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Abstract

In recent years, a great deal of attention has been devoted to Krylov subspace techniques for reduced-order
modeling of large-scale dynamical systems. The surge of interest was triggered by the pressing need for efficient
numerical techniques for simulations of extremely large-scale dynamical systems arising from circuit simulation,
structural dynamics, and microelectromechanical systems. In this paper, we begin with a tutorial of a Lanczos
process based Krylov subspace technique for reduced-order modeling of linear dynamical systems, and then give
an overview of the recent progress in other Krylov subspace techniques for a variety of dynamical systems,
including second-order and nonlinear systems. Case studies arising from circuit simulation, structural dynamics
and microelectromechanical systems are presented.
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1. Introduction

The continual and pressing need for accurately and efficiently simulating dynamical behaviors of
complex physical systems arising from computational science and engineering has led to increasingly
large and complex models. Reduced-order modeling techniques play an indispensable role by providing
an efficient computational prototyping tool to replace such a large-scale model by an approximate smaller
model, which is capable of capturing dynamical behavior and preserving essential properties of the larger
one.

A myriad of reduced-order modeling methods has been presented in various fields. Most of these
methods fall into two categories. The first one is comprised of the techniques based on the optimization
of the reduced-order model according to a suitably chosen criterion. The second category consists of the
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methods which preserve exactly a limited number of parameters of the original model. The work of [25]
provides a survey of early work on these methods. Over the past several years, Krylov subspace based
techniques have emerged as one of the most powerful tools for reduced-order modeling of large-scale
systems. We would like to call the reader’s attention to recent surveys on the topic [27,29,3], which are
complimentary to this work.

In order to introduce first-time readers to this topic, we will begin with a tutorial of Krylov subspace
techniques for reduced-order modeling of linear dynamical systems, specifically, on moment-matching
methods based on the Lanczos process. Then we give an overview of the recent progress of other methods
for linear systems. We will also discuss the work which extends the Krylov subspace techniques for
reduced-order modeling of second-order, semi-second-order, and nonlinear systems. There are plenty of
questions remaining unsolved with regard to those methods discussed in this paper, particularly on semi-
second-order systems and nonlinear systems. We will list these open questions throughout the paper.

Our motivation for studying reduced-order modeling techniques stems from the need for efficient
simulation tools for dynamical systems arising in circuit simulation, structural dynamics and micro-
electromechanical systems (MEMS). We will report our experiences with case studies arising from these
applications.

To encourage first-time readers to try out some of approaches discussed in this paper, we have set up a
web site at http://www.cs.ucdavis.edu/∼bai to include basic implementation of some methods, along with
some test data. We hope this will also be regarded as an effort to exchange software and test problems
amongst researchers and practitioners who are interested in using these tools.

The rest of this paper is organized as follows. In Section 2, we introduce linear dynamical systems
and associated computational tasks and challenges. Then we give a tutorial on Lanczos process based
moment-matching methods for reduced-order modeling of linear systems. The remaining parts of
Section 2 are devoted to the discussion of some essential properties associated with linear dynamical
systems and how to preserve these properties in a reduced-order model, and finally we review other
reduced-order modeling methods for linear systems. In Section 3, we discuss the treatment of second-
order systems by the Krylov subspace based methods with the moment-matching property. Sections 4
and 5 report some preliminary work on the generalization of Krylov subspace techniques for semi-
second-order and nonlinear systems. Concluding remarks are in Section 6.

With a few exceptions, we follow the notational conventions used in [27,29]. Specifically, we use
boldface letters to denote vectors and matrices,0 for zero vectors or matrices,I for the identity matrix,ek
for thekth unit vector (thekth column ofI ). The dimensions of these matrices and vectors are conformed
with dimensions used in the context,·T denotes transpose,i=√−1,�(s) is the real part of a complex
variables andR, C denote the sets of real and complex numbers, respectively. We useRm,n denotes
the set of rational functions with real numerator polynomial of degree at mostm and real denominator
polynomial of degree at mostn.

2. Linear dynamical systems

A continuous time-invariant (lumped) multi-input multi-output linear dynamical system is of the form{
Cẋ(t)+Gx(t)=Bu(t),
y(t)=LTx(t),

(1)
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with initial condition x(0) = x0. Here t is the time variable,x(t) ∈ RN is a state vector,u(t) ∈ Rm

the input excitation vector, andy(t) ∈ Rp the output measurement vector.C,G ∈ RN×N are system
matrices,B ∈RN×m andL ∈RN×p are input and output distribution arrays, respectively.N is the state
space dimension andm andp are the number of inputs and outputs, respectively. In most practical cases,
we can assume thatm andp are much smaller thanN andm � p.

Linear systems arise in many applications, such as the network circuit with linear elements [87],
structural dynamics analysis with only lumped mass and stiffness elements [22,23], linearization of
a nonlinear system around an equilibrium point [27], and a semi-discretization with respect to spatial
variables of a time-dependent differential-integral equations [73,88].

The matricesC andG in (1) are allowed to be singular, and we only assume that the pencilG+ sC
is regular, i.e., the matrixG+ sC is singular only for a finite number of valuess ∈ C. The assumption
thatG+ sC is regular is satisfied for all applications we are concerned with that lead to systems of the
form (1). In addition,C andG in (1) are general nonsymmetric matrices. However, in some important
applications,C andG are symmetric, and possibly positive definite or positive semidefinite. For example,
with proper formulation,C andG are symmetric indefinite for a linear circuit network that consists of
only resistors, inductors and capacitors (in short, a linear RLC circuit). An important special case is RC
networks consisting of only resistors and capacitors; in this case, one ofC andG is symmetric positive
definite. Note that whenC is singular, the first equation in (1) is a first-order system of linear differential-
algebraic equations. The corresponding linear system is called a descriptor system or a singular system.

The linear system of the form (1) is often referred to as the representation of the system in the time
domain, or in the state space. Equivalently, one can also represent the system in the frequency domain
via a Laplace transform. Recall that for a vector-valued functionf (t), the Laplace transform off (t) is
defined by

F (s) := L
{
f (t)

}= ∞∫
0

f (t)e−st dt, s ∈ C. (2)

The physically meaningful values of the complex variables ares = iω, whereω � 0 is referred to as the
frequency. Taking the Laplace transform of the system (1), we obtain the following frequency domain
formulation of the system:{

sCX(s)+GX(s)=BU(s),

Y (s)=LTX(s),
(3)

whereX(s), Y (s) andU(s) represents the Laplace transform ofx(t), y(t) andu(t), respectively. For
simplicity, we assume that we have zero initial conditionsx(0)= x0 = 0 andu(0)= 0.

Eliminating the variableX(s) in (3), we see that the inputU(s) and the outputY (s) in the frequency
domain are related by the followingp×m matrix-valued rational function

H (s)=LT(G+ sC)−1B. (4)

H (s) is known as thetransfer functionor Laplace-domain impulse responseof the linear system (1).
The following types of analysis are typically performed for a given linear dynamical system of the

form (1):

• Static (DC) analysis, to find the point to which the system settles in the equilibrium, or rest, condition,
namelyẋ(t)= 0;
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• Steady-state analysis, also called frequency response analysis, to determine the frequency responses
H (s) of the system to external steady-state oscillatory (i.e., sinusoidal) excitation;

• Modal frequency analysis, to find system natural vibrating frequency modes and their corresponding
modal shapes;

• Transient analysis, to compute the output behaviory(t) subject to time-varying excitationu(t);
• Sensitivity analysis, to determine the proportional changes of the time responsey(t) and/or steady-

state responseH (s) to a proportional change in system parameters.

This paper will focus on applying reduced-order modeling techniques for steady-state and transient
analysis.

Linear dynamical systems have been studied extensively, especially for the caseC = I , for example,
see [49]. Numerous techniques have been developed for performing various analyses of the system. One
of the primary computational challenges we are confronted with today is the large state dimensionN of
the system (1). For example, in circuit simulation and structural dynamics applications,N could be as
large as 106. In addition, the differential equations in the system (1) are often stiff from multi-energy and
multi-scaling simulation. The system may be required to be analyzed repeatedly for different excitation
inputsu(t).

As a tutorial on Krylov subspace techniques for large-scale linear dynamical systems, in the rest of
this section we mostly confine our discussion to single-input single-output systems, i.e.,p =m= 1. We
will use lower case lettersb and l to denote the input and output distribution vectors, instead of the
capital lettersB andL. Consequently, the transfer function defined in (4) is a scalar function, and will
be denoted byH(s). References will be given for the treatments of multi-input multi-output systems.

2.1. Eigensystem methods

Let us first review eigensystem methods as an introduction to the steady-state analysis of the linear
system. To computeH(s) about a selected expansion points0, let us set

A=−(G+ s0C)−1C and r = (G+ s0C)−1b,

where we assume thatG+ s0C is nonsingular. ThenH(s) can be cast as

H(s)= lT
(
(G+ s0C)+ (s − s0)C

)−1
b= lT

(
I − (s − s0)A

)−1
r. (5)

In other words, we reduce the representation of the transfer functionH(s) using only one matrixA.
Assume that the matrixA is diagonalizable,

A= SΛS−1 = S · diag(λ1, λ2, . . . , λN) · S−1.

Let f = STl = (fj ) andg = S−1r = (gj ), then the transfer functionH(s) can be expressed as a partial-
fraction expansion,

H(s)= f T(I − (s − s0)Λ
)−1
g =

N∑
j=1

fjgj

1− (s − s0)λj

= ρ∞ +
∑
λj �=0

κj

s − pj

. (6)
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This is known as thepole-residue representation. pj = s0+1/λj arepolesof the system,1 κj =−fjgj /λj

are residues, andρ∞ =∑
λj=0fjgj is a constant, which corresponds to the poles at infinity (or zero

eigenvalues). Note that it costsO(N3) operations to diagonalizeA, and onlyO(N) operations to evaluate
the transfer functionH(s) for each given points.

