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Outline

I Part 1. Linear eigenvalue problems

I Part 2. Nonlinear eigenvalue problems

I Part 3. Eigenvalue problems with eigenvector nonlinearity
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Outline, cont’d

I Part 1. Linear eigenvalue problems
1. Accelerated subspace iteration
2. Steepest descent method
3. Arnoldi method
4. Rational Krylov method
5. Topics of more recent interest

I Part 2. Nonlinear eigenvalue problems
1. Essential theory
2. Methods based on Newton iteration
3. Methods specially designed for QEP and REP
4. Methods based on approximation and linearization
5. Of things not treated

I Part 3. Eigenvalue problems with eigenvector nonlinearity
1. Kohn-Sham density functional theory
2. Sum of trace ratio
3. Robust Rayleigh quotient optimization
4. Of things not treated
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Part 1: Linear eigenvalue problems
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Getting started

1. (Standard) Linear eigenvalue problems

Ax = λx,

where A ∈ Cn×n

2. Generalized linear eigenvalue problems

Ax = λBx,

where A,B ∈ Cn×n

3. Generalized Hermitian definite linear eigenvalue problems

Ax = λBx

where A,B ∈ Cn×n and A∗ = A and B∗ = B > 0
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4. Textbooks and monographs, for examples,

I B. Parlett, The Symmetric Eigenvalue Problem (revised edition), SIAM, 1998 (first
edition, ∼ 1982)

I Y. Saad, Numerical Methods for Large Eigenvalue Problems (revised edition), SIAM, 2011
(first edition, 1992)

I G. W. Stewart, Matrix Algorithms, Vol. II: Eigensystems, SIAM, 2001

I G. Golub and C. Van Loan, Matrix Computations (4th Ed.), John Hopkins University
Press, 2013. (Chapters 7, 8, 10).

I J. Demmel, Applied Numerical Linear Algebra, SIAM, 1997 (Chapters 4, 5, 7)

I G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, 1990.
I J.-G. Sun, Matrix Perturbation Analysis (2nd edition), Science Press, 2001 (in Chinese).

I Textbooks in Chinese

I Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst (editors). Templates for
the solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia,
2000. available at http://web.cs.ucdavis.edu/~bai/ET/contents.html
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Outline of Part 1

1. Accelerated subspace iteration

2. Steepest descent method

3. Arnoldi method

4. Rational Krylov method

5. Topics of more recent interest
(a) Computing many eigenpairs of a Hermitian matrix
(b) Solving “ill-conditioned” generalized symmetric definite eigenvalue problems

7 / 183



Part 1.1 Accelerated subspace iteration

1. Consider the generalized Hermitian definite eigenvalue problem

Ax = λBx

where A,B ∈ Cn×n, A∗ = A, and B∗ = B > 0. (λ, x) is an eigenpair of the pencil
A− λB.

2. Eigenvalue decomposition: there exists an n× n nonsingular matrix X, such that

AX = BXΛ and X∗BX = I,

where Λ is a real diagonal matrix, and X is called B-orthogonal. Each diagonal
entry λ of Λ with its corresponding vector x of X constitute an eigenpair of the
matrix pencil A− λB.

3. Mathematically, determining eigenpairs for the generalized eigenproblem of (A,B)
is equivalent to determining eigenpairs of the single matrix B−1A. Define

M
def
= B−1A = XΛX−1(= XΛX∗B).
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4. Accelerated subspace iteration with Rayleigh-Ritz projection

1: choose vector Q0 ∈ Cn×k (Q∗0Q0 = I)
2: for j = 1, 2, . . . do
3: compute Yj = ρ(M)Qj−1

4: compute Âj = Y ∗j AYj and B̂j = Y ∗j BYj

5: compute the eigen-decomposition ÂjX̂j = B̂jX̂jΛ̂j and X̂∗j B̂jX̂j = I

6: set Qj = YjX̂j
7: test for convergence of approximate eigenpairs (Λ̂j , Qj)
8: end for
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5. Acceleration (filter) functions ρ(·):

(a) Ideal accelerator/filter: spectral projector ρ(M) = XIX
∗
IB, where XI is the set of

columns from the eigenvector matrix X corresponding to the eigenvectors of interest. (Ex.
verify that it converges in one-step!)

(b) Classical subspace iteration: ρ(M) = M

(c) Multiple-step subspace iteration: ρ(M) = Mq for some integer q > 1

(d) Chebyshev subspace iteration: ρ(M) = pq(M), where pq(λ) is a scaled Chebyshev
polynomial of degree q of the first kind.

(e) Rational filters ; contour integral (FEAST)
I P. T. P. Tang and E. Polizzi, FEAST as a subspace iteration eigensolver accelerated by

approximate spectral projection, SIMAX, 35, pp.354-390, 2014

(f) ARRABIT (Augmented Rayleigh-Ritz And Block ITeration)
I Z. Wen and Y. Zhang, Block algorithms with augmented Rayleigh-Ritz projections for large-scale

eigenpair computation, arXiv:1507.06078v1, July 22, 2015.

(g) Zolotarev’s best rational function approximation of the signum function
I Y. Li and H. Yang, Spectrum slicing for sparse Hermitian definite matrices based on Zolotarev’s

functions, arXiv:1701.08935v2, Feb. 28, 2017

6. matlab script: demo_RayleighRitz.m
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Part 1.2 Steepest descent method

1. Consider the generalized Hermitian definite eigenvalue problem Ax = λBx, let
eigenvalues {λi} be ordered such that λ1 ≤ λ2 ≤ · · · ≤ λn

2. Rayleigh quotient: ρ(x) =
x∗Ax

x∗Bx
3. Courant-Fischer min-max principle:

λi = min
X,dim(X)=i

max
x∈X

ρ(x)

In particular, λ1 = min
x∈Cn

ρ(x)

4. Ky-Fan trace-min principle:

k∑
i=1

λi = min
X ∈ Rn×k
X∗BX = I

trace(X∗AX)

5. Cauchy interlacing property: Let µ1 ≤ µ2 ≤ · · · ≤ µk be the eigenvalues of the
pencil W ∗AW − λW ∗BW , where W ∈ Cn×k and rank(W ) = k, then

λj ≤ µj ≤ λj+n−k for 1 ≤ j ≤ k.
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6. The Steepest Descent (SD) is a general technique to solve minx f(x)

7. Recall λ1 = minx ρ(x)

I Gradient ∇ρ(x) =
2

x∗Bx
[Ax− ρ(x)Bx]

I SD direction: ∇ρ(x) parallels to the residual r(x) = Ax− ρ(x)Bx.
I Line search (plain SD): x+ = xc + t∗ · r(xc), where t∗ = argmintρ(xc + t · r(xc))

8. The SD method (subspace projection version)

1: choose a vector x0

2: compute x0 = x0/‖x0‖B , ρ0 = x∗0Ax0 and r0 = Ax0 − ρ0Bx0.
3: for j = 0, 1, 2, . . . do
4: if ‖rj‖2/(‖Axj‖2 + |ρj |‖Bxj‖) ≤ tol, then break;
5: set Z = [xj , rj ] (search space)
6: compute the smaller eigenvalue µ and corresponding eigenvector v of

Z∗AZ − λZ∗BZ
7: compute xj+1 = x̂/‖x̂‖B , where x̂ = Zv
8: set ρj+1 = µ and compute the residue rj+1 = Axj+1 − ρj+1Bxj+1.
9: end for

10: return (ρj , xj) as an approximate eigenpair to (λ1, x1)
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9. Extensions:
I Locally optimal conjugate gradient method (LOCG) of Knyazev (1991)

Z = span {xj−1, xj , (A− ρjB)xj}
I Extended SD method (inverse-free) of Golub and Ye (2002):

Z = span
{
xj , (A− ρjB)xj , . . . , (A− ρjB)

m−1
xj
}

for some integer m > 2

10. Practical issues
I Preconditioning, e.g.,

Z ; Z̃ = span {xj−1, xj , K(A− ρjB)xj} (LOPCG)

I Blocking
I Deflation

11. matlab script demo_SD.m and demo_preconditionedSD.m

12. Further reading
I R.C. Li, Rayleigh quotient based numerical methods for eigenvalue problems, Lecture

notes at Gene Golub SIAM Summer School 2013, available at
http://www.siam.org/students/g2s3/2013/course.html and references therein
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Part 1.3 Arnoldi method

1. Arnoldi process generates an orthonormal basis Vj of the Krylov subspace

Kj(A, v1) = span
{
v1, Av1, . . . , A

j−1v1

}
2. Arnoldi method for computing approximate eigenpairs of A

1: choose vector v1 (‖v1‖ = 1)
2: for j = 1, 2, . . . do
3: compute: v̂ = Avj
4: orthogonalize: ṽ = v̂ − Vjhj , hj = V ∗j v̂

5: get new vector vj+1 = ṽ/hj+1,j , where hj+1,j = ‖ṽ‖
6: compute the Ritz pairs (λi, xi)
7: test for convergence
8: end for

3. Recurrence relation (Arnoldi decomposition)

AVj = VjHj + hj+1,jvj+1e
∗
j ≡ Vj+1Hj

4. Ritz pairs (i.e., approximate eigenpairs of A) are given by (λi, xi = Vjyi), where
(λi, yi) are eigenpairs of Hj = V ∗j AVj .
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5. Practical issues

(a) Reorthogonalization to treat the loss of orthogonality in finite precision arithmetic
(b) Restarting: explicit and implicit
(c) Deflation (aka locking)
(d) Shift-and-invert spectral transformation (known as the shift-and-invert Arnoldi method)

6. matlab script demo_eigs.m

7. Further reading: covered in the most textbooks.
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Part 1.4 Rational Krylov method

1. The Rational Krylov (RK) method is a generalization of the shift-and-invert Arnoldi
method

2. Starting with a vector v1, RK uses a Gram-Schmidt orthogonalization process to
construct an orthonormal basis Vm for the subspace

Qm = span{v̂1, v̂2, . . . , v̂m} with vj+1 = (A− σjI)−1vj

when shifts σj ∈ C.

3. The RK method

1: choose vector v1, ‖v1‖ = 1
2: for j = 1, 2, . . . do
3: choose shift σj

4: compute w :=

{
(A− σjI)−1vj , σj 6=∞
Avj , σj =∞

5: orthogonalize: w := w − Vjhj , where hj = V ∗j w

6: get new vector vj+1 = w/hj+1,j , where hj+1,j = ‖w‖
7: compute the Ritz pairs: (λi, xi)
8: test for convergence
9: end for
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4. The RK satisfies the recurrence relation

AVmKm−1 = VmLm−1

where the jth columns of m× (m− 1) upper Hessenberg matrices Km−1 and
Lm−1 are

kj = hj , lj = σjhj + ej , for σj 6=∞

kj = ej , lj = hj , for σj =∞

with hj = [hj , hj+1,j ]
T , the coefficients of the Gram-Schmidt orthogonalization

process, and ej the jth column of the identity matrix Im extended with a zero at
the bottom.

5. Note that by these relations, we have

σj =
lj+1,j

kj+1,j
, j = 1, . . . ,m− 1,

where we assume that hj+1,j 6= 0 (no breakdown).
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6. Ritz pairs (approximate eigenpairs of A):

(λi, xi = VmKm−1si),

where
Lm−1si = λiKm−1si.

with the residual

ri = Axi − λixi = (lm,m−1 − λikm,m−1)(eTm−1si)vm

7. Practical issues
I implicit restarting
I deflation

8. matlab script demo_rkm.m

9. Further reading
I A. Ruhe, Rational Krylov sequence methods for eigenvalue computation, Lin. Alg. Appl.

58, pp.391-405, 1983.
I R. Van Beeumen, K. Meerbergen and W. Michiels, Connections between contour

integration and rational Krylov methods for eigenvalue problems. TW673, Dept of
Computer Science, KU Leuven, Nov. 2016 (and references therein)
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Part 1.5 Topics of more recent interest

Part 1.5(a) Computing many eigenpairs of a Hermitian matrix

1. Let (λi, ui) be the eigenpairs of a n× n Hermitian matrix A with the ordering
λ1 ≤ λ2 ≤ . . ..

I Problem 1: Compute the first m-eigenpairs, where m is large, say m = n/100 when
n = O(106),
OR

I Problem 2: Compute all eigenpairs in a given interval [α, β], where the interval contains
many eigenvalues.

2. Approaches to be discussed

A1. Explicit deflation
A2. Spectum slicing
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A1. Explicit deflation = Wielandt’s deflation

1. Let AU = UΛ be the eigen-decomposition of A, partition

U = [Uk, Un−k] and Λ =

[
Λk

Λn−k

]
,

where Uk consists of eigenvectors corresponding to the first k eigenvalues. Define
the deflated matrix of the form

Ã = A+ ζUkU
∗
k

Then
(a) Ã and A have the same eigenvectors

(b) The eigenvalues of Ã are

{
λi + ζ for 1 ≤ i ≤ k
λi for k + 1 ≤ i ≤ n

2. After the first k eigenpairs are computed by an eigensolver, one can pick a sufficient
large ζ, and apply the eigensolver to compute the next k eigenpairs.

3. Eigensolvers EIGIFP and BLEIGIFP (inverse-free preconditioned Krylov subspace
method of Golub and Ye, 2002) have implemented such explicit deflation scheme.
Can be easily incooperated into the most of existing eigensolvers, say, ARRABIT.
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4. Example
I A Laplacian matrix of a diffusion map in nonparametric modeling of dynamical systems

from J. Harlim.
I Matrix size n = 10, 000, and compute 100 smallest eigenvalues one-by-one via explicit

deflation

Residual norms number of augmented SD iterations

5. Two key open issues:

(a) numerical stability with the computed Ûk,

(b) increasing the cost of the matrix-vector product Ãq = (A+ ζUkU
T
k )q
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nframe[t]Past and current efforts in LA solvers - Case study III
Communication-avoiding

Difference can even be seen on this laptop with MATLAB

Example: Sparse plus low-rank matrix powers

y = pj(A+ ζUkU
T
k ) · x
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A2. Spectrum slicing

1. Task: partition the interval [α, β] into subintervals, where each interval contains
about the same number of eigenpairs

2. Subtask: computing the number, denoted as c(α, β), of eigenvalues of A within the
given interval [α, β].

3. Approach 1: compute the inertia of A− αI and A− βI via the LDLT factorizations
of the matrices.

4. Approach 2: “density of states (dos)” [Lin, Saad and Yang’16, SIAM Rev.]

5. Approach 3: a preconditioned iterative method

I c(α, β) = n−(A− βI)− n−(A− αI), where n−(A− τI) is the negative inertia,
which is the number of negative eigenvalues of A− τI.

I inertia preservation:
I n−(A− τI) = n−(M(A− τI)M∗) ≡ n−(C), where T = MMast is a preconditioner

of A− τI.
I n−(C) = trace(h(C)), where h(x) is the step function

h(x) =

{
1, x < 0
0, otherwise

I Monte-Carlo estimation of the trace of function

trace(h(C)) ≈ 1

m

m∑
j=1

v
∗
j h(C)vj for random vectors vj .

I Ref. E. Vecharynski and C. Yang, Preconditioned iterative methods for eigenvalue counts,
arXiv:1602.02306v1, Feb. 2016.
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6. Eigensolvers, such as FEAST, ZOLOEIGS and ChebLanTr in EVSL, need to have an
interval of eigenvalues of interest.

7. EVSL (EigenValue Slicing Library)1. provides a subroutine for the Task. In addition,
EVSL also provides an implementation of the thick restarted Lanczos method with
Chebyshev acceleration for computing many eigenpairs.

8. Example
I The Laplacian matrix of a diffusion map
I Number of eigenvalues in 20 subintervals (matrix size n = 10000)

1available at http://www-users.cs.umn.edu/~saad/software/EVSL
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Part 1.5(b) “Ill-conditioned” generalized symmetric-definite eigenvalue problems

1. Generalized symmetric definite eigenvalue problem

Ax = λBx with AT = A and BT = B > 0

2. LAPACK routines DSYGV[D,X] are based on the following Wilkinson’s algorithm:

1: compute the Cholesky factorization B = GGT

2: compute C = G−1AG−T

3: compute symmetric eigen-decomposition QTCQ = Λ
4: set X = G−TQ

3. DSYGV[D,X] could be numerically unstable if B is ill-conditioned, since for a
computed eigenpair (λ̂i, x̂i):

|λ̂i − λi| . p(n)(‖B−1‖2‖A‖2 + cond(B)|λ̂i|) · ε

and

θ(x̂i, xi) . p(n)
‖B−1‖2‖A‖2(cond(B))1/2 + cond(B)|λ̂i|

specgapi
· ε

4. User’s choice between the inversion of ill-conditioned Cholesky decomposition and
the QZ algorithm that destroys symmetry
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5. Existing work to address the ill-conditioning issue for dense matrices:
I Fix-Heiberger’72: explicit reduction (also see Sec.15.5 of Parlett’s book)
I Chang-Chung Chang’74: SQZ method (QZ by Moler and Stewart’73)
I Bunse-Gerstner’84: MDR method
I Chandrasekaran’00: “proper pivoting scheme”
I Davies-Higham-Tisseur’01: Cholesky+Jacobi
I Working notes by Kahan’11 and Moler’14

6. Approaches to be discussed
A1. A LAPACK-style implementation of Fix-Heiberger reduction method
A2. An algebraic regularization
A3. A locally accelerbated preconditioned steepest descent method
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A1. A LAPACK-style implementation of Fix-Heiberger algorithm

1. Given the threshold ε, a LAPACK-style computational routine DSYGVIC determines

I A− λB is regular and has k (0 ≤ k ≤ n) ε-stable eigenvalues OR
I A− λB is singular.

2. Implementation of DSYGVIC is based on Fix-Heiberger’s algorithm, and organized in
three phases.
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3. DSYGVIC Phase I:

(a) Compute the eigenvalue decomposition of B (DSYEV):

B
(0)

= Q
T
1 BQ1 =

[
D(0)

E(0)

]
,

where diagonal entries of n1 × n1 diagonal matrix D: d11 ≥ d22 ≥ . . . ≥ dn1n1 , and

diagonal elements of n2 × n2 diagonal matrix E(0) are smaller than εd
(0)
11 .

