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Abstract

Since the CS decomposition (CSD) and the generalized singular value decomposition
(GSVD) emerged as the generalization of the singular value decomposition about fifteen
years ago, they have been proved to be very useful tools in numerical linear algebra. In
this paper, we review the theoretical and numerical development of the decompositions,
discuss some of their applications and present some new results and observations. We
also point out some open problems. A Fortran 77 code has been written that computes
the CSD and the GSVD.

Keywords: singular value decomposition, CS decomposition, generalized singular value
decomposition.
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1 Introduction

The singular value decomposition (SVD) of a matrix is one of the most important tools in
numerical linear algebra. It has been widely used in scientific computing. Recently, Stewart
[52] gave an excellent survey on the early history of the SVD back to the contributions of
E. Beltrami and C. Jordan in 1873 and 1874.

In contrast to the SVD, the CS decomposition (CSD) of a partitioned orthonormal
matrix and the generalized singular value decomposition (GSVD) of two matrices having
the same number of columns have been around only about fifteen years. In the early years,
the two decompositions were developed separately. Stewart in 1977 [48] first put forward an
explicit CSD form, which he called a general decomposition of a unitary matrix, although
it is implicit in the works of Davis and Kahan in 1970 [16] regarding the perturbation
of a linear operator, and Bjorck and Golub in 1973 [11] concerning the canonical angles
between subspaces. The motivation of the CSD stems from the question of how much we
can simplify the representation of an orthogonal projector and how to measure separation
between subspaces. The CSD allows us to define canonical angles between pairs of subspaces
in such a way that as the largest canonical angle approaches zero the subspaces approach
one another. This in turn leads to some useful results on the singular values of products
and differences of projections.

The GSVD was first introduced by Van Loan in his PhD dissertation in 1976 [56],
which then was called the B-singular value decomposition to refer the standard SVD of one
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matrix A associated with another given matrix B having the same number of columns of
A. Specifically, it is well known that the singular values o(A) of a matrix A are the square
roots of the eigenvalues of positive semi-definite symmetric matrix AT A, i.e.,

o(A) = {o > 0| det(ATA — 0%I) = 0},

where det( A) stands for the determinant of the matrix A. It is a natural generalization that
if given another matrix B, the generalized singular values o(A, B) are defined as the square
roots of the eigenvalues of positive semi-definite symmetric matrix pencil ATA — ABT B,
i.e.,

o(A,B) = {o > 0|det(ATA - ¢? BTB) = 0}.

Van Loan shows that o(A, B) can obtained by factorizing A and B into the products of an
orthogonal matrix, a diagonal matrix and a nonsingular matrix, respectively. In particular,
if B is the identity matrix, the decomposition gives the SVD of A.

In 1981, Paige and Saunders [40] described a more general formulation of Van Loan’s B-
SVD, which they called the generalized singular value decomposition (GSVD). Under their
formulation, the CSD can be regarded as a special case of the GSVD.

The assessment of the conditioning of the decompositions comes from the perturbation
analyses by Sun [53], Paige [41], Demmel and Verseli¢ [19] and Li [36]. From their analyses,
we know that the CSD is perfectly conditioned. However, the GSVD is not necessarily well
conditioned under perturbation, unlike the standard SVD.

The CSD and the GSVD have been found to be very useful tools in numerical linear
algebra. Their applications in many generalized problems are in the same spirit as the SVD
in corresponding standard problems, such as in finding the intersection of the null spaces
of two matrices [28], in the generalized eigenvalue problem arising from signal processing
[47], in computing the Kronecker form of matrix pencil A— AB [32], in the constrained least
squares problems [28], in the least squares problem with Tikhonov regularization [29], and
so on.

The development of numerical methods for computing the CSD and the GSVD started
with the paper by Stewart [49] based on the SVD and the Jacobi method for the symmetric
eigenvalue problem. Later, Van Loan [57] put forward another method based on the SVD
and the QR decomposition. Both Stewart’s and Van Loan’s algorithms primarily aim
at computing the CSD, but they can be used to compute the GSVD by incorporating
other standard decompositions. With the development of the Kogbetliantz algorithm for
computing the SVD of a product of two matrices by Heath, Laub, Paige and Ward [31]
and Hari and Veseli¢ [30], Paige proposed a generalization of the Kogbetliantz algorithm to
compute the GSVD directly. The most recent work by Bai and Demmel (7], and Adams,
Bojanczyk, Ewerbring, Luk and Van Dooren [13,2], focuses on the stabilization and accuracy
improvement of the existing three algorithms.

In this paper, we shall review theoretical aspects of the CSD and the GSVD in a unified
way, and present some new results and insights for the decompositions. It will be empha-
sized that although the different formulations of the decompositions are mathematically
equivalent, they have different numerical properties. A number of applications of the CSD
and the GSVD will be discussed in this paper. We shall also review the three existing
numerical algorithms and their variations for computing the decompositions, and compare
their performance. A modified version of Stewart’s algorithm is presented. Some open
problems are discussed at the end of this paper.
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A portable Fortran 77 code SGGSVD has been developed for computing the GSVD by
Bai, Demmel and Zha. It can be obtained from the author.

Recently, motivated by different origins of application problems, the SVD has been
further generalized for matrix triplets by Ewerbring and Luk [24] and Zha [63]. A proposal
has been put forward by De Moor, Golub and Zha [20,21] for standardizing nomenclature
of the generalization of the SVD of any number of matrices with conforming dimensions.
Because of the length of this paper, we shall not discuss these generalizations in detail.

Throughout this paper we shall use the notational conventions of Golub and Van Loan’s
book Matriz Computations (second edition) [28]. Specifically, matrices are denoted by upper
case italic and Greek letters, vectors by lower case italic letters, and scalars by lower case
Greek letters or lower case italic if there is no confusion. The (¢, ) entry of a matrix A is
denoted by a;;. The symbol IR denotes the set of real numbers, IR™ the set of real n-vectors,
and R™*™ the set of real m X n matrices. The matrix AT is the transpose of A. The matrix
|A| = (laij]). rank(A) is the rank of matrix A; null(A) is the null space of A, namely,
null(4) = {z| Az = 0}; span{Q@} is the subspace spanned by the columns of the matrix
Q. || - |lp is the p-norm of a vector or matrix; usually, p = 1,2,00, F. k,(A) denotes the
condition number of the matrix A: k,(A) = ||A||,,||AT||,,, where AT is the pseudo-inverse of
A. Sometimes, k(A) is used if it is not necessary to specify the norm.

The presentation in this paper is based on the set of real numbers. All results have their
analogues for the set of complex numbers.

The rest of this paper is organized as follows: §2 is on the theory of the decompositions
and definitions of generalized singular values. §3 presents the perturbation theory of the
CSD and the GSVD, and assesses of the conditioning of the decompositions. §4 discusses
applications of the CSD and the GSVD. §5 is concerned with the numerical computations
of the decompositions. §6 lists related generalizations of the SVD. The paper ends with a
summary and some open problems.

2 The CSD and the GSVD

In this section, we first present the CSD, then the GSVD and their variants. It should be
emphasised that the GSVD presented here is based on the CSD. However, historically, the
existence of two decompositions was proved independently. Some details of existence proofs
of the decompositions are presented since they reveal the possible different formulations of
the decompositions for different dimensions, and shed light on their numerical computation.