Unfortunately, in practice, diagonalization ofA is prohibitive when it is ill-conditioned or is too large.
As a remedy for the possible ill-conditioning of diagonalization, we may use the numerically stable Schur
decomposition. LetA=QTQT be the Schur decomposition ofA. Then

H(s)= lT
(
I − (s − s0)A

)−1
r = (QTl

)T(
I − (s − s0)T

)−1(
QTr

)
.

Now, it costsO(N2) to evaluate the transfer functionH(s) at each given points. Alternatively, one can
use the Hessenberg decomposition ofA as suggested in [54].

To reduce the cost of diagonalizingA or computing its Schur decomposition for largeN , we may
use partial eigendecomposition. This is also referred to as themodal superposition method, for example,
see [22]. By examining the pole-residue representation (6), it is easy to see that the motivation of this
approach comes from the fact that only a few poles (and associated eigenvalues) around the region of
frequencies of interest are necessary for the approximation ofH(s). Those poles are called the dominant
poles. Therefore, to study the steady-state response to an input of the formu(t) = ũeiωt , whereũ is
a constant vector, we express the solution asx(t) = Skv(ω)eiωt , whereSk containsk selected modal
shapes (eigenvectors) of the matrix pair{C,G} needed to retain all the modes whose resonant frequencies
lie within the range of input excitation frequencies. Then one may solve the system(

iωST
kCSk + ST

kGSk

)
v(ω)= ST

kBũ (7)

for v(ω). Once the selected dominant poles and their corresponding modal shapesSk are computed, the
problem of computing the steady-state response is reduced to solving thek× k system (7). In practice, it
is typical that only a relatively small number of the modal shapes is necessary, i.e.,k �N . The problem
of finding a few modal shapesSk within a certain frequency range is one of the well-known algebraic
eigenvalue problems in numerical linear algebra [4].

2.2. Reduced-order modeling

The desired attributes of reduced-order modeling of the linear dynamical system (1) include replacing
the full-order system by a system of the same type but with a much smaller state-space dimension
such that it has an admissible error between the full-order and reduced-order models. Furthermore, the
reduced-order model should also preserve essential properties of the full-order system. Such a reduced-
order model would let designers efficiently analyze and synthesize the dynamical behavior of the original
system within a tight design cycle. Specifically, given the linear dynamical system (1), we want to find a
reduced-order linear system of the same form{

Cnż(t)+Gnz(t)=Bn u(t),
ỹ(t)=LT

nz(t),
(8)

1 By a simple exercise, it can be shown that the definition of poles and residues of the system is independent of the choice of
the expansion points0.
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wherez(t) ∈Rn, Cn,Gn ∈Rn×n, Bn ∈Rn×m, Ln ∈Rn×p , andỹ(t) ∈Rp. The state-space dimensionn
of (8) should generally be much smaller than the state-space dimensionN of (1), i.e.,n�N . Meanwhile,
the outputỹ(t) of (8) approximates the outputy(t) of (1) in accordance with some criteria for allu in the
class of admissible input functions. Furthermore, the reduced-order system (8) should preserve essential
properties of the full-order system (1).

Note that thep×m matrix-valued transfer function of the reduced-order model (1) is given by

H n(s)=LT
n(Gn + sCn)

−1Bn.

Hence, for the steady-state analysis in the frequency domain, the objectives of constructing a reduced-
order model (8) include that the reduced-order transfer functionH n(s) should be an approximation of
the transfer functionH (s) of the full-order model over the frequency range of interest with an admissible
error, and thatH n(s) preserves essential properties ofH (s).

2.3. Padé approximation and moment-matching

Note that the scalar transfer functionH(s) of (4) is a rational function. More precisely,H(s) ∈
RN−1,N , whereN is the state-space dimension of (1). The Taylor series expansion ofH(s) of (5) about
s0 is given by

H(s) = lT
(
I − (s − s0)A

)−1
r = lTr + (lTAr)(s − s0)+

(
lTA2r

)
(s − s0)

2 + · · ·
= m0 +m1(s − s0)+m2(s − s0)

2 + · · · , (9)

wheremj = lTAjr for j = 0,1,2, . . . , are calledmomentsabouts0. Since our primary concern is large
state-space dimensionN , we seek to approximateH(s) by a rational functionHn(s) ∈Rn−1,n over the
range of frequencies of interest, wheren � N . A natural choice of such a rational function is a Padé
approximation. A functionHn(s) ∈ Rn−1,n is said to be annth Padé approximant ofH(s) about the
expansion points0 if it matches with the moments ofH(s) as far as possible. Precisely, it is required that

H(s)=Hn(s)+O
(
(s − s0)

2n). (10)

For a thorough treatment of Padé approximants, we refer the reader to [12]. Note that equation (10)
presents 2n conditions on the 2n degrees of freedom that describe any functionHn(s) ∈ Rn−1,n.
Specifically, let

Hn(s)= Pn−1(s)

Qn(s)
= an−1s

n−1 + · · · + a1s + a0

bnsn + bn−1sn−1 + · · · + b1s + 1
, (11)

whereb0 is chosen to be equal to 1, which eliminates an arbitrary multiplicative factor in the definition
of Hn(s). Then the coefficients{aj } and {bj } of polynomialsPn−1(s) andQn(s) can be computed as
follows. Multiplying Qn(s) on both sides of (10) yields

H(s)Qn(s)= Pn−1(s)+O
(
(s − s0)

2n). (12)

Comparing the firstn (s − s0)
k-terms of (12) fork = 0,1, . . . , n− 1 shows that the coefficients{bj } of

the denominator polynomialQn(s) satisfy the following system of simultaneous equations:
m0 m1 . . . mn−1

m1 m2 . . . mn
...

...
...

mn−1 mn . . . m2n−2




bn

bn−1
...

b1

=−


mn

mn+1
...

m2n−1

 . (13)
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The coefficient matrix of (13) is called theHankel matrix, denoted asMn. Once the coefficients{bj } are
computed, then by comparing the secondn (s − s0)

k-terms of (12) fork = n,n+ 1, . . . ,2n− 1, we see
that the coefficients{aj } of the numerator polynomialPn−1(s) can be computed according to

a0 = m0

a1 = m0b1 +m1

...

an−1 = m0bn−1 +m1bn−2 + · · · +mn−2b1 +mn−1.

It is clear thatHn(s) defines a uniquenth Padé approximant ofH(s) if, and only if, the Hankel matrix
Mn is nonsingular. We will assume that this is the case for alln.

This formulates the framework of the asymptotic waveform evaluation (AWE) techniques as they are
known in circuit simulation, first presented in [70] around 1990. The manuscript [20] has a complete
treatment of the AWE technique and its variants. A survey of the Padé techniques for model reduction of
linear systems is also presented in the earlier work [17]. It is well-known that in practice, the Hankel
matrix Mn is generally extremely ill-conditioned. Therefore, the computation of Padé approximants
using explicit moments is inherently numerically unstable. Indeed, this approach can be used only
for very small values ofn, such asn � 20, even with some sophisticated schemes to improve the
conditioning of the underlying Hankel matrixMn. As a result, the approximation range of a computed
Padé approximant is limited to only a narrow frequency range around the selected expansion points0.
A large number of expansion points is generally required for the approximation of the transfer function
H(s) over a broad frequency range of interest. Since for each expansion points0, one has to be concerned
with the cost of applying the matrixA=−(G+ s0C)−1C, which is generally the most expensive part of
the overall computational cost, one would like to use as few expansion points as possible by increasing
the ordern of Padé approximants with a selected expansion points0. Fortunately, numerical difficulties
associated with explicit moments can be remedied by exploiting the well-known connection between the
Padé approximants and the Lanczos process. We will discuss this connection in the next section.

2.4. Krylov subspaces and the Lanczos process

A Krylov subspace is a subspace spanned by a sequence of vectors generated by a given matrix and a
vector as follows. Given a matrixA and a starting vectorr , thenth Krylov subspaceKn(A, r) is spanned
by a sequence ofn column vectors:

Kn(A, r)= span
{
r,Ar,A2r, . . . ,An−1r

}
.

This is sometimes called the right Krylov subspace. When the matrixA is nonsymmetric, there is a left
Krylov subspace generated byAT and a starting vectorl defined by

Kn

(
AT, l

)= span
{
l,ATl,

(
AT)2l, . . . , (AT)n−1

l
}
.

Note that the first 2n moments{mj} of H(s) in (9), which define the Hankel matrixMn in the Padé
approximant (13), are connected with Krylov subspaces through computing the inner products between
the left and right Krylov sequences:

m2j =
((
AT)j l)T · (Ajb

)T
, m2j+1 =

((
AT)j l)T · (Aj+1b

)T
,
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for j = 1,2, . . . , n − 1. Therefore, loosely speaking, the left and right Krylov subspaces contain the
desired information of moments, but the vectors{Ajr} and{(AT)j l} are unsuitable as basis vectors. The
remedy is to construct more suitable basis vectors:

{v1,v2, . . . ,vn} and {w1,w2, . . . ,wn },
such that they span the same desired Krylov subspaces, specifically,Kn(A, r) = span{v1,v2, . . . ,vn}
andKn(A

T, l)= span{w1,w2, . . . ,wn }. It is well-known that the Lanczos process is an elegant way to
generate the desired basis vectors [53]. Given a matrixA, a right starting vectorr and a left starting
vector l, the Lanczos process generates the desired basis vectors{vi} and {wi}, known as theLanczos
vectors. Moreover, these Lanczos vectors are constructed to be biorthogonal

wT
j vk = 0, for all j �= k. (14)

The Lanczos vectors can be generated by two three-term recurrences. These recurrences can be stated
compactly in matrix form as follows

AV n = V nT n + ρn+1vn+1e
T
n,

ATW n =W nT̃ n + ηn+1wn+1e
T
n,

whereT n andT̃ n are the tridiagonal matrices

T n =


α1 β2

ρ2 α2
. . .

