractical when m is large because of the growth of memory and computational
requirements as m increases. These requirements are identical with those of FOM.
As with FOM, in the practical application of the GMRES method, it is restarted
periodically for a fix m.

4Y. Saad and M. H. Schultz. GMRES: a Generalized Minimal RESidual algorithm for solving nonsym-
metric linear systems, SIAM Journal on Scientific and Statistical Computing, Vol.7, pp.856–869, 1986.
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5. Convergence of GMRES. We wish to establish a result to provide an upper bound on
the convergence rate of the GMRES iterates. Unfortunately, because of the compli-
cation of non-Hermitian matrices and their spectral distribution, it is not possible to
prove a simple result, but can get pretty close for practical use. First, we have the
following lemma to characterize the approximate solution by the GMRES method:

Lemma 1 Let xm be the approximate solution obtained from the m-th step of the
GMRES algorithm, and let rm = b−Axm. Then xm is of the form

xm = x0 + qm(A)r0

and
‖rm‖2 = ‖(I −Aqm(A))r0‖2 = min

q∈Pm−1

‖(I −Aq(A))r0‖2.

Proof: This is true because xm minimizes the 2-norm of the residual in the affine
subspace x0 + Km, the optimality property of the projection technique. Recall that
Km is the set of all vectors of the form x0 + q(A)r0, where q is a polynomial of degree
≤ m− 1.

Proposition 3 Assume that A is diagonalizable matrix and let A = V ΛV −1 where
Λ = diag(λ1, λ2, . . . , λn) is the diagonal matrix of eigenvalues. Define

ε(m) = min
p∈Pm,p(0)=1

max
1≤i≤n

|p(λi)|.

Then the residual norm satisfies the inequality

‖rm‖2 ≤ κ2(V )ε(m)‖r0‖2.

where κ2(V ) = ‖V ‖2‖V −1‖2.

The results of approximation theory on near-optimal Chebyshev polynomials in the
complex plane can now be used to obtain an upper bound for ε(m). This is stated in
the following corollary.

Corollary 1 Assume that all the eigenvalues of A are located in the ellipse E(c, d, a)
which excludes the origin. Then

‖rm‖2 ≤ κ2(V )
Tm(a/d)
Tm(c/d)

‖r0‖2 <∼ κ2(V )

(
a +
√

a2 − d2

c +
√

c2 − d2

)m

‖r0‖2.

The follow plots show the spectrum of A is contained in the ellipses E(c, d, a) with
center c, focal distance d and major semi axis a. The left plot is for the case of real d
and the right plot is for the case of purely imaginary d.
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Since the condition number κ2(V ) is typically not known and can be very large, results
are of limited practical interest. They can be useful one when it is known that the
matrix is nearly normal, in which case, κ2(V ) ≈ 1.
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8 Iterative Linear Solvers – Krylov subspace methods II

1. The symmetric Lanczos procedure can be viewed as a simplification of Arnoldi’s
procedure when A is symmetric.

By an order-m Arnoldi decomposition, we know that

Hm = V T
mAVm.

If A is symmetric, then Hm becomes symmetric tridiagonal. This simple observation
leads to the following procedure to compute an orthonormal basis Qm of Krylov
subspace Km(A, v) when A is symmetric5

Lanczos Procedure

1. v1 = v/‖v‖2, set β1 = 0, v0 = 0
2. for j = 1, 2, . . . ,m
3. w = Avj − βjvj−1

4. αj = vT
j w

5. w := w − αjvj

8. βj+1 = ‖w‖2
9. If βj+1 = 0, then stop
10. vj+1 = w/βj+1

11. endfor

Note that only three vectors must be saved in the inner loop of the procedure. This
is referred as a three-term recurrence.

If we denote Vm = [v1, v2, . . . , vm] and Tm = tridiag(βj , αj , βj+1). Then in the matrix
form, the Lanczos procedure can be expressed in the following so-called order−m
Lanczos decomposition:

AVm = VmTm + βm+1vm+1e
T
m

and furthermore, V T
mVm = Im and V T

m AVm = Tm.

Remarks

• The computed Lanczos vectors {vi} are orthogonal in exact arithmetic. In the
presence of finite precision, it starts losing such orthogonality rapidly with the
increase of j. (The same phenomenon is also observed in the Arnoldi procedure,
but it’s not as severe as in the Lanczos procedure).
There has been much research devoted to understanding the effect of loss of
the orthogonality, and finding ways to either recover the orthogonality, or to at
last diminish its effects. The best reference is [B. N. Parlett, The Symmetric
Eigenvalue Problem, SIAM Press, 1998].

2. The Conjugate Gradient (CG) method is one of the best known iterative tech-
niques for solving sparse SPD linear system.6

5Note that we change the notation αj = hjj and βj+1 = hj−1,j , comparing with the Arnoldi procedure.
6M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat.

Bur. Standards, 49:409–436, 1952.
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There are several ways to derive this way. In terms of our familiar subspace projection
technique, we can describe the CG method in one sentence:

the CG is a realization of an orthogonal projection technique onto the Krylov
subspace Km(A, r0), where r0 = b−Ax0 with initial guess x0.

Therefore, it is mathematically equivalent to FOM. However, because A is SPD, some
simplifications resulting from the three-term Lanczos recurrence will lead to an elegant
algorithm.

By the analogue of FOM, with an initial guess x0, the approximate solution obtained
from an orthogonal projection method onto x0 +Km(A, r0) is given by

xm = x0 + Vmym (4)

where ym is the solution of the tridiagonal system

Tmym = βe1,

where β = ‖r0‖2.
Now, let’s try to compute the solution of the tridiagonal system progressively along
with the Lanczos procedure. For doing so, let’s write the LU factorization of Tm as
Tm = LmUm, i.e. the Gaussian elimination without pivoting:

Tm = LmUm =

⎛⎜⎜⎜⎜⎜⎜⎝
1
λ2 1

λ3 1
. . . . . .

λm 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
η1 β2

η2 β3

. . . . . .
ηm−1 βm

ηm

⎞⎟⎟⎟⎟⎟⎟⎠
Then xm is given by

xm = x0 + VmU−1
m L−1

m (βe1)

Let Pm = VmU−1
m and zm = L−1

m (βe1), then

xm = x0 + Pmzm.

Note that pm, the last column of Pm, can be computed from previous pi’s and vm by
the simple update

pm = η−1
m [vm − βmpm−1], (5)

where βm is a scalar computed from the Lanczos algorithm, while ηm results from the
m-th Gaussian elimination step on the tridiagonal matrix, i.e.,

λm = βm/ηm−1

ηm = αm − λmβm.

In addition, it can be shown that

zm =

[
zm−1

ζm

]
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where ζm = −λmζm−1. As a result, xm can be updated at each step as

xm = x0 + [Pm−1, pm]

[
zm−1

ζm

]
= x0 + Pm−1zm−1 + ζmpm = xm−1 + ζmpm.

This gives the following algorithm, which is the direct version of the Lanczos algorithm:

Direct Lanczos Method

1. compute r0 = b−Ax0, β := ζ1 := ‖r0‖2, and v=r0/β,
2. set λ1 = β1 = 0, p0 = 0
3. for m = 1, 2, . . . , do
4. w := Avm − βmvm−1 and αm = vT

mw
5. If m > 1 then compute λm = βm/ηm−1 and ζm = −λmζm−1

6. ηm = αm − λmβm

7. pm = η−1
m (vm − βmpm−1)

8. xm = xm−1 + ζmpm

9. If xm has converged, then Stop
10. w := w − αmvm

11. βj+1 = ‖w‖2 and vm+1 = w/βm+1

12. endfor

The direct Lanczos method and the solution (4) are mathematically equivalent. How-
ever, since Gaussian elimination without pivoting is being used implicitly to solve the
triangular system Tmym = βe1, the direct version may be more prone to numerical
instability.

Regarding the residual vectors {ri} and the vectors {pi}, we have the followings.

Proposition 4

(a) The residual vectors {ri} are orthogonal to each other, i.e., rT
j ri = 0 for i 	= j.

(b) the vectors {pi} form an A-conjugate set, i.e., pT
j Api = 0 for i 	= j.

A consequence of the above proposition is that a version of the algorithm can be
derived by directly imposing the orthogonality and conjugacy conditions. This gives
the Conjugate Gradient (CG) algorithm. We now drive this. Let express the vector
xj+1 as

xj+1 = xj + αjpj

Therefore, the residual vectors must satisfy the recurrence

rj+1 = b−Axj+1 = b−A(xj + αjpj) = rj − αjApj . (6)

If the rj’s are to be orthogonal, i.e., rT
j rj+1 = 0, then it gives

αj =
rT
j rj

rT
j Apj

Also, from (5), it is known that the next search direction pj+1 is a linear combination
of rj+1 and pj, and with proper rescaling the p vectors approximately, it can be written
as

pj+1 = rj+1 + βjpj.

28



Thus a first consequence of the above relation is that

rT
j Apj = (pj − βj−1pj−1)T Apj = pT

j Apj.

i.e.,

αj =
rT
j rj

pT
j Apj

.