(b) Set E(0) = 0, and update A and B(0) with R1 = diag((D(0))−1/2, I):

A
(1)

= R
T
1 Q

T
1 AQ1R1 =

[
A

(1)
11 A

(1)
12

A
(1)T
12 A

(1)
22

]
and B

(1)
= R

T
1 B

(0)
R1 =

[
I

0

]
(c) Early exit. If B is ε-well-conditioned (i.e., n2 = 0), then A− λB is regular and has n

ε-stable eigenpairs (Λ,X):

I A(1)U = UΛ (DSYEV).
I X = Q1R1U
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4. DSYGVIC Phase I: timing profile

I Test matrices A = QADAQ
T
A and B = QBDBQ

T
B where

I QA, QB are random orthogonal matrices;
I DA is diagonal with −1 < DA(i, i) < 1, i = 1, . . . , n;
I DB is diagonal with 0 < ε < DB(i, i) < 1, i = 1, . . . , n;

I 12-core on an Intel ”Ivy Bridge” processor (Edison@NERSC)
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I When B is ε-well-conditioned, DSYGVIC is about twice slower than Wilkinson’s algorithm.
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5. DSYGVIC Phase II

(a) Compute the eigendecomposition of (2,2)-block A
(1)
22 of A(1) (DSYEV):

A
(2)
22 = Q

(2)T
22 A

(1)
22 Q

(2)
22 =

[
D(2)

E(2)

]
where eigenvalues are ordered such that |d(2)11 | ≥ |d

(2)
22 | ≥ · · · , and elements of E(2) are

smaller than ε|d(2)11 |.
(b) Set E(2) = 0, and update A(1) and B(1):

A
(2)

= Q
T
2 A

(1)
Q2 =

 A
(2)
11 A

(2)
12 A

(2)
13

A
(2)T
12 D(2)

A
(2)T
13 0


B

(2)
= Q

T
2 B

(1)
Q2 =

 I
0

0


where Q2 = diag(I,Q

(2)
22 ).

(c) Early exit. When A
(1)
22 is a ε-well-conditioned matrix (i.e., E(2) is empty), A− λB is

regular and has n1 ε-stable eigenpairs (Λ,X):

I A(2)U = B(2)UΛ (use Schur complement and DSYEV)
I X = Q1R1Q2U .
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6. DSYGVIC Phase II: accuracy test

I If B ≥ 0 has n2 zero eigenvalues:

I DSYGV stops, the Cholesky factorization of B could not be completed.
I DSYGVIC successfully computes n− n2 ε-stable eigenpairs.

I If B has n2 small eigenvalues about δ, both DSYGV and DSYGVIC “work”, but produce
different quality numerically.

I n = 1000, n2 = 100, δ = 10−13 and ε = 10−12.

Res1 Res2
DSYGV 3.5e-8 1.7e-11

DSYGVIC 9.5e-15 7.1e-12

I n = 1000, n2 = 100, δ = 10−15 and ε = 10−12.

Res1 Res2
DSYGV 3.6e-6 1.8e-10

DSYGVIC 1.3e-16 6.8e-14

where

Res1 =
‖AX̂ − BX̂Λ̂‖F
n‖A‖F ‖X̂‖F

and Res2 =
‖X̂TBX̂ − I‖F
‖B‖F ‖X̂‖2F

.

(as defined in LAPACK test routines)
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7. DSYGVIC Phase II: timing profile

I Test matrices A = QADAQ
T
A and B = QBDBQ

T
B where

I QA, QB are random orthogonal matrices;
I DA is diagonal with −1 < DA(i, i) < 1, i = 1, . . . , n;
I DB is diagonal with 0 < DB(i, i) < 1, i = 1, . . . , n and n2/n DB(i, i) < ε.

I 12-core on an Intel ”Ivy Bridge” processor (Edison@NERSC)
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I Note that the performance of DSYGV varies depending on the percentage of “zero”
eigenvalues of B. This is why the overhead ratio of DSYGVIC is lower.
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8. DSYGVIC Phase III

(a) Recall A(2) and B(2) has the 3 by 3 block structure

A
(2)

=

 A
(2)
11 A

(2)
12 A

(2)
13

A
(2)T
12 D(2)

A
(2)T
13 0

 and B
(2)

=

 I
0

0


(b) Reveal the rank of A

(2)
13 by QR decomposition with pivoting:

A
(2)
13 Π = Q

(3)
13 ·

[ n4

n4 R
n1−n4 0

]
(c) Final exit. When n1 > n4 and R is full rank,2 then A− λB is regular and has n1 − n4

ε-stable eigenpairs (Λ,X):

I A(3)U = B(3)UΛ (use Schur complement and DSYEV)
I X = Q1R1Q2Q3U .

2All the other cases either lead A− λB to be “singular” or “regular but no finite eigenvalues”.
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9. DSYGVIC Phase III: accuracy test

I Consider 8× 8 matrices (Fix-Heiberger’72):

A = Q
T
HQ and B = Q

T
SQ,

where Q is an random orthogonal matrix, and

H =



6 0 0 0 0 0 1 0
0 5 0 0 0 0 0 1
0 0 4 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0


and

S = diag[1, 1, 1, 1, δ, δ, δ, δ]

I As δ → 0, λ = 3, 4 are the only stable eigenvalues of A− λB.
I The computed eigenvalues when δ = 10−15:

λi eig(A,B,’chol’) DSYGV DSYGVIC(ε = 10−12)

1 -3.334340289520080e+07 -0.3229260685047438e+08 0.3000000000000001e+01
2 -3.138309114827999e+07 -0.3107213627119420e+08 0.3999999999999999e+01
3 2.999999998949329e+00 0.2957918878610765e+01
4 3.999999999513074e+00 0.4150528124449937e+01
5 3.138309673669569e+07 0.3107214204558684e+08
6 3.334340856015300e+07 0.3229261357421688e+08
7 1.077763236890488e+15 0.1004773743630529e+16
8 2.468473375420724e+15 0.2202090698823234e+16

10. Further reading:
I http://cmjiang.cs.ucdavis.edu/fh_temp.html and references therein
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A2. An algebraic regularization

1. A symmetric semi-definite pencil A− λB is defined by AT = A and BT = B ≥ 0.

2. Canonical form. There exists a nonsingular matrix W ∈ Rn×n such that

WTAW =


2n1 r n2 s

2n1 Λ1

r Λ2

n2 Λ3

s 0

, WTBW =


2n1 r n2 s

2n1 Ω1

r I
n2 0
s 0


where

Λ1 = In1 ⊗K,Λ2 = diag(λi), Λ3 = diag(±1), Ω1 = In1 ⊗ T

and

K =

[
0 1
1 0

]
, T =

[
1 0
0 0

]
3. The canonical form reveals the structure of finite, infinite and indefinite (“0/0”)

eigenvalues, and singularity.

4. (a) The pencil A− λB is regular iff s = 0.
(b) A and B are simultaneously diagonalizable if n1 = 0, which is equivalent to
AN(B) ∩ R(B) = {0}.

34 / 183



5. Algebraic regularization: Suppose that the pencil A− λB is regular and
simultaneously diagonalizable. Let

K = A+ µ(AZ)H(AZ)T , M = B + (AZ)H(AZ)T ,

where Z ∈ Rn×k spans the nullspace of B, and H ∈ Rk×k is an arbitrary
symmetric positive definite matrix, and µ ∈ R. Then
(1) M > 0

(2) λ(K,M) = λf (A,B) ∪ λ(µH + (ZTAZ)−1, H). 3

6. By appropriately chosen H and µ, one can compute the k smallest (finite)
eigenvalues of A− λB directly, say by LOBPCG.

7. Example: LOBPCG for a structure dynamics eigenvalue problem
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8. Reference: H. Xie, C.-P. Lin and Z. Bai, work in progress

3λ(A,B) denotes the set of eigenvalues of a pencil A− λB. λf (A,B) denotes the set of all finite eigenvalues
of A− λB.
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A3. A locally accelerbated preconditioned steepest descent method

1. Ill-conditioned GSEP Hui = λiSui:

(a) Matrices H and S are ill-conditioned
e.g., cond(H), cond(S) = O(1010)

(b) Share a near-nullspace span{V }
e.g., ‖HV ‖ = ‖SV ‖ = O(10−4)

(c) No obvious spectrum gap between eigenvalues of interest and the rest
e.g.,

lowest 8
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2. Assume the first i− 1 eigenpairs (λ1, u1), . . . , (λi−1, ui−1) have been computed,
and denote Ui−1 = [u1, u2, . . . , ui−1].

3. PSDid (Preconditioned Steepest Descent with implicit deflation) computes the i-th
eigenpair (λi, ui)

0 initialize (λi;0, ui;0)
1 for j = 0, 1, . . . until convergence
2 compute ri;j = Hui;j − λi;jSui;j
3 precondition pi;j = −Ki;jri;j
4 (γi, wi) = RR(H,S, Z), where Z = [Ui−1 ui;j pi;j ]
5 λi;j+1 = γi, ui;j+1 = Zwi

4. PSDid is an extension of [Faddeev and Faddeeva’63] and [Longsine and
McCormick’80] for Ki;j = I.
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5. With the assumptions:

(a) initialize ui;0 such that UHi−1Sui;0 = 0 and ‖ui;0‖S = 1

(b) λi;0 = ρ(ui;0), Rayleigh quotient
(c) the preconditioners Ki;j are effective positive definite, namely,

K
d
i;j ≡ (U

c
i−1)

T
SKi;jSU

c
i−1 > 0,

where Uc
i−1 = [ui, ui+1, . . . , un].

Then we can show the following properties of PSDid:
(a) Z is of full column rank

(b) UHi−1Sui;j+1 = 0 and ‖ui;j+1‖S = 1

(c) λi ≤ λi;j+1 < λi;j

(d) λi;j − λi;j+1 ≥
√
g2 + φ2 − g = “step size” > 0,

… λi-1 λi
“step size”

λi+1
…

λi:j+1 λi:j

(e) pi;j = −Ki;jri;j is an ideal search direction if pi;j satisfies

U
T
S(ui;j + pi;j) = (×, . . . ,×, ξi, 0, . . . , 0)

T and ξi 6= 0. (1)

It implies that λi;j+1 = λi.
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6. PSDid convergence:
If λi < λi;0 < λi+1 and supjcond(Kd

i;j) = q <∞, then the sequence {λi;j}j is
strictly decreasing and bounded from below by λi, i.e.,

λi;0 > λi;1 > · · · > λi;j > λi;j+1 > · · · ≥ λi

and as j →∞,
(a) λi;j → λi
(b) ui;j converges to ui directionally:

‖ri;j‖S−1 = ‖Hui;j − λi;jSui;j‖S−1 → 0
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7. PSDid convergence rate: Let εi;j = λi;j − λi, then

εi;j+1 ≤
[

∆+ τ
√
θi;jεi;j

1− τ(
√
θi;jεi;j + δi;jεi;j)

]2

εi;j

provided that the i-th approximate eigenvalue λi;j is localized, i.e.

τ(
√
θi;jεi;j + δi;jεi;j) < 1,

where
I ∆ = Γ−γ

Γ+γ and τ = 2
Γ+γ

I δi;j = ‖S 1
2Ki;jS

1
2 ‖ and θi:j = ‖S 1

2Ki;jMKi;jS
1
2 ‖

Γ and γ are largest and smallest pos. eigenvalues of Ki;jM and
M = PHi−1(H − λiS)Pi−1 and Pi−1 = I − Ui−1U

H
i−1S
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8. Remarks:

(a) If Ki;j = I, the convergence of SD proven in [Faddeev and Faddeeva’63] and [Longside
and McCormick’80]

(b) If i = 1 and K1;j = K > 0, it is Samokish’s theorem (1958), which is first and still
sharpest quantitative analysis [Ovtchinnikov’06].

(c) Asymptotically,

εi;j+1 ≤
[
∆+ O(ε

1/2
i;j )

]2
εi;j

(d) Optimal Ki;j : ∆ = 0 ; quadratic conv.

(e) Semi-optimal Ki;j : ∆+ τ
√
θi;jεi;j → 0 ; superlinear conv.

(f) (Semi-)optimality depends on the eigenvalue distribution of Ki;jM
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9. Locally accelerated preconditioner: Consider the preconditioner

K̂i;j =
(
H − βi;jS

)−1
with βi;j = λi;j − c‖ri;j‖S−1

where c is some constant. If

0 < ∆i;j < min{
1

4
∆2
i ,

1

10
} and c > 3

√
∆i;j .

where ∆i = (λi − λi−1)/(λi+1 − λi) and ∆i;j = (λi;j − λi−1)/(λi+1 − λi;j).
Then
(a) Ki;j is effective positive definite
(b) λi;j is localized

(c) ∆+ τ
√
θi;jεi;j → 0

Therefore, K̂i;j is asymptotically optimal
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10. PSDid ; LABPSD = Locally Accelerated Block PSD

0 Initialize Um+`;0 = [u1;0 u2;0 . . . um+`;0 ]
1 (Γ,W ) = RR(H,S, Um+`;0)
2 update Λm+`;0 = Γ and Um+`;0 = Um+`;0W
3 for j = 0, 1, . . ., do
4 compute R = HUm;j − SUm;jΛm;j ≡ [ r1;j r2;j . . . rm;j ]
5 if Res[Λm;j , Um;j ] = max1≤i≤m Res[λi;j , ui;j ] ≤ τeig, break
6 for i = 1, 2, . . . ,m

if λi;j is localized, then solve (H − λi;jS)pi;j = −ri;j for pi;j
7 (Γm+`,Wm+`) = RR(H,S, Z), where Z = [Um+`;j p1;j . . . pm;j ]
8 update Λm+`;j+1 = Γm+` and Um+`;j+1 = ZWm+`

9 end
10 return {(λi;j , ui;j)}mi=1

11. Remarks:
I RR(H,S, U) is the Rayleigh-Ritz procedure for the matrix pair (H,S) with the projection

subspace span(U).
I A “global” preconditioner ≈ (H − σS)−1 can be used to accelerate the “localization”

and convergence of step 6.
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12. Example 1. Harmonic1D
I PUFE discretization for harmonic oscillator in 1D
I n = 112 for 6-digit accuracy of 4 smallest eigenvalues λ1, λ2, λ3, λ4
I H and S are ill-conditioned

cond(H) = 8.79× 10
10 and cond(S) = 2.00× 10

12

I H and S share a near-nullspace span{V }

‖HV ‖ = ‖SV ‖ = O(10
−5

) and dim(V ) = 17

I All computed λ̂1, λ̂2, λ̂3, λ̂4 have 6-digit accuracy.
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13. Example 2. CeAl-PUFE

I Metallic, triclinic CeAl, particularly challenging
I n = 5336 from PUFE discretization of the Kohn-Sham equation
I H and S are ill-conditioned

cond(H) = 1.16× 10
10 and cond(S) = 2.57× 10

11

I H and S share a near-nullspace span{V }

‖HV ‖ = ‖SV ‖ = O(10
−4

) and dim(V ) = 1000
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14. Further reading:
I Y. Cai, Z. Bai, J. Pask and N. Sukumar, Convergence analysis of a locally accelerated

preconditioned steepest descent method for Hermitian-definite generalized eigenvalue
problems, J. Comput. Math., to appear, 2017.

I Y. Cai, Z. Bai, J. Pask and N. Sukumar, Hybrid preconditioning for iterative
diagonalization of ill-conditioned generalized eigenvalue problems in electronic structure
calculations, J. of Comput. Phys., 255, pp.16-33, 2013
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Recap of Part 1

1. Accelerated subspace iteration
matlab script demo_RayleighRitz.m

2. Steepest descent method
matlab scripts demo_SD.m, demo_PreconditionedSD.m

3. Arnoldi method
matlab script demo_eigs.m

4. Rational Krylov method
matlab script demo_rkm.m

5. Topics of more recent interest

(a) Computing many eigenpairs of a Hermitian matrix
(b) Solving “ill-conditioned” generalized symmetric definite eigenvalue problems

6. Exercises
Part 1(a) – 4 problems
Part 1(b) – 4 problems
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Part 2: Nonlinear eigenvalue problems
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Outline of Part 2

1. Essential theory

2. Methods based on Newton iterations
(a) Newton’s method based on scalar functions
(b) Newton’s method based on vector equations
(c) Common issues

3. Methods designed for QEP and REP
(a) QEP
(b) REP
(c) QEP with low-rank damping

4. Methods based on approximation/interpolation and linearization
(a) The method of successive linear approximation
(b) Linearization of a matrix polynomial
(c) PEP in monomial basis and linearization
(d) Lagrange interpolation in barycentric form and linearization
(e) Newton interpolation and linearization
(f) (Rational) Padé approximation and linearization
(g) Rational interpolation and linearization
(h) Algorithmic framework and software

5. Of things not treated
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Part 2.1 Essential theory

1. Nonlinear eigenvalue problem
T (λ)x = 0

where
I T : Ω → Cn×n is a matrix-valued function and Ω ⊆ C is a nonempty open set.
I λ ∈ Ω is an eigenvalue.
I x ∈ Cn\{0} is an eigenvector.

The set of all eigenvalues is denoted by Λ(T ) and referred to as the spectrum of T ,
while Ω\Λ(T ) is called the resolvent set of T .

2. The eigenvalues of T (λ) are the roots of the scalar function f(z) = det(T (z)).

3. The algebraic multiplicity of an eigenvalue λ is defined as the multiplicity of the
root of f(z) at λ. An eigenvalue is called simple if its algebraic multiplicity is one.

4. The geometric multiplicity of λ is the dimension of the null space of T (λ). An
eigenvalue is called semi-simple if its algebraic and geometric multiplicities coincide.
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5. Example 1. T is 1× 1 scalar function T : Ω → C:
I no solution at all, e.g., T (z) = ez .
I finitely many solutions, e.g., T (z) = z4 − 1.
I infinitely many solutions, e.g., T (z) = cos(z).

6. Example 2. T is a 2× 2 matrix

T (z) =

[
eiz

2
1

1 1

]
.

It is singular at the points z ∈ C where eiz
2

= 1. Hence the eigenvalues are
λk = ±

√
2πk for k = 0,±1,±2, . . ..

7. For LEPs, eigenvectors corresponding to distinct eigenvalues are linearly
independent, which is not the case for NEPs. For examples,

I there is only one eigenvector x = [1, −1]T for the the previous 2× 2 matrix T (z).
I the quadratic eigenvalue problem

T (λ)x =

([
0 1
−2 3

]
+ λ

[
7 −5
10 −8

]
+ λ

2

[
1 0
0 1

])
x = 0.

The distinct eigenvalues λ = 1 and λ = 2 share the eigenvector x = [1, 2]T .
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8. It is common to assume that T : Ω → Cn×n is holomorphic4 in the domain Ω ⊆ C,
denoted by T ∈ H(Ω,Cn×n).

9. T ∈ H(Ω,Cn×n) implies that det(T (z)) ∈ H(Ω,C).

10. T is regular if det(T (z)) 6≡ 0. The condition that T is regular is equivalent to that
the resolvent set Ω\Λ(T ) is nonempty.

11. If T is regular, every eigenvalue λ ∈ Λ(T ) is isolated, i.e., there exists an open
neighborhood U ⊂ Ω such that U ∩ Λ(T ) = {λ}.

12. A matrix-valued function T (z) is said to be Hermitian if T (z)∗ = T (z̄) for all
z ∈ C.

I The eigenvalues of a Hermitian F are either real or they come in pairs (λ, λ̄)
I T (λ)v = 0 and w∗T (λ) = 0 implies that T (λ̄)w = 0 and v∗T (λ̄) = 0.
I If λ is real, the left and right eigenvectors corresponding to λ coincide.