. . .
. . . βn

ρn αn

 , T̃ T
n =


α1 γ2

η2 α2
. . .

. . .
. . . γn

ηn αn


and they are related by a diagonal similarity transformationT̃ T

n = DnT nD
−1
n , whereDn = WT

nV n =
diag(δ1, δ2, . . . , δk). The projection of the matrixA onto Kn(A, r) and orthogonally toKn(A

T, l) is
represented by

WT
nAV n =DnT n.

If the Lanczos process is carried to the end withN being the last step, then it can be viewed as a means
of tridiagonalizingA by a similarity transformation:

V −1
N AV N = T N, (15)

whereT N is a tridiagonal matrix, withT n as itsn×n leading principal submatrix,n � N . An algorithm
template for the basic Lanczos process is presented in Fig. 1. The Lanczos vectors are determined up to
a scaling. We use the scaling‖vj‖2 = ‖wj‖2 = 1 for all j .

We note that the Lanczos process could stop prematurely due toδk = 0 (orδk ≈ 0 considering the finite
precision arithmetic) at step 7 in Fig. 1. This is calledbreakdown. Our assumption of the nonsingularity
of the Hankel matrixMn guarantees that no breakdown occurs, see [64]. In practice, the problem is
curable by a variant of the Lanczos process, for example, a look-ahead scheme is proposed in [33]. An
implementation of the Lanczos process with a look-ahead scheme to overcome the breakdown can be
found in QMRPACK [35].
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(1) ρ1 = ‖r‖2
(2) η1 = ‖l‖2
(3) v1 = r/ρ1
(4) w1 = l/η1
(5) for k = 1,2, . . . , n do
(6) δk =wT

k vk
(7) αk =wT

kAvk/δk
(8) βk = (δk/δk−1)ηk
(9) γk = (δk/δk−1)ρk

(10) v =Avk − vkαk − vk−1βk

(11) w =ATwk −wkαk −wk−1γk
(12) ρk+1 = ‖v‖2
(13) ηk+1 = ‖w‖2
(14) vk+1 = v/ρk+1
(15) wk+1 =w/ηk+1
(16) end for

Fig. 1. Algorithm template for the basicn-step Lanczos process.

2.5. Reduced-order modeling using the Lanczos process

Let us first consider the Lanczos process as a process for tridiagonalizing the matrixA. Then by (15),
the transfer functionH(s) of the original system (1) can be rewritten as

H(s)= (lTr)eT
1

(
I − (s − s0)T N

)−1
e1 =

(
lTr
)det(I − (s − s0)T

′
N)

det(I − (s − s0)T N)
(16)

whereT ′
N is an(N −1)× (N −1) matrix obtained by deleting the first row and column ofT N . Note that

for the second equality, we have used the following Cauchy–Binet theorem to the matrixI − (s− s0)T N :(
I − (s − s0)T N

) · adj
(
I − (s − s0)T N

)= det
(
I − (s − s0)T N

) · I ,
where adj(X) stands for the classical adjugate matrix made up of the(N − 1)× (N − 1) cofactors ofX.
Expression (16) is called thezero-pole representation. It is clear that the poles ofH(s) can be computed
from the eigenvalues of theN × N tridiagonal matrixT N and the zeros ofH(s) from the eigenvalues
of the(N − 1)× (N − 1) tridiagonal matrixT ′

N . More precisely, the poles are given bypj = s0 + 1/λj ,
λj ∈ λ(T N), and the zeros byzj = s0 + 1/λ′

j , λ′
j ∈ λ(T ′

N).
Now, let us turn to large-scale linear systems where the orderN of the matrixA is too large to fully

tridiagonalize, and where the Lanczos process terminates atn (� N) Then it is natural to define annth
reduced-order approximation of the transfer functionH(s) as

Hn(s)=
(
lTr
)
eT

1

(
I − (s − s0)T n

)−1
e1, (17)

whereT n is then× n leading principal submatrix ofT N , as generated by the firstn steps of the basic
Lanczos process outlined in Fig. 1. In analogy to (16), we have the zero-pole representation ofHn(s):

Hn(s)=
(
lTr
)det(I − (s − s0)T

′
n)

det(I − (s − s0)T n)
, (18)

whereT ′
n is an(n− 1)× (n− 1) matrix obtained by deleting the first row and column ofT n.
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Now, the question is: what isHn(s)? The answer, which seems surprising to many first-time readers,
is thatHn(s) is the Padé approximation ofH(s) as computed by using explicit moments in Section 2.3.
To show this, let us first recall the following lemma, which was originally developed in [89] for a
convergence analysis of the Lanczos algorithm for eigenvalue problems.

Lemma 1. If T n is the n × n leading principal submatrix ofT N , wheren � N . Then for any0 �
j � 2n− 1,

eT
1T

j

Ne1 = eT
1T

j
ne1

and forj = 2n,

eT
1T

2n
N e1 = eT

1T
2n
n e1 + β2β3 · · ·βnβn+1 · ρ2ρ3 · · ·ρnρn+1.

A verification of this lemma can be easily carried out by induction. By Lemma 1, we immediately see
that the first 2n moments ofH(s) andHn(s) are matched:

mj = lTAjr = (lTr)eT
1T

j

Ne1 =
(
lTr
)
eT

1T
j
ne1 = m̂j (19)

for j = 0,1, . . . ,2n− 1. Furthermore, by Taylor expansions ofH(s) andHn(s) abouts0 and (19), we
have

H(s)=Hn(s)+
(
lTr
)( n+1∏

j=2

βj

n+1∏
j=2

ρj

)
(s − s0)

2n +O
(
(s − s0)

2n+1
)
.

Therefore, we conclude thatHn(s) is a Padé approximant ofH(s).
This Lanczos–Padé connection at least goes back to [40] and [41]. The work of [26,37] advocates the

use of the Lanczos–Padé connection instead of the mathematical equivalent, but numerically unstable
AWE method [70] in the circuit simulation community. The Lanczos-based Padé approximation method
has become known as the PVL (Padé Via Lanczos) method, as coined in [26]. An overview of various
Krylov methods and their applications in model reduction for state-space control models in control
system theory is presented in [13]. The presentation style here partially follows the work of [11]. In
the following, we present two examples, one from circuit simulation and one from structural dynamics,
as empirical validation of the efficiency of the PVL method. We note that in both cases, we only use one
expansion points0 over the entire range of frequencies of interest. However, the degree of the underlying
Padé approximants constructed via the Lanczos process is as high as 60, which seems to be an impossible
mission by using explicit moment-matching as discussed in Section 2.3.

The first example demonstrates the efficiency of the PVL method for a popular circuit problem,
which simulates a lumped element network generated by a 3-D electro-magnetic problem modeled
via the partial element equivalent circuit (PEEC) model [20,26]. The PEEC model is obtained by
appropriate discretizations of the boundary integral formulation of Maxwell’s equations for the electric
and magnetic fields at any point in a conductor [73]. The order of the system matricesC andG is
306. To capture the dynamic behavior of the transfer functionH(s) over the broad frequency range
[ωmin,ωmax] = [1,5× 109], it is necessary to evaluateH(s) at a large number of frequency points. We
used a total of 1001 frequency points. On the left of Fig. 2, we plot the absolute values ofH(s) and
the Padé approximantH60(s) of order 60 generated by the PVL method with only a single expansion
s0 = 2π × 109. Note that it is nearly indistinguishable from the curve of|H(s)|. The right plot of Fig. 2
is the relative error betweenH(s) andH60(s).
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Fig. 2. PEEC example,|H(s)| and PVL|H60(s)| (left) and relative error|H(s)−H60(s)|/|H(s)| (right).

Fig. 3. Automobile brake example,|H(s)| and PVL|H45(s)| (left) and relative error|H(s)−H45(s)|/|H(s)| (right).

The second example is from dynamics analysis of automobile brakes, extracted from MSC/NASTRAN,
a finite element analysis software for structural dynamics [50]. The order of the mass matrixM and stiff-
ness matrixK is 834. The transfer function is of the formH(s) = lT(K + s2M)−1b. The expansion
point is chosen ass0 = 0. A total of 501 frequency points is evaluated between 0 and 10000 Hz. The left
plot of Fig. 3 shows the magnitudes of the original transfer functionH(s) and the reduced-order transfer
functionH45(s) after 45 PVL iterations. The right plot of Fig. 3 shows the relative error betweenH(s)

andH45(s).

2.6. Error estimation

An important question associated with the PVL method is how to determine the ordern of a Padé
approximantHn(s), or equivalently, the number of steps of the Lanczos process in order to achieve a
desired accuracy of the approximation. In [10], through an algebraic derivation, it is shown that forward
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error between the full-order transfer functionH(s) and the reduced-order transfer functionHn(s) is given
by

H(s)−Hn(s)=
(
lTr
)(ρn+1ηn+1

δn

)[
σ 2τn1(σ )τ1n(σ )

]
γn+1(σ ), (20)

whereσ = s − s0, τ1n(σ ) = eT
1(I − σT n)

−1en, τn1(σ ) = eT
n(I − σT n)

−1e1, andγn+1(σ ) = wT
n+1(I −

σA)−1vn+1. From (20), we see that there are essentially two factors to determine the forward error of the
PVL method, namelyσ 2τn1(σ )τ1n(σ ) andγn+1(σ ). Numerous numerical experiments indicate that the
first factor, which can be easily computed during the PVL approximation, is the primary contributor to
the convergence of the PVL approximation, while the second factor tends to be steady whenn increases.
Note thatτn1(σ ) andτ1n(σ ) are the(1, n) and (n,1) elements of the inverse of the tridiagonal matrix
I −σT n. This is in agreement with the rapid decay phenomenon observed in the inverse of a band matrix
[58]. Fig. 4 shows typical convergence behavior of the factor|σ 2τn1(σ )τ1n(σ )| for a fixedσ . The direct
computation of the second factorγn+1(σ ) would cost just as much as computing the original transfer
function. It is advocated thatwT

n+1Avn+1 be used as an estimation of the factorγn+1(σ ) near convergence.
With this observation, it is possible to implement the PVL method with an adaptive stopping criteria to
determine the required number of Lanczos iterations, see [10]. Related work for error estimation can be
found in [48,42] and recently in [62].