Finally, we shall define the generalized singular values (pairs), and their connection with
the standard SVD.

Theorem 2.1 (CS Decomposition [16,11,48]) Let Q € R"™P)*F have orthonormal
columns. Partition @) in the form

k
_om [ @
Q= » <Q2> (2.1)

Then there are orthogonal matrices Uy € R™*™, Uy € RPXP and V € RF** such that

Uuf o Q\y_(Uf@V Y _ [ %
0 uf Q- T\UFQV ) T\ %,
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assumes one of the following forms:
Ifm2>k, p2k,

k
k k C
m(El)_ m-k| 0|
y4 22 Tk S|’
p—k \ 0
ifm>k, p<k,
p k-p
k P C 0
m [ ¥y k-p | O I .
p (Eg) m—k(O 0o |
P S 0
ifm>k, p>k,
m k-—m
k m C 0
m [ X m S 0
p \X%2/) k-m|O0 1 k
p—Fk \ 0 0

and if m< k, p<k,

m({E\ _ k-p 0 1 0 M4 p=n
» \ % n-k| S 0 o | p=n.
E—m 0 0 1
Here C and S are nonnegative diagonal matrices satisfying
C*+5%=1. (2.2)

Proof. We carry out the proof in detail because it sheds light on the numerical com-
putation of the decomposition. The proof is constructive and is essentially due to Stewart
[49]. We first assume that matrices @1 and @, are square, then we show that how the rest
of the cases can be reduced to that of computing a CSD when ¢, and @, are square.

First, by the SVD of @:

UfQ,v = C,

(E)-(5 ) (&)

has orthonormal columns. Hence

we know that the matrix

C2+Q_’2TQ_2:-[7

which implies that o
Q2Q2=1-C"
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is diagonal. This means that the columns of @, are orthogonal. Let fj§-2) denote the j-th
column of Q,, Then the desired matrix U2 can be constructed as follows:

1. For each j such that q 76 0, set u = q] /|| ||
2. Fill in the remaining columns of U; with an orthonormal basis for the orthogonal
complement of the column space of Q.
From the orthogonality of the columns of @3, we have

1. U, is orthogonal,

@) e (2)
2. Ui Qq = S, where S = diag(sy, s2, . ..,8¢) with s; = { ;I Tf ‘{{2) # 0,
0, ifg;” =0
This completes the proof of the theorem for m = p = k.

There are four cases, corresponding to the four forms in the theorem. We only need to
treat the first and second cases; these illustrate the techniques sufficiently well for the other
two cases.

For the case m > k, p > k, let

03621:(%‘), 173622:(%2),

be the QR factorizations of @1 and Q2. Then the problem is reduced to that of computing
the CSD of the k x k square matrices @1 and Q2.
Turing to the case m > k, p < k, let

p k-—p
QV1i=p (Qzl 0 )
be the RQ factorization of ;. Then

()0 ( %)

By the orthonormality Q“Qm =0, Q Hence if
Uy = ( (711 Q12 )

is orthogonal, then

p k—p
N n—~k UTQU 0
(7))
2 P Q2 0

Since n — k > p, we may therefore apply QR. factorization to l?;rléll to obtain

4
T, e T A »
atom -2, (%)

Then it is easy to see that the problem is reduced to that of computing the CSD of p X p
square matrices Q11 and Q9. ]



The CSD, GSVD, their Applications and Computations 6

Following Stewart [49], since the diagonal elements ¢; and s; of C and S satisfy
c? + s? =1,

for some angle 6; we have ¢; = cos; and s; = sin 6;. This accounts for the choice of letters
C (cosine) and S (sine), and for the name “CS decomposition”, in short CSD. Clearly the
CSD also simultaneously gives the SVD of both matrices ); and Q5.

In some literature, the CSD is given in a different form, but they are essentially the same.
In particular, the CSD can be given with a decomposition of a partitioned orthogonal matrix
as the following result.

Theorem 2.2 (CS Decomposition [48]) Let the orthogonal matriz @ € R™*™ be parti-
tioned in the form

l n—1

_ ! Qu Q2
Q_n—l(Qm sz)’

where 2l < n. Then there are orthogonal matrices U = diag(U11,Uz2) and V = diag(V11, Va2)
such that

| | n-2
! cC -5 0
uvtQv =1 5 C 0

n—-20\0 0 I
where the diagonal matrices C and S satisfy (2.2) in Theorem 2.1.

Armed with the CSD of a partitioned orthonormal matrix, we may now have the fol-
lowing GSVD for any two matrices A and B having the same number of columns:

Theorem 2.3 (GSVD — Triangular Form [40]) If A € R™*" and B € RP*", with
rank( AT, BT)T = k, then there are orthogonal matrices U € R™™, V € RP*P and

Q € R™*™ such that
T
(UO ‘?T)<§)Q:<§;)(R,0), (23)

where R is a k X k nonsingular upper triangular matriz, and the m X k matriz £ and p X k
matriz Yo assume one of the forms in Theorem 2.1 depending on the dimensions m,p, k.

Proof. Let
A\ R 0 ST
(B)_U](O 0)‘1

be the URV decomposition, also called the complete orthogonal factorization, of ( AT, BT )T
[28], where Uy and V; are (m 4 p) x (m + p) and n x n orthogonal matrices, respectively,
R, is a nonsingular upper triangular matrix of order k. By partitioning U into the form

k n-—k
Uy = m U]] ([12
YTop \Un U )
the result of the theorem follows from the CSD of the partitioned orthonormal matrix
(Ui, UF)T. n
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The advantage of the triangular form of the GSVD is that only orthogonal transforma-
tion are required, and it is likely to be more amenable to reliable numerical computation;
for more details, see §5. The price to be paid is that the resulting matrices are only upper
triangular. If we are also willing to use a nonsingular transformation, we can reduce an
arbitrary matrix pair (A, B) having the same number of columns to diagonal forms:

Theorem 2.4 (GSVD — Diagonal Form [56]) If A € R™*" and B € RP*", with
rank( AT, BT) = k, then there are orthogonal matrices U € R™ ™, V € IRP*? and a
nonsingular matriz X € R™"*"™ such that

T
() (B)wo e

where the m X k diagonal matriz ¥, and the p X k diagonal matriz ¥, assume the one of
the forms in Theorem 2.1 depending on the relationship of m,p and k.

(R 0
veo(n )

Proof. Take

and use Theorem 2.3. 1

Three remarks are in order;

Remark 1. If B is square and nonsingular, then from the decomposition (2.4), it is easy
to see that the GSVD of A and B yields the standard SVD of AB~': UTAB~'V = £, %; .
In particular, if B = I, then the GSVD of A and B is the SVD of A. Moreover, when
(AT, BT)T has orthonormal columns, then the GSVD of A and B is just the CSD of
(AT, BT)T ie., R = I in (2.3). In this sense, we may regard the CSD as a special case of
the GSVD.

Remark 2. Although the formulation of the GSVD in Theorem 2.3 and 2.4 are mathe-
matically equivalent, the numerical computations of the two decompositions are significantly
different, because of the possibly ill-conditioned matrix R in Theorem 2.3 and the matrix
X in Theorem 2.4. An algorithm which can numerically stably compute one decomposition
can not necessarily compute the other stably because of the possibly ill-conditioned factors
R or X with respect to inversion; more details are presented in §5.