13. A matrix-valued function T (z) is called genuinely nonlinear if the problem of finding
its eigenvalues is not linearizable. The eigenvalue problem for T (z) is then called
non-linearizable.

4 i.e., differentiable in a neighborhood of every point in its domain.
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14. References:
(a) H. Voss. Nonlinear eigenvalue problems. Chapter 60 of Handbook of Linear Algebra (2nd

edition), L. Hogben editor. Chapman and Hall/CRC, 2013. (A collection of mathematical
facts about NEPs)

(b) S. Güttel and F. Tisseur, The nonlinear eigenvalue problem, Acta Numerica, Vol.26, 2017.
(Section 2 contains the solution structure of NEPs)

(c) (i) D. Bindel and A. Hood. Localization theorems for nonlinear eigenvalue problems.
SIAM Journal on Matrix Analysis and Applications, 34(4):17281749, 2013, (ii) A. Hood.
Localizing the eigenvalues of matrix-valued functions: analysis and Applications, PhD
thesis, Cornell University, Jan. 2017

(d) T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur. NLEVP: A collection
of nonlinear eigenvalue problems. ACM Trans. Math. Softw., 39(2):7:17:28, 2013.
http://www.mims.manchester.ac.uk/research/numerical-analysis/nlevp.html
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Part 2.2 Newton’s methods

(a) Newton’s method based on scalar functions

(b) Newton’s method based on vector functions

(c) Common issues
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Part 2.2(a) Newton’s method based on scalar functions

1. Eigenvalues as roots of determinant:

F (λ)v = 0 ⇐⇒ f(λ) := det(F (λ)) = 0

2. Apply Newton’s method for a root of f(λ) with initial λ(0):

λ(k+1) = λ(k) −
f
(
λ(k)

)
f ′
(
λ(k)

) , k = 0, 1, 2, . . . .

3. By Jacobi’s derivative formula,

f ′(λ) = det(F (λ)) · tr
(
F−1(λ)F ′(λ)

)
,

Newton’s iteration becomes

λ(k+1) = λ(k) −
1

tr
(
F−1

(
λ(k)

)
F ′
(
λ(k)

)) .
4. To evaluate the trace, we apply the LU factorization of F

(
λ(k)

)
to solve 2n

triangular systems for all diagonal elements.
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5. Remarks

I Initial value: λ(0) is required (the choice is crucial to the convergence).
I Convergence rate: locally quadratic to a simple root.
I More than one eigvals: deflate the computed eigvals λ`, for ` = 1: k, by replacing f(λ)

with

f̃(λ) =
f(λ)∏k

`=1(λ− λ`)
.

I Approximate eigvecs v for λ : return the (approximate) right singular vector of F (λ) as
the corresponding eigenvector v.

6. matlab script Newton Trace.m

7. Reference:
I P. Lancaster, Lambda-Matrices and Vibrating Systems, Pergamon Press Inc. 1966
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8. Extension I: Implicit determinant
I Key observation: to avoid working with nearly singular matrices F (λ(k)), consider the

boarded linear system with constant vectors b, c ∈ Cn:[
F (λ) b

cT 0

]
︸ ︷︷ ︸

G(λ)

[
x
f

]
=

[
0
1

]
,

the solution is given by (using Cramer’s rule and assuming G nonsingular)

f(λ) =
detF (λ)

detG(λ)
.

I Derivative of f : by differentiating the linear system w.r.t. λ, we obtain[
F (λ) b

cT 0

] [
x′(λ)
f ′(λ)

]
=

[
−F ′(λ)x(λ)

0

]
.

I Netwon’s method for f = 0 : both f(λ) and f ′(λ) can be evaluated by solving the above
two linear systems with a common coefficient matrix G(λ).

I matlab script Newton implicit determinant.m
I References:

I A. L. Andrew, E. K. Chu, and P. Lancaster. “On the numerical solution of nonlinear eigenvalue
problems.” Computing 55(2), pp.91-111, 1995.

I A. Spence and C. Poulton. “Photonic band structure calculations using nonlinear eigenvalue
techniques.” Journal of Computational Physics 204(1), pp.65-81, 2005.
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9. Extension II: Newton-QR iteration

I QR decomposition of F (λ) with column pivoting

F (λ)Π(λ) = Q(λ)R(λ) ≡ Q(λ)

[
R11(λ) r12(λ)

0 rnn(λ)

]
.

where Π is a permutation matrix, Q is an orthogonal matrix and R is upper triangular
with decreasing diagonal r11 ≥ r22 ≥ · · · ≥ rnn.

I Scalar equation:

detF (λ) = 0 ⇐⇒ f(λ) := rnn(λ) = 0

I Derivative: assume Π(λ) is constant in a small neighborhood of λ, then

r
′
nn(λ) = e

T
nQ(λ)

∗
F
′
(λ)Π(λ)

[
−R−1

11 (λ)r12(λ)
1

]
.

This leads to the Newton-QR iteration for a root of rnn(λ).
I matlab script Newton QR.m
I References:

I V. N. Kublanovskaya, “On an approach to the solution of the generalized latent value problem for
λ-matrices”, SIAM J. Numer. Anal. 7, pp.532–537, 1970.

I C. K. Garrett, Z. Bai, and R.-C. Li, “A nonlinear QR algorithm for banded nonlinear eigenvalue
problems.” ACM Transactions on Mathematical Software 43.1, Article 4, 19 pages, 2016, and
references therein.
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Part 2.2(b) Newton’s method based on vector equations

1. Eigenpairs as the solution of vector equations:{
F (λ)v = 0

u∗v = 1
⇐⇒ N

[
v
λ

]
:=

[
F (λ)v
u∗v − 1

]
= 0

I u ∈ Cn: a constant normalization vector.
I N : Cn+1 → Cn+1: a nonlinear functional.

2. Newton’s method for N = 0:[
v(k+1)

λ(k+1)

]
=

[
v(k)

λ(k)

]
−
(
JN

[
v(k)

λ(k)

])−1

N

[
v(k)

λ(k)

]
,

where the Jacobian matrix is given by

JN

[
v
λ

]
=

[
F (λ) F ′(λ)v
u∗ 0

]
.
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3. Implementation: Nonlinear inverse iteration

I Newton’s iteration: given λ(k) and v(k) with u∗v(k) = 1,[
v(k+1)

λ(k+1)

]
=

[
v(k)

λ(k)

]
−
([

F (λ(k)) F ′(λ(k))v(k)

u∗ 0

])−1 [
F (λ(k))v(k)

0

]
I Blockwise form:

F (λ
(k)

)v
(k+1)

= − (λ
(k+1) − λ(k)

)︸ ︷︷ ︸
scalar

·F ′(λ(k)
)v

(k)
,

u
∗
v
(k+1)

= 1.

I Nonlinear inverse iteration:

1. Solve F (λ(k))x = F ′(λ(k))v(k) for x.

2. Normalize v(k+1) = x/α with α = u∗x.

3. Update λ(k+1) = λ(k) − α−1.
I Remark: The normalizing u can either be a constant vector (e.g. u = ei, or orthogonal to

previously computed eigvecs), or updated in iterations (e.g., u = F (λ(k))w(k) and w(k)

is an approximate left eigvec).

4. matlab script inverse iteration.m

5. Ref.: A. Ruhe, Algorithms for the nonlinear eigenvalue problem. SIAM Numer.
Anal. 10, pp.674-689, 1973.
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6. Extension I: Two-sided Rayleigh functional iteration

I Eigenvectors update: Inverse iteration updates the (right) eigenvector (up to
normalization) by

v
(k+1)

= F (λ
(k)

)
−1
F
′
(λ

(k)
)v

(k)
.

We can do the same for F (λ)∗ to update the left eigenvector

w
(k+1)

= F (λ
(k)

)
−∗
F
′
(λ

(k)
)
∗
w

(k)
.

Remark: For Hermitian NEPs, we have w(k+1) = v(k+1).
I Eigenvalue update: with both approximate left and right eigevectors, update the

eigenvalue by the Rayleigh functional

λ
(k+1) ←− the root ρ of w(k+1)∗

F (ρ)v
(k+1)

= 0 closest to λ(k)
.

I Two-sided Rayleigh functional iteration: iterate the eigentriple

(λ
(k+1)

, v
(k+1)

, w
(k+1)

) ←− (λ
(k)
, v

(k)
, w

(k)
)

I It is locally cubically convergent for a simple eigentriple (λ, v, w).
I Reference: K. Schreiber, Nonlinear Eigenvalue Problems: Newton-type Methods and

Nonlinear Rayleigh Functionals, Ph.D. thesis, TU Berlin, 2008.
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7. Extension II: Residual inverse iteration

I Quasi-Netwon’s method: (given λ(k) and v(k) with u∗v(k) = 1)[
v(k+1)

λ(k+1)

]
=

[
v(k)

λ(k)

]
− J̃−1

k

[
F (λ(k))v(k)

0

]
,

where J̃k is an approximate Jacobian for a prescribed ’shift’ σ:

J̃k :=

[
F (σ)

F (λ(k+1))−F (λ(k))

λ(k+1)−λ(k)
v(k)

u∗ 0

]
≈
[
F (λ(k)) F ′(λ(k))v(k)

u∗ 0

]
.

I Blockwize form:  v
(k+1)

= v
(k)

+ F (σ)
−1
F (λ

(k+1)
)v

(k)
,

0 = u
∗
F (σ)

−1
F (λ

(k+1)
)v

(k)
.

Solve the new approximant λ(k+1) from the second equation, then update the eigenvector

v(k+1).
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7. Extension II: Residual inverse iteration, cont’d

I Residual inverse iteration: given λ(k) and v(k)

1. Update λ(k+1) : the root ρ of u∗F (σ)−1F (ρ)v(k) = 0 closest to λ(k).

2. Residual inverse step: solve F (σ)x = F (λ(k+1))v(k) for x.

3. Normalization: v(k+1) = ṽ(k+1)/u∗ṽ(k+1) with ṽ(k+1) = v(k) + x.
I Remarks:

I Precompute the LU fact. of F (σ), and reuse it in each residual inverse step.
I Update the shift σ when convergence is slow.
I The algorithm is locally linearly convergent due to the fixed shift σ.
I For Hermitian NEPs, one can solve v(k)∗F (ρ)v(k) = 0 for λ(k+1). The algorithms is locally

quadratically convergent.
I References

I A. Neumaier, Residual inverse iteration for the nonlinear eigenvalue problem. SIAM Numer. Anal.
22(1985): 914-923.

I E. Jarlebring, A. Koskela and G. Mele, Disguised and new quasi-Newton methods for nonlinear
eigenvalue problems, arXiv:1702.08492v1, Feb.27, 2017
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Part 2.2(c) Common issues

1. Large sparse NEPs:

I Inexact Newton-type methods:
applying iterative solvers (e.g., GMRES) for the linear systems of each ’inverse’ step. For

example, in the nonlinear inverse iteration, compute ṽ(k+1) with residual error satisfying

‖F ′(λ(k)
)v

(k) − F (λ
(k)

)ṽ
(k+1)‖ ≤ τ(k)‖F ′(λ(k)

)v
(k)‖,

where τ(k) > 0 is an user provided tolerance.
This is an issue of “inner-outer iteration”.

I Reference: D. B. Szyld and F. Xue, Local convergence analysis of several inexact
Newton-type algorithms for general nonlinear eigenvalue problems, Numer. Math. 123,
pp.333-362, 2013.
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2. Deflation of computed eigenvalues and eigenpairs

I Goal: solve for several eigenvalues and/or eigenpairs.

I Nonequivalence transformation:

F̃ (λ) = F (λ)
∏̀
i=1

(
I − λ− λi − 1

λ− λi
yix
∗
i

)

I λ1, . . . , λ`: the computed ` simple eigenvalues of F .
I xi, yi ∈ Cn: vectors such that y∗i xi = 1 for i = 1, . . . , `.

I Deflation properties:
I F̃ (λ) and F (λ) share the same eigenvalues except λ1, . . . , λ`, since

det F̃ (λ) = detF (λ)
∏̀
i=1

1

λ− λi
.

I Let (λ, ṽ) be an eigenpair of F̃ , then λ 6= λi, for i = 1: `, is an eigenvalue of F with
eigenvector

v =
∏̀
i=1

(
I −

λ̃− λi − 1

λ̃− λi
yix
∗
i

)
ṽ.
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Part 2.3 Methods specially designed for QEP and REP

(a) QEP

(b) REP

(c) QEP with low-rank damping
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Part 2.3(a) QEP

1. The Quadratic Eigenvalue Problem (QEP): Given M , D and K ∈ Cn×n, find
λ ∈ C and nonzero x ∈ Cn satisfying

Q(λ)x = (λ2M + λD +K)x = 0.

2. The QEP is the most studied (and important) NEP. Mathematical and algorithmic
ideas developed for the QEP can often be extended to other linearizable and
genuinely nonlinear eigenvalue problems.

3. The recent work on solving dense QEPs can be found in
I S. Hammarling, C. J. Munro and F. Tisseur, An algorithm for the complete solution of

quadratic eigenvalue problems, ACM Trans. Math. Software, 39(3), pp.913-938, 2013
I L. Zeng and Y. Su, A backward stable algorithm for quadratic eigenvalue problems, SIAM

J. Matrix Anal. Appl., 35(2), pp.499-516,2014
I maltlab script demo_quadeig.m

We will be focusing on solving large-scale sparse QEPs.
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4. To compute the eigenvalues of the QEP close to a point σ of interest, a standard
approach is to first apply the shift spectral transformation µ = λ− σ and then solve
the QEP

(µ2M + µDσ +Kσ)x = 0,

where Dσ = C + 2σM and Kσ = σ2M + σC +K.

5. By a linearization technique, say in the first companion form, the QEP is equivalent
to the linear eigenvalue problem (LEP):[

−Dσ −Kσ
I 0

] [
µx
x

]
= µ

[
M 0
0 I

] [
µx
x

]
,

or rewritten as [
A B
I 0

] [
µx
x

]
= µ

[
µx
x

]
where

A = −M−1Dσ and B = −M−1Kσ .

6. The task of finding eigenvalues λ of the QEP close to the shift σ becomes one of
extracting smallest (in modulus) few eigenvalues µ of the LEP. However, the
dimension of the LEP is twice the dimension of the QEP. If without carefully
exploiting the structure of the LEP, memory and computational costs are increased
substantially. We next discuss memory-efficient QEP algorithms. As a product, we
also gain a significant improvement of accuracy.
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7. Given A,B ∈ Rn×n and r−1, r0 ∈ Rn, the second-order Krylov subspace

Gk(A,B; r−1, r0) := span{r−1, r0, r1, r2, . . . , rk−1} = span{Qk}

where ri = Ari−2 +Bri−1 for i = 1, 2, . . ..

8. Subspace embedding

span

{[
r0
r−1

]
,

[
r1
r0

]
,

[
r2
r1

]
, . . . ,

[
rk−1

rk−2

]}
= Kk(L, v0)

= span{Vk} = span{
[
V1,k

V2,k

]
},

where

Kk(L, v0) = span{v0, Lv0, . . . , L
k−1v0}, L =

[
A B
I 0

]
, v0 =

[
r0
r−1

]
9. A simple, yet critical observation

span{Qk} = span{V1,k, V2,k}.
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10. SOAR (Second-Order ARnoldi) is an Arnoldi-type procedure to generate an
orthogonal basis matrix Qk of Gk(A,B; r−1, r0). Unfortunately, SOAR procedure
can be numerically unstable due to

I triangular inversion in SOAR could be ill-conditioned

I SOAR implicitly generates a non-orthogonal basis Vk =

[
Qk

QkUk,2

]
of Kk (L, v0).

11. Two-level Orthogonality ARnoldi (TOAR) procedure.

I Recall the basis matrix connection

span{Qk} = span{V1,k, V2,k}.
I Represent an orthonormal basis Vk of Kk(L, v0) by a two-level orthogonality:

Vk =

[
V1,k

V2,k

]
=

[
QkUk,1
QkUk,2

]
=

[
Qk

Qk

] [
Uk,1
Uk,2

]
︸ ︷︷ ︸

Uk

,

where Qk ∈ Rn×k and Uk ∈ R2k×k are orthonormal.
I Compact storage: nk + 2k2 (versus 2nk for storing Vk)
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12. Arnoldi process

1: v1 = v0/‖v0‖2
2: for j = 1 : k − 1 do
3: w = Lvj
4: hj = V T

j w
5: w := w − Vjhj
6: hj+1,j = ‖w‖2
7: vj+1 = w/hj+1,j

8: end for

I Computes an orthonormal basis Vk of K(L, v0),
governed by the Arnoldi decomposition

LVk−1 = VkHk,

Vk = [v1, v2, . . . , vk], Hk ∈ Rk×k−1 upper
Hessenberg.

13. Let Vk =

[
QkUk,1
QkUk,2

]
to replace Vk in the Arnoldi decomposition:

[
A B
I 0

]
︸ ︷︷ ︸

L

·
[
Qk−1Uk−1,1

Qk−1Uk−1,2

]
︸ ︷︷ ︸

Vk−1

=

[
QkUk,1
QkUk,2

]
︸ ︷︷ ︸

Vk

Hk,

then we can derive the TOAR procedure.

71 / 183



14. TOAR procedure

1: Rank revealing QR:
[
r−1 r0

]
= QX with η1 being the rank.

2: Initialize Q1 = Q, U1,1 = X(:, 2)/γ and U1,2 = X(:, 1)/γ.

3: for j = 1, 2, . . . , k − 1 do

4: r = A
(
QjUj,1(:, j)

)
+ B

(
QjUj,2(:, j)

)
5: for i = 1, . . . , ηj do

6: si = qTi r

7: r = r − siqi
8: end for
9: α = ‖r‖2
10: Set s = [s1, . . . , sηj

]T and u = Uj,1(:, j)

11: for i = 1, . . . , j do

12: hij = Uj,1(:, i)Ts + Uj,2(:, i)Tu

13: s = s − hijUj,1(:, i); u = u − hijUj,2(:, i)

14: end for
15: hj+1,j = (α2 + ‖s‖22 + ‖u‖22)1/2

16: if hj+1,j = 0 then

17: stop (breakdown)
18: end if
19: if α = 0 then
20: ηj+1 = ηj (deflation)

21: Qj+1 = Qj ; Uj+1,1 = [Uj,1, s/hj+1,j ]; Uj+1,2 = [Uj,2, u/hj+1,j ]

22: else
23: ηj+1 = ηj + 1

24: Qj+1 = [Qj, r/α]; Uj+1,1 =

[
Uj,1 s/hj+1,j

0 α/hj+1,j

]
; Uj+1,2 =

[
Uj,2 u/hj+1,j

0 0

]
25: end if
26: end for
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15. Arnoldi decomposition in exact arithmetic:[
A B
I 0

]
︸ ︷︷ ︸

L

·
[
Qk−1Uk−1,1

Qk−1Uk−1,2

]
︸ ︷︷ ︸

Vk−1

=

[
QkUk,1
QkUk,2

]
︸ ︷︷ ︸

Vk

Hk.

