
Review and catch up
• Frequently Used Matrix Decompositions

• What else in the Handout



Frequently Used Matrix Decompositions

“Big four”:

1. LU factorization

Gaussian elimination, ...

2. QR decomposition

Gram-Schmidt orthogonalization, ...

3. Schur decomposition

Eigendecomposition, ....

4. Singular value decomposition

CS decomposition, ...



LU decomposition (Gaussian Elimination)

If A is nonsingular, then there exist permutations P , a unit lower triangular
matrix L, and a nonsingular upper triangular matrix U such that

PA = LU.

Special cases:

(a) Cholesky decomposition. A matrix A is symmetric positive definite
if and only if there exists a unique nonsingular upper triangular matrix R,
with positive diagonal entries, such that

A = RTR.

(b) LDLT factorization If AT = A is nonsingular, then there exists a
permutation P , a unit lower triangular matrix L, and a block diagonal
matrix D with 1-by-1 and 2-by-2 blocks such that

PAPT = LDLT.



Applications:

• Solve Ax = b.

• ...

Matlab demo: lugui.m, bslashtx.m



QR decomposition(Gram-Schmidt orthogonalization)

Let A be m-by-n with m ≥ n. Suppose that A has full column rank. Then
there exist a unique m-by-n orthogonal matrix Q (QTQ = I) and a unique
n-by-n upper triangular matrix R with positive diagonal rii > 0 such that

A = QR.

Applications:

• Find an orthonormal basis of the subspace spanned by the columns of A.

• Solve the linear least squares problem minx ‖Ax − b‖2.

Matlab demo: qrsteps.m



Schur decomposition

Let A be of order n. Then there is an n × n unitary matrix U (UHU = I) such
that

A = UTUH,

where T is upper triangular. By appropriate choice of U , the eigenvalues of A,
which are the diagonal elements of T , may be made to appear in any order.

Applications:

• Compute eigenvalues and eigenvectors of A.

• ...

Matlab demo: eigsvdgui.m



Singular Value Decomposition (SVD)

Let A be an m-by-n matrix with m ≥ n. Then we can write

A = UΣV T ,

where U is m-by-n orthogonal matrix (UTU = In) and V is n-by-n
orthogonal matrix (V TV = I), and Σ = diag(σ1, σ2, . . . , σn), where
σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.
If m < n, the SVD can be defined by considering AT .
The columns u1, u2, . . . , un of U are called left singular vectors of A. The
columns v1, v2, . . . , vn of V are called right singular vectors. The
σ1, σ2, . . . , σn are called singular values.



Applications:

• Suppose that A is m-by-n with m ≥ n and has full rank, with A = UΣV T

being A’s SVD. Then the pseudo-inverse can also be written as

A† ≡ (ATA)−1AT = V Σ−1UT.

(If m < n, then A† = AT (AAT )−1)

• Suppose that

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0,

Then the rank of A is r. The range space of A is span(u1, u2, · · · , ur). and
the null space of A is span(vr+1, vr+2, . . . , vn).

• ‖A‖2 = σ1(≡ σmax)

• Let A be m × n with m ≥ n. Then

(a) eigenvalues of ATA = V Σ2V T are σ2
i , i = 1, 2, . . . , n. The

corresponding eigenvectors are the right singular vectors vi,
i = 1, 2, . . . , n.

(b) eigenvalues of AAT = UΣ2UT are σ2
i , i = 1, 2, . . . , n and m − n zeros.

The left singular vectors ui, i = 1, 2, . . . , n are corresponding eigenvectors
for the eigenvalues σ2

i . One can take any m − n other orthogonal vectors



that are orthogonal to u1, u2, . . . , un as the eigenvectors for the eigenvalues
0.

• Optimal rank-k approximation:

min
B : m × n

rank(B) = k

‖A − B‖2 = ‖A − Ak‖2 = σk+1,

where Ak = UΣkV
T , Σk = diag(σ1, σ2, . . . , σk, 0, . . . , 0)

Note that Ak can be written in a compact form as

Ak = Uk
̂ΣkV

T
k ,

where Uk and Vk are the first k columns of U and V , respectively,
̂Σk = diag(σ1, σ2, . . . , σk). Therefore, Ak is represented by
mk + k + nk = (m + n + 1)k elements, in contrast, A is represented by
mn elements.

Application: image compression.

compression ratio =
(m + n + 1)k

mn



Matlab’s M-scripts:

>> load clown.mat;
>> [m,n]=size(X);
>> figure(1);
>> colormap(map);
>> imag(X);
>> [U,S,V]=svd(X);
>> k = 20;
>> X20 = U(:,1:k)*S(1:k,1:k)*V(:,1:k)’;
>> figure(2);
>> colormap(map);
>> image(X20);
>> compression_ratio = (m+n)*k/(m*n)



Output:



What else in the Handout

1. Approximation and error are the facts of life in matrix computing

2. Floating-point arithmetic

3. Rounding error analysis

4. Vector and matrix norms

5. The landscape of linear systems solvers

6. A general framework for iterative projection methods for solving Ax = b

• Steepest descent ⇒ Conjugate Gradient (CG) method

• Minimal residual ⇒ GMRES

7. The concept of preconditioning

8. A general framework for iterative projection methods for solving Ax = λx

• Arnoldi method

• Lanczos methods