By imposing A-conjugacy pT
j+1Apj = 0, we have

βj = −pT
j Arj+1

pT
j Apj

Note that from (6), Apj = − 1
αj

(rj+1 − rj) and therefore

βj =
1
αj

(rj+1 − rj)T rj+1

pT
j Apj

=
rT
j+1rj+1

rT
j rj

Putting these relations together gives the following CG algorithm

Conjugate Gradient (CG) Method

1. compute r0 = b−Ax0 and p0 := r0

2. for j = 0, 1, 2, . . . , until convergence do

3. αj =
rT
j rj

pT
j Apj

4. xj+1 = xj + αjpj

5. rj+1 = rj − αjApj

6. βj =
rT
j+1rj+1

rT
j rj

7. pj+1 = rj+1 + βjpj

8. endfor

Note that the scalars αj and βj here are different from those of the direct Lanczos
method. In addition to the matrix A, four vectors of storage are required: x, p,Ap
and r.

3. An alternative derivation of the CG method is presented in the following excellent
paper (pdf file is available at the class website)

Jonathan Shewchuk, An Introduction to Conjugate Gradient Method With-
out the Agonizing Pain. 1994 (64 pages)

4. From the optimality of the projection technique, we know that the approximate so-
lution obtained from the m-th step of the CG algorithm minimizes the A-norm of
the error in the affine subspace x0 + Km(A, r0). Since Km is the set of all vectors of
the form x0 + q(A)r0, where q is a polynomial of degree ≤ m − 1, we conclude the
following lemma which characterizes the approximate solution xm:

29



Lemma 2 Let xm be the approximate solution obtained from the m-th step of the CG
algorithm, and let dm = x∗ − xm where x∗ is the exact solution of Ax = b. Then xm

is of the form
xm = x0 + qm(A)r0

where qm is a polynomial of degree m− 1 such that

‖(I −Aqm(A))d0‖A = min
q∈Pm−1

‖(I −Aq(A))d0‖A

From this, we have the following theorem.

Theorem 6 Let xm be the approximate solution obtained from the m-th step of the
CG algorithm, and x∗ is the exact solution of Ax = b. Then,

‖x∗ − xm‖A ≤ 1
Tm(1 + 2η)

‖x∗ − x0‖A, (7)

where Tm is the Chebyshev polynomial of degree m, and η = λmin/(λmax−λmin). λmax

and λmin are the largest and smallest eigenvalues of A.

A slightly different formulation of inequality can be derived. Using the relation

Tm(t) =
1
2

[(
t +

√
t2 − 1

)m
+
(
t +

√
t2 − 1

)−m
]
≥ 1

2

(
t +

√
t2 − 1

)m
.

Then

Tm(1 + 2η) ≥ 1
2

(
1 + 2η +

√
(1 + 2η)2 − 1

)m

=
1
2

(
1 + 2η + 2

√
η(η + 1)

)m

.

Now notice that

1 + 2η + 2
√

η(η + 1) = (
√

η +
√

η + 1)2 =
(
√

λmin +
√

λmax)2

λmax − λmin

=
√

λmax +
√

λmin√
λmax −

√
λmin

=
√

κ + 1√
κ− 1

where κ is the condition number of A, κ = λmax
λmin

. Substituting into the inequality (7)
yields

‖x∗ − xm‖A ≤ 2

(√
κ− 1√
κ + 1

)m

‖x∗ − x0‖A.

This bound is similar to that of the steepest descent algorithm except that the con-
dition number of A is now replaced by its square root. CG method could be of order
of magnitudes faster than the steepest descent algorithm. For example, let κ = 103,
if one wants (

k − 1
k + 1

)m1

=

(√
k − 1√
k + 1

)m2

= 10−2

then it means that the steepest descent algorithm needs to take m1 ≈ 2300 iterations
to reach the same level of accuracy as m2 ≈ 73 iterations of the CG method.
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The above analysis using the condition number does not explain all the important
convergence behavior of CG. In fact, the entire distribution of eigenvalues of A is
important, not just the ratio of the largest to the smallest one. If the largest and
smallest eigenvalues of A are few in number (or clustered closely together), then CG
will converge much more quickly than the above analysis based just on A’s condition
number would indicate. Any important fact is that the behavior of CG in floating
point arithmetic can differ significantly from its behavior in exact arithmetic7.

7A. Greenbaum and Z. Strakos, Predicting the behavior of finite precision Lanczos and conjugate gradient
computations, SIMAX, 13:121-137, 1992.

A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, 1997.
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9 Preconditioning Techniques

1. In the convergence analysis of CG and GMRES algorithms, we saw that the con-
vergence rate of the CG depends on the condition number of A, or more generally
the distribution of A’s eigenvalues. Other Krylov subspace methods have the similar
property.

Preconditioning means replacing the system Ax = b with the modified systems

M−1Ax = M−1b. (8)

If M is SPD, then one can precondition symmetrically and solve the modified linear
system

L−1AL−T y = L−1b, x = L−Ty, (9)

where M = LLT . The matrix L could be the Cholesky factor of M or any other
matrix satisfying M = LLT .

The desired preconditioner M should be chosen so that

(a) M−1A or L−1AL−T is “well-conditioned” or approximates “the identity matrix”,

(b) linear systems with coefficient matrix M are easy to solve.

A careful, problem-dependent choice of M can often make the condition number of
the modified system much smaller than the condition number of the original one,
and thus accelerate convergence dramatically. Indeed, a good preconditioner is often
necessary for an iterative method to converge at all, and much current research in
iterative methods is directed at finding better preconditioners.

More specifically, a good preconditioner M depends on the iterative method being
used.

• For CG and related methods, one would like the condition number of the sym-
metrically preconditioned matrix L−1AL−T to be close to one, in order for the
error bound based on the Chebyshev polynomial to be small, or alternatively,
has few extreme eigenvalues.

• For GMRES, a preconditioned matrix that is close to normal and whose eigen-
values are tightly clustered around some point away from the origin would be
good, but other properties might also suffice to define a good preconditioner.

2. Preconditioned Conjugate Gradient.

If the CG algorithm is applied directly to the symmetric preconditioned system (9),
the iterative kernels satisfy

yj+1 = yj + αj p̂j

r̂j+1 = r̂j − α̂jAp̂j

p̂j+1 = r̂j+1 + β̂j p̂j

with

α̂j =
r̂T
j r̂j

p̂T
j L−1AL−T p̂j

and β̂j =
r̂T
j+1r̂j+1

r̂T
j r̂j

.

32



Defining
xj = L−T yj, rj = Lr̂j , pj = L−T p̂j.

We obtained the following preconditioned CG algorithm for Ax = b.

Preconditioned Conjugate Gradient (PCG)

1. compute r0 = b−Ax0, solve Mz0 = r0 and p0 := z0

2. for j = 0, 1, 2, . . . , until convergence do
3. αj = (rT

j zj)/(pT
j Apj)

4. xj+1 = xj + αjpj

5. rj+1 = rj − αjApj

6. solve Mzj+1 = rj+1

7. βj = (rT
j+1zj+1)/(rT

j zj)
8. pj+1 = zj+1 + βjpj

9. endfor

3. Preconditioned GMRES.

The GMRES applies to the modified system (8) is straightforward.

Preconditioned GMRES

1. compute r0 = M−1(b−Ax0), β = ‖r0‖2 and v1 := r0/β
2. for j = 0, 1, 2, . . . ,m do
3. compute w := M−1Avj

4. for i = 1, 2, . . . , j do
5. hij = vT

i w
6. w := w − hijwi

7. end do
8. compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

9. end do
10. let ym be the solution of miny ‖βe1 − Ĥmy‖2
11. xm = x0 + Vmym

12. If satisfied, Stop, else set x0 := xm and GOTO 1.

Note that in the above algorithm, Vm = [v1, v2, . . . , vm] and Ĥm is a (m + 1) × m
upper triangular matrix with the entries hij computed at steps (4) and (8).

4. Preconditioning Techniques.

The reliability and robustness of iterative techniques, when dealing with various ap-
plications, often depends much more on the quality of the preconditioner than on the
particular Krylov subspace methods used. Finding a good preconditioner to solve
a given sparse linear system is oftne viewed as a combination of art and science.
Preconditioners can be divided roughly into three categories:

I. Preconditioners designed for general classes of matrices; e.g. Jacobi, Gauss-
Seidel, SOR, incomplete LU factorization, incomplete Cholesky decomposition,
approximate inverse.

II. Preconditioners designed for broad classes of underlying problems; e.g. elliptic
partial differential equations (such as Poisson equation). Examples are multigrid
and domain decomposition preconditioners.
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III. Preconditioners designed for a specific matrix or underlying problem; e.g. for
the transport equation.

5. ILU Factorization Preconditioners.

Except for diagonal matrices, the solution of the linear system with coefficient matrix
M requires that we have a suitable decomposition of M . In many instances this will be
an LU decomposition. The idea of an incomplete LU preconditioner is to perform an
abbreviated (sparse) form of Gaussian elimination of A and to declare the production
of the resulting factors to be M . Since M is by construction already factorized, system
involving M will be easy to solve.

Let us first introduce a sparsity set Z to control the patterns of zeros. Specifically,
let Z be a set of ordered pairs of integers from {1, 2, . . . , n} containing no pairs of the
form (i, i). An incomplete LU factorization of A is a decomposition of the form

A = LU + E, (10)

where L is unit lower triangular, and U is upper triangular, and L, U and E have the
following properties

(a) If (i, j) ∈ Z with i > j, then 
ij = 0,

(b) If (i, j) ∈ Z with i < j, then uij = 0,

(c) If (i, j) /∈ Z, then eij = 0.

In other words, the elements of L and U are zero on the sparsity set Z, and off the
sparsity set the decomposition reproduces A.