16. In floating point arithmetic, computed quantities satisfy the perturbed Arnoldi
decomposition ([A B

I 0

]
︸ ︷︷ ︸

L

+∆L
)[Q̂k−1Ûk−1,1

Q̂k−1Ûk−1,2

]
=

[
Q̂kÛk,1
Q̂kÛk,2

]
Ĥk.

17. Theorem: Suppose Q̂k and Ûk have full column rank. Then the relative backward
error satisfies

‖∆L‖F
‖L‖F

≤ ϕκ4ε+ O(ε2),

where ϕ = 4k(2n+ 1) and κ = max{κ2(Q̂k), κ2(Ûk)}.

18. Remark: when Q̂k and Ûk are generated by the modified Gram-Schmidt process
with the partial reorthogonalization, we have κ = 1 + O(ε). Consequently, ϕκ4 ≈ ϕ.
Thus the theorem implies that the TOAR procedure is relatively backward stable.
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19. Structure-preserving Rayleigh-Ritz projection method for the QEP

1: compute an orthnormal basis Qk of Gk(−M−1D,−M−1K; r−1, r0) by
SOAR/TOAR procedure

2: reduce the dimension of QEP by projection

(λ2Mk + λDk +Kk)w = 0,

where Mk = QH
kMQk, Dk = QH

kDQk, and Kk = QH
kKQk.

3: compute the eigenpairs (λ̂, w) of the reduced QEP by linearization.

4: check the accuracy of the approximate eigenpairs (λ̂, x̂ = Qkw) from the
relative backward error:

r =
‖(λ̂2M + λ̂D +K)x̂‖

(|λ̂|2‖M‖+ |λ̂|‖D‖+ ‖K‖)‖x̂‖
.

20. matlab script demo_toar.m
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21. Example: vibration of wiresaw manufacturing process, n = 800.
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22. Example: Butterfly Gyroscope, n = 17, 361
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23. Remarks
I TOAR is a numerically stable procedure for computing an orthonormal basis of the

second-order Krylov subspace and is extensible to higher-order Krylov subspace.
I TOAR is a memory-efficient Arnoldi process for linearized QEPs and is a promising process

to become routinely applied for polynomial and linearizable eigenvalue computations, see
Part 2.4 of this lecture notes.

I Open problems: structured backward error bound of TOAR in terms of A and B,
respectively? stability of implicit restarted TOAR?

24. Further reading
I Z. Bai and Y. Su, SOAR: A second-order Arnoldi method for the solution of the quadratic

eigenvalue problem, SIAM J. Matrix Anal. Appl., 26(3), pp.640-659, 2005
I D. Lu, Y. Su and Z. Bai, Stability analysis of two-level orthogonal Arnoldi procedure,

SIAM J. Matrix Anal. Appl. 37(1), pp.192-214, 2016
Software and data available at http://www.unige.ch/~dlu/toar.html

I K. Meerbergen and J. Pérez, Mixed forward-backward stability of the two-level
orthogonality Arnoldi method for quadratic problems, arXiv:1707.00930v1, July 4, 2017.
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Part 2.3(b) REP

1. Rational Eigenvalue Problem (REP)

R(λ)x = 0, (2)

where R(λ) is an n× n matrix rational function of the form

R(λ) = P (λ)−
k∑
i=1

si(λ)

qi(λ)
Ei, (3)

P (λ) is an n× n matrix polynomial in λ of degree d, si(λ) and qi(λ) are scalar
polynomials of degrees ni and di, respectively, and Ei = LiU

T
i , Li, Ui ∈ Rn×ri of

full column rank ri � n.

2. Assume that si(λ) and qi(λ) are coprime (i.e., no common factors), and si(λ)
qi(λ)

are

proper (i.e., si(λ) having smaller degree than qi(λ)). Then we have

si(λ)

qi(λ)
= aTi (Ci − λDi)−1bi,

for some matrix Ci ∈ Rdi×di and nonsingular matrix Di ∈ Rdi×di , and vectors
ai, bi ∈ Rdi×1. The quadruple (Ci, Di, ai, bi) is called a minimal realization in the
theory of control system.
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3. By the realizations of si(λ)/qi(λ) and the factorizations of Ei, the rational terms of
R(λ) can be rewritten as

k∑
i=1

si(λ)

qi(λ)
Ei =

k∑
i=1

aTi (Ci − λDi)−1biLiU
T
i =

k∑
i=1

Li

[
aTi (Ci − λDi)−1bi · Iri

]
UTi

=
k∑
i=1

Li(Iri ⊗ ai)
T (Iri ⊗ Ci − λ Iri ⊗Di)

−1(Iri ⊗ bi)U
T
i ,

where ⊗ is the Kronecker product.

4. The REP (2) can be equivalently written in the realization (compact) form

R(λ)x =
[
P (λ)− L(C − λD)−1UT

]
x = 0, (4)

where

C = diag(Ir1 ⊗ C1, Ir2 ⊗ C2, . . . , Irk ⊗ Ck),

D = diag(Ir1 ⊗D1, Ir2 ⊗D2, . . . , Irk ⊗Dk),

L =
[
L1(Ir1 ⊗ a1)T L2(Ir2 ⊗ a2)T · · · Lk(Irk ⊗ ak)T

]
,

U =
[
U1(Ir1 ⊗ b1)T U2(Ir2 ⊗ b2)T · · · Uk(Irk ⊗ bk)T

]
,

Note that the size of C and D is m×m, the size of L and U is n×m, and
m = r1d1 + r2d2 + · · ·+ rkdk. Furthermore, D is nonsingular since the matrices
Di are nonsingular. The eigenvalues of C − λD are the poles of R(λ).
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5. Example. Let A,B ∈ Cn×n, c, d ∈ Cn, and

R(λ) = A− λB +
λ

λ− σ1
ccT +

λ

λ− σ2
ddT

= A− λB +
(

1−
σ1

σ1 − λ

)
ccT +

(
1−

σ2

σ2 − λ

)
ddT

= A+ ccT + ddT − λB −
σ1

σ1 − λ
ccT −

σ2

σ2 − λ
ddT

= A+ ccT + ddT − λB − c(1− λσ−1
1 )cT − d(1− λσ−1

2 )dT

= A+ ccT + ddT − λB − [c d]
(
I − λΣ

)−1
[c d]T

≡ P (λ)− L(C − λD)−1LT

where

Σ =

[
σ−1

1

σ−1
2

]
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6. If P (λ) is linear, P (λ) = A− λB, then the REP (4) is of the form[
A− λB − L(C − λD)−1UT

]
x = 0. (5)

By introducing the auxiliary vector

y = −(C − λD)−1UT x,

the equation (4) can be written as the following LEP:

(A− λB)z = 0, (6)

where

A =

[
A L
UT C

]
, B =

[
B

D

]
, z =

[
x
y

]
.
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7. If the matrix polynomial P (λ) is of degree d, we can first write the REP (4) as a
“PEP” of the form(

λdAd + λd−1Ad−1 + · · ·+ λA1 + Ã0(λ)
)
x = 0, (7)

where Ã0(λ) , A0 − L(C − λD)−1UT . Then by symbolically applying the
companion form linearization to (7), we have




Ad−1 Ad−2 · · · Ã0(λ)

−I 0 · · · 0

.
.
.

.
.
.

.

.

.
−I 0

 − λ

Ad

I

.
.
.

I






λd−1x

λd−2x

.

.

.
x

 = 0, (8)

8. It can be equivalently written as




Ad−1 Ad−2 · · · A0
−I 0 · · · 0

.
.
.

.
.
.

.

.

.
−I 0

 − λ

Ad

I

.
.
.

I



−


L
0

.

.

.
0

 (C − λD)
−1


0
0

.

.

.
U


T


λd−1x

λd−2x

.

.

.
x

 = 0.
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9. The above equation is of the same form as (5). Therefore, by introducing the
variable

y = −(C − λD)
−1

[
0 0 · · · UT

]

λd−1x

λd−2x

.

.

.
x

 = −(C − λD)
−1

U
T
x,

we derive the following linearization of the REP (2):

(A− λB)z = 0, (9)

where A and B are nd+m, and m = r1d1 + r2d2 + · · ·+ rkdk:

A =



Ad−1 Ad−2 · · · A0 L

−I 0 · · · 0

.
.
.

.
.
.

.

.

.
−I 0

UT C


, B = −



Ad
I

.
.
.

I

−D


, z =



λd−1x

λd−2x

.

.

.
x

y


.

The size of A and B is nd+m, and m = r1d1 + r2d2 + · · ·+ rkdk.

10. In the case that all the coefficient matrices Ei are of full rank, i.e., ri = n, the LEP
(9) is of the size nd∗, where d∗ = d+ d1 + · · ·+ dk. This is the same size as the one
derived by the brute-force approach. However, it is typical that ri � n in practice,
then nd+m� nd∗. The LEP (9) is a trimmed linearization of the REP (2).

11. Note that under the assumption of nonsingularity of Ad, B is nonsingular.
Therefore all eigenvalues of the LEP (9) are finite. There is no infinite eigenvalue.
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12. Connection between eigenvalues of the REP (2) and the LEP (9):
(a) If λ is an eigenvalue of the REP (2), then it is an eigenvalue of the LEP (9).
(b) Let λ be an eigenvalue of the LEP (9) and be not a pole of R(λ),

z = [zT1 , z
T
2 , · · · , zTd , yT ]T be the corresponding eigenvector, where zi are vectors of

length n. Then zd 6= 0 and R(λ)zd = 0, namely, λ is an eigenvalue of the REP (2) and
zd is the corresponding eigenvector. Moreover, the algebraic and geometric multiplicities
of λ for REP (2) and LEP (9) are the same.

13. Remarks:
I The condition that λ is not a pole of the R(λ) in the theorem is necessary. Consider(

λI2 −
1

λ
e2e

T
2

)
x = 0, (10)

where e2 is the second column of I2. Since det(R(λ)) = λ(λ− 1/λ), the REP (10) has

two eigenvalues 1 and −1. Moreover, λ = 0 is a pole. Let y = λ−1eT2 x, then the
corresponding LEP is given by

(A− λB)z =

([
0 e2
eT2 0

]
− λ

[
I2

1

])[
x
y

]
= 0.

It has three eigenvalues {0,±1}. But λ = 0 is not an eigenvalue of the REP (10).
I The realization of a rational function can be represented in different forms.
I There are many different ways of linearization for the matrix polynomials, see Part 2.4.
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14. Example.

I REP from mechanical vibration of a fluid-solid structure:(
A− λB +

k∑
i=1

λ

λ− σi
CiC

T
i

)
x = 0, (11)

where A and B are symmetric positive definite, and for i = 1, 2, . . . , k, the poles σi are
positive, Ci ∈ Rn×ri has rank ri.
We are interested in finding/determining the number of eigenvalues of the REP in a given
interval (α, β).

I We first write the rational terms of (11) in the proper form(
A+

k∑
i=1

CiC
T
i − λB −

k∑
i=1

σi

σi − λ
CiC

T
i

)
x = 0. (12)

I Let C = [C1 C2 · · · Ck] and Σ = diag(σ1Ir1 , . . . , σkIrk ), Then the equation (12)
can be written as [

A+ CC
T − λB − C(I − λΣ−1

)
−1
C
T
]
x = 0.

I By introducing the variable y = −(I − λΣ−1)−1CT x, we have the following LEP:

(A− λB)

[
x
y

]
= 0, (13)

where

A =

[
A+ CCT C

CT I

]
, B =

[
B

Σ−1

]
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14. Example, cont’d

I Note that the matrix A is symmetric, and B is symmetric positive definite.
I Numerical experiments:

I Problem size n = 36046, rational terms k = 9. and rank(Ci) = 2. The pole σi = i for
i = 1, 2, . . . , k.

I Compute all eigenvalues in the interval (α, β) = (1, 2)
I It only takes about 13.3% extra time to solve the full REP than the simple eigenvalue problem of

the pencil A− λB.

15. Further reading:
I Y. Su and Z. Bai, Solving rational eigenvalue problems via linearization, SIAM J. of Matrix

Analysis and Applications, Vol.32, No.1, pp.201-216, 2011
I R. Alam, N. Behera, Linearizations for rational matrix functions and Rosenbrock system

polynomials, SIAM J. Matrix Anal. Appl., 37, pp.354-380, 2016.
I A. Amparan, F. M. Dopico, S. Marcaida and I. Zaballa, Strong linearizations of rational

matrices, MIMS EPrints 2016.51, Univ. of Manchester, Oct. 2016.
I F. M. Dopico and J. Gonzalez-Pizarro, A compact rational Krylov method for large-scale

rational eigenvalue problems, arXiV:1705.06982v1, May 19, 2017
I C. Engström, H. Langer and C. Tretter, Non-linear eigenvalue problems and applications

to photonic crystals, arXiv:1607.06381v1, July 23, 2015
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Part 2.3(c) QEP with low-rank damping

1. The QEP with low-rank damping:

I QEP:
Q(λ)x = (λ

2
M + λC +K)x = 0,

I Low-rank property
rank(C) = r � n

2. The low-rank property is observed in all practical QEPs we have encountered.

3. Standard approach: to find eigenvalues around the shift σ, by the spectral
transformation µ = λ− σ, QEP is equivalent to the LEP, say in the first companion
form: [

−Cσ −Kσ
In 0

] [
µx
x

]
= µ

[
M 0
0 In

] [
µx
x

]
,

where Cσ = C + 2σM and Kσ = σ2M + σC +K.

4. Alternatively, use the following structure-preserving subspace projection method:

1: construction of a proper projection subspace Vk by TOAR
2: compute the structure-preserving projection(

θ2V Tk MVk + θV Tk CVk + V Tk KVk

)
z = 0,

2: Solve the reduced QEP and test convergence

5. All these approaches ignore the low-rank property of C!
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6. To exploit the low-rank property, consider the following rather unusual four-step
approach, called “Padé Approximate Linearization (PAL)”:

1: QEP converted to NEP via a “quadratic” spectral transformation
2: REP approximation of NEP via a Padé approximant
3: Trimmed linearization of REP
4: A scaling strategy to minimize the backward error.
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7. Step 1. QEP to NEP via “quadratic” spectral transformations

I Spectral transformations:

g : Sσ −→ C

λ −→ µ =
λ2

σ2
− 1

f : C −→ Sσ

µ −→ λ = σ
√
µ+ 1

where

Sσ ≡
{
w | arg

(
w

σ

)
∈
(
−π

2
,
π

2

]}

σI

R

Sσ

S
c
σ

I QEP ⇔ NEP
Q(λ)x ≡ (λ2M + λC +K)x = 0

m
T (µ)x = [Kσ − µMσ + f(µ)C] x = 0

where Mσ = −σ2M and Kσ = K + σ2M .
I (1) If (λ, x) is an eigenpair of Q(λ) and λ ∈ Sσ , then (µ = g(λ), x) is an eigenpair of
T (µ).
(2) If (µ, x) is an eigenpair of T (µ), then (λ = f(µ), x) is an eigenpair of Q(λ).
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8. Step 2. REP approximation of NEP via Padé approximant
I Padé approximation:

f(µ) = σ
√
µ+ 1 = σpmm(µ) + σe(µ)

= −σaT (Im − µD)
−1
a+ σd+ O(σµ

2m+1
)

I The NEP becomes

T (µ)x =
(
Kσ − µMσ + σpmm(µ)C + σe(µ)C

)
x = 0

I REP approximation of the NEP

R(µ)x ≡=
(
Kσ − µMσ + σpmm(µ)C

)
x = 0

and the poles of R(µ) are in the interval (−∞,−1),
I Assumption/justification:

(a) Corresponding to the interested eigenvalues λ of the QEP close to σ, µ = λ2

σ2
− 1 /∈ (−∞,−1).

(b) ‖σe(µ)C‖ is relatively small due to high accurate Padé approximation
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9. Step 3. Trimmed linearization of REP

I LEP by a trimmed linearization of REP (assuming C = FFT ):

L(µ)xL = (A− µB)xL = 0

where

A =

[
Kσ + σdC Fσ

FTσ Irm

]
, B =

[
Mσ 0
0 Ir ⊗D

]
, xL = H(µ)x

and
Mσ = −σ2

M, Kσ = K + σ
2
M,

Fσ = σ
1/2

F (Ir ⊗ aT ), H(µ) =

[
In

−(Irm − µIr ⊗D)−1FT
σ

]
.

I Theorem: REP and LEP are equivalent.
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10. Features of PAL

I By exploiting the low-rank property, the size of the LEP

nL = n+ rm

where r = rank(C), and m is the order of the Padé approximant
I For the matrix-vector multiplication v = A−1Bu, we have

A
−1

=

[
In
−FT

σ Irm

] [
Q(σ)−1

Irm

] [
In −Fσ

Irm

]
.

where Q(σ) = σ2M + σC +K. This is similar to the standard linearization.
I More can be exploited on the structure and properties of (A,B), depending on

(M,C,K) and the choice of σ.
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11. A posteriori error bound

I Let (µ̂, x̂L) be a computed eigenpair of the LEP. Then for the approximate eigenpair

(λ̂, x̂) = (f(µ̂), x̂L(1:n))

of the QEP, we have the following a posteriori error bound

ηQ(λ̂, x̂) ≤ α · ηL(µ̂, x̂L) + β

where
I ηQ and ηL are normalized backward errors of QEP and LEP:

ηQ(λ̂, x̂) =
‖Q(λ̂)x̂‖

ρ(λ̂)‖x̂‖
, ηL(µ̂, x̂L) =

‖L(µ̂)x̂L‖
ϕ(µ̂)‖x̂L‖

,

and ρ(λ̂) = |λ̂|2‖M‖ + |λ̂|‖C‖ + ‖K‖, ϕ(µ̂) = ‖A‖ + |µ̂|‖B‖.
I α and β are given by

α =
ϕ(µ̂)

ρ(λ̂)
‖H(µ̂)‖2 and β =

|σe(µ̂)|

ρ(λ̂)

‖Cx̂‖
‖x̂‖

.
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12. Step 4. Minimizing the backward error

I α is an error growth amplifier from the LEP to QEP. Under mild assumptions, with an
“optimal” scaling of the QEP, we have

α . 2(1 + 4m)

where m is the order of diagonal Padé approximant.
I β is largely determined by

|σe(µ̂)|
ρ(λ̂)

= O(Padé trunction error)

However, we might have “extra accuracy bonus”

‖Cx̂‖
‖x̂‖ = tiny

due to the closeness of eigenspaces of undamped and damped QEPs.
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13. PAL algorithm

1: select a shift σ 6= 0 and the order m of Padé approximant
2: compute the scaling factor s
3: form the scaled LEP Ls(µ)xL = (As − µBs)xL = 0 implicitly
4: compute the k smallest (in modulus) eigenpairs (µ̂, x̂L) of Ls with the

backward errors satisfying ηLs(µ̂, x̂L) ≤ tol

5: return k approximate eigenpairs (λ̂, x̂) = (f(µ̂), x̂L(1:n)) of QEP and the

corresponding backward errors ηQ(λ̂, x̂).
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14. Example 1. damped beam in NLEVP collection

I n = 200, rank(C) = 1.
shift σ = 106i, orders of Padé : m = 1, 3
PAL leads to LEPs of orders nL = n+ rm: 201, 203

I Accuracy
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14. Example 1, cont’d

I Effectiveness of the error bound

ηQ(λ̂, x̂) ≤ α · ηL(µ̂, x̂L) + β

# α ηLs β α · ηLs + β ηQ

1 1.061 6.64E-16 4.78E-24 7.04E-16 6.93E-16
2 1.019 5.00E-16 7.26E-19 5.10E-16 5.02E-16
3 1.012 5.31E-16 2.22E-18 5.40E-16 5.35E-16
4 1.038 1.01E-15 8.55E-14 8.65E-14 8.55E-14
5 1.020 5.94E-16 1.71E-9 1.71E-9 1.71E-9
6 1.013 5.75E-16 4.06E-9 4.06E-9 4.06E-9
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15. Computational efficiency for a C++ implementation of PAL.
I Example 1:

I Acoustic-wave-2d in NLEVP collection, n = 249500, rank(C) = 499, m = 3.
I CPU timing (in seconds) of computing k = 300 eigenpairs:

SpMVs GS EvComp Updating Subtotal
DLIN 168.95 1130.44 314.65 304.00 1918.04
PAL 162.26 562.37 137.66 156.10 1018.39

I the SpMV costs for the two linearizations are almost the same.
I The bulk of computational time lies in the Gram-Schmidt orthogonalization process, where PAL

reduces the cost by almost half.
I PAL runs 47% faster than DLIN (Direct LINearization).