More efficient and accurate error estimations of the PVL approximation and its extension to the other
moment-matching based Krylov techniques warrant further study. One alternative approach is to use the
technique of backward error analysis. By some algebraic derivation, it can be shown that the reduced-
order transfer functionHn(s) of (17) can be interpreted as the exact transfer function of a perturbed
full-order system. Specifically,

Hn(s)=
(
lTr
) · eT

1

(
I − (s − s0)T n

)−1
e1 = lT

[
I − (s − s0)(A+F n)

]−1
r,

Fig. 4. Convergence of|τn1(σ )τ1n(σ )| for a fixedσ = s − s0.
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where

F n =− 1

δn
[vn vn+1 ]

[
0 ηn+1

ρn+1 0

][
wT

n

wT
n+1

]
.

Therefore, one may use‖F n‖ for monitoring convergence. However, it is observed that this is generally
a conservative monitor and often does not indicate practical convergence. An open problem is to find an
optimal normwise relative backward error

η(ε)= min
{
ε: lT

[
I − (s − s0)(A+F n)

]−1
r =Hn(s), ‖F n‖ � ε‖A‖}.

With this optimal backward error and perturbation analysis of the transfer functionH(s), one may be
able to derive a more efficient error estimation scheme.

2.7. Reduced-order modeling in the time domain

We now show how to construct a reduced-order model of the linear system (1) in the time domain for
transient analysis. With a selected expansion points0 as for the steady-state analysis, the linear system (1)
under the so-called “shift-and-invert” transformation becomes{−Aẋ(t)+ (I + s0A)x(t)= r u(t),

y(t)= lTx(t),

whereA = −(G + s0C)−1C andr = (G + s0C)−1b. Let V n be the Lanczos vectors generated by the
Lanczos process with matrixA and starting vectorsr andl as discussed in Section 2.4. Then considering
the approximation of the state vectorx(t) by another state vector, constrained to stay in the subspace
spanned by the columns ofV n, namely,

x(t)≈ V nz(t) for somez(t) ∈RN,

yields an over-determined linear system with respect to the state variablez(t):{−AV nż(t)+ (I + s0A)V nz(t)= r u(t),
ỹ(t)= lTV nz(t).

After left-multiplying the first equation byWT
n , we have{−W T

nAV nż(t)+W T
n(I + s0A)V nz(t)=WT

nr u(t),
ỹ(t)= lTV nz(t).

Then annth reduced-order model of the linear system (1) in the time domain is naturally defined as{
Cnż(t)+Gnz(t)= rnu(t),
ỹ(t)= lTnz(t),

(21)

where

Cn =−WT
nAV n, Gn =WT

n(I + s0A)V n, rn =WT
nr and ln = V T

nl.

By using the governing equations of the Lanczos process presented in Section 2.4, the quadruples
(Cn,Gn, rn, ln) can be simply expressed asCn =−T n,Gn = (I n − s0T n), rn = ρ1e1, andln = η1δ1e1.

Fig. 5 shows the PVL method for transient analysis of a small RLC network presented in [20, p. 29].
The system matricesC andG have order 11. An input excitationu(t) of 0.1 ns rise/fall and 0.3 ns duration
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Fig. 5. RLC network transient responses: 2nd and 4th order PVL approximation.

was simulated. The convergence for orders 2 and 4 of the reduced-order models in the time domain is
shown in Fig. 5. The expansion point is chosen to bes0 = π × 109. In this example, we have observed
the discrepancy between the rate of convergence of the frequency response and transient response. The
relationship between convergence of the frequency response and transient response is a subject of further
study.

2.8. Stability and passivity

In this section, we discuss two essential properties associated with the linear dynamical system (1),
namely stability and passivity. One question is whether or not the tendency of the system response to grow
or decay in time characterizes the system’s stability. The second question is whether or not the system’s
capability of generating energy from sources used to excite it characterizes the system’s passivity. For
the linear system (1), stability can be formally defined via the poles of the transfer functionH(s).

Definition 2. A linear(ized) system isstable

• if all the polespj of H(s) lie in C− := {s ∈ C | �(s) < 0} and
• if all the polespj of H(s) on the imaginary axis,�(pj )= 0, are simple.

A stable system guarantees a bounded response to a bounded input, see for example, [2]. If the linear
dynamical system (1) describes an actual physical system, such as a functioning electronic circuit, then
it will necessarily be stable. Note that for the transfer functionH(s) given by (5), any polepj is of the
form pj = s0 + 1/λj , whereλj ∈ λ(A). However, in general, not everypj of the above form is a pole
of H(s). Indeed, the poles ofH(s) are given by the above form if, and only if, the triple{A, r, l} in (5)
is a minimal realization ofH(s). Recall that for a given transfer functionH(s), a representation (5) is
called a minimal realization if the state-space dimensionN is minimal. Assuming that (5) is a minimal
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realization, then the task of verifying whether the full-system system and its reduced-order system are
stable becomes the problem of computing eigenvalues of matricesA andT n.

In an actual physical system, the property of passivity is guaranteed by the physical elements of the
system, for example, a linear RLC circuit is always passive. Mathematically, a passive system is defined
by

T∫
0

y(t) · u(t)dt � 0, ∀T � 0.

For a time-invariant linear dynamical system (1), passivity is equivalent to the positive realness of the
associated transfer functionH(s).

Definition 3. A function f :C �→ C ∪ {∞} is calledpositive realif

(1) f is analytic inC+ ≡ {s ∈ C, �(s) > 0};
(2) f (s̄)= f (s) for all s ∈ C;
(3) �(f (s)) � 0 for all s ∈ C+.

Using standard results from complex analysis, such as the maximum modulus theorem, one readily
obtains the following well-known conditions for the transfer functionH(s) to be positive real.

Theorem 4. The transfer functionH(s) of a SISO time-invariant linear dynamical system is said to be
passive if

(1) H(s) has no poles inC+;
(2) H(s̄)=H(s) for all s ∈ C;
(3) �(H(iω))� 0 for all ω ∈R.

Note that condition (2) is always satisfied since the quadruples{C,G,b, l} in (1) are assumed to be
real. Condition (1) can be checked by computing the eigenvalues of the matrixA as given in (5). In view
of (1), a passive linear dynamical system is necessarily stable. In [6], it is shown how condition (3) can
be checked via computing the eigenvalues of a certain matrix pencil derived from the representation of
H(s). In particular, condition (3) implies that all zeros ofH(s) must also inC−.

Passivity (and positive realness) is a very important concept in system and control theory. Since
the introduction of the concept of positive realness by Brune [16] in 1931, there is a large volume of
work concerned with characterizing and testing the positive realness. A history and summary of these
works can be found in [2,14] and references therein. It is described as an evergreen research topic.
The eigenvalue-based characterization and test for positive realness for a SISO transfer function [6]
is developed for the applications associated with the reduced-order modeling techniques. Recent related
work includes [38,56].

2.9. Post-processing for stability and passivity

It is well-known that when applied to stable and passive linear dynamical systems, reduced-order
modeling techniques based on Padé approximation in general do not preserve the stability and passivity
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of the original system. For some applications, such as the use of Padé-based reduced-order models for
efficient computation of the frequency response, the possible occurrence of unstable poles is not an issue
[26]. However, a reduced-order model is often used to replace a large linear subsystem in a stable and
passive nonlinear system to reduce the complexity of the simulation of the overall system. In this context,
it is crucial that the reduced-order models of the linear subsystems are stable and passive in order to
ensure stability of the coupled systems.

In [7], a post-processing technique for the PVL method is proposed to modify thenth order Padé
approximantHn(s) to make it stable, and if the original system is passive, also passive. The resulting
variant of the PVL method is called the PVLπ method. The following is an outline of the PVLπ
procedure:

(1) Runn steps of the PVL to obtain annth Padé approximant

Hn(s)=
(
lTr
)
eT

1

(
I − (s − s0)T n

)−1
e1 =

(
lTr
)det(I − (s − s0)T

′
n)

det(I − (s − s0)T n)
.

(2) Check stability by computing poles ofHn(s) via eigenvalues ofT n.
(3) If passivity is desired, check zeros ofHn(s) via eigenvalues ofT ′

n.
(4) If Hn(s) has poles and/or zeros inC+, then move these unstable poles and zeros into the left half

of the complex plane through a rank-one updating ofT n, subsequently, we have a modified Padé
approximant

Ĥn(s)=
(
lTr
)
eT

1

(
I − (s − s0) T̂ n

)−1
e1

whereT̂ n = T n + “rank-one update”.
(5) If Ĥn(s) has no more poles inC+, thenĤn(s) is stable.
(6) If Ĥn(s) has neither poles nor zeros inC+, thenĤn(s) satisfies the necessary condition for passivity.
(7) Check the remaining sufficient condition�(Ĥn(jω)) � 0 for all ω ∈R for passivity ofĤn(s) via the

criterion developed in [6].

By the proper rank-one update ofT n, we are not only able to move unstable poles and/or zeros, but
also are able to show that

Ĥn(s)=H(s)+O
(
(s − s0)

2n−m
)
,

wherem = , + k, corresponds to the, zeros andk poles to be moved. This implies that PVLπ treats
the accuracy of Padé approximation for stability and passivity. Unfortunately, we are not aware of a
systematic way of choosing prescribed positions in the left half of the complex plane for unstable poles
and/or zeros to be moved to so that it is guaranteed that all poles and zeros of the modified Padé
approximantĤn(s) are stable, and meanwhile there is the least loss of moments matched. PVLπ is a
trial-and-error procedure. It might be necessary to repeat steps (4) to (7) for a different set of positions
for the unstable poles and/or zeros. In the following example, a strategy is proposed to move unstable
poles.