It is instructive to consider two extreme cases. (1) If the sparsity Z set is empty, we
get the LU decomposition of A, i.e., we are using A as a preconditioner. (2) If Z is
everything except diagonal pairs of the form (i, i), then we are effectively using the
diagonal of A as a preconditioner.

Let us consider an ILU algorithm to generate L and U rowwise. Suppose we have
computed the first k−1 rows of L and U , and we wish to compute the kth row. Write
the first k rows of (10) in the form[

A11 A1k

aT
k1 aT

kk

]
=

[
L11 0
lT1k 1

] [
U11 U1k

0 uT
kk

]
+

[
R11 E1k

eT
k1 eT

kk

]
.

we need to compute lT1k and uT
kk. Multiplying out, we find that

lT1kU11 + eT
k1 = aT

k1 (11)

and
uT

kk + eT
kk = aT

kk − lT1kU1k

We then can solve these two systems in order:


k1, 
k2, . . . , 
k,k−1︸ ︷︷ ︸
lT
1k

, νkk, νk,k+1, . . . , νk,n︸ ︷︷ ︸
uT

kk

.
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Suppose that we have computed 
k1, 
k2, . . . , 
k,j−1. If (k, j) is in the sparsity set,
we simply set 
kj = 0. If (k, j) is not in the sparsity set, then rkj = 0, and the
equation (11) gives

αkj =
k−1∑
i=1


kiνij + 
kjνjj,

from which we get


kj =
αkj −

∑k−1
i=1 
kiνij

νjj
.

The key observation here is that it does not matter how the values of the preceding 
’s
and ν’s were determined. If 
kj is defined in this way, then when we compute LU , its
(k, j)-element will be αkj. Thus we set 
’s and ν’s to zero on the sparsity set without
interfering with the values of LU off the sparsity set. A similar procedure applies to
the determination of νkk, νk,k+1, . . . , νk,n.

Incomplete LU Factorization(A,K)

1. for k = 1 to n
2. for j = 1 to k − 1
3. if ((k, j) ∈ Z)
4. L(k, j) = 0
5. else
6. L(k, j) = (A(k, j) − L(k, 1 : j − 1) ∗ U(1 : j − 1, j))/U(j, j)
7. end if
8. end for j
9. for j = k to n
10. if ((k, j) ∈ Z)
11. U(k, j) = 0
12. else
13. U(k, j) = (A(k, j) − L(k, 1 : k − 1) ∗ U(1 : k − 1, j)
14. end if
15. end for j
16. end for k

The algorithm can be carried to completion provided the quantities U(j, j) are all
nonzero, in which case the decomposition is unique. Whether or not the U(j, j)
are nonzero will depend on the matrix in question. For the following two classes of
matrices, the algorithm always works.

(a) If A is nonsingular diagonally dominant matrix, then A has an incomplete LU
factorization for any sparsity set Z.
Note: A matrix A of order n is diagonally dominant if

|aii| ≥
n∑

j=1,j �=i

|aij |, for i = 1, 2, . . . , n.

It is strictly diagonally dominant if strictly inequality holds for all j.
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It can be shown that A strictly diagonally dominant matrix is nonsingular. Be
aware that diagonal dominance alone does not imply either nonsingularity or
singularity. For examples, let

A =

⎛⎜⎝ 2 −1 0
−1 2 −1
0 −1 2

⎞⎟⎠ , B =

⎛⎜⎝ 1 1 0
1 1 −1
1 2 4

⎞⎟⎠ .

Then A is nonsingular. On the other hand, B is singular.

(b) The incomplete LU factorization also exists for any M-matrix.
Note: A matrix is said to be an M-matrix if it satisfies the following properties:

(1) aii > 0 for i = 1, . . . n,
(2) aij ≤ 0 for i 	= j, i, j = 1, . . . n,
(3) A is nonsingular and
(4) A−1 is a nonnegative matrix (all entries are nonnegative).

6. The following figure shows the LU factorization of a sparse 20 by 20 matrix
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Then an ILU factorization (and E-factor) of the same matrix.
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7. Block preconditioner is a popular technique for block-tridiagonal matrices arising from
the discretization of elliptic problems, such as Poisson’s equation. It can be also be
generalized to other sparse matrices. For example, the matrix arises in the solution
of 2D Poisson’s equation has the form

A =

⎛⎜⎜⎜⎜⎜⎜⎝
T −I
−I T −I

. . . . . . . . .
−I T −I

−I T

⎞⎟⎟⎟⎟⎟⎟⎠
where T is a symmetric tridiagonal matrix, with diagonal entres all 4, and off diagonal
entries all −1. In this case, a natural preconditioner is

M = diag(T, T, . . . , T ).

8. The following figure shows the convergence history of GMRES with and without
preconditioning for solving a linear system of equations arising from a discretization
of a model convection-diffusion equation. The preconditioner used here is ILU(0), i.e.,
ILU factorization with the same sparsity pattern of A.
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9. Iterative methods in Matlab

functions methods
pcg Preconditioned Conjugate Gradients Method.
gmres Generalized Minimum Residual Method.

bicg BiConjugate Gradients Method.
bicgstab BiConjugate Gradients Stabilized Method.
cgs Conjugate Gradients Squared Method.
minres Minimum Residual Method.
qmr Quasi-Minimal Residual Method.
symmlq Symmetric LQ Method.

Preconditioners:

functions preconditioners
luinc Incomplete LU factorization.
cholinc Incomplete Cholesky factorization.

10. Further Reading

• Yousef Saad, Iterative Methods for Sparse Linear Systems, 2nd Edition, SIAM,
2003

• A. Greenbaum, Iterative Methods for Solving Linear Systems. SIAM, 1997.

• H. van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge
Univ. Press, 2003

• R. Barrett et al, Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods, SIAM, 1994 (linked to our class website)
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10 Algebraic Eigenvalue Problems

1. Let A ∈ Cn×n.

(a) A scalar λ is an eigenvalue of an n × n A and a nonzero vector x ∈ Cn is a
corresponding (right) eigenvector if

Ax = λx.

LA,λ
def= {x : Ax = λx} is an eigenspace of A.

(b) A nonzero vector y such that
yHA = λyH

is a left eigenvector.

(c) The set λ(A) of all eigenvalues of A is called the spectrum of A.

(d) pA(λ) def= det(λI−A), a polynomial of degree n, is called characteristic polynomial
of A.

The following is a list of properties straightforwardly from the definition

(a) λ is A’s eigenvalue ⇔ λI −A is singular ⇔ det(λI −A) = 0 ⇔ pA(λ) = 0.

(b) There is at least one eigenvector x associated with A’s eigenvalue λ; in the other
word, the dimension dim(LA,λ) ≥ 1.

(c) LA,λ is a subspace, i.e., it has the following two properties:

i. x ∈ LA,λ ⇒ αx ∈ LA,λ for all α ∈ C.
ii. x1, x2 ∈ LA,λ ⇒ x1 + x2 ∈ LA,λ.

(d) Suppose A is real. λ is A’s eigenvalue ⇔ conjugate λ̄ is also A’s eigenvalue.

(e) A is singular ⇔ 0 is A’s eigenvalue.

(f) If A is upper (or lower) triangular, then its eigenvalues consist of its diagonal
entries.

2. Let Axi = λixi, xi 	= 0 for i = 1, 2, . . . k, and λi 	= λj for i 	= j. Then x1, x2, . . . , xk

are linearly independent (proof by induction)

3. A ∈ Cn×n is simple if it has n linearly independent eigenvectors; otherwise it is
defective.

Examples

(a) I and any diagonal matrices is simple. e1, e2, . . . , en are n linearly independent
eigenvectors.

(b)

(
1 2
4 3

)
is simple. It has two different eigenvalues −1 and 5. By the fact that

each eigenvalue corresponds to at least one eigenvector, it must have 2 linearly
independent eigenvectors.

(c) If A ∈ Cn×n has n different eigenvalues, then A is simple.

(d)

(
2 1
0 2

)
is defective. It has two repeated eigenvalues 2, but only one eigenvector

e1 = (1, 0)T .

39



4. An invariant subspace of A is a subspace V of Rn, with the property that v ∈ V
implies that Av ∈ V. We also write this as AV ⊆ V.

Examples:

(1) The simplest, one-dimensional invariant subspace is the set span(x) of all scalar
multiples of an eigenvector x.

(2) Let x1, x2, . . . , xm be any set of independent eigenvectors with eigenvalues λ1, λ2, . . . , λm.
Then X = span({x1, x2, . . . , xm}) is an invariant subspace.

5. Let A be n-by-n, let V = [v1, v2, . . . , vm] be any n-by-m matrix with linearly indepen-
dent columns, and let V = span(V ), the m-dimensional space spanned by the columns
of V . Then V is an invariant subspace if and only if there is an m-by-m matrix B
such that

AV = V B.

In this case the m eigenvalues of B are also eigenvalues of A.

6. Similarity transformations: n × n matrices A and B are similar if there is an n × n
non-singular matrix P such that B = P−1AP . We also say A is similar to B, and
likewise B is similar to A; P is a similarity transformation. A is unitarily similar to
B if P is unitary.

7. Suppose that A and B are similar: B = P−1AP .

(a) A and B have the same eigenvalues. In fact pA(λ) ≡ pB(λ).

(b) Ax = λx⇒ B(P−1x) = λ(P−1x).

(c) Bw = λw⇒ A(Pw) = λ(Pw).