I Example 2:
I Frequency responses of a car body from SIEMENS, n = 655812, rank(C) = 126, m = 3
I CPU timing of computing k = 300 eigenpairs:

SpMV GS EvComp Update Subtotal
DLIN 1305.94 2277.01 791.25 393.81 4768.01
PAL 1297.92 1146.89 394.37 202.43 3459.99

I The SpMV cost is high in this example, but is almost the same for PAL and DLIN.
I The bulk of computational time still lies in the Gram-Schmidt orthogonalization process and PAL

reduces it by almost half.
I PAL runs 33.4% faster than DLIN.
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16. PAL summary
I PAL is an efficient approach for large-scale QEPs with low-rank damping.
I Low-rank structure is common in matrix computations How to exploit the low-rank

structure in eigenvalue computations remains widely open (vs. linear system solvers).
more to see in Part 2.4(g) and 2.4(h)

17. Further reading:
I D. Lu, X. Huang, Z. Bai and Y. Su, A Padé approximate linearization algorithm for solving

the quadratic eigenvalue problem with low-rank damping, Int. J. Numer. Meth. Engng,
Vol.103, pp.840-858, 2015
Software and data available at http://www.unige.ch/~dlu/palm.html

I For the treatment of the dense QEP with low-rank damping, see
L. Taslaman, An algorithm for quadratic eigenproblems with low rank damping, MIMS
Eprint 2014.21, The University of Manchester, UK.
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Part 2.4 Methods based approximation and linearization

Outline:

(a) The method of successive linear approximation

(b) Linearization

(c) PEP in monomial basis and linearization

(d) Lagrange interpolation in barycentric form and linearization

(e) Newton interpolation and linearization

(f) (Rational) Padé approximation and linearization

(g) Rational interpolation and linearization

(h) Algorithmic framework and software

Algorithmic framework:

Genuinely NLEP
⇓

PEP/REP by approximation (interpolation)
⇓

Linearization
⇓

LEP
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Part 2.4(a) The method of successive linear approximation

1. By the Taylor expansion

T (λ+ h) = T (λ) + hT ′(λ) +
1

2
h2R(λ, h)

by discaring R, the Successive Linear Approximation Method (SLAM):

1: choose λ0 appropriately
2: solve LEVP: −T (λs)xs+1 = µsT ′(λs)xs+1

3: λs+1 = λs + µs

2. Case study: the SLAM on the nonlinear low-rank modification of a symmetric
eigenvalue problem (

A+ s(λ)FFT
)
x = λx

from vibration of mechanical structures with elastically attached loads and
propagation modes in optical fiber.

I Existence and uniqueness of eigenvalues, interlacing properties
I The global convergence of the SLAM
I Numerical experiments illustrate the robustness of SLAM.

3. References:
I A. Ruhe, Algorithms for the nonlinear eigenvalue problem, SIAM J. Numer. Anal. 10,

pp.674-689, 1973
I H. Voss, K. Yildiztekin and X, Huang, Nonlinear low-rank modification of a symmetric

eigenvalue problem, SIAM J. Matrix Anal. Appl. 32, pp515-535, 2011.
(A+ φ(λ)H)x = λx).
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Part 2.4(b) Linearization

1. Matrix polynomials of degree d

P (λ) =
d∑
i=1

Aiλ
i, whereAi ∈ Cn×n andAd 6= 0.

and P (λ) is regular.

2. P (λ) is uniquely determined by n+ 1 samples: Pj = P (zj) where the points
z0, z1, . . . , zn are distinct.

3. A linear pencil L(λ) = A− λB is called a (weak) linearization of P (λ) if there
exist unimodular5 matrix polynomials E(λ) and F (λ) such that

E(λ)L(λ)F (λ) =

[
P (λ) 0

0 I(d−1)n

]
4. The “reverse” polynomial of P (λ): P ](λ) = λdP (λ−1).

I The nonzero finite eigenvalues of P ](λ) are the reciprocals of those of P (λ) and that an

eigenvalue at∞ of P (λ) corresponds to an eigenvalue 0 of the reversal polynomial P ](λ).

5A matrix polynomail E(λ) is unimodular if det(E(λ)) = constant
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5. If L(λ) is a linearization of P (λ) and L](λ) is a linearization of P ](λ), then L(λ) is
a strong linearization of P (λ).

I The strong linearization ensures that for regular matrix polynomial the Jordan structure of
the eigenvalues ∞ is preserved.

6. References
I I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials, Academic Press, New York,

1982.
I I. Gohberg, M. A. Kaashoek, and P. Lancaster, General theory of regular matrix

polynomials and band Toeplitz operators, Integral Equations Operator Theory, 11,
pp.776–882, 1988
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Part 2.4(c) PEP in monomial basis and linearization

1. Consider the matrix polynomial in monomial basis

P (λ) =
d∑
i=1

Aiλ
i, whereAi ∈ Cn×n andAd 6= 0.

Then the dn× dn linear (companion) pencil L(λ) = A− λB is a strong
linearization of P (λ), where

A =


A0 A1 · · · Ad−1

I

. . .

I

 , B =


0 0 · · · −Ad
I 0

. . .
. . .

I 0

 .
2. L(λ) is also called the companion pencil of P (λ).

3. A useful identity
L(λ)(Λ(λ)⊗ In) = e1 ⊗ P (λ)

where

Λ(λ) =


1
λ
...

λd−1

 .
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4. Connection of eigenvalues and eigenvectors
(a) If (λ?, x) is an eigenpair of P (λ), then (λ?, Λ(λ?)⊗ x) is an eigenpair of L(λ).
(b) If (λ?,x) is an eigenpair of L(λ), then there exists a vector x such that x = Λ(λ?)⊗ x

and the pair (λ?, x) is an eigenpair of P (λ).

5. Reference

I I. Gohberg, M. A. Kaashoek, and P. Lancaster, General theory of regular matrix
polynomials and band Toeplitz operators, Integral Equations Operator Theory, 11,
pp.776–882, 1988
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Part 2.4(d) Lagrange interpolation in barycentric form and Linearization

1. Lagrange interpolation of scalar function f(λ) in classical form

p(λ) =
d∑
i=0

f(σi)`i(λ) with `i(λ) =

∏d
k=0,k 6=i(λ− σk)∏d
k=0,k 6=i(σi − σk)

,

where σi are distinct interpolation points.

2. Shortcomings of the classical form:
I adding a new interpolation point requires computations from scratch
I computation is numerically unstable

3. Lagrange interpolation in barycentric form

p(λ) =
d∑
i=0

f(σi)bi(λ)

where for i = 0, 1, . . . , d,

bi(λ) =
1

b(λ)

wi

λ− σi
,

with

b(λ) =
d∑
i=0

wi

λ− σi
, wi =

1∏
k 6=i(σi − σk)
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4. Advantages of the barycentric form
I Updating the weights wi in O(d) flops incorporate a new data pair (σd+1, fd+1)
I Computation is forward stable under mild assumption.

5. References:
I J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev., 46,

pp.501–517. 2004.
I N. J. Higham, The numerical stability of barycentric Lagrange interpolation, IMA J.

Numer. Anal., 24, pp.547–556, 2004

6. Lagrange matrix interpolation of T (λ) in barycentric form

P (λ) =
d∑
i=0

Aibi(λ) with Ai = T (σi).
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7. The dn× dn linear pencil L(λ) = A− λB is a strong linearization of P (λ), where

A =



σ1A0 σ2A1 · · · σd−1Ad−2 Ãd
σ0I −σ2θ1I

. . .
. . .

. . . −σd−1θd−2I
σd−2I −σdθd−1I


,

B =



A0 A1 · · · Ad−2 B̃d
I −θ1I

. . .
. . .

. . . −θd−2I
I −θd−1I


and θi = wi−1/wi for i = 1, 2, . . . , d. Ãd = σdAd−1 + σd−1θ

−1
d Ad

B̃d = Ad−1 + θ−1
d Ad.
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8. A useful identity
L(λ)(Λ̃(λ)⊗ I) = e1 ⊗ P (λ).

where

Λ̃(λ) =


˜̀
0(λ)˜̀
1(λ)

...˜̀
n−1(λ)

 and ˜̀
i(λ) =

`i(λ)

λ− σi+1
.

9. Connections between eigenvalues and eigenvectors
(a) If the pair (λ?, x) is an eigenpair of P (λ), then the pair (λ?, Λ̃(λ?)⊗ x) is an
eigenpair of L(λ).
(b) If the pair (λ?,x) is an eigenpair of L(λ), then there exists a vector x such that

x = Λ̃(λ?)⊗ x and the pair (λ?, x) is an eigenpair of P (λ).

10. Reference
I R. Van Beeumen, W. Michiels, and K. Meerbergen, Linearization of Lagrange and Hermite

interpolating matrix polynomials, IMA J. Numer. Anal., 35, pp.909-930, 2014.
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Part 2.4(e) Newton interpolation and Linearization

1. Scalar Newton interpolation of f(λ):

p(λ) =
d∑
i=0

αini(λ)

where ni(λ) are Newton basis functions:

n0(λ) = 1, ni(λ) =
i∏

k=1

(λ− σk−1) for i = 1, 2, . . . .

and σi are distinct nodes, and αi are the divided differences.

2. Opitz’s method. The divided difference coefficients αi are the elements in the first
row of f(M), where

M =



σ0 1
σ1 1

. . .
. . .

. . . 1
σd


.
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3. Matrix Newton polynomial interpolation of T (λ)

P (λ) =
d∑
i=0

Aini(λ)

and the discussion on computing the divided difference matrices Ai.

4. Then the dn× dn linear pencil L(λ) = A− λB is a strong linearization of P (λ),
where

A =



A0 A1 · · · Ad−2 Ãd−1
σ0I I

.
.
.

.
.
.

.
.
. I

σd−2I I


, B =



0 0 · · · 0 −Ad
I 0

.
.
.

.
.
.

.
.
. 0

I 0



and Ãd−1 = Ad−1 − σd−1Ad

5. (a) If the pair (λ?, x) is an eigenpair of P (λ), then the pair (λ?, ñ(λ?)⊗ x) is an

eigenpair of L(λ), where ñ(λ) =

 n0(λ)
...

nn−1(λ)

.

(b) If the pair (λ?,x) is an eigenpair of L(λ), then there exists a vector x such that
x = ñ(λ?)⊗ x and the pair (λ?, x) is an eigenpair of P (λ).
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6. Dynamic polynomial interpolation

7. Reference
I A. Amiraslani, R. M. Corless and P. Lancaster, Linearization of matrix polynomials

expressed in polynomial bases, IMA J. Numer. Anal. 29(1), pp.141-157, 2009
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Part 2.4(f) (Rational) Padé approximation and linearization

1. Consider the NEP given by

T (λ)x =
[
K − λM +

q∑
j=1

fj(λ)Cj

]
x = 0 (14)

where K,M,Cj ∈ Cn×n for all j and each fj : C→ C is assumed to be analytic.
Each Cj is of rank rj � n with rank-revealing factorizations Cj = EjF

T
j and

Ej , Fj ∈ Cn×rj .

2. Assume that the target eigenvalues of T (λ) lie near the origin. Since a substitution
allows us to shift the origin to any point in C, there is no loss of generality.
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3. Given a function f(z), the order [m,n]-Padé approximant of f(z):

rmn (z) ≡
pm(z)

qn(z)
=
a0 + a1z + · · ·+ amzm

1 + b1z + · · ·+ bnzn

whose Taylor series agrees with that of f to the highest possible order, namely,

f(z)− rmn (z) = O(zm+n+1)

4. For simplicity, we focus on the case m = n, namely “diagonal Padé ”, and denote
rm(z) = rmn (z).

5. The order-(m,m) Padé approximant can be written in the matrix-vector form

rm(z) = −aTm(Im − zDm)−1bm + dm (15)

where am, bm ∈ Rm, Dm ∈ Rm×m, and dm ∈ R. It is called a minimal realization
in control theory.

6. References
I G. A. Baker, Jr. and P. R. Graves-Morris, Padé Approximants, 2nd ed., Cambridge

University Press, Cambridge, UK, 1996
I P. Gonnet, S. Güttel and L. N. Trefethen, Robust Padé approximation via SVD, SIAM

Review, 55(5), pp.101-117, 2013
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7. Example. The order-(m,m) Padé approximation of
√
z + 1

I In the realization form,

rm(z) = −aTm(Im − zDm)
−1
am + dm (16)

where

am = [(γ1/ξ1)
1/2

, (γ2/ξ2)
1/2

, . . . , , (γm/ξm)
1/2

,

Dm = − diag(ξ1, ξ2, . . . , ξm),

and dm = 2m+ 1, and γj = 2
2m+1 sin2 jπ

2m+1 and ξj = cos2 jπ
2m+1 .

I The poles are the values −1/ξj for j = 1, . . . ,m.
I Contour plot of log10 |e(z)| with e(z) =

√
z + 1− r5(z). Note that two poles

approximately −5.7948 and −49.3742 are outside of the range of the image.
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8. Example. The order-(m,m) Padé approximation of exp(z)

I The order-(m,m) Padé approximation of exp(z):

hm(z) =
γ0 + · · ·+ γm−1z

m−1 + γmz
m

ξ0 + · · ·+ ξm−1zm−1 + ξmzm
(17)

where for j = 1, . . . ,m,

γj =
(2m− j)!m!

(2m)!j!(m− j)! , ξj =
(−1)j(2m− j)!m!

(2m)!j!(m− j)!
I To write in the realization form, we first rewrite (17) as

hm(z) =
(γ0/ξm) + · · ·+ (γm−1/ξm)zm−1 + (γm/ξm)zm

(ξ0/ξm) + · · ·+ (ξm−1/ξm)zm−1 + zm

≡ a0 + · · ·+ am−1z
m−1

b0 + · · ·+ bm−1zm−1 + zm
+ dm

where the coefficients aj = (γj − (−1)mξj)/ξm, bj = ξj/ξm and
dm = γm/ξm = (−1)m are obtained through polynomial long division.
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8. Example. The order-(m,m) Padé approximation of exp(z), cont’d

I In the realization form,

hm(z) = −uTm(Im − zDm)
−1
vm + dm

where

um =


a0
a1
.
.
.

am−1

 , Dm =


−b1/b0 . . . −bm−1/b0 −1/b0

1 0

. . .
. . .

1 0

 , vm =


−1/b0

0

.

.

.
0


I Th contour plot of log10 |e(z)| where e(z) = exp(z)− r5(z).
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9. Applying the Padé approximants (15) to the functions fj(λ), we have that

T (λ) = K − λM +

q∑
j=1

(
rmj (λ) + ej(λ)

)
Cj

Truncating the errors ej(λ) yields the REP

R(λ)x =
[
K − λM +

q∑
j=1

rmj (λ)Cj

]
x = 0. (18)
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10. By the minimal realization of the Padé approximants, we now show that the REP
can be written in a compact form.

I Each rational term of the REP (18) can be written

rmj (λ)Cj = −aTmj (Imj − λDmj )
−1
bj · Cj + dmjCj

= −Ej(Irj · a
T
mj

(Imj − λDmj )
−1
bmj )F

T
j + dmjCj

= −Ej(Irj ⊗ a
T
mj

)(Irj ⊗ Imj − λIrj ⊗Dmj )
−1

(Irj ⊗ bmj )F
T
j + dmjCj .

I Define

E =
[
E1(Ir1 ⊗ a

T
m1

) E2(Ir2 ⊗ a
T
m2

) . . . Eq(Irq ⊗ aTmq )
]

Ip = diag(Ir1 ⊗ Im1
, Ir2 ⊗ Im2

, . . . , Irq ⊗ Imq )

D = diag(Ir1 ⊗Dm1
, Ir2 ⊗Dm2

, . . . , Irq ⊗Dmq )

F =
[
F1(Ir1 ⊗ b

T
m1

) F2(Ir2 ⊗ b
T
m2

) . . . Fq(Irq ⊗ bTmq )
]
,

I The REP (18) can be written in the compact form

R(λ)x ≡
[
K̂ − λM − E(Ip − λD)

−1
F
T
]
x = 0 (19)

where K̂ = K +
∑q
j=1 dmjCj , and p = r1m1 + r2m2 + · · ·+ rqm2.
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11. Applying the trimmed linearization technique discussed in Part 2.3(b), the REP (18)
is converted to the following LEP of dimension N = n+ p:

L(λ)v ≡ (A− λB)v = 0 (20)

where

A =

[
K̂ E
FT Ip

]
, B =

[
M

D

]
, and v =

[
x

−(Ip − λD)−1FT x

]
.

12. Theorem.
(a) If λ is an eigenvalue of the REP (18), then it is also an eigenvalue of the LEP (20).
(b) If (λ,v) is an eigenpair of of the LEP (20), λ is not a pole of the REP (18), and

v(1 : n) 6= 0, then (λ,v(1 : n)) is an eigenpair of the REP (18).
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13. To solve the LEP, it is necessary to provide a method for computing the product

v = A−1Bu.