This example is a continuation of the PEEC circuit as presented in Section 2.5 and is reported earlier
in [7]. With the proper formulation, the circuit is stable with all poles ofH(s) in the left half of the
complex plane. The PVL method with 60 iterations produces the frequency responseH60(s) within the
admissible error (see Fig. 2). However, the Padé approximantH60(s) is not stable due to 15 unstable
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Fig. 6.H60(s) poles (“+”) by PVL andĤ60(s) poles (“◦”) by PVLπ .

Fig. 7. PVLπ approximation (left), and errors|H(s)−Hn(s)| (PVL) and|H(s)− Ĥn(s)| (PVLπ ) (right).

poles in the right half plane. Using PVLπ , we move unstable poles to stable ones by simply reflecting
unstable poles with respect to the imaginary axis and obtain a stable partial Padé approximantĤ60(s)

(see Fig. 6). The left plot of Fig. 7 shows the curves|H(s)| and|Ĥ60(s)|, and the right plot shows error
curves|H(s)−Hn(s)| (PVL) and|H(s)− Ĥn(s)| (PVLπ ), for the relevant frequency range. The error
curves show that the accuracy of the stable reduced-order transfer functionĤ60(60) remains satisfactory.

There are three ingredients in the PVLπ method. The first is the intimate connection between the
Lanczos process and formal orthogonal polynomials, see for example [33]. In fact, each pair of right
and left Lanczos vectors can be expressed in the formvj = ξj ψj−1(A) r andwj = ηj ψj−1(A

T) l,
whereψj−1 is a monic polynomial of degreej − 1 andξj , ηj �= 0 are suitable scaling factors. The
bi-orthogonality (14) of the Lanczos vectors is equivalent to the formal orthogonality

〈ψj,ψk〉 := lTψj(A)ψk(A)r = 0 for all j �= k = 0,1, . . . , n,
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of the polynomialsψ0,ψ1, . . . ,ψn. The second ingredient is that in analogy to the zero-pole
representation (18) ofHn(s), the modified transfer function̂Hn(s) can be expressed as a rational function
of the form

Ĥn(s)= ψn−1−,(s)

ϕn−k(s)
· ψ̃,(s)

ϕ̃k(s)

where ψ̃,(s) and ϕ̃k(s) are fixed polynomials whose roots are the prescribed, zeros andk poles,
respectively. The parameters of the polynomialsψn−1−,(s) andϕn−k(s) are free. These parameters are
chosen such that the first 2n−m moments ofH(s) andĤn(s) are matched. A rational function of this
form is called apartial Padé approximationas proposed in [15]. Finally, this partial Padé approximation
of the transfer functionH(s) can be interpreted as a partial inverse eigenvalue problem, namely, find a
vectorz such that partial eigenvalues of

T̂ n = T n + zeT
n and T̂ ′

n = T ′
n + z′eT

n−1

are prescribed. This rank-one updating strategy generalizes methods proposed in [39] on computation of
certain Gaussian-type quadratures.

2.10. Reduced-order modeling in finite precision

In this section, we discuss the robustness issue of the reduced-order modeling techniques in the
presence of finite-precision arithmetic. We examine an important special case of the linear dynamical
system (1) where the system matricesC andG are symmetric and positive semidefinite, and the input
and output distribution arraysB andL are identical. For example, by employing so-called modified nodal
analysis, a linear circuit with only resistors and capacitors (an RC circuit) results in such a system. It can
be shown that such a system is automatically stable and passive. AssumeG+ s0C is positive definite for
a selected expansion points0. LetG+ s0C =MMT be the Cholesky factorization ofG+ s0C. Then the
associated transfer function can be written as

Z(s)=BT(G+ sC)−1B = B̃T
(
I + (s − s0)A

)−1
B̃,

whereA=M−1CM−T andB̃ =M−1B. To exploit the symmetry of the transfer functionZ(s), we can
use a symmetric band Lanczos process, as proposed in [75,28]. GivenAT = A andm starting vectors
B̃ = Q̃1 = [ q̃1 q̃2 . . . q̃m ], an n-step symmetric band Lanczos process generates a sequence of
linearly independentLanczos vectorsQn = [q1 q2 . . . qn ], such that they span the same subspace
as the firstn linearly independent columns of the Krylov space

KN

(
A, Q̃1

)= span
{
Q̃1,AQ̃1,A

2Q̃1, . . . ,A
N−1Q̃1

}
.

The Lanczos vectors{qi} can be computed recursively from the following governing relations

AQn =QnT̂ n +
[
0 . . . 0 q̂n+1 . . . q̂n+mc

]+Qdf
n

with the orthogonality conditionsQT
nQn = I n andQT

n[ q̂n+1 . . . q̂n+mc
] = 0, wheremc(� m) is the

current blocksize due to the possible deflation inKN(A, Q̃1). The matrixQdf
n consists of deflated vectors

such that‖Qdf
n ‖ � τ for a given deflation tolerance valueτ . The representation of the projection ofA

onto the Krylov subspace span{Qn} is given by

T n =QT
nAQn.
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As in the classical Lanczos process, the symmetric band Lanczos process generates the entries of
T n directly. Therefore, aftern steps of the symmetric band Lanczos process, a reduced-order transfer
function of dimensionn is defined as follows:

Zn(s)=RT
n

(
In + (s − s0)T n

)−1
Rn,

where Rn = QT
nB̃. This is referred to as the SyMPVL method to denote a symmetric matrix

Padé approximation via Lanczos process [32]. SinceA is positive semidefinite,T n is also positive
semidefinite. As a result, in exact arithmetic, the reduced-order modelZn(s) is stable and passive. It
inherits the essential properties of the original full-order model.

However, in the presence of finite precision arithmetic, roundoff may cause the computed projection
T n of A to be indefinite. Consequently, the reduced-order transfer functionZn(s) may be unstable and
non-passive. For example, Fig. 8 shows the dominant poles ofZ(s) for an extracted RC circuit, where
C andG are matrices of orderN = 1346, and the number of inputs (and outputs) ism= 10. SyMPVL
produces a reduced-order model with admissible error aftern= 60 iterations. The dominant poles of the
original model are all stable, as shown in the third plot of Fig. 8. However, the reduced-order transfer
functionZn(s) has unstable dominant poles, see the first plot in Fig. 8. For analysis and synthesis of such
a linear system, positive semi-definiteness ofT n is necessary. This robustness issue of numerical methods
in the presence of finite-precision arithmetic arises repeatedly in practical applications. Robustness is vital
for an industrial-strength numerical method and its software.

In [8], a remedy is proposed to replace the symmetric band Lanczos process as used in SyMPVL by a
mathematically equivalent process but based on a suitably coupled Lanczos process such that it generates
the LDLT factors ofT n, instead ofT n itself. In this way, we can enforce (or verify) positive semi-
definiteness ofT n directly. In a compact matrix form, the Lanczos-type process with coupled recurrence
can be stated as

AP n = V nLnDn + [0 . . . 0 ṽn+1 . . . ṽn+mc
] + V df

n , (22)

V n =P nUn (23)

with the following orthogonality conditions:

Fig. 8. Dominant poles of a RC circuit (bottom), computed by SyMPVL (top) and SyMPVL2 (middle).
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V T
nV n = I n, (24)

V T
n

[
ṽn+1 . . . ṽn+mc

]= 0, (25)

P T
nAP n =Dn = diag

(
pT

1Ap1,p
T
2Ap2, . . . ,p

T
nApn

)
, (26)

whereLn andUn are lower and upper triangular matrices, respectively.V n consists of Lanczos vectors,
P n auxiliary vectors andV df

n deflation vectors.
By multiplying (26) from the left byUT

n and from the right byUn, and by using (23), it follows that
the representation of the projection ofA onto the Krylov subspace spanned by the Lanczos vectorsV n

is given by

T n = V T
nAV n =UT

nDnUn.

Thus, the factorsUn andDn of the LDLT factorization of the projection matrixT n are directly computed
in this coupled recurrence based Lanczos process. The positive definiteness ofT n is ensured by the
diagonal entries{pT

i Api} of Dn. Subsequently, a reduced-order transfer function of dimensionn is
defined as

Z(c)
n (s)=RT

n

(
I n + (s − s0)U

T
nDnUn

)−1
Rn,

whereRT
n = V T

nB̃. This is called the SyMPVL2 method in [8], as a modified version of SyMPVL. The
middle plot of Fig. 8 shows the dominant poles computed by SyMPVL2. The diagonal entries ofDn

generated by SyMPVL2 are all positive, and the matrixUT
nDnUn is positive definite. Another desirable

by-product of SyMPVL2 is that, for the same dimensionn, the reduced-order transfer functionZ(c)
n (s) is

typically more accurate as illustrated in Fig. 9.
Finally, we remark that, in a different context, the benefit of using a coupled, instead of a non-coupled,

Lanczos process was also noted and exploited in [34,44]. The technique of directly computing the
factorized form of a solution is also shown in other applications, such as solving a stable and non-negative
definite Lyapunov matrix equation of the formAX +XAT =−C, whereA is stable, andC is positive
semidefinite. It is known that the solutionX is positive semidefinite, namelyX can be represented as
X = LLT. In [45], it is shown how to directly compute the Cholesky factorL of X, instead ofX.

Fig. 9. Accuracy:‖Z(s)−Zn(s)‖ vs.‖Z(s)−Z(c)
n (s)‖.
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Another example is to compute eigenvalues of a tridiagonal matrixT in high relative precision. As
shown in recent work [65], it is better to work with the LDLT form of T , instead ofT directly. Those
efforts highlight ingenuity in the work of numerical analysis and scientific computing.