Remark 3. It is easy to show that

ka(R) = ra(X) < Ka(G),

where G' = ( AT, BT )T. Hence we can say that the conditioning of the nonsingular matrix
R or X in the GSVD is no worse than the original conditioning of the given matrix G.

Now we are in a position to define the generalized singular values of matrices A and B.
The n GENERALIZED SINGULAR VALUE PAIRS (aj,f3;) of A and B having the same number
of columns are defined as follows:

1. min{m,p,k} generalized singular value pairs
a; = ¢, Bi=si,

where ¢; and s; are the diagonal elements of C' and S in (2.3) or (2.4);
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2. then k — min{m, p, k} generalized singular value pairs

a; =1, B; =0, forzero column of ¥, or
a; =0, B; =1, for zero column of ¥,

3. finally, n — k generalized singular value pairs
a; =0, ;=0
corresponding to the zero columns in (2.3) or (2.4).

With loss of generality, we assume that the n generalized singular value pairs (a;, 3;) of
A and B are ordered such that

a2 a3 > >0, P <PB< < B (2.5)

The ratios 0; = «;/B;, 1 = 1,...,n, are called the GENERALIZED SINGULAR VALUES.
Note that we may have infinite (1/0) or undefined (0/0) types of generalized singular values,
which are related to the possible cases of an indefinite generalized symmetric eigenvalue
problem [45]. If a given pair of matrices A and B having the same number of columns have
no infinite and undefined generalized singular values, the pair is called a REGULAR matrix
pair, otherwise, it is called an IRREGULAR matrix pair.

It is customary to call a generalized singular value pair (a;, 8;) a NONTRIVIAL generalized
singular value pair if at least one of a; and f; is nonzero, otherwise, it is called a TRIVIAL
generalized singular value pair. For a nontrivial generalized singular value pair (a;, ),
since a? + 82 = 1, for some angle §; we have

(ai,3i) = (cos 8;,sin6;), o; = coté;.

Hence, in some situations, we need use only one angle to represent either a generalized
singular value pair or a generalized singular value.

We note that the generalized singular value pairs of A and B are independent of column
scaling of A and B, i.e., if A and B have the same column scaling: A; = AD, B, = BD,
then the generalized singular value pairs of A; and By are the same as those of A and B
since from the GSVD (Theorem 2.4) of A and B, we have

T A
(‘; ‘?T)(gﬁw*m:(g;)u,m,

which is just the GSVD of A; and By. We shall refer this property as column scaling
independence of the generalized singular value pairs.

To conclude this section, we note that, as above, the GSVD of A and B can be obtained
from the spectral decomposition of ATA — ABT B, which is a generalization of the well
known relation between the SVD of A and the spectral decomposition of ATA. Another
well known fact is that the SVD of A can be obtained from the spectral decomposition of
Jordan-Wielandt matrix

0 A
(),

This fact is generalized in the following theorem, which establishes another way to link the
GSVD with the spectral decomposition of a generalized Jordan-Wielandt matrix. For the
simplicity of presentation, here we assume that both matrices A and B are square, and B
is nonsingular. More general cases can be established in a similar way.
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Theorem 2.5 Let A € R™*™, B € R™*"™ have the GSVD
UTAX = % = diag(ai), VTBX = %, = diag(8:),

and assume that B is nonsingular. Then the matriz pencil

(/?T g)‘*(é BgB) (2.6)

has eigenvalues a;/B;,t = 1,...,n corresponding to the eigenvectors

Uy -
i%zi , t=1,...,n

where u; is the ith column of U and z; is the ith column of X.

Proof. The proof is a simple computation. Let

gL U U
VAP, OIS ¢ -l

Then Z diagonalizes the matrix pencil (2.6) via the congruence transformation Z7 x (2.6) x
Z. |

3 Perturbation Theory

In this section, we review the perturbation theory for the CSD and the GSVD. Thus, we
discuss the question of how the generalized singular values (pairs) change if the matrices
A and B are perturbed by E and F, respectively. As the central question in many matrix
perturbation problems, the answer will reflect the conditioning of the decomposition we are
concerned with. Sun [53] first gave perturbation bounds for the GSVD. Using a different
derivation, Paige [41] gave a perturbation bound for the CSD, and an improved bound for
the GSVD. Li [36] discussed the perturbation of the associated subspaces in the GSVD. We
shall also present a new perturbation bound which reflects the column scaling invariance
property of the generalized singular value pairs. All these analysis give absolute perturbation
bounds. A relative perturbation bound for the generalized singular values of a special matrix
pair was recently given by Demmel and Veseli¢ [19]. The following is a summary of these
results and some new observations.

Theorem 3.1 (The CSD Perturbation Bound [41]) Let both
k k

- m [ Q ‘ ~ _m Ql
Q_p (Qz) and Q_Q+6Q_p (Q2>

have orthonormal columns, and let the generalized singular value pairs (as, B;) of Q1 and
Q2, and the generalized singular value pairs (a&;,[3;) of Q1 and Qo be ordered as in (2.5).
Then we have

k
J [(ai = @:)? + (B — B:)?) < [16Q]|F- (3.1)
=1

1
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The above theorem states the perfect conditioning of the CSD of a partitioned orthonor-
mal matrix. It says that the perturbation to the generalized singular value pairs will be no
larger than the perturbation to the original matrix as long as the perturbed matrix still has
orthonormal columns. This fact is an immediate consequence of the well conditioning of
the SVD since the CSD simultaneously gives the SVD of two subblocks of an orthonormal
matrix. However, the following perturbation bound states that the generalized singular
value pairs of arbitrary matrices A and B having the same number of columns are not
necessarily well conditioned like the CSD; this is essentially because the nonsingular matrix
X in Theorem 2.4 or R in Theorem 2.3 can be ill-conditioned. It should be mentioned that
the following bound is slightly weaker than the ones presented in [53,41], but the way it is
presented here is more useful from the applications point of view.

Theorem 3.2 (The GSVD Perturbation Bound [53,41]) Let

A - [ A
G_(B>’ G—G+6G—(B).

Assume rank(G) = mnkf@') = n. let the generalized singular value pairs (ai, Bi) of A and
B and those (&;,3;) of A and B be ordered as in (2.5), and assume

16G11F < ellGlle- (3.2)

Then

\] Xn:[(a’i — &)+ (B — Bi)?] < V2ko(G)e, (3.3)
1=1

where

k2(G) = |Gll2lIGT|l2.

From (3.3), it is natural to define the number ky(G) as the condition number of the
generalized singular value pairs. As we pointed out in §2, the generalized singular value
pairs are column scaling invariant. However, the above condition number k2(G) does not
reflect the desired property. One way of dealing with possible artificial ill-conditioning due
to bad scaling is to examine the effect of perturbations on individual components, namely
componentwise perturbation theory. The results are in the following theorem.