First note that we can write

A =

[
In E

Ip

] [
K̂ − EFT

Ip

] [
In
FT Ip

]
Consequently, if we let v = [vT1 vT2 ]T and u = [uT1 uT2 ]T then

v1 = R(0)−1(Mu1 − EDu2)

v2 = Du2 − FTR(0)−1(Mu1 − EDu2) = Du2 − FT v1.

where
R(0) = K̂ − EFT .
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14. PAL algorithm for the genuinely NEP (14)

1: initialize the number neig of desired eigenpairs and orders mj of the Padé
approximants of fj(λ)

2: form the LEP (20)
3: compute the LU factorization of R(0)
4: compute the neig smallest (in modulus) eigenpairs (λ,v) of the LEP.
5: remove any values λ which fall near the poles of any rmj
6: compute the approximate eigenpairs (λ, x) = (λ,v(1 : n)) of the NEP (14) and

the relative residual errors.
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15. Case study I.

I SLAC NEP: Maxwell’s equations with nonlinear waveguide boundary conditions for cavity
design of a linear accelerator.

I NEP is of the form

T (λ)v ≡

K − λM + i

p∑
j=1

√
λ− σ2

jWj

 x = 0 (21)

where K,M,Wj ∈ Cn×n are constant matrices, i =
√−1, and σj ∈ R. Furthermore

each Wj is assumed to be low rank with Wj = EjF
T
j where Ej , Fj ∈ Cn×lj have rank

lj � n.
I Suppose we wish to find eigenvalues of (21) near the shift α. Then, letting µ = λ− α

yields the shifted NEP

T̂ (µ)x ≡

Kα − µM + i

p∑
j=1

β
1/2
j

√
µ/βj + 1Wj

 x = 0 (22)

where Kα = K − αM and βj = α− σ2
j .

I Numerical results: The ‘gun’ problem takes the form

T (λ) ≡ K − λM + i

√
λ− σ2

1W1 + i
√
λ− σ2

2W2

where σ1 = 0, σ2 = 108.8774, rank(W1) = 19, rank(W2) = 65, and n = 9, 956. The
target set Σ is the upper half disk centered at 2502 with radius 3002 − 2002.
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15. Case study I, cont’d

I Ref. B.-S. Liao, Z. Bai, L.-Q. Lee and K. Ko, Nonlinear Rayleigh-Ritz iteratve method for
solving large scale nonlinear eigenvalue problems, Taiwanese J. Math., Vol.14, No.3A,
pp.869-883, 2010 and the data is available in the NLEVP collection.

I We implemented the PAL algorithm with shift α = 2502, and Padé orders m1 = 8 and
m2 = 10 yielding an LEP size of N = 9, 956 + 152 + 650 = 10, 758. For comparison,
we use NLEIGS (to be presented in Part 2.4(h)) on the same data set with target set Σ.

I matlab script pal slac by J. Johnson
I The following table presents eigenvalues and residual norms found by the pal slac and

NLEIGS:

No. Re(
√
λ) Im(

√
λ) PAL Res NLEIGS Res |λ − α|

1 1.494828 × 102 2.157434 × 10−3 9.64 × 10−15 6.31 × 10−17 4.02 × 104

2 2.094221 × 102 4.900518 × 10−2 4.51 × 10−16 1.94 × 10−16 1.86 × 104

3 2.103792 × 102 8.498907 × 10−3 1.12 × 10−15 1.27 × 10−16 1.82 × 104

4 2.194130 × 102 9.546291 × 10−2 2.34 × 10−15 1.76 × 10−16 1.44 × 104

5 2.208817 × 102 1.431522 × 10−2 1.43 × 10−15 6.67 × 10−17 1.37 × 104

6 2.335618 × 102 9.837165 × 10−1 7.72 × 10−16 5.29 × 10−17 7.96 × 103

7 2.747434 × 102 9.005400 × 100 1.36 × 10−15 8.34 × 10−16 1.38 × 104

where the residuals are computed via

Res(λ, x) =
‖T (λ)x‖2/‖x‖2

‖K‖1 + |λ|‖M‖1 +
√
|λ− σ2

1 |‖W1‖1 +
√
|λ− σ2

2 |‖W2‖1

Note: software NLEIGS is to be discussed in Part 2.4(h).
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15. Case study I, cont’d

I Region of interest and computed eigenvalues

I CPU timing

PAL Timing
Low Rank Decomp. LU Decomp eigs Total

0.00339 s 0.31411 s 1.4391 s 1.8320

PAL NLEIGS
Variant P Variant R1 Variant R2 Variant S

Total Time 1.83 s 6.62 s 6.90 s 20.01 s 5.51 s
Conv. Eigs 21 18 21 21 21
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16. Case study II.

I Consider the delay differential equation

∂v(x, t)

∂t
=
∂2v(x, t)

∂x2
+ a0(x)v + a1(x)v(π − x, t− τ)

with a0(x) = −2 sin(x), a1(x) = 2 sin(x), and vx(0, t) = vx(π, t) = 0.
I After finite-difference discretizing, it yields the following so-called delay nonlinear

eigenvalue problem:

T (λ)x ≡
(
A0 − λI + A1e

−τλ
)
x = 0 (23)

where A0, A1 ∈ Cn×n, I is the n× n identity, and τ ∈ R. The matrix A1 is low rank
with rank–revealing decomposition A1 = E1F

T
1 and E1, F1 ∈ Cn×r .

I E. Jarlebring, K. Meerbergen, and W. Michiels, A Krylov method for the delay eigenvalue
problem, SIAM J. Sci. Comput., 32, pp.3278–3300, 2010.

I To compute eigenvalues of the NEP (23) near the shift α, we set µ = λ− α and convert
(23) to the shifted NEP

T̂ (µ)x ≡
(

(A0 − αI)− µI + Â1e
−τµ

)
x = 0 (24)

where Â1 = A1e
−τα.

I Use the Padé approximation of exp(z) of order-[m,m], the NEP (24) is approximated by
the REP

R(µ)x ≡
(

(A0 − αI)− µI + Â1hm(−τµ)
)
x = 0 (25)
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16. Case study II, cont’d

I Observe that we may write

Â1hm(−τµ) = Â1 ·
(
− uTm(Im − (−τµ)Dm)

−1
vm + dm

)
= −E1 ·

(
u
T
m(Im − µDτm)

−1
vm
)
· FT1 + dmÂ1

= −E1(Ir ⊗ uTm)(Ir ⊗ Im − µIr ⊗Dτm)
−1

(Ir ⊗ vm)F
T
1 + dmÂ1

= −E(IP − µD)
−1
F
T

+ dmÂ1

where Dτm = −τDm, E = E1(Ir ⊗ uTm), IP = Ir ⊗ Im, D = Ir ⊗Dτm, and

F = (Ir ⊗ vTm)F1.
I The REP (25) can be rewritten in the form

R(µ)x ≡
(
Â0 − µI − E(IP − µD)

−1
F
T
)
x = 0 (26)

where Â0 = A0 − αI + dmÂ1.
I By the trimmed linearization technique, the REP (26) leads to the LEP

L(µ)v ≡ (A− µB)v = 0 (27)

with

A =

[
Â0 E

FT IP

]
, B =

[
I

D

]
, v =

[
x

−(IP − µD)−1FT x

]
.
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16. Case study II, cont’d

I Numerical results: n = 5000, the shift α = 0 and Padé degree m = 5.
I matlab script pal delay by J. Johnson
I The following plot depicts the 20 eigenvalues returned upon completion of pal delay and

CORK (to be presented in Part 2.4(h)):
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16. Case study II, cont’d

I Residual errors:

Res(λ, x) =
‖T (λ)x‖2

‖A0‖1 + |λ|+ |e−τλ|‖A1‖
λ PAL Res CORK Res

1. -3.3121e-01 + 0.0000e+00i 7.7129e-14 1.1979e-16
2. -1.8663e+00 + 0.0000e+00i 2.1834e-13 3.9228e-16
3. -1.2608e+00 + 2.5925e+00i 5.1430e-12 1.2635e-15
4. -1.2608e+00 - 2.5925e+00i 5.1430e-12 1.2635e-15
5. -2.9274e+00 + 0.0000e+00i 4.0764e-11 2.3917e-15
6. -3.6387e+00 + 0.0000e+00i 9.9101e-10 5.6059e-15
7. -2.4756e+00 + 2.9444e+00i 4.1293e-10 2.3270e-15
8. -2.4756e+00 - 2.9444e+00i 4.1293e-10 2.3270e-15
9. -4.1658e+00 + 0.0000e+00i 8.0378e-09 9.6437e-15

10. -3.3174e+00 + 3.0500e+00i 5.9206e-09 4.1271e-15
11. -3.3174e+00 - 3.0500e+00i 5.9206e-09 4.1271e-15
12. -4.5831e+00 + 0.0000e+00i 3.7308e-08 1.3577e-14
13. -4.9282e+00 + 0.0000e+00i 1.2388e-07 2.4985e-14
14. -3.9207e+00 + 3.0894e+00i 3.6052e-08 8.5138e-15
15. -3.9207e+00 - 3.0894e+00i 3.6052e-08 8.5138e-15
16. -1.1371e+00 + 5.0365e+00i 2.0603e-09 1.4386e-14
17. -1.1371e+00 - 5.0365e+00i 2.0603e-09 1.4386e-14
18. -5.2224e+00 + 0.0000e+00i 3.2887e-07 2.6630e-13
19. -4.3858e+00 + 3.1080e+00i 1.3792e-07 2.8538e-14
15. -4.3858e+00 - 3.1080e+00i 1.3792e-07 2.8538e-14

Note: low-accuracy of the PAL algorithm in general.
I CPU timing

pal delay 4.4456 s
CORK 22.6467 s
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Part 2.4(g) Rational interpolation and linearization

1. Rational interpolants exhibit much faster convergence than polynomials

2. Let the interpolation nodes be σ0, σ1, . . . , σd and and nonzero poles be
ξ1, ξ1, . . . , ξd, we define rational basis functions:

b0(λ) =
1

β0
, bi(λ) =

λ− σi−1

βi(1− λ/ξi)
bi−1(λ), i = 1, 2, . . . , d,

where β0, . . . , βd are nonzero scaling parameters.

3. Then the rational matrix function

Q(λ) =
d∑
i=0

Dibi(λ), Di ∈ Cn×n

interpolates T (λ) in the interpolation nodes {σi}.
4. Computation of the rational divided-difference matrices Di by a generalization of

Opitz’s method.

5. Remarks:
(a) Assume that the poles are all distinct from the nodes.
(b) If all ξi are at infinity, bi(λ) reduces to the Newton basis functions ni(λ).
(c) If T (λ) is a rational of type [d, d] with poles {ξi}, we have the Q(λ) ≡ T (λ) for all λ.
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6. The REP Q(λ)x = 0 can be linearized to the LEP

L(λ)x = (A− λB)x,

where

A =



D0 D1 · · · Dd−2 D̃d−1
σ0I β1I

.
.
.

.
.
.

.
.
. βd−2I

σd−2I βd−1I


, B =



D0
ξd

D1
ξd

· · ·
Dd−2
ξd

Bd

I
β1
ξ1
I

.
.
.

.
.
.

.
.
.

βd−2
ξd−2

I

I
βd−1
ξd−1

I



,

and

x =


b0(λ)x
b1(λ)x

.

.

.
bd−1(λ)x


and D̃d−1 = Dd−1 − σd−1Dd/βd , Bd = Dd−1ξd −Dd/βd .

7. Note that the special role of the last pole ξd. For convenience, picking the last pole
ξd =∞. yields that the linearization has the same structure as in the Newton
interpolation.

8. Like the Newton interpolation, rational interpolation is dynamic, the rational Krylov
method can be applied to a “growing” pencil.
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9. Rational Krylov method

1: choose node σ0, scaling β0 = 1 and the starting vector v1 ∈ Cn
2: for j = 1, 2, . . . do
3: Expansion phase
4: choose σj , ξj , and βj
5: compute rational divided difference Dj
6: expand Aj ,Bj and Vj
7: Rationak Krylov phase
8: set continuation combination vector tj
9: compute v̂ = (Aj − σjBj)−1BjVjtj

10: orthogonalize ṽ = v̂ − Vjhj , where hj = V ∗j v̂.

11: get new vector vj+1 = ṽ/hj+1,j where hj+1,j = ‖ṽ‖
12: compute Ritz pairs (λi,xi)

13: test for the convergence for the nonlinear eigenpair (λi, x
[1]
i )

14: end for

10. Recurrence relation and Ritz pairs are generalizations of the Rational Krylov method
discussed in Part 1.4.
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11. Choice of parameters {σi}, {ξi}, and {βi}
12. Reference

I S. Güttel, R. Van Beeumen, K. Meerbergen, and W. Michiels, NLEIGS: A class of fully
rational Krylov methods for nonlinear eigenvalue problems, SIAM J. Sci. Comput., 36, pp.
A2842–A2864, 2014
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Part 2.4(h) Algorithmic framework and software

1. A unified representation of linearization pencils

L(λ) =

[
A0 A1 · · · Ad−1

M ⊗ In

]
︸ ︷︷ ︸

A

−λ
[
B0 B1 · · · Bd−1

N ⊗ In

]
︸ ︷︷ ︸

B

for proper defined matrices {Ai}, {Bi}, M and N , see
I Part 2.4(c): PEP in monomial basis
I Part 2.4(d): Lagrange interpolation in barycentric form
I Part 2.4(e): Newton interpolation
I Part 2.4(g): Rational interpolation

2. CORK: a rational Krylov method for the linear pencil L(λ) with a compact
representation (two-level orthogonality) of basis vectors:

I R. Van Beeumen, K. Meerbergen and W. Michiels, Compact rational Krylov method for
nonlinear eigenvalue problems, SIAM J. Matrx Anal. Appl. 36(2), pp.820-838, 2015

I R. Van Beeumen, Rational krylov methods for nonlinear eigenvalue problems, PhD thesis,
KU Leuven, 2015

3. CORK and NLEIGS toolboxes for a class of linearization methods, include
I polynomial or rational interpolation/approximation in different bases, such as discussed in

Parts 2.4(c), 2.4(d), 2.4(e) and 2.4(g)
I interpolatio nodes and poles
I shifts in the Rationak Krylov method
I Dynamic/static/hybrid

available at http://www.roelvanbeeumen.be

133 / 183



4. Revisit MATLAB scripts pal_slac and pal_delay

5. Recent work on compact representations of basis vectors in the subspace projection
methods:

I The QEP and PEP in monomial basis – Part 2.3(a)
I Y. Su, J. Zhang and Z. Bai, A compact Arnoldi algorithm for polynomial eigenvalue problems,

conference presentation, 2008
I D. Lu, Y. Su and Z. Bai, Stability analysis of two-level orthogonal Arnoldi procedure, SIAM J.

Matrix Anal. Appl. 37(1), pp.192-214, 2016
I The PEPs in orthogonal basis:

I D. Kressner and J. E. Roman, Memory-efficient Arnoldi algorithms for linearizations of matrix
polynomials in Chebyshev basis, Numer. Linear Algebra Appl., 21, pp. 569–588, 2014.

I C. Campos and J. E. Roman, Parallel Krylov solvers for the polynomial eigenvalue problem in
SLEPc, SIAM J. Sci. Comput. 38(5), pp.S385-S411, 2016

I The REP by trimmed linearization – Part 2.3(b)

I F. M. Dopico and J. Gonzalez-Pizarro, A compact rational Krylov method for large-scale rational
eigenvalue problems, arXiV:1705.06982v1, May 19, 2017

I The waveguie eigenvalue problem
I E. Jarlebring, G. Mele and O. Runborg, The waveguide eigenvalue problem and the tensor infinite

Arnoldi method, arXiv:1503.02096v2, Mar. 20, 2015
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Part 2.5 Of things not treated

1. Matrix polynomial interpolation in orthogonal bases and linearization
I C. Effenberger, D. Kressner, O. Steinbach, and G. Unger. Interpolation-based solution of a

nonlinear eigenvalue problem in fluid-structure interaction. In Proceedings in Applied
Mathematics and Mechanics, volume 12, pp. 633 - 634, 2012.

I C. Effenberger, Robust solution methods for nonlinear eigenvalue problems, PhD thesis,
EPFL, 2013

2. Infinite Arnoldi (IAR), TensorIAR and Infinite Bi-Lanczos methods
I E. Jarlebring, W. Michiels, K. Meerbergen, A linear eigenvalue algorithm for the nonlinear

eigenvalue problem, Numer. Math. 122 (1), pp.169-195, 2012.
I E. Jarlebring, G. Mele and O. Runborg, The waveguide eigenvalue problem and the tensor

infinite Arnoldi method, arXiv:1503.02096v2, Mar. 20, 2015
I S. W. Gaff and E. Jarlebring, The infinite bi-Lanczos method for nonlinear eigenvalue

problems, arXiv:1607.03454v1, July 12, 2016

3. Methods based on contour integrals
I J. Asakura, T. Sakurai, H. Tadano, T. Ikegami, K. Kimura, A numerical method for

nonlinear eigenvalue problems using contour integrals, JSIAM Lett. 1, pp.52-55, 2009.
I W.-J. Beyn, An integral method for solving nonlinear eigenvalue problems, Lin.Alg.Appl.

436, pp.3839-3863, 2012
I M. Van Barel and P. Kravanja, Nonlinear eigenvalue problems and contour integrals, J.

Comp. Appl. Math. 292, pp.526-540, 2016
I J. Xiao, C. Zhang, T.-M. Huang and T. Sakurai, Solving large-scale nonlinear eigenvalue

problems by rational interpolation approach and resolvent sampling based Rayleig-Ritz
method, arXiv:1605.07951v1, May 25, 2016
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Part 3: Eigenvalue problems with eigenvector nonlinearity
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Outline of Part 3

1. Kohn-Sham density functional theory

2. Sum of trace ratio

3. Robust Rayleigh quotient optimization

4. Of things not treated
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Part 3.1 KS DFT

1. The discretized Kohn-Sham eigenvalue problem with eigenvector nonlinearity:

H(X)X = XΛ

XTX = I,
(28)

where X ∈ Rn×k, H(X) ∈ Rn×n is a symmetric matrix function of X, Λ ∈ Rk×k
is a diagonal matrix consisting of k smallest eigenvalues of H(X).

2. It is often (assumed) that

H(X) = H(XQ) for any k × k orthogonal matrix Q.

This implies that H(X) is a matrix function of k-dimensional subspaces of Rn×n.
Namely, if X is a solution, then so is XQ for any k × k orthogonal matrix Q.
The solution to (28) is unique in terms of that for two solutions X1, X2,
span{X1} = span{X2}, or equivalently, X1XT

1 = X2XT
2 .
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3. H(X) is a discretized Hamiltonian from the the density functional theory (DFT) for
electronic structure calculations.