2.11. Other reduced-order modeling methods and software availability

So far, we have focused on the Lanczos-based Krylov subspace techniques with the property of
moment-matching for reduced-order modeling of the linear dynamical system (1). Among the early
work in this class of methods, besides the aforementioned, we would like to highlight the work of De
Villemagne and Skelton [25] in 1987. In this paper, a methodology that exploits the notion of an oblique
projection is studied. It has flexibility to allow the reduced-order model to match various combinations
of different types of parameters of the full-order model, such as lower frequency (s0 = 0) and high
frequency (s0 =∞) moments. It also contains an up to date list of papers on model reduction techniques.
In engineering applications of Krylov subspace based reduced-order model techniques, the works of
Nour-Omid and Clough [61] (1984) and Craig, Jr. and Hale [24] (1988) in structural dynamics are among
the earliest ones we are aware of.

We have mostly discussed the treatment of single-input single-output systems. A generalization of
the PVL method for multi-input multi-output systems is reviewed in [31]. Naturally, it is called the
MPVL method since it is based on a Lanczos-type process for multiple starting vectors. Besides Lanczos
process based methods, Arnoldi process based methods have also been studied extensively. In [43], an
implicitly restarted Lanczos method was developed. In [42], a rational Krylov subspace based method
was proposed. For RLC, PRIMA is also widely accepted in the circuit simulation community, which
combines the Arnoldi process and a direct orthogonal projection [63]. The connection between PRIMA
and SyMPVL is explained in [29].

All moment-matching methods involve local approximations in nature. There is a class of global
approximation methods, mostly based on the theory of balanced realization [59]. They sometimes are
also called Gramian-based model reduction methods, or SVD-based model reduction methods [86,3].
The crux of this class of methods for applying to large-scale linear dynamical systems lies in solving two
large-scale Lyapunov matrix equations for the system gramians. Low rank approximations to the system
gramians have been proposed by using Lanczos and Arnoldi-based Krylov subspace techniques in [48,
47]. In the latest work [82], a low rank approximation to a cross gramian is proposed which overcomes
the possible inconsistency by solving system gramians independently. Besides Krylov subspace based
techniques, ADI based methods for solving the underlying Lyapunov equations are also presented in the
recent work [67,55].

In contrast to the vast amount of literature on Krylov-subspace based methods for reduced-order
modeling, there is little software available in the public domain. To the knowledge of the author, the PVL
method and its variants, and PRIMA have become kernels of proprietary CAD tools for interconnect
analysis and other applications in circuit simulation. On the other hand, it is not too hard for readers to
implement a Krylov-subspace based reduced-order modeling method, since a major part of the work is
based on implementation of Lanczos or Arnoldi processes or their variants. Algorithm templates and their
software for these processes can be found in [4] and references therein. In an effort to exchange software
and test data for studying, comparing and benchmarking various numerical methods, the author has put
a set of Matlab codes which implement the basic Lanczos-based method as outlined in this section at the
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web site http://www.cs.ucdavis.edu/∼bai. In addition, a few test data sets, such as the widely used PEEC
example, are also available at this site.

3. Second-order dynamical systems

Second-order models arise naturally in the study of many types of physical systems, with common
examples being electrical, mechanical and structural dynamical systems. A time-invariant multi-input
multi-output second-order system is described by{

Mq̈(t)+Dq̇(t)+Kq(t)= Pu(t),
y(t)=ETq(t),

(27)

with initial conditionsq(0) = q0 and q̇(0) = q̇0. Here t is the time variable,q(t) ∈ RN is a vector of
state variables,u(t) ∈ Rm the input force vector, andy(t) ∈ Rp the output measurement vector.M ,
D, K ∈ RN×N are system matrices, such as mass, damping and stiffness matrices as they are called
in structural dynamics.P ∈RN×m is an input distribution array,E ∈RN×p is an output measurement
array.N is the state-space dimension.m andp are the number of inputs and outputs, respectively. In
most practical cases,m andp are much smaller thanN .

The second-order system (27) can be reformulated into an equivalent linear system of the form (1) in
many different ways. We will use the following linear system equivalent to (27):{

Cẋ(t)+Gx(t)=Bu(t),
y(t)=LTx(t),

(28)

with

x(t)=
[
q(t)
q̇(t)

]
, C =

[
D M
W 0

]
, G=

[
K 0
0 −W

]
, B =

[
P
0

]
, L=

[
E
0

]
,

whereW can be anyN × N nonsingular matrix. A common choice ofW is to be the identity matrix,
W = I . If M ,D andK are all symmetric andM is nonsingular, as often occurs in structural dynamics,
we can chooseW =M . The result is thatC andG in the linearized system (28) are symmetric matrices.
The symmetry of the original system is preserved.

Assume that for simplicity, we have zero initial conditionsq(0)= q0 = 0, q̇(0)= q̇0 = 0 andu(0)= 0
in (27). Taking the Laplace transform (2) of the second-order system (27), we have{

s2MQ(s)+ sDQ(s)+KQ(s)= P U(s),

Y (s)=ETQ(s).
(29)

EliminatingQ(s) in (29) results in the frequency domain input-output relationY (s)=H (s)U (s), where
H (s) is thep×m matrix-valuedtransfer function, given by

H (s)=ET
(
s2M + sD +K)−1

P .

In view of the equivalent linearized system (28), the transfer functionH (s) can also be expressed as

H (s)=LT(G+ sC)−1B.

The power series expansion ofH (s) abouts = 0 can be formally written as

H (s)=M0 +M1s +M2s
2 + · · ·
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whereM i are called (low-frequency) moments. These moments can be compactly expressed in terms of
the linearized system (28) as

Mj = (−1)jLT(G−1C
)j
G−1B for j = 0,1,2, . . . ,

where it is assumed that the matrixK in (29) is invertible.

3.1. Eigensystem methods

Using the linearization formulation (28) of the second-order system (27), one can immediately use the
eigensystem methods of linear systems as discussed in Section 2.1 for the frequency response analysis of
the second-order system (27). However, in this section, we exploit the idea of eigensystem methods and
treat the second-order system (27) directly.

Assume that the input forced excitationu(t) of the second-order system (27) is of the harmonic form
u(t)= ũ eiωt with frequencyω, whereũ is a constant vector. Correspondingly, a harmonic form of state
variablesq(t) = q̃(ω) eiωt . When this is substituted into the first equation of (27), it turns out that we
need to solve the following parameterized linear system of equations(−ω2M + iωD+K

)
q̃(ω)= P ũ (30)

for q̃(ω). This is called thedirect frequency response analysis method[22,81]. With a given frequencyω0,
one can use a linear system solver, either direct or iterative, to obtain the desiredq̃(ω0). Recently, efforts
have been made to solve such parameterized linear system of equations more efficiently by iterative
methods; for examples, see [80,57].

Alternatively, we can try to reduce the cost of solving the large-scale parameterized linear system of
Eqs. (30) by first invoking an eigensystem analysis. This is referred asmodal frequency response analysis
in structural dynamics [81]. By transferring coordinatesq̃(ω) of the state vectorq(t) to new coordinates
z(ω),

q(t)∼=W kz(ω) eiωt ,

whereW k consists ofk selected modal shapes to retain the modes whose resonant frequencies lie within
the range of forcing frequencies. Then Eq. (30) is approximated by(−ω2MW k + iωDW k +KW k

)
z(ω)= P ũ.

Multiplying WT
k from the left yields ak × k parameterized linear system of equations with respect to

z(ω):(−ω2
(
WT

kMW k

)+ iω
(
WT

kDW k

)+ (W T
kKW k

))
z(ω)=WT

kP ũ.

The main question now is how to obtain the desired modal shapesW k. One can simply extract the
desired modal shapesW k from eigenvectors of the matrix pair(M,K) by ignoring the contribution
of the damping term. This is referred to as themodal superposition methodin the structural dynamics
community. It is applicable under the assumption that the damping term is composed of certain structure,
for example, the so-called Rayleigh dampingD = αM+βK , whereα andβ are scalars [22]. In general,
one may need to solve the full quadratic eigenvalue problem(λ2M + λD + K)w = 0 for the desired
modal shapesW k . In practice, it is often the case that only a relatively small number of modal shapes are
necessary, i.e.,k �N . Mathematical theory and numerical techniques for quadratic eigenvalue problems
can be found in the recent survey [85] and references therein.
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3.2. Reduced-order modeling based on linearization

The reader may notice that the modal superposition method presented in the previous section is a way
to construct a reduced-order model for the frequency response analysis. We now discuss how to use the
Krylov subspace techniques for the reduced-order modeling of the second-order system (27), without
explicitly using modal shapes. One straightforward approach is to apply the Krylov subspace techniques
reviewed in Section 2 to the linearized system (28). The approach can be simply outlined as follows:

(1) Linearize the second-order system (27) by properly defining 2N × 2N matricesC andG of the
equivalent linear system (28). Select an expansion points0 around the frequencies of interest.

(2) Apply a Krylov process, say the Lanczos process as in Section 2.4, to obtain the left and right
projection subspaces span{W n} =Kn(A

T,L) and span{V n} =Kn(A,R), whereA= (G+s0C)−1C,
andR = (G+ s0C)−1B.

(3) Approximate the state vectorx(t) by another state vectorz(t) constrained to the subspace span{V n},
i.e., letx(t)≈ V nz(t). This yields the reduced-order model of the second-order system (27) in the
following linear formulation:{

Cnż(t)+Gnz(t)=Bn u(t),
ŷ(t)=LT

nz(t),

whereCn =−T n,Gn = (I n − s0DnT n), Rn =W T
nR, andLn = V T

nL.