Theorem 3.3 (The First Order GSVD Perturbation Bound [9]) With the same no
tation as in Theorem 3.2, if

16G] < €|Gl, (3-4)

then up to the first order, we have

\jZ[ a; — &) + (Bi - Bi)?) S V2nres(G)e, (3.5)

where n = \/(m + p—n)n and
was(G) = [|1G1IGT |2
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The number kps(G) is called the Bauer-Skeel condition number of the generalized sin-
gular value pairs. It has the property that it is independent of column scaling, which to
some extent circumvents the problems of artificial ill-conditioning of the generalized singular
value pairs.

For the perturbation of the associated subspaces in the GSVD see [53,36]. We shall not
go into the details in this paper.

Since the generalized singular values of A and B are the square roots of eigenvalues
of the symmetric matrix pencil ATA — ABT B, Demmel and Veseli¢ [19] give the following
perturbation bound for a special pair of matrices A and B by using the Courant-Fischer
minimax theorem. The new bound is a relative perturbation bound and reveals the effect
of scaling on the generalized singular values’.

Theorem 3.4 ([19]) Let A and B be matrices with the same number of columns, and B
of full column rank. Let A = Ay D, and B = By D, where Dy and Dy have full rank, and
let E = EyDy and F = Fy D, be perturbations of A and B, respectively, such that

|Erzlla < mllArzllz,  [[Fiz]l2 < ml[Bizll2, (3.6)

for all x and some n1,m2 < 1. Let o; and &; be the i-th generalized singular values of (A, B)
and (A + E, B + F), respectively, with the same ordering. Then either o; = 6; =0 or

los — & < + 72
ag; 1—7]2

(3.7)

Note that if both A and B have full column rank, then we have

| E1ll2
z < sl < —_— A T ,
|Erz]l2 < |Eall2llz]l2 < crmin(Al)H 12||2
and
1 F1l2
Frallo < IE bzl € ——2=—|Byz||2,
1Bl < 1B lkllells < 5 =l Biell
hence we can choose
1l _ U2

= Umin(Al)’ : Umin(Bl)

in (3.6). Therefore, substituting 1 and 7, into Theorem 3.4 yields the following corollary.

Theorem 3.5 With the same notation as in Theorem 3.4. If both A and B are of full
column rank, then we have

|oi — Gil L[ anlEdle g El2 _
S < 2 [sofiag + o] .

We make two remarks.
Remark 1. Suppose D; and D, are chosen so that the columns of A; and B; have

unit two-norm. Then ko(A;) < n}/2 minp ko(AD), i.e., this scaling nearly minimizes the
condition number of A over all possible column scalings. It is possible that ko( A1) < Ka2(A),
and ko(B1) < K2(B) [60].

1The presentation here is slightly different with original one, but it is easy to show they are equivalent.




The CSD, GSVD, their Applications and Computations 12

Remark 2. Note that in the absolute perturbation bound (3.3), k2(Q) or kps(G) is used
as the condition number of the generalized singular value pairs. However, in the relative
perturbation bound (3.8), k(A;) and k(B;) are used to measure the conditioning of the
generalized singular values. Ignoring the effect of scaling, k2(G) or kps(G) could be much
smaller than k3(A) and/or ky(B), and vice versa.

4 Applications

The CSD and the GSVD are useful in many applications in matrix computations that
involve a pair of matrices. In this section, we shall survey some of their applications.

4.1 Intersection of null spaces and the canonical angles between a pair of
subspaces

Given A € R™*" and B € IRP*", consider the problem of finding an orthonormal basis for
the common null space null(A) N null(B). The problem has been treated in [28, p.583] by
using the SVD twice. Now if we write the GSVD of A and B (2.3) as

A(Q1, Q2) = UE1(R, 0), B(Q1, Q2) = VE,(R, 0),
where Q, € R™*("~%) then we have
null(A) N null(B) = span{Q2}.

()2 gives the desired orthonormal basis of the common null space of A and B.

In [51, p.37], the CSD is used as a tool for defining canonical angles between pairs
of subspaces, and for computing the singular values of products and differences of two
projections.

4.2 Generalized Eigenvalue problem ATAz = ABT Bz
The generalized eigenvalue problem
AT Az = ABT Bz (4.1)

arises in MUSIC and ESPRIT direction-of-arrival estimation algorithms in signal processing
computations [47,59], where A € R™*™ and B € IRP*™ are signal data matrices, and usually
m > n, p > n. It is certainly unwise to form the cross-products AT A and BTB explicitly
because of unnecessary roundoff error. As we discussed in §1, the generalized eigenvalue
problem (4.1) is equivalent to the GSVD of A and B. Using the diagonal form of the GSVD
(2.4), we have

Ty, 0 Iy, 0
T 4T o 1«1 T nT _ 2
XAA/\_( 0 0),.XBBX_( ) 0).

Then we know that the nontrivial eigenpairs of the generalized eigenvalue problem (4.1) are
given by

ATAz; = \iBTBa;, i=1,...,k,
where \; are the quotients of the diagonal entries of EF{El and E2TE2, and z; is the i-th
column of X, k = rank (AT, BT )T,
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4.3 Positive definite generalized eigenvalue problem Az = )\Bz

Given symmetric positive definite matrices A, B € R™™", there are two traditional methods
for solving the generalized eigenvalue problem

Az = ABuz. (4.2)

One is suggested by Martin and Wilkinson [28, p.469] which reduces (4.2) to standard
symmetric eigenvalue problems. The other is the QZ algorithm by Moler and Stewart [28,
p.394]. Recently, Shougen and Shuqin [46] and Kaufman [34] showed that by reducing
the problem (4.2) to the computation of the GSVD, we may be able to compute small
eigenvalues more accurately than the traditional methods when the elements are graded or

B is ill conditioned. The formulation of using the GSVD to solve the problem (4.2) is as
follows.

Consider the Cholesky factorization of A and B given by
A=L,LT, B=1L,IT. (4.3)

From the discussion of §4.2, we see that the GSVD of L; and L, gives the eigenvalues and
eigenvectors of the generalized eigenvalue problem (4.2). The high accuracy of the Cholesky
factorization of a positive definite matrix is discussed in [17].

In particular, if A and B have band structure, then the factors L; and L in (4.3) will
inherit the structure, and we may take the advantage of the structure in computations, and
in particular in parallel processing. For more details, see [34].

4.4 Generalized Total least squares problem

The total least square (TLS) method is a global fitting technique for solving an overdeter-
mined linear system of equations when errors occur in all the data. The technique is also
called error-in-variable regression in the statistical literature. The SVD is a fundamental
tool in solving the TLS problem. To see how the GSVD is introduced for solving the gen-
eralized TLS (GTLS) problem, let us start with the standard TLS problem. Consider a
system of m linear equations

Az ~b, AeR™*™ belR™, m>n+1, (4.4)

~ X
i)

where A = (A b). If A is of full column rank, then the system (4.4) is inconsistent.
Therefore the TLS problem is first to seek a perturbation E of minimal Frobenius norm to
A, such that the rank of A + E is reduced to n; then a TLS solution  is any solution of

(21+E)<_$1>:0.

To find such a perturbation E, from the Schmidt-Mirsky theorem [51], which is also called
the Eckart-Young-Mirsky theorem in [28], we know that the desired minimal perturbation
matrix F is given by

or

E=USvT, %= diag0,...,0,—0nt1),
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where U and V and 0,4, are from the SVD of A: 4 = UsvT v = diag(oy,. .
Then it is clear that the following system is consistent:

(/1+E)( 5 ) :UEVT( 5 ) =0,

where ¥ = diag(oy, ... 107,0). The TLS solution is given by scaling the last column Vn+1

of V:
T -1
= —0
-1 Vn+1,n+1 b

where we assume that v, 41,41 # 0, otherwise we have a nongeneric TLS problem. See [55]
for more details.