I A simple single-particle Hamiltonian model

H(X) = L+ αDiag(L
−1
ρ(X)) (29)

where L is a discrete Laplacian, and ρ(X) = diag(XXT ).6

I C. Yang, W. Gao and J. Meza, On convergence of the self-consistent field iteration for a class of
nonlinear eigenvalue problems, SIAM. J. Matrix Anal. Appl., 30, pp.1773-1788, 2009.

I An extended model

H(X) =
1

2
L+ Vion +

∑
`

w`w
T
` + Diag(L

†
ρ(X)) + +Diag(µxc(ρ(X))

T
e) (30)

see, for examples, and references therein
I C. Yang, J. Meza and L. Wang, A trust-region direct constrained minimization algorithm for the

Kohn-Sham equation, SIAM J. Sci. Comput., 29, pp.1854-1875, 2007.
I C. Yang, J. Meza, B. Lee and L.-W. Wang, KSSOLV – A MATLAB toolbox for solving the

Kohn-Sham equations, ACM Trans. Math. Software, 46, pp.1-35, 2009
I X. Liu, X. Wang, Z. Wen and Y. Yuan, On the convergence of the self-consistent field iteration in

Kohn-Sham density functional theory, SIAM J. Matrix Anal. Appl., 35, pp.546-558, 2014.
I Models in physics and chemistry literature, see for example,

I R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, Cambridge University
Press, Cambridge, 2004.

I Survey articles, for example, see
I Y. Saad, J. R. Chelikowsky, and S. M. Shontz. Numerical methods for electronic structure

calculations of materials. SIAM Rev., 52(1):3–54, 2010.

I Part III of Professor N. Sukumar’s lecture at this summer school.

6Diag(x) denotes the diagonal matrix with the vector x on its diagonal. diag(A) denotes the vector containing
the diagonal elements of the matrix A.
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4. Optimization point of view

I The model (29) is equivalent to the constrained minimization problem

min E(X) :=
1

2
tr(XTLX) +

α

4
ρ(X)

T
L
−1
ρ(X)

s.t. X
T
X = Ik

(31)

in the sense that the solution of the eigenvalue problem (28) is a global minimizer. (A
nontrivial exercise to verify the statement!)

I The extended model (30) has also be shown to be equivalent to a constrained
minimization problem of the form (31), see

I X. Liu, X. Wang, Z. Wen and Y. Yuan, On the convergence of the self-consistent field iteration in
Kohn-Sham density functional theory, SIAM J. Matrix Anal. Appl., 35, pp.546-558, 2014.

I Solvers for the constrained minimization problem (31):
I M. C. Payne, M. P. Teter, D. C. Allen, T. A. Arias, and J. D. Joannopoulos, Iterative minimization

techniques for ab initio total energy calculation: Molecular dynamics and conjugate gradients, Rev.
Modern Phys., 64 (1992), pp. 1045-1097

I ...
I X. Zhang, J. Zhu, Z. Wen and A. Zhou, Gradient type optimization methods for electronic

structure calculations. SIAM J. Sci. Comput. 36, C265–C289, 2014.
I Z. Zhao, Z.-J. Bai and X. Jin, A Riemannian Newton algorithm for nonlinear eigenvalue problems,

SIAM J. Matrix Anal. Appl., 36, pp.752-774, 2015.
I X. Dai, Z. Liu, L. Zhang and A. Zhou, A conjugate gradient method for electronic structure

calculations, arXiv:1601.07676v4, Jan. 13, 2017
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5. Additional notations

I Xk = {X |X ∈ Rn×k andXTX = I}
I Θ(X,Y ) denotes the principal angles between subspaces span(X) and span(Y ).
I It is known that if [X,Xc] and [Y, Yc] are two orthogonal matrices with X,Y ∈ Rn×k,

then
‖ sinΘ(X,Y )‖2 = ‖XXT − Y Y T ‖2 = ‖XTc Y ‖2 = ‖XTYc‖2.

see
I G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, 1990.
I J.-G. Sun, Matrix Perturbation Analysis (2nd edition), Science Press, 2001 (in Chinese).
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6. Existence and uniqueness of the eigenvalue problem (28):

Assume that there exists a positive constant ξ such that

‖H(X1)−H(X2)‖2 ≤ ξ‖ sinΘ(X1, X2)‖2, (32)

where X1, X2 are arbitrary matrices in Xk. In addition, assume that there
exists a positive constant δv such that

λk+1(H(X))− λk(H(X)) ≥ δv for any X ∈ Xk. (33)

Then if δv > 2ξ, the eigenvalue problem (28) has a unique solution.

Remarks:
I The condition is a Lipschitz-like condition.
I The condition (33) is known as “uniformly well posed” in DFT calculations
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7. A plain SCF (Self-Consistent-Field) iteration for solving the eigenvalue problem (28)

1: choose initial guess X0

2: for j = 1, 2, . . . until convergence do
3: construct Hi = H(Xi−1)
4: compute the partial eigenpairs (Λi, Xi) the LEP Xi such that

HiXi = XiΛi, where Λi contains the k smallest eigenvalues of Hi

5: end for
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8. Example.
I Consider the simple model problem (29):

H(X) = L+ αDiag(L
−1
ρ(X))

where L is a 1-D Laplacian, i.e.,

L =


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2


I Let n = 10 and k = 2, convergence behavior of the SCF for different values of α:
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I Open question: What is the optimal bound for α for the convergence of the SCF
iteration? (see Table 1 in [Yang-Gao-Meza’09])
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9. Studies of the convergence of SCF iterations, see for examples, .
I E. Cancès and C. L. Bris, On the convergence of SCF algorithms for the HartreeFock

equations, Math. Model. Numer. Anal., 34, pp.749-774, 2000.
I C. Yang, W. Gao, and J. Meza, On the convergence of the self-consistent field iteration for

a class of nonlinear eigenvalue problems, SIAM J. Matrix Anal. Appl., 30, pp. 1773-1788,
2009.

I X. Liu, X. Wang, Z. Wen and Y. Yuan, On the convergence of the self-consistent field
iteration in Kohn-Sham density functional theory, SIAM J. Matrix Anal. Appl., 35,
pp.546-558, 2014.

10. In this lecture, we just focus on the results of convergence analysis of the plain SCF
for the algebric eigenvalue problem (28), recently drived by Yunfeng Cai, Ren-Cang
Li and B.
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11. Global convergence of the plain SCF

Let the Lipschitz-like condition (6) hold. In addition, assume that there
exists a positive constant δ such that

λik+1 − λ
i
k ≥ δ for all i = 1, 2, . . . . (34)

Denote θi = ‖ sinΘ(Xi−1, Xi)‖2. Then if

δ > (1 + θ1)ξ,

then we have

θi+1 ≤ τθi with τ =
ξ

δ − ξθ1
< 1.

This implies that the SCF is globally linearly convergent, i.e., θi → 0 as
i→∞.

Remark:
I The condition (34) is a “uniformly well posed” in the SCF iteration
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12. Local convergence of the SCF

Let X∗ be a solution to the eigenvalue problem (28), and

δ∗ = λk+1 − λk > 0, (35)

where λk and λk+1 are tke k-th and (k + 1)-th eigenvalues of H(X∗).

Assume that
A1. H(X) is continuous at X∗;
A2. There exists a constant χ > 0 such that

lim sup
‖ sinΘ(X,X∗)‖2→0

‖(I − P∗)[H(X)−H(X∗)]P∗‖2
‖ sinΘ(X,X∗)‖2

≤ χ. (36)

where P∗ = XX∗.

Then if χ < δ∗, and X0 is sufficiently close to X∗ (i.e., ‖ sinΘ(X0, X∗)‖2
is sufficiently small), then there exists a positive constant τ < 1 such that

‖ sinΘ(Xi, X∗)‖2 ≤ τ‖ sinΘ(Xi−1, X∗)‖2 for i = 1, 2, . . . .

This implies that the SCF is locally linearly convergent.
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13. Remarks on assumption A2.
I at the solution X∗,

[X
∗
, X
∗
c ]
T
H(X

∗
)[X
∗
, X
∗
c ] =

[
(X∗)TH(X∗)X∗ 0

0 (X∗c )TH(X∗)X∗c

]
.

I note that

‖(I − P∗)[H(X)−H(X
∗
)]P
∗‖2 = ‖(X∗c )

T
[H(X)−H(X

∗
)]X
∗‖2

= ‖(X∗c )
T
H(X)X

∗‖2
I Therefore, the assumption A2 implies that the (2, 1) block of

[X
∗
, X
∗
c ]
T
H(X)[X

(∗)
, X

(∗)
c ] =

[
(X∗)TH(X)X∗ (X∗)TH(X)X∗c
(X∗c )TH(X)X∗ (X∗c )TH(X)X∗c

]
is close to be the zero.

I The assumption A2 is weaker than the Lipschitz-like condition (6), i.e., if the Lipschitz-like
condition (6) holds, one can pick χ = ξ to satisfy the assumption A2.
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14. Consider the KS model (30):

H(X) =
1

2
L+ Vion +

∑
`

w`w
T
` + Diag(L†ρ(X)) + +Diag(µxc(ρ(X))T e)

Assume that there exists a positive constant σ such that

‖Diag(µxc(ρ(X1))Te)− Diag(µxc(ρ(X2))Te)‖∞ ≤ σ‖ρ(X1)− ρ(X2)‖∞,

for all X1, X2 ∈ Xk. Then by the previous convergence results, we have

(i) If λ
(i)
k+1 − λ

(i)
k > (1 + θ1)(‖L†‖1 + σ) for all i, then the plain SCF is globally linearly

convergent.

(ii) If λk+1 − λk > ‖L†‖1 + σ, then the plain SCF is locally linearly convergent.
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15. SCF in KS-DFT calculations

is =1

is := is +1
vdif
(is ) =

Veff
out Veff

in

Veff
in scf

H (is ) and S

{ i, i} eig
(is )

in Veff
in

out Veff
out

in Veff
in
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16. Iterative diagonalization within SCF
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17. Many studies for iterative diagonalization, for examples, see and the references
therein

I Y. Zhou, Y. Saad, M. L. Tiago and J. R. Chelikowsky, Self-consistent-field calculations
using Chebyshev-filtered subspace iteration, J. Comput. Phys. 219:172-184, 2006

I Y. Cai, Z. Bai, J. Pask and N. Sukumar, Hybrid preconditioning for iterative
diagonalization of ill-conditioned generalized eigenvalue problems in electronic structure
calculations, J. of Comput. Phys., 255, pp.16-33, 2013

I Y. Zhou, Z. Wang and A. Zhou, Accelerating large partial EVD/SVD calculations by
filtered block Davidson methods, Sci. China Math. 50(8), pp.1635-1662, 2016
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Part 3.2 Sum of Trace Ratios

1. The sum of trace ratios problem:

max
V ∈ Rn×`

VTV = I`

k∑
i=1

tr(V TAiV )

tr(V TBiV )
,

where Ai = AT
i , Bi = BT

i ∈ Rn×n, Bi > 0 and ` < n.

2. Applications:
I k = 1, ` = 1: the eigenvalue problem for A1 − λB1
I k = 1, ` > 1: Fisher discriminant analysis in pattern recognition

[Ngo, Bellalij, & Saad (2010); Zhang, Liao, & Ng (2010)]

I k > 1, ` = 1: balancing individual capacities in a multi-user MIMO downlink channel in
ratio transmission [Primolevo, Simeone, & Spagnolini (2006); Zhang (2013)].

I The general case k > 1 and ` > 1 in Fisher-like discriminant analysis for classifying two or
more sets in certain balanced way.

3. We focus on the following Sum-of-Two-Trace-Ratios (S2TR) problem

max
V TV=I`

{
tr(V TAV )

tr(V TBV )
+ tr(V TCV )

}
where A = AT, B = BT, C = CT ∈ Rn×n and B > 0.
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4. The S2TR problem is an optimization problem on Stiefel manifold

On×` := {V ∈ Rn×` : V TV = I`}.

5. Existing generic Stiefel manifold-based optimization methods:
I sg min by R. Lippert and A. Edelman7

Fletcher-Reeves CG, Polak-Ribière CG, Newton, and dog-leg Newton

I OptM by Z. Wen and W. Yin.8

Barzilai-Borwein conjugate gradient with Crank-Nicolson-like updating to preserve
orthogonality constraints and curvilinear search

I ROPTIB by Wen Huang9

An object-oriented C++ library for optimization on Riemannian manifolds.

6. The method discussed here is an approximate 1st order method specially designed
for the S2TR problem.

7Section 9.4 in [Bai, Demmel, Dongarra, Ruhe and van der Vorst (editors). Templates for the solution of
Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, 2000.

8Z. Wen and W. Yin. A feasible method for optimization with orthogonality constraints. Math. Programming,
142(1-2):397–434, 2013.

9available at http://www.math.fsu.edu/~whuang2/Indices/index_ROPTLIB.html
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7. First order condition

I Let φH(V ) := tr(V THV ) for V ∈ On×`, then

f(V ) :=
tr(V TAV )

tr(V TBV )
+ tr(V

T
CV ) ≡ φA(V )

φB(V )
+ φC(V ).

I Ignore V TV = I` and use

f(V + δV ) = f(V ) +

〈
δV,

∂f(V )

∂V

〉
+O(‖δV ‖2)

to see
∂f(V )

∂V
= 2

[
A

1

φB(V )
− B φA(V )

[φB(V )]2
+ C

]
︸ ︷︷ ︸

=:E(V )

V,

where 〈X,Y 〉 = tr(XTY ).
I But it has to be projected onto the tangent space at V ∈ On×` for the gradient of f(V ).
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7. First order condition, cont’d

I Tangent space at V ∈ On×`:

TV On×` : = {X ∈ Rn×` : X
T
V + V

T
X = 0}

= {X = V K + (I − V V T
)J : K = −KT ∈ R`×`, J ∈ Rn×`}.

I Orthogonal projection:

ΠT : Z ∈ Rn×` → ΠT(Z) ∈ TV On×`,

where

ΠT(Z) := V

(
V TZ − ZTV

2

)
+ (Im − V V T

)Z = Z − V sym(V
T
Z).

and

sym(V
T
Z) =

V TZ + ZTV

2
.
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7. First order condition, cont’d

I Gradient of f(V ):

gradf|On×` (V ) = ΠT

(
∂f(V )

∂V

)
= 2
{
E(V )V − VM(V )

}
where

M(V ) = sym(V
T
E(V )V ) =

V TAV

φB(V )
− φA(V )

[φB(V )]2
V

T
BV + V

T
CV.

I First order optimality (KKT) condition: If V ∈ On×` is a local maximizer, then

E(V )V = VM(V ).

I It implies that eig(M(V )) ⊂ eig(E(V )), V is an orthonormal eigenbasis of E(V )
associated with its eigenvalues given by eig(M(V )).
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8. Second order condition

I Riemannian Hessian:

hessf|On×` (V ) : TV On×` → TV On×`,

X 7→ ΠT(Dg(V )[X]),

where g(V ) := gradf|On×` (V ) = 2
{
E(V )V − VM(V )

}
and Dg(V )[X] represents

the classical directional derivative at V ∈ On×` along X.
I Calculation leads to

hessf|On×` (V )[X] = 2
[
E(V )X − V sym(V

T
E(V )X)−XV T

E(V )V

+V sym(V
T
XV

T
E(V )V ) +G(V,X)V − V V T

G(V,X)V
]
,

where

G(V,X) := 4
tr(V TAV )tr(XTBV )

[tr(V TBV )]3
B − 2

tr(XTBV )A+ tr(XTAV )B

[tr(V TBV )]2
.

I Given V ∈ On×`, a critical (aka KKT) point, the second-order optimality condition at V
is about

hessf|On×` (V )[X,X] = 〈hessf|On×` (V )[X], X〉 for X ∈ TV On×`

which, after nontrivial simplifications, leads to

〈hessf|On×` (V )[X], X〉 = 2〈X,E(V )X〉 − 2〈X,XV T
E(V )V +G(V,X)V 〉.
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8. Second order condition, cont’d

I Second order optimality condition: If V ∈ On×` is a local maximizer, then for any
X ∈ TV On×`

tr(X
T
E(V )X)− tr(XM(V )X

T
)− tr(X

T
G(V,X)V ) ≤ 0.

If it is a strict inequality for X 6= 0, then V is a strict local maximizer.
I Since any X ∈ TV On×` takes the form

X = V K + (Im − V V T
)J for KT = −K and arbitrary J,

an (equivalent) second order optimality condition:

If V ∈ On×` is a local maximizer, then for all J ∈ Rn×`

tr(J
T
E(V )J) + tr(V

T
JM(V )J

T
V )

− tr(J
T
VM(V )V

T
J)− tr(JM(V )J

T
)

+ 4
tr(JT[Im − V V T]BV ) tr(JT[Im − V V T]CV )

φB(V )
≤ 0.

If it is a strict inequality for J 6= 0, then V is a strict local maximizer.
I Although more complicated, this one turns out to be more useful in deriving necessary

conditions.
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9. Necessary condition for local maximizer

I Suppose V is a local maximizer of E(V )V = VM(V ) and let
eig(E(V )) = {λ1 ≥ λ2 ≥ · · · ≥ λn}.

I E(V )V = VM(V ) ⇒ eig(M(V )) ⊂ eig(E(V )), i.e.,

eig(M(V )) = {λπi , i = 1, 2, . . . , `},
where 1 ≤ π1 < π2 · · · < π` ≤ n.

I Necessary condition:
λπ1 ≥ λ2`.
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10. Necessary condition for global maximizer

I Without loss of generality, assume C > 0, because

tr(V TAV )

tr(V TBV )
+ tr(V

T
[C + ξI]V ) =

tr(V TAV )

tr(V TBV )
+ tr(V

T
CV ) + `ξ.

I Suppose V is a global maximizer of E(V )V = VM(V ) and let
eig(E(V )) = {λ1 ≥ λ2 ≥ · · · ≥ λn}. Then

eig(M(V )) = {λπi , i = 1, 2, . . . , `}.
I Necessary condition

πi = i for 1 ≤ i ≤ `,
i.e., V corresponds to the ` largest eigenvalues λi for 1 ≤ i ≤ `.
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11. Self-Consistent-Field (SCF) iteration

I The necessary condition for a global maximizer has an important numerical implication –
leading to the following SCF for E(V )V = VM(V ):

1: choose V0 ∈ On×` and a tolerance tol
2: for k = 0, 1, . . . do
3: compute an orthonormal eigenbasis Vk+1 of E(Vk) associated with its ` largest

eigenvalues;
4: if rk := ‖E(Vk+1)Vk+1 − Vk+1M(Vk+1)‖2 ≤ tol then
5: break;
6: end if
7: end for
8: return Vk+1 as an approximate maximizer.

I It is an approximate first-order method.