In Fig. 10, we demonstrate the numerical results of this approach for a linear-drive multi-mode
resonator structure reported in [21]. The solid lines are the Bode plots of frequency responses of the
original second-order system of order 63. The dashed lines in the left plot are the Bode plots of frequency
responsesH8(s) for the 8th-order linear model and in the right plot are the Bode plots of frequency
responsesH12(s) of the 12th-order linear model. The relative errors betweenH(s) and theH12(s) are
less than 10−4 over the frequency range.

Fig. 10. Bode plots ofH(s) andH8(s) (left) andH(s) andH12(s) (right).
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There are a couple of advantages to the linearization approach, namely, one can directly exploit
existing reduced-order modeling techniques developed for linear systems, and furthermore, one can
also exploit the structures of linearized system matricesC and G in a Krylov process to reduce
the computational costs. However, the linearization approach also has a number of disadvantages.
Particularly, it ignores the physical meaning of the original system matrices and more importantly,
the reduced-order model is no longer in a second-order form. For engineering design and control of
dynamical systems, it is highly desirable to have a reduced-order model preserving the second-order
form [83].

3.3. Reduced-order modeling based on second-order systems

In this section, we discuss a Krylov subspace method which produces a reduced-order model of the
second-order form. This is based on the work of Su and Craig, Jr. [83]. The key observation goes as
follows. By the linearization (28) of the second-order system (27), the desired Krylov projection subspace
for reduced-order modeling is

Kn

(
G−1C, B̃

)= span
{
B̃,

(
G−1C

)
B̃,

(
G−1C

)2
B̃, . . . ,

(
G−1C

)n−1
B̃
}

whereB̃ =G−1[B L ]. Let us denote

Rj =
[
Rd

j

Rv
j

]
= (G−1C

)j
B̃,

whereRd
j is anN -vector corresponding to the displacement portion of the vectorRj , andRv

j is anN -
vector corresponding to the velocity portion of the vectorRj , as referred to in [83]. Then by the structure
of the matricesC andG, we have[

Rd
j

Rv
j

]
= (

G−1C
)[Rd

j−1
Rv

j−1

]
=
[
K−1D K−1M
−I 0

][
Rd

j−1
Rv

j−1

]
=
[
K−1DRd

j−1 +K−1MRv
j−1

−Rd
j−1

]
.

We observe that thej th velocity portion vectorRv
j is the (j − 1)th displacement portion vectorRd

j−1
(up to the sign difference). In other words, the second portionRv

j of Rj is a “one-step delay” of the first
portionRd

j−1 of Rj−1. This suggests that one may simply use the first portion of the vectors{Rj } and
choose

span
{
Rd

0, R
d
1, R

d
2, . . . , Rd

n−1

}
as the projection subspace. In practice, for numerical stability, one may use the Arnoldi process to
generate an orthonormal basisQn of the desired subspace. The resulting procedure is outlined in Fig. 11.
By thechange-of-state coordinates, namely, approximating the state vectorq(t) by another state vector
z(t) constrained to the subspace span{Qn}: q(t) ≈ Qnz(t), this immediately yields a reduced-order
model of the original system (27) in a second-order form:{

Mnz̈(t)+Dnż(t)+Knz(t)= P nu(t)
ŷ(t)=ET

nz(t),
(31)
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(1) Initialization
(2) Rd

0 =K−1[P E ]
(3) Rv

0 = 0
(4) (Rd

0)
TKRd

0 =U0S0V
T
0 (SVD)

(5) Q1 =Rd
0U0S

−1/2
0

(6) Q′
1 = 0

(7) Arnoldi loop
(8) for j = 1,2, . . . , n− 1 do
(9) Rd

j
=K−1(DQj +MQ′

j−1)

(10) Rv
j
=−Qj

(11) Orthogonalization
(12) for i = 1,2, . . . , j do
(13) T i = (Qi )

TKRd
j

(14) Rd
j =Rd

j −QiT i

(15) Rv
j =Rv

j −Q′
iT i

(16) end for
(17) Normalization
(18) (Rd

j )
TKRd

j =U jSjV
T
j (SVD)

(19) Qj+1 =Rd
jU jS

−1/2
j

(20) Q′
j+1 =Rv

j
U0S

−1/2
0

(21) end for

Fig. 11. Arnoldi process based algorithm for generating basis vectors{Qj }.

whereMn =QT
nMQn,Dn =QT

nDQn,Kn =QT
nKQn, P n =QT

nP , andEn =QT
nE. In [83], a number

of advantages of this approach are credited in terms of preserving stability, symmetry and physical
meaning of the original system. Here we present an example for the frequency response analysis of a
second-order system of order 400, which comes from a finite element model of a shaft on bearing supports
with a damper. The data were extracted from MSC/NASTRAN and are used in [51] to test an algorithm
for solving symmetric quadratic eigenvalue problems. In the top of Fig. 12, we plot the magnitudes
of the exact transfer functionH(s), and approximate ones by the model superposition method (MSP)
as discussed in Section 3.1 and by the Krylov subspace method (ROM). For the modal superposition
method, we use the 80 mode shapesW 80 from the matrix pair(M,K). The reduced-order model (31) is
also of order 80. The bottom plot of Fig. 12 shows the relative errors between the exact and approximation
based on the modal superposition method (dash-dot line) and the exact and the approximation based on
the Krylov subspace method (dashed line). The plots indicate that no accuracy has been lost by the
Krylov subspace method. Numerical results are also reported in [71] for simulating the dynamics of a
micromirror.

In terms of the moment-matching property, Su and Craig, Jr. [83] show that under the assumption of
symmetry of the matricesM ,D andK , and the nonsingularity ofM andK , the reduced-order model (31)
matches the first 2n moments of the full-order system (27). Precisely, note that the transfer function of
the reduced-order model (31) is given by

H n(s)=ET
n

(
s2Mn + sDn +Kn

)−1
P n
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Fig. 12. Comparison of three methods for frequency responses (top) of a shaft on bearing support with a damper (top) and
relative errors (bottom).

or equivalently, it can be written in linear form

H n(s)=LT
n(sCn +Gn)

−1Bn,

where

Cn =
[
Dn Mn

Mn 0

]
, Gn =

[
Kn 0
0 −Mn

]
, Bn =

[
P n

0

]
, Ln =

[
En

0

]
.

Then the power series expansion ofH n(s) abouts = 0 is given by

H n(s)= M̂0 + M̂1s + M̂2s
2 + · · · ,

where the momentŝM i can be expressed compactly in terms of the corresponding linearized system as

M̂j = (−1)jLT
n

(
G−1

n Cn

)j
G−1

n Bn for j = 0,1,2, . . . .

Then it can be shown thatH (s) andH n(s) match the first 2n moments:

Mj = M̂j for j = 0,1,2, . . . ,2n− 1.

In other words,H (s) = H n(s) + O(s2n). It is assumed that no deflation occurs in the Krylov process
defined in Fig. 11.

There are a number of problems remaining unanswered. For example, can the approach be generalized
to the nonsymmetric and possibly singular system matricesM ,D andK? How should we take deflation
into account in the Krylov process and what is its effect in terms of the moment-matching property? How
do we introduce the shifting strategy to generalize the frequency response analysis around an arbitrary
expansion points0? Work in these directions is in progress and will be reported elsewhere.
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4. Semi-second-order dynamical systems

A time-invariant multi-input multi-output second-order system with nonlinear excitation force may be
written as a semi-second-order system of the following form:{

Mq̈(t)+Dq̇(t)+Kq(t)= Pu(q, q̇, t),
y(t)=ETq(t),

(32)

where the system dataM , D, K , P andE have the same interpretation as in the standard second-order
system (27). The exception is that the excitation forceu is not only from external sources, but also could
be from internal sources.u is a nonlinear function ofq and possiblẏq.

Such systems arise in a number of applications, particularly in the emerging area for the simulation of
MEMS devices [79]. The semi-second-order system (32) is currently used as the governing equations in
SUGAR, a system level simulation package for MEMS devices [84]. For example, Fig. 13 shows a simple
electrostatic gap-closing actuator used as a demo in SUGAR, where the excitation forceu includes the
electrostatic force between the plates and is proportional tov(t)2/gap(q)2, wherev(t) is the voltage
between electrodes and gap(q) is a scalar function ofq for the distance between two plate electrodes.
For more detail about the description of the electrostatic gap-closing actuator, see [5]. The mathematical
model and properties of the electrostatic actuator are also studied in [66].

Instead of treating the semi-second-order system (32) as a general nonlinear system, we can exploit
the structure of the system and use the idea of “nonlinear dynamics using linear modes”. This idea is
suggested in [1], where a nondamped system (D = 0) is considered and the eigenmodes ofM andK
are used to extract a reduced-order model. In [5], we develop a Krylov subspace based reduced-order
modeling technique. We simply first ignore the nonlinearity in the force termu, and treat the system as
an ordinary second-order system. Using the approach as discussed in Section 3.2, a projection subspace
V n is first constructed, which may be viewed as spanned bythe linear Krylov modes, and then the state
vector q is expanded in terms of the constructed subspace, namely,q(t) ≈ V nz(t). A reduced-order
model in terms of the vectorz(t) is given by{

Cnż(t)+Gnz(t)=Bnu
(
V nz(t), t

)
,

ỹ(t)=LT
nz(t),

Fig. 13. Electrostatic gap-closing actuator.
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Fig. 14. Transient responses of the gap-closing actuator.

where the definitions ofCn,Gn,Bn andLn are the same as in Section 3.2. Note that the excitation force
term u(q, t) of the full-order system is replaced byu(V nz, t) in the reduced-order model. When the
reduced-order model is solved by a numerical method, it is necessary thatu(V nzj , t) can be efficiently
evaluated for a givenzj , wherezj is an approximation ofz(t) at time stept = tj .