. ,O'n+1).

The above TLS problem has been generalized in two aspects: first, we can allow for
multiple right-hand sides in (4.4), i.e., the given system is

AX ~ B, A€R™" BeR™* (4.5)

Second, we can allow for a more general form of the perturbation matrix E, say E = ER¢,
where the entries of E are independently and identically distributed with a common variance
02,~anfi R¢ is the Cholesky factor of the covariance matrix E(ETE) of the error E, i.e.,
E(ETE) = 02 RLRc. Then the generalized TLS (GTLS) problem can be cast as seeking
the minimal perturbation E to A = (A B) such that the following system is consistent:

(A+ERC)( :\} ) = 0.

In [54], a GTLS solution of (4.5) is obtained from the SVD of ARZ', which is the GSVD of
A and R¢. The details of the formula are tedious, and the reader is referred to the work of
Van Huffel and Vandewalle [54].

4.5 Truncated GSVD

The GSVD has been used by Hansen [29] to analyze Tikhonov regularization in general
form in the same spirit as the SVD is used to analyze standard regularization. The problem
is to solve the linear least squares problem

min || Az — b||2, (4.6)

where A is very ill-conditioned. A regularization due to Tikhonov is often used. The idea
is that instead of solving problem (4.6), we solve the following least squares problem:

min{[| Az - b3 + X*| Za|13}, (4.7)

where the matrix L is chosen to approximate some operator often as derivative. The term
AZ||Lz||? is used to control the smoothness or shape of the solution z. It is common to
assume that

AeR™", LelRP*", m>n>p, rank(L)=p (4.8)

and
null(4) N null(L) = {0} & rank(AT, LT)T = n. (4.9)



The CSD, GSVD, their Applications and Computations 15

qnderbthe assumptions of (4.8) and (4.9), there is a unique regularized solution, called Ty,
given by

oy = (ATA 4+ ALTL)"1ATp,

Using the diagonal form of the GSVD (Theorem 2.4) of (A, L), it is easy to recast the
regularized solution z in the following form

_ C(C?-A28H"1 ¢ o T
a:,\—X( 0 I 0 U*b.

Starting with this formula, Hansen [29] discusses the perturbation theory of Tikhonov regu-
larization related to A and L, and the choice of the regularization and truncation parameters.

4.6 The Problems LSE and LSQI

Linear equality or inequality constrained least squares problems arise in constrained surface
fitting, constrained optimization, geodetic least squares adjustment, signal processing and
other applications [12]. The linear equality constrained least squares (LSE) problem can be
stated as follows: find an n-vector 2 that solves

llgl;i:nd ||Az — b]|2, (4.10)

where A € R™*", B € R”*" and m > n > p, b € R", and d € IRP. Clearly, the Problem
LSE has a solution if and only if the equation Bz = d is consistent. For simplicity, it is
often assumed that rank(B) = p.

The linear inequality constrained least squares (LSQI) problem is

min ||Az — b||; subject to ||Bz —d|; < a, (4.11)

where A € R™*™(m > n), Be RP**", b€ R"*, d € RP and a > 0.

It has been shown [58,10,28,12] that the GSVD of A and B in question provides a useful
tool to analyze and understand the existing methods (such as weighting techniques) to solve
these problems.

4.7 Other applications

Besides what we have discussed, the GSVD has also been used by Kagstrém [32] in the
study of the canonical structure of the matrix pencil A — AB. It is known that the column
and row nullities of A and B, and the possible common null spaces, give information about
the Kronecker structure of A — AB. The GSVD can be used to extract the significant
information concerning these null spaces. Paige [42] and Bai [5] have used the GSVD for
analyzing and solving generalized linear model regression problem. In the block Kaczmarz
and Cimmino algorithms for solving large sparse nonsymmetric linear system, the CSD has
found to be a useful tool to analyze the conditioning of the orthogonal row projectors used
in the procedure [14].
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5 Algorithms

Competitive numerical algorithms have been proposed for computing the CSD and the
GSVD. In this section, we shall review the existing serial and parallel algorithms for com-
puting these decompositions, and present some modifications to the algorithms. As we
have seen in §2, if the CSD is computed, then the GSVD of A and B can be directly ob-
tained from the SVD or the URV decompositions and the CSD. Hence Stewart’s [49] and
Van Loan’s [57] algorithms focus on how to compute the CSD . On the other hand, since
the CSD can be regarded as a special case of the GSVD, we should be able to compute
the GSVD without going via the CSD. Paige’s Jacobi-Kogbetliantz-like algorithm [43] is
proposed for directly computing the GSVD.

5.1 Backward Stability

Before we proceed, it is appropriate to state what we mean by the backward stability of an
algorithm for computing the CSD or the GSVD. As we noted in §2, the different formula-
tions of the CSD and the GSVD may result in different backward stability criteria for the
computed decompositions because of the potential ill conditioning of the nonsingular matrix
R in Theorem 2.3 and the matrix X in Theorem 2.4. A stable method for one decompo-
sition may not be stable for the other, although the decompositions are mathematically
equivalent.

Backward stability for the triangular form of the GSVD (Theorem 2.3) is defined as
follows: Let the computed orthogonal matrices be U, V and @, the diagonal matrices be
¥, and T, the upper triangular matrix be R, and let €ps be the machine precision. Then
the following conditions should be satisfied:

NWOTU - I|| = enr, VIV = I|| = enr, 1QTQ - I|| = enr, (5.1)

and
10T AQ - S1 Rl ~ enl|All, VT BQ — S2Rl| ~ earl|BIl (5.2)

From (5.1) and (5.2), we know that there exist exactly orthogonal matrices U,V and Q
within epr of U, V and Q, and E and F such that

IEIl ~ eml|All, [IFIl = enrl| B, (5.3)

and ) o i o
UT(A+ E)Q = £1R, VI(B+ F)Q = %;R. (5.4)

These assertions also say that to within roundoff error, the rows of UTAQ and VT BQ are
parallel. B

For defining the backward stability of the computed CSD, we just need to change the R
in (5.2) to be an identity matrix, since if (AT, BT)T has orthonormal columns, the GSVD
of A and B is just the CSD of (AT, BTHT,

In some applications, we may prefer the diagonal form of the GSVD (Theorem 2.4). In
this case, besides criteria (5.1) for the orthogonality of the computed orthogonal matrices
U and V, the backward stability of the computed decomposition is defined as

UT(A+E)YX =%, VI(B+ F)X =5, (5.5)
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where E and F are as in (5.3).

We should point out that (5.4) and (5.5) are not numerically equivalent. A numerical
stable algorithm for computing the decomposition (5.4) may not be stable for the decom-
position (5.5) because of the possible numerical unstability in the inverse of the computed
R, and vice versa.

All above the measurements of the backward error are in terms of the norms of the
original matrices, so they define normwise backward stability.