8. Schur decomposition or Schur canonical form: Let A be of order n. Then there is an
n× n unitary matrix U (UHU = I) such that

A = UTUH ,

where T is upper triangular. By appropriate choice of U , the eigenvalues of A, which
are the diagonal elements of T , may be made to appear in any order.
Exercise: The following exercises develop an analogue of the Schur decomposition for real
matrices:

(a) Let the columns of X form an orthonormal basis for an invariant subspace of A. Let
AX = XL, and let (X, Y ) be unitary. Show that(

XH

Y H

)
A( X Y ) =

(
L H
0 M

)
(b) Let A be real, and let λ be a complex eigenvalue of A with eigenvector x + iy. Show

that the space spanned by x and y is an invariant subspace of A.

(c) (Real Schur Decomposition). Show that if A is real, there is an orthogonal matrix U
such that UT AU is block triangular with 1 × 1 and 2 × 2 blocks on its diagonal. The
1 × 1 blocks contain the real eigenvalues of A, and the eigenvalues of the 2 × 2 blocks
are the complex eigenvalues of A.
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9. The Power method

The Power Method

Given an initial vector x0,
i = 0
repeat

yi+1 = Axi

xi+1 = yi+1/‖yi+1‖2 (approximate eigenvector)
μi+1 = xH

i+1Axi+1 (approximate eigenvalue)
i = i + 1

until convergence

Practical stopping criterion

|μi+1 − μi| ≤ tol · |μi|.

Example. Let

A =

⎡⎣ −261 209 −49
−530 422 −98
−800 631 −144

⎤⎦
Then λ(A) = {10, 4, 3}. Let x0 = e1, by the power method, we have

i 1 2 3 · · · 10
μi 994.49 13.0606 10.07191 · · · 10.0002

Convergence analysis: Assume A = SΛS−1 with

Λ = diag(λ1, λ2, . . . , λn), |λ1| > |λ2| ≥ . . . ≥ |λn|.

It can be shown that

(a) xi = Aix0
‖Aix0‖ converges to s1/‖s1‖, where s1 = Se1 as i→∞.

(b) μi converges to λ1 as i→∞.

(c) Convergence rate depends on |λ2|
|λ1|

Drawback: if |λ2|
|λ1| is close to 1, then the PM could be very slow convergent or doesn’t

converge at all.

10. Inverse iteration: (a) overcome the drawbacks of the power method (slow convergence)
(b) find an eigenvalue closest to a particular given number (called shift): σ

Observation: if λ is an eigenvalue of A, then

(1) λ− σ is an eigenvalue of A− σI,

(2) 1
λ−σ is an eigenvalue of (A− σI)−1.

Shift-and-invert spectral transformation:
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1/(\lambda-\sigma)

\sigma

Pseudo-code:

Inverse Iteration

Given an initial vector x0 and a shift σ
i = 0
repeat

yi+1 = (A− σI)−1xi

xi+1 = yi+1/‖yi+1‖2 (approximate eigenvector)
μi+1 = xH

i+1Axi+1 (approximate eigenvalue)
i = i + 1

until convergence

Convergence analysis: Assume A = SΛS−1 with Λ = diag(λ1, λ2, . . . , λn) and λk is
the eigenvalue cloest to the shift σ. It can be shown that

(a) xi converges to sk/‖sk‖, where sk = Sek i→∞.

(b) μi converges to λk i→∞.

(c) Convergence rate depends on maxj �=k
|λk−σ|
|λj−σ| .

Advantage: the advantage of inverse iteration over the power method is the ability to
converge to any desired eigenvalue (the one nearest to the shift σ). By choosing σ very
close to a desired eigenvalue, the method converges very quickly and thus not be as
limited by the proximity of nearby eigenvalues as is the original power method. The
method is particularly effective when we have a good approximation to an eigenvalue
and want only its corresponding eigenvector.

Drawbacks: (a) expensive in general: solving (A − σI)yi+1 = xi for yi+1. One LU
factorization of A− σI is required. (b) Only compute one eigenpair .

42



11 Eigensolvers based Iterative Subspace Projection I

1. General framework -Orthogonal Projection Methods

Let A be an n × n complex matrix and K be an m-dimensional subspace of Cn. An
orthogonal projection technique seeks an approximate eigenpair

(λ̃, ũ) with λ̃ ∈ C and ũ ∈ K.

by imposing the following Galerkin condition:

Aũ− λ̃ũ ⊥ K , (12)

or, equivalently,
vT (Aũ− λ̃ũ) = 0, ∀ v ∈ K. (13)

To translate this into a matrix problem, assume that an orthonormal basis {v1, v2, . . . , vm}
of K is available. Denote V = [v1, v2, . . . , vm], and let ũ = V y Then, equation (13)
becomes

vT
j (AV y − λ̃V y) = 0, j = 1, . . . ,m.

Therefore, y and λ̃ must satisfy
Bmy = λ̃y (14)

with
Bm = V HAV.

The eigenvalues λ̃i of Bm are called Ritz value values, and the vectors V yi are called
Ritz vector. This procedure A is known as the Rayleigh-Ritz procedure:

Rayleigh-Ritz Procedure

(a) Compute an orthonormal basis {vi}i=1,...,m of the subspace K. Let
V = [v1, v2, . . . , vm].

(b) Compute Bm = V HAV ;
(c) Compute the eigenvalues of Bm and select the k desired ones λ̃i, i =

1, 2, . . . , k, where k ≤ m.
(d) Compute the eigenvectors yi, i = 1, . . . , k, of Bm associated with λ̃i, i =

1, . . . , k, and the corresponding approximate eigenvectors of A, ũi =
V yi, i = 1, . . . , k.

The numerical solution of the m×m eigenvalue problem in steps (c) and (d) can be
treated by standard algorithms for solving small dense eigenvalue problems. Another
important note is that in step (d) one can replace eigenvectors by Schur vectors to
get approximate Schur vectors ũi instead of approximate eigenvectors. Schur vectors
yi can be obtained in a numerically stable way and, in general, eigenvectors are more
sensitive to rounding errors than are Schur vectors.

2. The Rayleigh-Ritz procedure and optimality:

As we know, the simplest eigenvalue problem is to compute just the largest eigenvalue
in absolute value, along with its eigenvector. The power method is the simplest
algorithm suitable for this task. Starting with a given x0, k iterations of the power
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method produce a sequence of vectors x0, x1, x2, . . . , xk. It is easy to see that these
vectors span a Krylov Subspace:

span{x0, x1, x2, . . . , xk} = Kk+1(A,x0) = span{x0, Ax0, A
2x0, . . . , A

kx0}.
Now, rather than taking xk as out approximate eigenvector, it is natural to ask for the
“best” approximate eigenvector in Kk+1(A,x0). We will see that the best eigenvector
(and eigenvalue) approximations from Kk+1(A,x0) are much better than xk alone.

Let Q = [Qk, Qu] be any n-by-n orthogonal matrix, where Qk is n-by-k, and Qu is n-
by-(n− k). In practice, the column of Qk will be computed by the Lanczos algorithm
and span a Krylov subspace. But for now, we do not care where we get Q.

Let

T = QTAQ = [Qk, Qu]T A[Qk, Qu] =

[
QT

k AQk QT
k AQu

QT
u AQk QT

u AQu

]
≡
[

Tk Tuk

Tku Tu

]
When k = 1, Tk is just called the Rayleigh quotient. So far k > 1, Tk is called a
generalization of the Rayleigh quotient.

Definition 2

• The Rayleigh-Ritz procedure is to approximate the eigenvalues of A by the eigen-
values of Tk = QT

k AQk.
• These approximations are called the Ritz values.
• Let Tk = V ΛV T be the eigendecomposition of Tk. The corresponding eigenvector

approximations are the columns of QkV and are called Ritz vectors.

The Ritz values and Ritz vectors are considered optimal approximations to the eigen-
values and eigenvectors of A. This is justified by the following theorem.

Theorem 7 The minimum of ‖AQk −QkR‖2 over all k-by-k symmetric matrices R
is attained by R = Tk, in which case, ‖AQk −QkTk‖2 = ‖Tku‖2.

Proof: Let R = Tk + Z, to proof the theorem, we just want to show that ‖AQk −
QkR‖2 is minimized when Z = 0. This is shown by the following sequence of deriva-
tion:

‖AQk −QkR‖22 = λmax

[
(AQk −QkR)T (AQk −QkR)

]
= λmax

[
(AQk −Qk(Tk + Z))T (AQk −Qk(Tk + Z))

]
= λmax

[
(AQk −QkTk)T (AQk −QkTk)− ((AQk −QkTk)T (QkZ)

−(QkZ)T (AQk −QkTk) + (QkZ)T (QkZ)
]

= λmax

[
(AQk −QkTk)T (AQk −QkTk)− (QT

k AQk − Tk)Z

−ZT (QT
k AQk − Tk) + ZT Z

]
= λmax

[
(AQk −QkTk)T (AQk −QkTk) + ZTZ

]
≥ λmax

[
(AQk −QkTk)T (AQk −QkTk)

]
= ‖AQk −QkTk‖22
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Furthermore, it is easy to compute the minimum value

‖AQk −QkTk‖2 = ‖(QkTk + QuTku)−QkTk‖2 = ‖QuTku‖2 = ‖Tku‖2.

Corollary 2 Let Tk = V ΛV T be the eigendecomposition of Tk. The minimum of
‖APk−PkD‖ over all n-by-k orthogonal matrices Pk where span(Pk) = span(Qk) and
over all diagonal D is also ‖Tku‖2 and is attained by Pk = QkV and D = Λ.