In Fig. 14, we illustrate this scheme for the transient analysis of the electrostatic actuator shown in
Fig. 13. The first plot shows the outputy(t) of the full-order system and the outputỹ(t) of the reduced-
order system The second plot shows the accuracy of the reduced-order model in terms of the relative error
‖y(t)− ỹ(t)‖/‖y(t)‖ for the 6th order of the reduced-order model. The order of the original model is
N = 30. Even for such a small model, we have observed a factor of 60 speedup, see [5] for more details.
While a number of satisfactory results are reported based on the idea of “nonlinear dynamics using linear
modes”, as indicated in the recent work [36], linear (eigen- or Krylov-)modes may not adequately capture
all the features of nonlinear behaviors. It is still the subject of further study to understand this approach
and its limitations. We will further discuss this issue in the following section.

5. Nonlinear dynamical systems

Several model reduction techniques for nonlinear dynamical systems have been studied by researchers
in various fields. Two of the most well-known methods are the Karhunen–Loève decomposition based
methods and methods of balanced truncation. Karhunen–Loève decomposition based methods are also
known as proper orthogonal decomposition (POD) methods. Methods of balanced truncation extend the
success of balanced truncation of linear systems to nonlinear systems. It is beyond the scope of this paper
to review these methods. The interested reader is referred to [46,77]. The latest work includes [52,72].
Means of applying Krylov subspace techniques for adaptively extracting accurate reduced-order models
of large-scale nonlinear dynamical systems is a relatively open problem. There has been much current
interest in developing such techniques. In this section, we discuss two methods, which extend Krylov
subspace techniques for linear dynamical systems as discussed in Section 2.
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We consider multi-input multi-output nonlinear dynamical systems of the form:{
ẋ = f (x)+Bu,
y =LTx

(33)

with initial condition x(0) = x0, wherex ∈ RN is the state variables,N is the dimension of the state
space.u ∈ Rm and y ∈ Rp are inputs and outputs, respectively.B ∈ RN×m is the input distribution
array.L ∈RN×p is the output measurement array. We assume that the nonlinear state evolution function
f (x) :RN →RN is smooth, i.e.,C∞, and has an equilibrium. Without loss of generality we take this
equilibrium at0, i.e.,f (0)= 0.

Examples of the origins of nonlinear dynamical systems of the form (33) include the simulation of
time-varying nonlinear circuit elements by independent excitation source [30,19], and MEMS, such as
micro-pressure sensor [60]. The modeling of the dynamical behavior of a voltage-controlled parallel-
plate electrostatic actuator as shown in Fig. 15 also derives a set of state equations of the form (33) [78,
p. 138]. Such an electrostatic actuator invokes multi-domain parameters, such as mass, stiffness and
damping in the mechanical domain, and an excitation force network in the electrical domain.

In the following, we discuss two approaches for the reduced-order modeling of the nonlinear
system (33). The first approach is called thelinearization method. It linearizes the system around the
equilibrium point, and then extracts a Krylov subspace for reduced-order modeling. Specifically, suppose
that the power series expansion off (x) about the equilibrium point0 is written

f (x)=A1x +A2(x ⊗ x)+A3(x ⊗ x ⊗ x)+ · · · (34)

whereA1 ∈RN×N is the Jacobian or the first derivative off , andA2 ∈RN×N2
is the second derivative

matrix of f , and so on.⊗ is the Kronecker product. We linearize the original nonlinear system (33) by
only using the first term in the expansion (34) off , and obtain a linear system:{ ˙̂x =A1x̂ +Bu,

ỹ =LTx̂.
(35)

We can then immediately apply a reduced-order modeling method discussed in Section 2 for the
linearized system (35), and obtain alinear reduced-order model. The outputỹ is regarded as an
approximation of the outputy of the original system (35). If we are interested in a small region of
the state space near the equilibrium point, or so-called small-signal analysis, then as demonstrated in
[30], this approach provides an efficient tool for analyzing the nonlinear system (33).

Fig. 15. A voltage-controlled parallel-plate electrostatic actuator includes multi-energy domain parameters [78, p. 138].
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Alternatively, one may also use the linearized model (35) to extract a Krylov projection subspace
spanned byV n. Then, by substitutingx ≈ V nz into the original nonlinear system (33), anonlinear
reduced-order model is obtained:{

ż= g(z)+Bnu,
ŷ =LT

nz

whereg(z) = V T
nf (V nz), Bn = V T

nB andLn = V T
nL. We assume thatV n is an orthonormal basis

of the projection subspace. One of the issues associated with this approach is that one must have a
representation ofg(z) = V T

nf (V nz) that can be efficiently stored and evaluated. The challenge of
this issue is highlighted in [60]. Iff has a certain structure, then one may exploit such structure to
derive an efficient representation ofg. For example, in [19,18],f is considered as a quadratic function
f (x)=Ax +J (x⊗ x), and in [36],f is represented as a gradient of a scalar functionf (x)=∇xφ(x).

It is often the case that in order to obtain some pre-knowledge about the dynamical behavior of the full-
order nonlinear system, we intentionally linearize a system even if it is not near the equilibrium and accept
some degree of error rather than confront the full-order nonlinear system. To understand the limitation
of this approach, namely, when a reduced-order model strictly based onlinear information, namely, the
Jacobian of the nonlinear state evaluation functionf , is accurate enough for a particular application,
we may invoke the tool of variational analysis to analyze the contribution of the higher order nonlinear
term [74, p. 113]. As a by-product, we may also use the resulting sequence of linearized systems to
develop a technique for the reduced-order model of the nonlinear dynamical system. Preliminary results
are reported in [68].

The second approach is intended to explicitly incorporate the higher order nonlinear terms in the
power series expansion (34) off into the construction of a Krylov projection subspace. The approach is
based on the Carleman bilinearization of a nonlinear system. See, for example, [74,76] for the Carleman
bilinearization. The following is an outline of this approach, which is recently suggested in [69]. For
simplicity, we consider the single-input single-output case of the nonlinear system (33). By Carleman
bilinearization, the nonlinear system (33) can be approximated by a bilinear system given in the following
form { ˙̂x = Âx̂ + N̂ x̂u+ b̂u,

ŷ = ĉ
T
x̂.

(36)

Then by applying the multi-dimensional Laplace transform, it can be shown that thekth degree transfer
function of the bilinear system (36) is given by

Hk(s1, . . . , sk)= ĉ
T(

skI − Â
)−1
N̂ · · · N̂(s2I − Â

)−1
N̂
(
s1I − Â

)−1
b̂. (37)

From the power series expansion of(sjI − Â)−1, it is natural to define the correspondingmulti-moments
as

m(,1, ,2, . . . , ,k)= (−1)nĉT
Â

−,k
N̂ · · · N̂Â−,2

N̂Â
−,1
b̂, (38)

where,i are nonnegative integers. The expressions of the transfer function (37) and the associated multi-
moments (38) suggest that a projection subspaceV n can be constructed by a nest of Krylov subspaces

span{V n} =Km

(· · · · · ·Km

(
Â

−1
, Â

−1
N ·Km

(
Â

−1
, Â

−1
b
)) · · · ).
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Fig. 16. Transient responses of a nonlinear circuit system, full-order system (solid), reduced-order model of the linearized
system (dash), and reduced-order bilinear system (dash-dot).

Once the basisV n of the projection subspace is extracted, we can approximate the state vectorx̂(t) by
another state vectorz(t) constrained to the subspace span{V n}, i.e., let x̂(t) ≈ V nz(t). This yields a
reduced-order modeling of the bilinear system (36):{

ż= Ânz+ N̂nzu+ b̂nu,
ỹ = ĉ

T
nz.

(39)

This approach can explicitly incorporate higher order nonlinear terms of the state evolution functionf

and meanwhile an existing Lanczos or Arnoldi process for generating a Krylov projection basis can be
applied. However, one critical issue associated with this approach is the rapid growth of the dimension
of the bilinear system (36) as a result of Carleman linearization. For example, even if we only use the
first two terms in the power series expansion (34) off , the order of the resulting bilinear system is about
O(N2). However, the matricesAi in the power series expansion (34) off are generally extremely sparse,
and the matriceŝA andN̂ in the bilinear system (36) are highly structured, so one can exploit these facts
in a Krylov process, namely through the matrix–vector multiplications during the Lanczos or Arnoldi
process, and produce a useful reduced-order model. In Fig. 16, we show the transient responses of a RC
circuit with nonlinear resistors taken from [19]. The dimension of the original full-order nonlinear system
is N = 100. The solid line is the exact responsey(t), computed as the solution of the full-order system.
The dashed line is the response of the linearized system (35) of reduced-order 45. The dash-dot line is the
response of the bilinear system (39) of the reduced-order 17. The response of the reduced-order bilinear
system is significantly more accurate than the linearized system. We have only limited experience with
this approach. Work in this direction is still in progress and will be reported in [9].

6. Concluding remarks

An accurate and effective reduced-order model of large-scale dynamical systems can be applied for
steady state analysis, modal frequency analysis, transient analysis and sensitivity analysis. As a result, it
can significantly reduce design and simulation cycles. Such a computational prototyping tool often speeds
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up the process by orders of magnitude. In the past few years, we have witnessed exciting progress in
reduced-order modeling of large-scale dynamical systems using Krylov subspace techniques. Numerous
efficient algorithms have been developed for the reduced-order modeling of linear and second-order
systems. They have demonstrated great success in some applications, such as circuit simulation.

Looking ahead, automatic generation of an accurate and effective reduced-order model directly based
on the description of a physical system or device is not only an algorithmic issue, but also a challenging
software issue. The development of industrial strength software is necessarily quite involved due to
various robustness and efficiency issues related to the underlying Krylov processes. It will be a subject
of further study. Reduced-order modeling of large-scale nonlinear dynamical systems is ultimately
important and hard. Research into the development of Krylov subspace based techniques has just begun.
Meanwhile, new challenges are arising in the simulation of multi-energy domain and multi-scaling
systems. Finally, we note that accuracy and integration issues related to the coupling between a reduced-
order model of a subsystem and the rest of the system are still open problems.
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