5.2 Stewart’s and Van Loan’s Algorithms for computing the CSD

The general problem of computing the CSD of a partitioned orthonormal matrix has four
cases, corresponding to the four forms in Theorem 2.1. As shown in the existence of proof for
the decomposition, using the QR or RQ factorization all cases can be reduced to computing
the CSD of two square matrices. We refer to this reduction as the preprocessing step.
Hence in this section, we shall focus on Stewart’s and Van Loan’s algorithms for computing
the CSD of a partitioned orthonormal matrix @ = (QT,Q7T)T, where both Q; and Q; are
square matrices.

5.2.1 Stewart’s algorithm for computing the CSD

Although the existence proof the CSD shows that we only need to compute one SVD, and
one step of column normalization, it turns out not to be so trivial to compute them in prac-
tice with guaranteed numerical accuracy and stability in floating point arithmetic. Stewart
[49] put forward the first method for computing the CSD of a partitioned orthonormal ma-
trix (QT, QT )T. In Stewart’s algorithm, we first compute the SVD of Qq: ulQ,v =C,
then determine an orthogonal matrix J such that (Q2V').J can be column normalized to give
a matrix U, that is orthogonal to working accuracy. This is accomplished by computing
the eigenvalue decomposition of symmetric cross-product matrix H = V TQTQ,V by Ja-
cobi’s method. Finally an orthogonal matrix I is determined such that KTCJ is diagonal.
Stewart’s analysis shows a surprising fact, which is that we may take K = J, provided we
do not perform certain unnecessary Jacobi rotations. Stewart’s algorithm is summarized as
follows.

Stewart’s Algorithm [49]
Compute the SVD UL Q,V = C = diag(c;);
Q2 := Q2V;
H := Q7 Qs
loop until |h;;| < nepry/hiihj; for all i,5, i # j.
select pivot indices i and j (say column-ordering);
if |hij| > nepr\/hiihj; then
if ¢; + ¢; > 0.7 then
form the Jacobi rotation J;

V:i=VJ,
Q2 := Q2J;
Ul = U1J;
H:=JTHJ,

recompute h;; and h;; from the current @2 if necessary;
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end if
end if
end loop

normalize ()2 to give U; and S

Stewart’s original stopping criterion GM\/W is modified to nepry/hiih;; in order to
take into account that the input partitioned matrix is orthonormal only to working accuracy
ney. The ad hoc quantity 0.7, chosen to decide whether to suppress the rotation, is to
guarantee that the diagonal form of C effectively is unchanged in the passage to JTCJ.

As pointed out by Stewart [49], it is important to note that in the loop of the algorithm,
although we are diagonalizing H , it is the object of the process to orthogonalize the columns
of Q2. It might be possible that some of the diagonal elements of H may be degraded because
of cancellation during the process. It is recommended to recomputed some of columns of
matrix H from the current 5. To simplify the implementation of Stewart’s algorithm, we
propose to use the one-sided Jacobi algorithm to orthogonalize the columns of @), in order
to avoid forming the cross-product matrix H explicitly. It also means that we always use
the current columns of Q5. The modification of Stewart’s algorithm is as follows, where qz@)
denotes the i-th column of the current Q)2:

Modified Stewart’s Algorithm
Compute the SVD ULQ,V = C = diag(c;);

Q2 = Q2V;
loop until k£ = n(n — 1)/2 (all columns of Q, are numerically effective orthogonal )
k = 0;

select pivot indices 7 and j (say row-ordering);
if ¢; + ¢; > 0.7, then

T T T
compute hii = qu) ql@); hz‘]‘ = qz(z) q§2); h]‘]' = q(?) (]§2);

if |h,’j| > nEM\/hith‘j then

form the Jacobi rotation J;

Q2 :=Q2J;
Vi=VJ;
U1 = UlJ;
else
k=k+1;
end if
else
k=k+1,;
end if
end loop

normalize Q, to give U; and 5;

Using the one-sided Jacobi procedure for orthogonalizing columns of Q9 costs 24n flops
in the inner loop versus 307 flops in the Stewart’s algorithm. Moreover, one-sided Jacobi
rotation simplifies the implementation of the algorithm, and has better numerical stability
and accuracy. Empirically, it also reduces the overall number of sweeps. We note that in
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modified Stewart’s algorithm, we also put the test of whether to suppress the (i, j) rotation
(i.e., testing ¢; + ¢; > 0.7) before computing the quantities hii, hi; and hj; in order to save
the cost of computing these quantities if we need to suppress the (i,5) rotation.

Extensive numerical experiments show that in practice the total number of sweeps of
one-sided Jacobi needed to orthogonalize the columns of Q, usually do not exceed four. The
modified Stewart’s algorithm shows better numerical stability and accuracy than original

Stewart’s algorithm.
5.2.2 Van Loan’s algorithm for computing the CSD

Van Loan’s algorithm [57] for computing the CSD of a partitioned orthonormal matrix can
be regarded as a modification of Stewart’s scheme in order to avoid working with the cross-
product matrix H = Q7Q,. Van Loan’s algorithm is based on the observation that if a
well-conditioned matrix has nearly orthogonal columns, then it can be safely diagonalized by
the QR factorization. Strictly speaking, the observation is based on the following theorem.

Theorem 5.1 ([57]) Assume that the m x k matriz Y = (y1,Y2,...,Yx) satisfies
Y'Y =D*+ E
where D = diag(||v1l], [|y2]l5- - - |ykl]), and let
Y =QR

be the QR factorization of Y, where @ is an m X k orthogonal matriz, and R is k X k upper
triangular. Let Y; be the first i columns of Y. Then for alli and j (j > 1 ) we have
: IEN
l7‘,‘j| S min {Hy]ll,m .

Van Loan’s algorithm now can be described as searching for a well-conditioned block
(submatrix) among @ and @2 to do the diagonalization by the QR decomposition, and
using the SVD to diagonalize an ill-conditioned block (submatrix). In more detail, let

UTQ,V = S = diag(s1,52,- -+, 5n)

be the SVD of Q,, where n x n Uy and n x n V are orthogonal matrices, and the diagonal
elements of S are increasingly ordered

0<s1 <8< <sp <1V2< 5541 <o < e
Then a QR factorization of the product @,V produces
Ul (@1V) = R.

As we know, R would be diagonal in exact arithmetic. But because of roundoff error, we
shall only have
k n—k

R = k diag(eyy ... Ck) 0
- n — k 0 R1 ’
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where by Theorem 5.1, the first k£ columns of R correspond to “large” singular values of
@1. Now by the SVD of submatrix Ry,

)

U RV = diag(cgq1,. .., cn)

and the QR factorization of the (n—k)x (n—k) matrix W = DV, where D = diag(skt1,-..,35),
U§W = Ry,
we have
Ry = diag(sk41,--+y8n),

since Sky1,...,8, are “large”. Combining the previous steps, we have

I 0 I 0 :
(0 W)U{le( 0 V):dlag(cl,...,cn),

I 0 T I 0 .
( 0 [72T ) U, QW( 0V ) = diag(s1,...,8n),

which is the desired CSD of Q; and Q.

The ad hoc quantity 1/1/2, chosen as the dividing line between the large and small sin-
gular values, has the effect of minimizing the backward error bounds of (5.1) and (5.2). One
may wish to play with this constant under certain circumstances since the overall amount
of work depends on the size of the index k. Large &k will result in smaller subproblems, and
reduce the total amount of work, but may increase the backward error by a certain factor.