Proof: If we replace Qk with QkU in the above proof, where U is another orthogonal
matrix, then the columns of Qk and QkU span the same space, and

‖AQk −QkR‖2 = ‖AQkU −QkRU‖2 = ‖A(QkU)− (QkU)(UT RU)‖2.

These quantities are still minimized when R = Tk, and by choosing U = V so that
UT TkU is diagonal.

3. The Lanczos algorithm for finding a few eigenpairs of a symmetric matrix A combines
the Lanczos process for building a Krylov subspace with the Raleigh-Ritz procedure.
First, let us recall that the Lanczos process will generate an orthonormal basis of a
Krylov subspace:

Kk(A, v) def= span{v,Av, . . . , Ak−1v} = span{q1, q2, . . . , qk},

and yield a fundamental relation

AQk = QkTk + fke
T
k , fk = βkqk+1 (15)

where Tk = QT
k AQk = tridiag(βj , αj , βj+1). Let μ be an eigenvalue of Tk and y be a

corresponding eigenvector y, i.e.,

Tky = μy, ‖y‖2 = 1.

Apply y to the right of (15) to get

A(Qky) = QkTky + fk(eT
k y) = μ(Qky) + fk(eT

k y).

{μ} are Ritz values, and {Qky} are Ritz vectors.
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Convergence test:

• If fk(eT
k y) = 0 for some k, then the associated Ritz value μ is an eigenvalue of A

with the corresponding eigenvector Qky.

• In general, it is unlikely that fk(eT
k y) = 0, but we hope that the residual norm

‖fk(eT
k y)‖2 may be small; and when this happens we expect that μ is going to

be a good approximate to A’s eigenvalue. Indeed, we have

Lemma 3 Let H be (real) symmetric, and Hz − μz = r and z 	= 0. Then

min
λ∈λ(H)

|λ− μ| ≤ ‖r‖2/‖z‖2.

Proof: Let H = UΛUT be the eigen-decomposition of H. Then Hz − μz = r
yields

(H − μI)z = r ⇒ U(Λ− μI)UT z = r ⇒ (Λ− μI)(UT z) = UT r.

Notice that Λ− μI is diagonal. Thus

‖r‖2 = ‖UT r‖2 = ‖(Λ−μI)(UT z)‖2 ≥ min
λ∈λ(H)

|λ−μ| ‖UT z‖2 = min
λ∈λ(H)

|λ−μ|‖z‖2,

as expected.
The following corollary is a consequence of above Lemma 3.

Corollary 3 There is an eigenvalue λ of A such that

|λ− μ| ≤ ‖fk(eT
k y)‖2 = |βk| · |eT

k y|.

In summary, we have the following Lanczos algorithm in the simplest form:

Lanczos Algorithm for finding eigenvalues and eigenvectors of A = AT :
1. q1 = v/‖v‖2, β0 = 0; q0 = 0;
2. for j = 1 to k, do
3. w = Aqj;
4. αj = qT

j w;
5. w = w − αjqj − βj−1qj−1;
6. βj = ‖w‖2;
7. if βj = 0, quit;
8. qj+1 = w/βj ;
9. Compute eigenvalues and eigenvectors of Tj

10. Test for convergence
11. EndDo

Caveat: All the discussion in this lecture is under the assumption of exact arithmetic.
In the presence of finite precision arithmetic, the numerical behaviors of the Lanczos
algorithm could be significantly different. For example, in finite precision arithmetic,
the orthogonality of the computed Lanczos vectors {qj} is lost when j is as small as
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10 or 20. The simplest remedy (and also the most expensive one) is to implement the
the full reorthogonalization, namely after the step 5, do

w = w −
j−1∑
i=1

(wT qi)qi.

This is called the Lanczos algorithm with full reorthogonalization. (Sometimes, it may
be needed to execute twice). A more elaborate scheme, necessary when convergence
is slow and several eigenvalues are sought, is to use the selective orthogonalization.

Example We illustrate the Lanczos algorithm by a running an example, a 1000-by-1000
diagonal matrix A, most of whose eigenvalues were chosen randomly from a normal Gaussian
distribution. To make the plot easy to understand, we have also sorted the diagonal entries
of A from largest to smallest, so λi(A) = aii with the corresponding eigenvector ei. There are
a few extreme eigenvalues, and the rest cluster near the center of the spectrum. The starting
Lanczos vector v has all equal entries.

There is no loss in generality in experimenting with a diagonal matrix, since running the
Lanczos algorithm on A with starting vector q1 = v/‖v‖2 is equivalent to running the Lanczos
algorithm on QT AQ with starting vector QT q1.

The following figure illustrates convergence of the Lanczos algorithm for computing the eigen-
values of A. In this figure, the eigenvalues of each Tk are shown plotted in column k, for
k = 1, 2, 3, . . . , 30, with the eigenvalues of A plotted in an extra column at the rightmost
column. The column k has k “+”s, one marking each eigenvalues of Tk.
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We observe that:

• Extreme eigenvalues, i.e., the largest and smallest ones, converge first, and the interior
eigenvalues converge last.

• Convergence is monotonic, with the ith largest (smallest) eigenvalues of Tk increasing
(decreasing) to the ith laregst (smallest) eigenvalue of A, provided that the Lanczos
algorithm does not stop prematurely with some βk = 0.

The best reference to study the observation in theory is the book by B. N. Parlett, “The
Symmetric Eigenvalue Problem”, reprinted by SIAM, 1998.
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12 Eigensolvers based Iterative Subspace Projection II

1. The Arnoldi algorithm for finding a few eigenpairs of a general matrix A combines
the Arnoldi process for building a Krylov subspace with the Raleigh-Ritz procedure.

First, let us recall that the Arnoldi process generates an orthonormal basis of a Krylov
subspace:

Kk(A, v) def= span{v,Av, . . . , Ak−1v} = span{q1, q2, . . . , qk},
and yield a fundamental relation

AQk = QkHk + hk+1,kqk+1e
T
k . (16)

Any decomposition of the form (16), where Hk is Hessenberg, QH
k Qk = I, and

QH
k qk+1 = 0, is called an Arnoldi decomposition of length k. If Hk is unreduced

and hk+1,k 	= 0, the decomposition is uniquely determined by the starting vector v
(This is commonly called implicit Q Theorem).

Since QH
k qk+1 = 0, we have

Hk = QT
k AQk.

Thus, Hk is called the generalized Rayleigh Quotient corresponding to Qk. Let μ be
an eigenvalue of Hk and y be a corresponding eigenvector y, i.e.,

Hky = μy, ‖y‖2 = 1.

Then the corresponding Ritz pair is (μ,Qky). Applying y to the right of (16), the
residual vector of (μ,Qky) is given by

A(Qky)− μ(Qky) = hk+1,kqk+1(eT
k y).

Using the backward error interpretation, we know that (μ,Qky) is an exact eigenpair
of A + E, where ‖E‖2 = |hk+1,k| · |eT

k y|. This gives us a criterion for accepting the
Ritz pair (μ,Qky) as approximate eigenpair of A. 8

Arnoldi’s Method

1. Choose a starting vector v
2. Generate the Arnoldi decomposition of length k by the Arnoldi process
3. Compute the Ritz pairs and decide which are acceptable
4. If necessary, increase k and repeat

Example. We illustrate the above simplest Arnoldi algorithm by a running a
100-by-100 random sparse matrix A with approximately 1000 normally distributed
nonzero entries, A = sprandn(100,100,0.1). All entries of the starting vector v
are 1. The following figure illustrates typical convergence behavior of the Arnoldi
algorithm for computing the eigenvalues. In the figure, “+” are the eigenvalues of
matrix A (computed by eig(full(A))). and the “◦′′ are the eigenvalues of upper
Hessenberg matrix H30 (computed by eig(H30)).

8Note that because of non-symmetry of A, we generally do not have the nice forward error estimation
as discussed in the Lanczos algorithm for symmetric eigenproblem. But a similar error bound involving the
condition number of the corresponding eigenvalue exists.
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We observe that Exterior eigenvalues converge first. This is the typical convergence
phenomenon of the Arnoldi algorithm (in fact, all Krylov subspace based methods).
There is a general theory for the convergence analysis of the Arnoldi algorithm.

The Arnoldi algorithm has two nice aspects:

(a) The matrix Hk is already in Hessenberg form, so that we can immediately apply
the QR algorithm to find its eigenvalues.

(b) After we increase k, say k+p, we only have to orthogonalize p vectors to compute
the (k + p)th Arnoldi decomposition. The work we have done previously is not
thrown away.

Unfortunately, the algorithm has its drawbacks:

• If A is large we cannot increase k indefinitely, since Qk requires n × k memory
locations to store.

• We have little control over which eigenpairs the algorithm finds. In a given
application we will be interested in a certain set of eigenpairs. For example,
eigenvalues lying near the imaginary axis. There is nothing in the algorithm to
force desired eigenvectors into the subspace or the discard undesired ones.

2. We show how to implicitly restart the algorithm with a new Arnoldi decomposition in
which (in exact arithmetic) the unwanted eigenvalues have been purged from Hk. We
begin by asking how to cast an undesired eigenvalue out of an unreduced Hessenberg
matrix H. Let μ be an eigenvalue of H, then by the QR decomposition of H − μI,
we determine an orthogonal matrix U such that

R = UH(H − μI).

is upper triangular. Now H − μI is singular, and hence R must have a zero on its
diagonal. Because H is unreduced, that zero cannot occur at a diagonal position other
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than the last. Consequently, the last row of R is zero and so is the last row of RU .
Hence

Ĥ = RU + μI =

(
Ĥ∗ ĥ
0 μ

)
= UHHU.