161 / 183



12. Remarks:

I Reminiscent of SCF for the Kohn-Sham equations in electronic structure calculations.
I If the sequence {Vk} converges to V∗, then not only V∗ is a KKT point, but also satisfies

the necessary condition for a global maximizer. This is one of the major advantages of
SCF over optimization-based methods which primarily concern monotonic change of the
objective value. The converged KKT points may or may not satisfy the necessary
condition.

I Major computational cost lies at Line 3 – finding dominant orthonormal eigenbasis of
E(Vk). For large scale ones, iterative methods should be used.
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13. Local convergence

I Suppose E(V̂ )V̂ = V̂ M(V̂ ), i.e., V̂ is a stationary point and

eig(E(V̂ )) = {λ1 ≥ λ2 ≥ · · · ≥ λn}, eig(M(V̂ )) = {λi, i = 1, 2, . . . , `}.
I Set

RA := AV̂ − V̂ (V̂
>
AV̂ )

RB := BV̂ − V̂ (V̂
>
BV̂ )

δ := λ` − λ`+1

Suppose δ > 0.
I If ‖ sinΘ(V0, V̂ )‖2 is sufficiently small, then ‖ sinΘ(Vi, V̂ )‖2 goes to 0 at least linearly.
I Suppose RB = 0. If ‖ sinΘ(V0, V̂ )‖2 is sufficiently small, then ‖ sinΘ(Vi, V̂ )‖2 goes

to 0 quadratically.
I Suppose RA = RB = 0. If ‖ sinΘ(V0, V̂ )‖2 is sufficiently small, the convergence is

instant, i.e., span(V1) = span(V̂ ).
I Proofs rely on complicated estimates. Linear convergence rate depends on ‖RB‖ and

goes to 0 as RB does.
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14. Example. SCF has no global convergence in general

I Consider n = 3, ` = 2, and

A =

11 5 8
5 10 9
8 9 5

 , B =

7 7 7
7 10 8
7 8 8

 and C =

15 10 9
10 7 6
9 6 6

 .
I V0 = [e1, e2], the first two columns of I3.
I {f(Vk)} and {rk} generated by SCF oscillate after a few iterations. They behave

similarly with random V0, too.
I Plots:

(a) f(Vk)
(b) rk = ‖E(Vk+1)Vk+1 − Vk+1M(Vk+1)‖2
(c) contour and Mesh of f(V )
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15. Numerical results for random matrices

I Test matrices

A = randn(n, n); A = A
′ ∗ A; B = randn(n, n); B = B

′ ∗ B;
C = randn(n, n); C = C

′ ∗ C; V0 = orth(randn(n, `), 0).

I Note that all are positive definite but do not lose any generality because

tr(V T[A+ ξ1B]V )

tr(V TBV )
+ tr(V

T
[C + ξ2I]V ) = ξ1 + `ξ2 +

tr(V TAV )

tr(V TBV )
+ tr(V

T
CV ).

I Tested methods
I OptM of [Wen & Yin] on −f(V ) (optman.blogs.rice.edu/)
I sg min of [Ruppert & Edelman] on −f(V ) (web.mit.edu/~ripper/www/sgmin.html)

Methods Identifier

Fletcher-Reeves CG frcg

Polak-Ribière CG prcg

Newton newton

dog-leg Newton dog

I The SCF for the eigenvalue problem with eigenvector nonlinearity
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15. Numerical results for random matrices, cont’d

I # of outer iterations averaged over 20 random tests

SCF sg min OptM

` n frcg prcg Newton dog

100 5.20 51.80 252.10 9.20 12.10 72.10
200 5.00 61.10 297.60 9.80 13.20 81.20

3 500 4.70 111.12 653.90 11.30 15.70 97.70
1000 4.60 110.90 875.60 11.30 16.70 123.80
2000 4.00 110.50 601.50 11.60 16.90 137.70

100 5.20 44.40 231.50 9.00 11.70 61.80
200 4.90 62.60 384.20 9.80 14.00 83.50

5 500 4.50 86.60 448.90 10.60 15.10 108.80
1000 4.00 152.30 1183.50 11.60 17.10 150.20
2000 4.00 124.80 737.20 11.90 17.40 151.60

I Residuals rk averaged over 20 random tests

SCF sg min OptM

` n frcg prcg Newton dog

100 2.09e-09 9.61e-5 1.02e-4 7.23e-5 1.01e-4 3.94e-5
200 2.85e-09 2.01e-4 2.10e-4 1.50e-4 2.15e-4 3.20e-4

3 500 1.24e-09 5.15e-4 5.17e-4 3.96e-4 5.93e-4 6.78e-4
1000 2.90e-09 1.04e-3 1.02e-3 8.15e-4 1.26e-3 1.77e-4
2000 1.88e-09 2.04e-3 2.04e-3 1.74e-3 2.61e-3 4.80e-4

100 3.53e-09 1.03e-4 1.10e-4 7.54e-5 1.24e-4 5.65e-5
200 9.92e-10 2.38e-4 2.18e-4 1.74e-4 2.56e-4 2.15e-4

5 500 3.62e-09 5.78e-4 5.36e-4 5.03e-4 7.85e-4 8.03e-4
1000 2.17e-09 1.20e-3 1.10e-3 8.95e-3 1.64e-3 1.59e-4
2000 4.14e-10 2.42e-3 2.09e-3 1.75e-3 3.31e-3 4.25e-4
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16. Summary

I Studied the S2TR problem.
I Obtained 1st (KKT) and 2nd order conditions, necessary condition for local maximizer.

Most importantly, necessary condition for global maximizer – naturally leading to SCF
method.

I In general, no unconditional global convergence possible – an counterexample.
I Performed random numerical tests, demonstrating SCF is very efficient and superior to

generic Stiefel manifold-based optimization methods: OptM and sg min, when it works. No
divergence is encountered in all random testing.

I Idea may be extensible to sums of more than two trace ratios (SCF easy, but various
conditions need to be carefully examined)

17. Further reading

I L. H. Zhang and R.-C. Li, Maximization of the sum of the trace ratio on the stiefel
manifold. I: Theory & II: Computation, SCIENCE CHINA Math., 57(2014), 2495-2508, &
58(2015), 1549-1566.

I P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms On Matrix Manifolds.
Princeton University Press, Princeton, NJ, 2008.
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Part 3.3 Robust eigenvector classifiers

1. Data classification

I Training data points

Class A: a1, a2, . . . , am ∈ Rn.

Class B: b1, b2, . . . , bp ∈ Rn.

I Find hyperplane LA: wTAx− γA = 0 for
x ∈ Rn to minimize the ratio

dist(class A,LA)

dist(class B,LA)
=

∑m
i=1 |wTAai − γA|2∑p
j=1 |wTAbj − γA|2

I In analogy, define hyperplane LB for class B:
wTBx− γB = 0.

I For a testing point c ∈ Rn, classify

class(c) = argmin
`∈{A,B}

|wT` c− γ`|
‖w`‖2

.

ai

|wTAai−γA|
‖wA‖2

wTAx− γA = 0

bi

wTBx− γB = 0
c
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2. Generalized eigenvalue problem

I The optimal hyperplane z =
[wA
γA

]
minimizes the Rayleigh quotient

min
z

∑m
i=1 |wTAai − γA|2∑p
j=1 |wTAbj − γA|2

= min
z

zT ([A, e]T [A, e])z

zT ([B, e]T [B, e])z

where AT = [a1, . . . , am] ∈ Rn×m, BT = [b1, . . . , bp] ∈ Rn×p, and e is a vector of
ones.

I The optimal solution z by solving the following Hermitian generalized eigenvalue problem
for the smallest eigenvalue λ:

Gz = λHz,

where G = [A, e]T [A, e] and H = [B, e]T [B, e].

3. Ref. O. Mangasarian and W. Wild, Multisurface proximal support vector machine
classification via generalized eigenvalues, IEEE Trans. Pattern Analysis and Machine
Intelligence, 27(2), pp.1-6, 2005
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4. Data uncertainty

I Due to data uncertainty, the data points may
vary in the ellipsoids

âi ∈ S(A)
i := {ai + δ : δ

T
Σ

(A)
i δ ≤ 1}

b̂j ∈ S(B)
j := {bj + δ : δ

T
Σ

(B)
j δ ≤ 1}

where

I
(
ai
)m
i=1

and
(
bj
)p
j=1 are given ellipsoids

center.
I Σ

(A)
i and Σ

(B)
j are symmetric positive

definite matrices.

I Robust minimization (worst–case)

min
z=
[wA
γA

]
(

max

∑m
i=1 |wTAâi − γA|2∑p
j=1 |wTA b̂j − γA|2

)
s.t. âi ∈ S(A)

i for i = 1: m,

b̂j ∈ S(B)
j for j = 1: p.

ai wTAx− γA = 0

bi

wTBx− γB = 0
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5. The inner max problem in the robust min:
max

∑m
i=1 |wTAâi − γA|

2∑p
j=1 |wTAb̂j − γA|2

s.t. âi ∈ S
(A)
i for i = 1: m,

b̂j ∈ S
(B)
j for j = 1: p

 =

∑m
i=1 max

âi∈S
(A)
i

|wTAâi − γA|
2∑p

j=1 min
b̂i∈S

(B)
j

|wTAb̂i − γA|2

I Each ’max’ sub problem is solved by using the fact

max
δT Σδ≤1

|wT (a+ δ)− γ|2 =
(
w

T
(a+ δ∗)− γ

)2
,

where

δ∗ =
sgn(wT a− γ)√
wTΣ−1w

Σ
−1
w.

I Each ’min’ sub problem is solved by exploiting

min
δT Σδ≤1

|wT (b+ δ)− γ|2 =
(
w

T
(b+ δ∗)− γ

)2
,

where

δ∗ =
sgn(γ − wT b)√
wTΣ−1w

Σ
−1
w.

Note that it is assumed that wT (b+ δ)− γ 6= 0, ∀δ with δTΣδ ≤ 1, otherwise min = 0.
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6. By analytic solutions of the inner optimal problems, we obtain the following
nonlinear Rayleigh quotient minimization:

min
z=
[
wA
γA

] ρ(z) :=
zTG(z)z

zTH(z)z
,

where

G(z) = [A+∆A(z), −e]T [A+∆A(z), −e],

H(z) = [B +∆B(z), −e]T [B +∆B(z), −e],

and

∆A(z) =



sgn(wT a1−γ)√
wTΣ

(A)−1
1 w

· wTΣ(A)−1
1

sgn(wT a2−γ)√
wTΣ

(A)−1
2 w

· wTΣ(A)−1
2

...
sgn(wT am−γ)√
wTΣ

(A)−1
m w

· wTΣ(A)−1
m


, ∆B(z) =



sgn(γ−wT b1)√
wTΣ

(B)−1
1 w

· wTΣ(B)−1
1

sgn(γ−wT b2)√
wTΣ

(B)−1
2 w

· wTΣ(B)−1
2

...
sgn(γ−wT bp)√
wTΣ

(B)−1
p w

· wTΣ(B)−1
p


.

Remark: in the derivation, we assumed the hyperplane LA does not intersect the ellipsoids

S
(B)
j for j = 1, 2, . . . , p.)
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7. Since G(z) ≡ G(αz) and H(z) ≡ H(αz), for α 6= 0, are homogeneous in z, we can
rewrite the nonlinear Rayleigh quotient problem as

min
z∈Rn

zTG(z)z s.t. zTH(z)z = 1.

8. Define the Lagrangian function with multiplier λ

L(z, λ) = zTG(z)z − λ(zTH(z)z − 1).

9. By straightforward derivation, we obtain the gradient of the Lagrangian

∇zL(z, λ) = 2

(
G(z) + G̃(z)− λ

(
H(z) + H̃(z)

))
z

∇λL(z, λ) = zTH(z)z − 1.

where

G̃(z) =


zT

∂G(z)
∂z1
...

zT
∂G(z)
∂zn+1

 and H̃(z) =


zT

∂H(z)
∂z1
...

zT
∂H(z)
∂zn+1

 .
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10. Take the derivative with respective to z again, we obtain Hessian matrix

∇zzL(z, λ) = 2

(
G(z) + G̃(z)− λ(H(z) + H̃(z))

)
≡ 2

(
G(z)− λH(z)

)
,

where we used the facts G̃(z)z = 0 and H̃(z)z = 0.

11. The first–order optimality conditions for the constrained opt prob are given by

∇zL(z, λ) = 0 and zTH(z)z = 1.

This leads to a (local) optimizer z∗ is an eigenvector of the eigenvalue problem:

G(z)z = λH(z)z. (37)

12. The second-order optimality condition10 is

sT∇zzL(z, λ)s ≥ 0

for all s 6= 0 and sTH(z)z = 0. This immediately leads to the condition

G(z)− λH(z) � 0. (38)

13. In order to satisfy the semi-positive definite condition (38), the corresponding
eigenvalue λ∗ at the local minimizer z∗ must be the least positive eigenvalue of the
matrix pair (G(z∗),H(z∗))

10Reference to opt cond of constrained opt prob: J. Nocedal and S. Wright. Numerical optimization. Springer
Science & Business Media, 2006.

174 / 183



14. Since G̃(z)z = 0 and H̃(z)z = 0,

(G(z)− λH(z))z ≡ (G(z)− λH(z))z = 0,

Therefore, the local optimizer z∗ is also an eigenvector of “simplified” problem

G(z)z = λH(z)z. (39)

However, as an example shown later, the corresponding eigenvalue λ∗ may not be
the smallest eigenvalue of the matrix pair

(
G(z∗), H(z∗)

)
.
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15. A simple example with n = 2
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16. A simple example with n = 2

x
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I Apply SCF to solve the second-order NEP G(z)z = λH(z)z for the least positive eigval,
we obtain the eigvec ẑ (marked + in the contour plot of ρ(z) on the right.)
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16. A simple example n = 2, cont’d

I Eigenvalues at the local minimizer z∗:
1st-order NEP G(z∗)z = λH(z∗)z

λ1 = 0.0747100 λ2 = 0.2991528 λ3 = 3.5632835

2nd-order NEP G(z∗)z = λH(z∗)z
λ1 = −0.4960373 λ2 = 0.2991528 λ3 = 3.3250210

I Note that the corresponding “optimal’ eigenvalue λ∗ is not the smallest eigenvalue of the
matrix pair

(
G(z∗), H(z∗)

)
. In general, the correspondence is unknown.

I The corresponding “optimal’ eigenvalue λ∗ is the least positive eigenvalue of the matrix
pair (G(z∗),H(z∗))
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17. Example.
I Classification experiments for the “Pima Indians Diabetes dataset” from UCI Machine

Learning Repository, available at http://archive.ics.uci.edu/ml.
I Total instances = 768 (sample 70% for training, 30% for testing).

Number of features n = 8.
I Perturbation ellipsoids: Σ−1 = diag(α2

1x̄
2
1, . . . , α

2
nx̄

2
n)

I x̄i = average value of i-th feature (of all instances).
I αi = perturbation level.
αi = 0.001 for feature 1 (pregnant times) and feature 8 (age),
αi = 0.2 for the rest.

I Testing data points perturbation: x = x+ δx with δx ∼ N(0, Σ).
I Correctness rates and variances of GEC (generalized eigenvector classifier) vs. RGEC

(robust generalized eigenvector classifier)

0 5 10 15 20

No. experiments

0.3

0.4

0.5

0.6

0.7

0.8

0.9
C

o
rr

e
c
tn

e
s
s
 r

a
te

GEC

RGEC

I Significant improvements and much smaller variance of the correctness rate.
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Part 3.4 Of things not treated

1. Gross-Pitaevskii type equations

−∆u+ · · ·+ ζ|u|2u = λu

I W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by
a normalized gradient flow. SIAM J Sci Comput, 25, pp.16741697, 2004

I S.H. Jia, H.-H. Xie, M.-T. Xie and F. Xu, A full multigrid method for nonlinear eigenvalue
problems, Sci. China Math. 59(10).pp.2037-2048, 2016

I E. Jarlebring, S. Kvaal and W. Michiels, An inverse iteration method for eigenvalue
problems with eigenvector nonlinearities, SIAM J. Sci. Comput. 36(4), pp.A1978-A2001,
2014 (Inverse iteration for A(v)v = λv)

2. Spectral graph theory
I M. Hein and T. Bühler, An inverse power method for nonlinear eigenproblems with

applications in 1-Spectral clustering and sparse PCA, NIPS, pp.847-855, 2010
I L. Jost, S. Setzer and M. Hein, Nonlinear eigenproblems in data analysis – balanced graph

cuts and the RatioDCA-Prox, arXiv:1312.5192v2, Mar. 2014. (minf
R(f)
S(f)

)
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Review and some random-thoughts

I Part 1. Linear eigenvalue problems “Ax = λBx”
1. Accelerated subspace iteration

I Polynomial and rational approximations of ideal/optimal accelerator of symmetric LEPs
I Notion of optimal accelerator/preconditioners for nonsymmetric LEPs?

2. Steepest descent method
I Eigenvalue problems↔ Optimization of Rayleigh quotient (variational form)

3. Arnoldi method
I Krylov subspace and matlab’s eigs.m

4. Rational Krylov method
I Multi-shift-invert Krylov subspace method

5. Topics of more recent interest
I Computing many eigenpairs – deflations vs. spectrum slicing?
I Notion of a numerically “ill-conditioned” eigenproblems?
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Review and some random-thoughts, cont’d

I Part 2. Nonlinear eigenvalue problems “T (λ)x = 0”
1. Essential theory

I sensitivity/perturbations of (structured) NEPs?

2. Methods based on Newton iteration
I select proper objective function for root-finding
I exploit structures/properties of a specific problem

3. Methods specially designed for QEP and REP
I QEP: essential idea of compact representation (two-level-orthogonality) of the basis vectors of the

Krylov subspace
I REP: how to exploit the structure of the trimmed linearization?
I PAL: exploit the low-rank property of the QEP, and unconventional three-stage approach.

4. Methods based on approximation and linearization
I local vs. “global” approximations?
I error analysis of approximations?
I compact representation of projection subspace for (much-large) linearized eigenproblems

5. Of things not treated
I Contour Integal methods for NEPs?
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Review and some random-thoughts, cont’d

I Part 3. Eigenvalue problems with eigenvector nonlinearity
1. Kohn-Sham eigenvalue problem “H(X)X = XΛ”

I Convergence analysis of plain and “improved” SCF iterations
I An open contest: optimal bound for α for the SCF convergence of the “simple” model in

[Yang-Gao-Meza’09]

2. Sum of trace ratio “E(V )V = VM(V )”
I optimization on matrix manifolds↔ eigenvalue problems

3. Robust Rayleigh quotient optimization “G(z)z = λH(z)z”

I generalized Rayleigh quotient
zTG(z)z

zTH(z)z
, optimization, eigenvalue ordering

4. Of things not treated

I Eigenvalue problems from “non-smooth” optimizations [Hein et al’10]
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