5.3 Stewart’s and Van Loan’s algorithms for computing the GSVD

As we have seen, the computation of the GSVD is closely related to the computation of the
CSD. In this section, we show how to use Stewart’s or Van Loan’s algorithms to compute
the GSVD of matrices A and B having the same number of columns.

The first step is a preprocessing step to compute the QR decomposition of G = (AT, BT)T:

(A [ @n
G—(B)—Q1R1—<Q2I>R1 (5.6)

If G is rank deficient, instead of using the QR decomposition, we may use the URV decom-
position, the rank-revealing QR decomposition or even the SVD of G [28].

The second step is to use Stewart’s or Van Loan’s algorithms to compute the CSD of
@11 and @91, denoted as

ur o Q >
(5 o) )r=(%)

where ¥; and ¥, assume one of the forms in Theorem 2.1.
The third step is a postprocessing step to form W = VTR;, and compute the RQ
factorization of W:
W = RQ. (5.8)

The desired triangular form GSVD of A and B immediately follows from combining (5.6),
(5.7) and (5.8).
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5.4 Paige’s Algorithm for computing the GSVD

Paige proposed a Jacobi-Kogbetliantz approach to compute the GSVD directly, without
going via computing the CSD. This algorithm has two phases: the first phase is a pre-
processing step to reduce the given matrix pair to triangular forms; the second phase is

to compute the GSVD of two triangular matrices by a generalized Kogbetliantz algorithm
(35].

5.4.1 Preprocessing

By using QR decomposition, two slightly different preprocessing schemes have been pro-
posed by Paige [43] and Bai and Demmel [7]. Both of the schemes may result in an irregular
triangular pair. Most recently, using the URV decomposition, Bai and Zha [8] propose a
new preprocessing step, which results in a regular matrix pair, and simplifies the second
phase. The results of the preprocessing step are summarized as follows.

Theorem 5.2 ([8]) Let A be an m x n matriz and B be a p X n matriz. Then there are
orthogonal matrices Uy, Vi and Q1 such that

n s 7 o s p
S 0 Az A
0 0 B
UfAQi=r [0 0 Ay, VlTBQ1=;_T(O 0 33), (5.9)
m \ 0 0 0

where m' =m —r —s, 0 =n—1— s, and Ayg and Biz are nonsingular upper triangular.
If m' > 0, Ay is upper triangular, otherwise, Aq3 is upper trapezoidal.
Moreover, if
UéTAgng = ElRl, ‘/2TB13Q2 = EQR], (510)

is the triangular form GSVD of Ay and Bis, then the triangular form GSVD of A and B
is given by
UTAQ =%4(0, R), VIBQ =3p(0, R),

where
U= Ul : dl(lg([, U‘Zvl)’ V= ‘/1 ’ (li(l._(](VQ,I), Q = Ql : diag(I’IvQZ)

I 0
T
R:<A12 A13Q2>’ si=10 3% |, ZB:(O 22)’
0

and

0 Ry
where the block partitions are conformal with the blocks in (5.9).

Proof. The proof is based upon the recursive use of the standard URV and the QR
decompositions; see [8] for more details. 1

In numerical implementation of the preprocessing step, we need to supply a tolerance
value, say the machine precision €ps, to determine the effective numerical rank in the URV
decomposition of B and a subblock of A.

From Theorem 5.2, we see that the computation of the GSVD of A and B is reduced
to computation of the GSVD of two square triangular matrices A3 and Bis with Bi3



The CSD, GSVD, their Applications and Computations 22

nonsingular?. This is the focus of the next section. For simplicity of notation, we denote
the triangular matrix pair (423, B13) by (A4, B) in the next section.

5.4.2 Computing the GSVD of two square upper triangular matrices

We first review the Kogbetliantz algorithm [35] for computing the SVD of an upper trian-
gular matrix A. Then Paige’s algorithm [43] for computing the GSVD can be regarded as
a generalization of the Kogbetliantz algorithm. Suppose the kth transformation of Kog-
betliantz algorithm operates on rows and columns i and jof A. Let

[ woag
A”_( 0 ajj)

be the 2 X 2 submatrix subtended by rows and columns i and j of A. Let the rotation

matrices
Uy = ( cos ¢ sin ¢y, )’ Vi = ( cos P sin iy )

—sin¢gy, cos ¢y —sinyyg cos Py

be chosen so that
i 0

vl agvi = ¢ 5.11
k g Vik ( 0 Vii ) ( )
is the SVD of the 2 X 2 triangular matrix 4;;. Demmel and Kahan proposed a scheme,
called SLASV2 in LAPACK [3], which computes the decomposition (5.11) to nearly full
machine precision, barring over/underflow. Let Uj and Vj, be identity matrices with (i,1),
(4,7), (j,t) and (j,j) elements replaced by the (1,1), (1,2), (2,1) and (2,2) elements of Uy

and Vi, respectively. Then let ) )
Apgr = UL ALV, (5.12)

where A9 = A. After the first sweep through all the superdiagonal (7,7) in row cyclic
order, the upper triangular matrix A becomes lower triangular. Then the second sweep
will restore upper triangular form, and so on [31,30]. In [27,26,44,15,4], it has been proved
that if one of the rotation angles {¢y,¥r} at each transformation lies in a closed interval in
(=m/2,7/2), then the sequence { A} from (5.12) converges initially linearly, and ultimately
quadratically, to a diagonal matrix, and gives the SVD of A. For literature on different
sweep orders, see [39] and the references therein.

To generalize the Kogbetliantz algorithm for computing the GSVD of upper triangular
matrices A and B with B nonsingular, we observe that equivalently, we just need to compute
the SVD of C = AB~1'. A sweep of the Kogbetliantz algorithm applied to the upper
triangular matrix C' will make it lower triangular. This implies that there are orthogonal
matrices U; and V; such that

uvfewv, = ¢y, (5.13)

where C; is a lower triangular matrix. Writing (5.13) as
vfa=c,vIB,
we see that if we can determine an orthogonal matrix (1, which satisfies

UTAQ, = Ay, VIBQ, = By,

2Without loss of generality, if m’ < 0, we may add some zero rows to A3 to get a triangular matrix.
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where A; and By are lower triangular, then equivalently, we have
C] = A] Bl_l

This reveals that using a sweep of the Kogbetliantz algorithm on an upper triangular C to
get a lower triangular C| is equivalent to the problem of finding orthogonal matrices Uy, V4
and @ so that U; and V; transform the implicitly defined upper triangular matrix C to
lower triangular form Cy, and meanwhile UT AQ, and VT BQ; are lower triangular. Heath
et al [31], Paige [43] and Hari and Veseli¢ [30] have shown that we may take advantages of
the triangular structure of A and B and the ordering of sweeps to get the desired orthogonal
transformations Uy, V) and @, without forming B~! and AB~! explicitly. Specifically, at

the (2, 7) transformation of the Kogbetliantz algorithm, the needed 2 x 2 submatrix Cij; of
C can be obtained from

-1
_A.p-1 _ [ @i a bii b;;
Cij = Az]Bi]' = ( a]‘; ) ( b]j ) [}

where a;; and b;; are the elements subtended by the rows and columns i and j of the updated
A and B, respectively. If B;; is numerically ill-conditioned with respect to inversion, then
Paige [43] suggests that we may use

i Wi bjj —bij
Cij = Aij ~a.dj(Bi_7~) = ( ¢ aIJI ) ( J biij ) , (5.14)

Qjj

since Bj; - adj(B;;) = det(B;;)I, where adj(B;;) and det(B;;) stand for the adjugate and
determinant of B;;, respectively.
By using the SVD of C;;, U};CUVU = ¥;; = diag(oy;,05;), we have

T T
UijAij = Xij - Vij Bij.