In other words, the eigenvalue μ has been found exactly, and the similarity transfor-
mation of H with U has deflated the eigenvalue μ.

In the presence of rounding error we cannot expect the last element of R to be nonzero.
This means that the matrix Ĥ will have the form(

Ĥ∗ ĥ

ĥk,k−1e
T
k−1 μ̂

)

We are now going to show how to use the transformation U to reduce the size of the
Arnoldi decomposition. The first step is to note that U = P12P23 · · ·Pn−1,n, where
Pi,i+1 is a rotation in the (i, i + 1)-plane. Consequently, U is Hessenberg and can be
partitioned in the form

U =

(
U∗ u

uk,k−1e
T
k−1 uk,k

)
.

From the relation
AQk = QkHk + hk+1,kqk+1e

T
k ,

we have
AQkU = QkU(UT HkU) + hk+1,kqk+1e

T
k U.

If we partition
Q̂k = QkU = ( Q̂k−1 q̂k )

Then

A ( Q̂k−1 q̂k ) = ( Q̂k−1 q̂k )

(
Ĥ∗ ĥ

ĥk,k−1e
T
k−1 μ̂

)
+ hk+1,kqk+1( qk,k−1e

T
k−1 qk,k ).

Computing the first k − 1 columns of this partition, we get

AQ̂k−1 = Q̂k−1Ĥ∗ +
(
ĥk,k−1q̂k + hk+1,kqk,k−1qk+1

)
eT
k−1 (17)

The matrix Ĥ∗ is Hessenberg. The vector ĥk,k−1q̂k +hk+1,kqk,k−1qk+1 is orthogonal to
the columns of Q̂k−1. Hence (17) is an Arnoldi decomposition of length k − 1. With
exact computation, the eigenvalue μ is presented in Ĥ∗.

The process may be repeated to remove other unwanted values from H. If the matrix
is real, complex eigenvalues can be removed two at a time via an implicit double shift.
The key observation here is that Q is zero below its second subdiagonal element,
so that truncationing the last two columns and adjusting the residual results in an
Arnoldi decomposition. Once un-desired eigenvalues have been removed from H, the
Arnoldi decomposition may be expanded to one of order k and the process repeated.

3. There are two important additions to the algorithm that are beyond the scope of this
lecture.
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• First, as Ritz pairs converge they can be locked into the decomposition. The
procedure amounts to computing an Arnoldi decomposition of the form

A ( Q1 Q2 ) = ( Q1 Q2 )

(
H11 H12

0 H22

)
+ hk+1,kqk+1e

T
k

When this is done, one can work with the part of decomposition corresponding to
U2, thus saving multiplications by A. (However, care must be taken to maintain
orthogonality to the columns of Q1.)

• The second addition concerns unwanted Ritz pairs. The restarting procedure
will tend to purge the unwanted eigenvalues from H. But the columns of U may
have significant components along the eigenvectors corresponding to the purged
pairs, which will then reappear as the decomposition is expanded. If certain pair
are too persistent, it is best to keep them around by computing a block diagonal
decomposition of the form

A ( Q1 Q2 ) = ( Q1 Q2 )

(
H11 0
0 H22

)
+ ηqk+1e

T
k ,

where H11 contains the unwanted eigenvalues. This insures that U2 has negligible
components along the unwanted eigenvectors. We can then compute an Arnoldi
decomposition by reorthognalizing the relation

AQ2 = H22Q2 + ηqk+1e
T
m,

where m is the order of H2.

4. Further reading

• The best reference on symmetric Lanczos method, theory and practice, is the book by B.
N. Parlett, The Symmetric Eigenvalue Problem, reprinted with some revision by SIAM
Press, 1998.

• MATLAB function eigs is an implementation of the implicitly restarted Arnoldi al-
gorithm for finding a few eigenpairs. The starting reference is D. Sorensen, Implicit
application of polynomial filters in a k-step Arnoldi method, SIMAX, Vol. 13, pp.357–
385, 1992.

• In the recent years, eigensolvers with preconditioning techniques are studied extensively.
The best starting paper is [G.L.G. Sleipen and H.A. van der Vorst, A Jacobi-Davidson
iteration method for linear eigenvalue problems, SIMAX, 17:401–425,1996.]

• A complete treatment of eigenvalue problems is [Templates for the Solution of Algebraic
Eigenvalue Problems: A Practical Guide, Z. Bai, J. Demmel, J. Dongarra. A. Ruhe and
H. van der Vorst eds. SIAM, 2000].
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13 Poisson Solvers I

1. Poisson’s equation in one dimension.

−d2v(x)
dx2

= f(x), 0 < x < 1 (18)

with Dirichlet boundary conditions:

v(0) = v(1) = 0, (19)

where f(x) is a given function and v(x) is the unknown function to be computed.

This boundary value problem can be viewed as modeling the displacement of an elastic
bar or cord in continuum mechanics, the temperature distribution in a heat conducting
bar and others.

2. Let us discretize the problem by trying to compute an approximate solution N + 2
evenly spaced point xi between 0 and 1:

0 = x0 < x1 < x2 < · · · < xN < xN+1 = 1

and
xi = x0 + ih = ih, h =

1
N + 1

.

Denote vi = v(xi) and fi = f(xi).

Using the three-point centered difference approximation, at x = xi, we have

−d2v(x)
dx2

=
−vi−1 + 2vi − vi+1

h2
+ τi,

where the truncation error τi = O(h2) (assuming v(x) is smooth enough). Therefore
at x = xi, 0 < i < N + 1, we have

−vi−1 + 2vi − vi+1 = h2fi + h2τi

and v0 = vN+1 = 0.

In matrix notation, let v = [v1, v2, . . . , vN ]T and τ̄ = [τ1, τ2, . . . , τN ]T . Then we have

TN v = h2f + h2τ̄ (20)

where
TN = tridiag(−1, 2,−1).

To solve this equation, let us ignore τ̄ , since it is expected to be small compared to f ,
then we have

TN v̂ = h2f, (21)

where v̂ is an approximation of v.

3. The tridiagonal matrix TN has the following special properties

• The eigenvalues of TN are λj = 2(1 − cos πj
N+1).
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• The eigenvectors are zj , where the kth entry zj(k) =
√

2
N+1 sin( πkj

N+1) and ‖zj‖2 =
1.

Thus, we have the eigendecomposition

TN = ZNΛNZT
N ,

where ZN = [z1, z2, . . . , zN ] (Z is orthogonal) and ΛN = diag(λ1, λ2, . . . , λN ). The
largest eigenvalue of TN is λN and for large N ,

λN = 2(1− cos
Nπ

N + 1
) ≈ 4

and the smallest eigenvalue is λ1 and for large N ,

λ1 = 2(1 − cos
π

N + 1
) ≈ 2

(
1−

(
1− π2

2(N + 1)2

))
=

π2

(N + 1)2
.

Therefore, TN is symmetric positive definite. The condition number of TN is

cond(TN ) = ‖TN‖2‖T−1
N ‖2 =

λN

λ1
≈ 4(N + 1)2

π2
= O(h−2).

4. Now we can bound the error v − v̂, subtracting equation (21) from equation (20), we
have

v − v̂ = h2T−1
N τ̄ .

By taking norm, we have

‖v − v̂‖2 ≤ h2‖T−1
N ‖2‖τ̄‖2 ≈ h2 (N + 1)2

π2
‖τ̄‖2 = O(‖τ̄‖2) = O(h2),

assuming that v(x) is sufficient smooth (the required derivatives are bounded).

5. The Poisson’s equation in 2 dimensions.

−∂2v

∂x2
− ∂2v

∂y2
= f(x, y) for (x, y) ∈ Ω,

v(x, y) = φ(x, y) for (x, y) ∈ ∂Ω,

where Ω = (0, 1) × (0, 1), the unit square and ∂Ω is its boundary. To discretize the
differential equation, the domain Ω is covered with a grid of step size h = 1/(N + 1)
as follows.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

� �

� �

� �

� �

� �

� �

This is an example grid
with N = 5. The values
v(x, y) at the boundary
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Each grid point (xi, yj) have the representation

xi = ih and yj = jh for i, j = 0, 1, . . . , N + 1.

Those points with one of i and j being i = 0 or N + 1 are the boundary grid points;
all other points are the interior grid points. We seek approximations to v(xi, yj) for
all the interior grid points. Write

vij = v(xi, yj), fij = f(xi, yj), and φij = φ(xi, yj).

To this end, we do approximately at each interior grid point:

−∂2v

∂x2

∣∣∣∣∣
at (xi, yj)

≈ −vi−1 j + 2vij − vi+1 j

h2
,

−∂2v

∂y2

∣∣∣∣∣
at (xi, yj)

≈ −vi j−1 + 2vij − vi j+1

h2
.

Adding these approximations we have

−∂2v

∂x2
− ∂2v

∂y2

∣∣∣∣∣
at (xi, yj)

=
−vi−1 j − vi j−1 + 4vij − vi+1 j − vi j+1

h2
+ τij

where τij is a truncation error. By Taylor expansion, it is easy to show that it is at the
order of h2, O(h2). Ignoring the truncation errors, we arrive at the linear equations
in the unknowns vij,

−vi−1 j − vi j−1 + 4vij − vi+1 j − vi j+1 = h2fij, (22)

for 1 ≤ i, j ≤ N . The left-hand side of which is 4 times the v at the point subtracting
the v at the four neighbor points. This is called 5-point centered difference or 5-point
stencil.

Notice that

v0j = φ0j , v0 N+1 = φ0 N+1, vi0 = φi0, viN+1 = φi N+1

are known and the unknowns are for 0 < i, j < N + 1; so there are N2 of them. So
care should be taken in putting the equations (22) into the familiar form Ax = b of a
linear system for the grid points that are neighbors of boundary grid points. We shall
now do so.

Collect all vij to form an N × N matrix V whose (i, j)th entry is vij: V = (vij).
Define an N ×N matrix F̃ by

h2(F̃ )ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h2fij, for 2 ≤ i, j ≤ N − 1,
h2fij + φi j−1, for 2 ≤ i ≤ N − 1 and j = 1,
h2fij + φi j+1, for 2 ≤ i ≤ N − 1 and j = N,
h2fij + φi−1 j , for i = 1 and 2 ≤ j ≤ N − 1,
h2fij + φi+1 j , for i = N and 2 ≤ j ≤ N − 1,
h2fij + φi j−1 + φi−1 j, for (i, j) = (1, 1),
h2fij + φi j−1 + φi+1 j, for (i, j) = (N, 1),
h2fij + φi−1 j + φi j+1, for (i, j) = (1, N),
h2fij + φi j+1 + φi+1 j, for (i, j) = (N,N).

54



It can be verified that the (22) becomes

TN · V + V · TN = h2F̃ , (23)

where TN = tridiag(−1, 2,−1).

6. Lexicographic (Natural) Ordering: system (23) is still not in the familiar form Ax = b
because all the unknowns are compactly stored into a matrix. To reorganize equations
(22) in a way that leads to the Ax = b form, we need to arrange vij into a column
vector. A natural way would be arranging one column of V on top of another, i.e.,
defining a N2-dimensional vector v as (in MATLAB-like notation)

v = [V (:, 1);V (:, 2); . . . ;V (:, N)] ≡ vec(V ).

Such an ordering of vij is best described by the following picture in the case of N = 5.
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Define also N2-dimensional vector f̃ from the matrix F̃ analogously. The system (23)
becomes

Av = h2f̃ , (24)

where

A =

⎛⎜⎜⎜⎜⎜⎜⎝
TN + 2IN −IN

−IN TN + 2IN −IN

. . . . . . . . .
−IN TN + 2IN −IN

−IN TN + 2IN

⎞⎟⎟⎟⎟⎟⎟⎠ ≡ TN×N .

In fact, A is the Kronecker products of TN and IN :

A = IN ⊗ TN + TN ⊗ IN ≡ TN×N .

Definition:
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(a) Let A = (aij) be m× n and B = (bij) be p × q, then the Kronecker Product of
A and B are defined as

A⊗B = (aijB) =

⎛⎜⎜⎜⎜⎝
a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

⎞⎟⎟⎟⎟⎠ ,

an (mp)× (nq) matrix.

(b) Let X be m by n. Then vec(X) is defined to be a column vector of size m · n
made of the columns of X stacked atop one another from left to right.

Basic properties of Kronecker product:

(a) Let A be m-by-m and B be n-by-n, and X and C are m× n. Then
vec(AX) = (In ⊗A) · vec(X)
vec(XB) = (BT ⊗ Im) · vec(X)

(b) Assume AC and BD are well defined, then
(A⊗B) · (C ⊗D) = (A · C)⊗ (B ·D)

(c) If A and B are invertible, (A⊗B)−1 = A−1 ⊗B−1.

(d) (A⊗B)T = AT ⊗BT

Proposition 5 Let TN = ZNΛNZT
N be the eigendecomposition of the tridiagonal ma-

trix TN . Then the eigendecomposition of TN×N is given by

TN×N = (ZN ⊗ ZN )(IN ⊗ ΛN + ΛN ⊗ IN )(ZN ⊗ ZN )T .

From the proposition, it shows that eigenvalues λij of the Poisson matrix TN×N are
given by

λi j
def= λi + λj = 2(2 − cos iπh− cos jπh) (25)

i, j = 1, 2, . . . , N , where λi and λj are the eigenvalues of TN . Note that h = 1/(N +1).

7. Red-Black Ordering: first color all nodes by either red or black in such a way that no
neighbor nodes share the same color; and then enumerate all nodes with one color
and then all nodes with the other. Such an ordering of vij is best described by the
following picture in the case of N = 5.

56



�

�

�

�

�

�

�

r

b

r

b

r

�

�

�

�

�

�

�

b

r

b

r

b

�

�

�

�

�

�

�

r

b

r

b

r

�

�

�

�

�

�

�

b

r

b

r

b

�

�

�

�

�

�

�

r

b

r

b

r

� �

� �

� �

� �

� �

� �

� �

�

�

�

�

�

�

�

1

14

2

15

3

�

�

�

�

�

�

�

16

4

17

5

18

�

�

�

�

�

�

�

6

19

7

20

8

�

�

�

�

�

�

�

21

9

22

10

23

�

�

�

�

�

�

�

11

24

12

25

13

� �

� �

� �

� �

� �

� �

� �

Let vrb and f̃rb be the N2-dimensional vectors obtained from V and F̃ with this
red-black ordering. The system (23) becomes

Arbvrb = h2f̃rb, Arb =

(
Dr B
BT Db

)
, (26)

both Dr and Db are diagonal matrices with all diagonal entries being 4. B is a sparse
matrix with nonzero entries −1 (the details of the structure of B is not important for
us now).

Notice that Arb is consistently ordered and has eigenvalues given by (25).

8. Poisson’s equations in 3 Dimensions.

−∂2v

∂x2
− ∂2v

∂y2
− ∂2v

∂z2
= f(x, y, z) for (x, y, z) ∈ Ω,

v(x, y, z) = φ(x, y, z) for (x, y, z) ∈ ∂Ω,

where Ω = (0, 1) × (0, 1) × (0, 1), the unit cubic and ∂Ω is its boundary

Using a 7-point centered finite difference on a cubic grid of step size h = 1/(N + 1).
Then with natural ordering, it leads to the linear system of equations Ax = b, where

A = TN×N×N = TN ⊗ IN ⊗ IN + IN ⊗ TN ⊗ IN + IN ⊗ IN ⊗ TN

It can be shown that A’s eigenvalues are all possible triple sum of the eigenvalues of
TN and the eigenvector matrix is ZN ⊗ ZN ⊗ ZN .

9. Poisson’s equation in higher dimensions is represented analogously.
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14 Poisson Solvers II

1. Block cyclic reduction (BCR) is a fast method for the Poisson model problem. We
will describe a simple but numerically unstable version of the BCR algorithm, then
point out a reference for a stable implementation.

2. Write the 2D Poisson’s model problem as⎡⎢⎢⎢⎢⎢⎣
A −I

−I A
. . .

. . . . . . −I
−I A

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1

x2
...

xN

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
b1

b2
...

bN

⎤⎥⎥⎥⎥⎦ ,

where A = TN + 2I and I is an N ×N identity matrix. xi and bi are N -vectors.

For simplicity we assume that N is odd. We use block Gaussian elimination to
combine three consecutive sets of equations

[ −xj−2 +Axj−1 −xj = bj−1 ],
+A [ −xj−1 +Axj −xj+1 = bj ],

+ [ −xj +Axj+1 −xj+2 = bj+1 ],

Thus eliminating xj−1 and xj+1

−xj−2 + (A2 − 2I)xj − xj+2 = bj−1 + Abj + bj+1.

Doing this for every set of three consecutive equations yields two sets of equations:

• one for the xj with j even⎡⎢⎢⎢⎢⎢⎣
A(1) −I

−I A(1) . . .
. . . . . . −I

−I A(1)

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x2

x4
...

xN−1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
b1 + Ab2 + b3

b3 + Ab4 + b5
...

bN−2 + AbN−1 + bN

⎤⎥⎥⎥⎥⎦ , (27)

where
A(1) = A2 − 2I ≡

(
A(0)

)2 − 2I,

• one set of equations for the xj with j odd,⎡⎢⎢⎢⎢⎣
A

A
. . .

A

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1

x3
...

xN

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
b1 + x2

b3 + x2 + x4
...

bN + xN−1

⎤⎥⎥⎥⎥⎦ . (28)

This set of equations can be solved directly after solving the equation (27) for xj

with j even.
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Note that equation (27) has the same form as the original problem, so we may repeat
this process recursively. For example, at the next step we get

⎡⎢⎢⎢⎢⎢⎣
A(2) −I

−I A(2) . . .
. . . . . . −I

−I A(2)

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
x4

x8
...
...

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

...

...

...

...

⎤⎥⎥⎥⎥⎥⎥⎦ , (29)

where
A(2) =

(
A(1)

)2 − 2I,

and ⎡⎢⎢⎢⎢⎣
A(1)

A(1)

. . .
A(1)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

x2

x6
...
...

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

...

...

...

...

⎤⎥⎥⎥⎥⎥⎥⎦ . (30)

We repeat this until only one equation is left, which we solve another way. Therefore,
the algorithm consists of three steps:

(a) Reduction (see equations (27) and (29) )

(b) Solve A(k)x(k) = b(k) where assuming N = 2k+1 − 1.

(c) Back-solver (see equations (28) and (30))

3. It can be shown that the cost of this algorithm is O(N2 log2 N).

4. The simple BCR approach has two drawbacks:

(a) It is numerically unstable because A(r) grows quickly:

‖A(r)‖ ∼ ‖A(r−1)‖ ≈ 42r
,

so in computing b
(r+1)
j , the b

(r)
2j±1 are lost in roundoff.

(b) A(r) has bandwidth 2r + 1 if A(0) = A is tridiagonal, so it can be dense and thus
more expensive to multiply or solve.

5. A numerically stable and efficient algorithm can be found in

• B. Buzbee, G. Golub and C. Nielson , On the direct method for solving Poisson’s
equation, SIAM J. Numer. Anal. Vol. 7, pp.627–656, 1970.

59



15 Poisson Solvers III

1. Solving the Poisson’s equation using eigendecomposition/FFT.

We recall the formulation of the 2D Poisson’s equation

TN · V + V · TN = h2F.

Let TN = ZΛZT = Z · diag(λj) · ZT be the eigendecomposition of TN . Then the last
equation becomes

Λ · Ṽ + Ṽ · Λ = h2F̃ .

where Ṽ = ZT V Z and F̃ = ZTFZ. It is easy to see that the (j, k) entry of this
equation is

λj ṽjk + ṽjkλk = h2f̃jk,

which can be solved for ṽjk to get

ṽjk =
h2f̃jk

λj + λk
.

This yields the first version of our algorithm:

(a) Compute F̃ = ZTFZ

(b) For all j and k, compute ṽjk = h2f̃jk

λj+λk

(c) Compute V = ZṼ ZT

The cost of step (b) is 3N2, and the cost of steps (a) and (b) is four matrix-matrix
multiplications by Z and ZT (= Z), which is 8N3 using a conventional algorithm. In
the following, we show how multiplication by Z is essentially the same as computing
a discrete Fourier transform, which can be done in O(N2log2N) operation. Note that
if N = 220 = 1, 048, 576, then log2N = 20.

2. The Discrete Fourier Transform (DFT) of an N -vector a is the vector

b = Φa,

where Φ = (φjk) is N -by-N matrix defined as follows:

φjk = ωjk, for j, k = 0, 1, . . . , N − 1

where
ω = exp

(−2πi

N

)
= cos

2π
N
− i sin

2π
N

,

a principal Nth root of unity.

The Inverse Discrete Fourier Transform (IDFT) of b is the vector

a = Φ−1b.

3. Properties:
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(a) 1√
N

Φ is a symmetric unitary matrix, i.e.,

Φ−1 =
1
N

Φ∗ =
1
N

Φ̄.

(b) If b = Φa and a = [a0, a1, . . . , aN−1], then the kth component of b is

bk =
N−1∑
j=0

ajω
kj.

This can be view as the value of the polynomial a(x) =
∑N−1

j=0 ajx
j at x = ωk,

i.e.,
bk = (Φa)k = a(ωk).

In other words,

the DFT is polynomial evaluation at the points ω0, ω1, . . . , ωN−1.

Conversely, the IDFT is polynomial interpolation, producing the coefficients of
a polynomial given its values at ω0, ω1, . . . , ωN−1.

(c) Both the DFT and IDFT are just matrix-vector multiplications and can be
straightforwardly implemented in 2N2 operations.
Fast Fourier Transform (FFT) is a fast way to multiply by Φ. Instead of 2N2, it
will require only about 3N

2 · log2 N operations.

(d) The DFT and IDFT are closely related the Fourier transform and its inverse in
continuous case.

4. We have seen that to solve the discrete Poisson’s model problem by the eigendecom-
position of TN requires the ability to multiply by the N -by-N matrix Z, whose the
(j, k) entry is

zjk =

√
2

N + 1
sin

(
π(k + 1)(j + 1)

N + 1

)
,

where for the convenient of notation, we number rows and columns from 0 to N − 1
in this section.

Now consider the (2N + 2)-by-(2N + 2) DFT matrix Φ, whose j, k entry is

exp
(−2πijk

2N + 2

)
= exp

(−πijk

N + 1

)
= cos

πjk

N + 1
− i sin

πjk

N + 1
.

Thus the N -by-N matrix Z consists of −
√

2
N+1 times the imaginary part of the second

through (N +1)st rows and columns of Φ. So if we can multiply efficiently by Φ using
the FFT, then we can multiply efficiently by Z. In practice, we can modify the FFT
to multiply by Z directly. This is called the Fast Sine Transform.
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5. Convolutions

Definition 3 If a = [a0, . . . , aN−1, 0, . . . , 0]T and b = [b0, . . . , bN−1, 0, . . . , 0]T are
2N -vectors, then the discrete convolution of a and b is defined as

a ∗ b ≡ c = [c0, . . . , c2N−1]T ,

where ck =
∑k

j=0 ajbk−j.

To illustrate the use of the discrete convolution, consider the polynomial multiplica-
tion. Let a(x) =

∑N−1
k=0 akx

k and b(x) =
∑N−1

k=0 bkx
k be degree-(N − 1) polynomials.

Then their product

c(x) ≡ a(x) · b(x) =
2N−1∑
k=0

ckx
k,

where the coefficients ck are given by the discrete convolution.

One purpose of the Fourier transform is to convert the convolution into multiplication.

Theorem 8 Let a = [a0, . . . , aN−1, 0, . . . , 0]T and b = [b0, . . . , bN−1, 0, . . . , 0]T be vec-
tors of dimension 2N , and let c = a ∗ b = [c0, . . . , c2N−1]T . Then

(Φc)k = (Φa)k · (Φb)k.

Proof. Recall the important observation (b) in the above item 2, if ã = Φa, then the
kth entries of ã is ãk =

∑2N−1
j=0 ajω

kj, the value of the polynomial a(x) =
∑N−1

j=0 ajx
j

at x = ωk, i.e.,
ãk = a(ωk).

Similarly, b̃ = Φb means that b̃k =
∑N−1 bjω

kj = b(ωk), and c̃ = Φc means that
c̃k =

∑2N−1 cjω
kj = c(ωk). Therefore

(Φa)k · (Φb)k = ãk · b̃k = a(ωk) · b(ωk) = c(ωk) = c̃k = (Φc)k.

6. We now derive the FFT via its interpretation as polynomial evaluation. The goal is
to evaluate a(x) =

∑N−1
k=0 akx

k at x = ωj for 0 ≤ j ≤ N − 1. For simplicity we will
assume N = 2m. Now write

a(x) = a0 + a1x + a2x
2 + · · ·+ aN−1x

N−1

= (a0 + a2x
2 + a4x

4 + · · ·) + x(a1 + a3x
2 + a5x

4 + · · ·)
= aeven(x2) + xaodd(x2).

Thus, the evaluation of a(x) is divided into evaluating two polynomials aeven and
aodd of degree N

2 − 1 at (ωj)2, 0 ≤ j ≤ N − 1.

Moreover, because of
ω2j = ω2(j+ N

2
),

there are really just N
2 points ω2j for 0 ≤ j ≤ N

2 − 1.

In other words, evaluating a polynomial of degree N − 1 = 2m − 1 at all N points ωj

(0 ≤ j ≤ N − 1) is the same as evaluating two polynomials of degree N
2 − 1 at all N

2
points9, and then combining the results with N multiplications and additions. This
can be done recursively!

9those are the N
2

th roots of the unity.
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FFT algorithm

function ã = FFT(a,N)
if N = 1

return ã = a
else

ãeven = FFT(aeven, N/2)
ãodd = FFT(aodd, N/2)
ω = e−2πi/N

z = [ω0, ω1, . . . ωN/2−1]
return ã = [ãeven + z. ∗ ãodd, ãeven − z. ∗ ãodd]

end if

where .∗ means componentwise multiplication of arrays (as in MATLAB), and have
used the fact that ωj+N/2 = −ωj.

7. Matlab script

function y = ffttx(x)
%FFTTX Textbook Fast Finite Fourier Transform.
% FFTTX(X) computes the same finite Fourier transform as FFT(X).
% The code uses a recursive divide and conquer algorithm for
% even order and matrix-vector multiplication for odd order.
% If length(X) is m*p where m is odd and p is a power of 2, the
% computational complexity of this approach is O(m^2)*O(p*log2(p)).

x = x(:);
n = length(x);
omega = exp(-2*pi*i/n);

if rem(n,2) == 0
% Recursive divide and conquer
k = (0:n/2-1)’;
w = omega .^ k;
u = ffttx(x(1:2:n-1));
v = w.*ffttx(x(2:2:n));
y = [u+v; u-v];

else
% The Fourier matrix.
j = 0:n-1;
k = j’;
F = omega .^ (k*j);
y = F*x;

end

8. Let the cost of this algorithm be denoted C(N). Then we see that

C(N) = 2C
(

N

2

)
+

3N
2

,
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assuming that the powers if ω are precomputed and stored in tables. To solve this
recurrence write

C(N) = 2C
(

N

2

)
+

3N
2

= 4C
(

N

4

)
+ 2 · 2N

2

= 8C
(

N

8

)
+ 3 · 2N

2
= · · ·
= log2 N · 3N

2
.

Note that C(1) = 0.

To compute the FFT of each column (or each row) of an N -by-N matrix therefore
costs log2 N · 3N

2 · N . This is the complexity of the FFT method for solving the 2D
Poisson’s model problem.
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