This shows that the corresponding row vectors of U%Aij and VgBij are parallel. Hence if
we choose a rotation ;; so that U_gA,ij,'j is lower triangular, then Vi?BijQij must also be
lower triangular, and
T
UL AijQij = Sij - Vij BijQij, (5.15)

ij
which is just the GSVD of the 2 X 2 triangular matrices A;; and B;;. With this observation,
we see that after completing a sweep in row order, the desired Uy, Vi and Qi are the
products UyUsz -+ Up—1.n, V12Viz, - Vo1 and Q12Q13 - - @n—1,n, respectively.

Overall, we are actually carrying out the Kogbetliantz algorithm to diagonalize the
implicitly defined matrix C = AB~!. At convergence, this gives UT(AB~2)W = %, a
diagonal matrix. That is

UTAQ =x-VTBQ (5.16)

with the i-th row of UT AQ parallel to the i-th row of VT BQ, which is the desired GSVD
of A and B.

A lot of effort has gone into computing the GSVD of the 2 x 2 matrices A;; and B;;
(5.15) accurately and stably in floating point arithmetic, since it is the kernel of the whole
algorithm. Careless implementation of the 2 x 2 GSVD will yield a procedure that is
nonconvergent or backward unstable. Many people have contributed to this interesting
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subproblem; see [43,13,7,2]. Below we state Bai and Demmel’s 2 x 2 GSVD scheme, which
has been proved to compute rotations (_]ij, ‘_/ij and Qij, such that 1750,']' _;’j is diagonal
within €x/[|Cj][, and the rows of UL 4;;Qi; and VT B;;Q;; are within em||Aij|| and epr|| Bij |,
respectively, of being parallel. Recently, Adams et al [2] presented another scheme with the

same kind of properties. (Note that the ij subscript is dropped for 2 x 2 matrices for brevity
of presentation.)

2x 2 GSVD Algorithm? ([7])
compute the SVD of 2x 2 C = Aadj(B): UTCV = 3;
compute G = UTA; H=VTB; G=|U|T|A|; H = V|T|B|;
/* The angles of U and V are chosen to satisfy the convergence condition. */
if eu| 2 [su] or |ey]| > |sy] then /* zero out (1,2) entries of G and H */
if g12/(l911] + |g12) < haz/(|h11] 4 |R12]) then

call Slartg(—gll 1912,Cq5 Sq, T)3
else

call slartg(—hi1, hi2,¢q, S, 7);
end if
else  /* zero out (2,2) entries of G' and H, then swap rows. */
if g22/(lg21] + |g22]) < haa/([ha1] + |ha2o|) then
call slartg(—g21, 922, ¢4, Sq,7);

else
call slartg(—hoi, hoz,¢q, Sq,7);
end if
U~Ull; V< VI
end if

Here, |A| = (Jaij]), IT stands for a 2 X 2 rotation matrix with angle 7/2. The function of
slartg(f,g,c,s,7) is to generate a rotation from f and g to zero out g, i.e., ¢ = f/\/f% + g2
and s = g/v/f? + ¢g%. The rotation matrix @ is defined by ¢, and s,.

Summarizing the previous discussion, Paige’s direct GSVD algorithm for computing the
GSVD of two upper triangular matrices A and B with B nonsingular is presented as the
follows. Let k be a user chosen parameter specifying the maximum number of sweeps the
algorithm may perform (say, k = 20). A;; (B;;) denotes the 2 X 2 submatrix subtended by
rows and columns 7 and j of A (B).

Paige’s direct GSVD Algorithm
sweep := 0;
if not-converged and sweep < k do
sweep := sweep + 1;
do (¢,7)-loop
compute the GSVD of 2 x 2 matrices A;; and B;j;
A= UL AQuj;
B := V] BQij;
U:=UUij; V= VVy; @ = QQu;
end of (¢, 7)-loop

3In the interest of brevity, we omit the part for the 2 by 2 lower triangular matrices, which can be
described similarly.
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convergence test;
end if
compute the generalized singular value pairs a; and Bi;
order the generalized singular value pairs o; and S; if desired.

The (7,5)-loop in the above algorithm can be simply chosen as the standard row cyclic
pivot sequence. From (5.16), it is natural to use the parallelism (linear dependency) of
the corresponding rows of U,;FAQk and VkTBQk as the stopping criterion of the iteration.
To measure the parallelism of two n-vectors a and b in high accuracy and against possible
over/underflow, in [7] it is proposed that we first compute the QR factorization of the n x 2

. a b \.
matrix (n;", W)
(L _b_):Q pu p
llall” {18 0 pa )’

and then compute the singular values y; > 72 > 0 of the 2 x 2 upper triangular matrix
{ni;}. Therefore,

par (10 1 =
S\l ol =7

measures the parallelism (linear dependency) of these two vectors,
For the Paige’s direct GSVD algorithm, let a; and b; be the i-th row vectors of UT AQy
and VI BQy at the end of a sweep. If

error = Zpa,r <i, —z> <nr
il 110l

=1 H(L

for a given tolerance value 7, then the corresponding row vectors of A and B are 7-parallel.
This means that there are perturbations of size at most nr||a;|| in row a; and n7||b;|| in row
b; that make them exactly parallel.

5.5 Comparison of the algorithms

The Stewart, Van Loan and Paige’s algorithms for computing the CSD or the GSVD are
based on different approaches. This section compares the advantages and disadvantages of
the three algorithms. Some of the conclusions made here are empirical. With the further
development and applications of the algorithms, new observations will be added to this
discussion.

From the design and discussion of each algorithm, we know that all algorithms are back-
ward stable in the sense of (5.3) and (5.4). In each algorithm, there are certain parameters
which we can use to control the numerical stability of the computed decomposition. The
author is not aware of any stable algorithm for computing the diagonal form GSVD in the
sense of (5.3) and (5.5).

To compare the costs of the three algorithms, for simplicity of exposition, we assume
that the given matrices A and B are n X n square. Table 5.1 lists floating point operation
(flop) counts of the three algorithms for computing generalized singular value pairs only or
all factors in the triangular form GSVD. The flop counts are meant only as approximate
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Table 5.1: Flop Count of Modified Stewart’s, Van Loan’s and Paige’s Algorithms

Required X4, ¥, Required U,V,Q,%,3, R
Stewart
Preprocessing 8n> 8n?>
CSD (14 + 651 )n (23 + 125;)n3
Postprocessing 0 4.6n3
Van Loan
Preprocessing 8n3 8n>
CSD 15.3n% 4+ 13.3(n — k)® | 26n° + 24(n — k)3 + 6n(n — k)?
Postprocessing 0 4.6n3
Paige
Preprocessing 2.7n° 5.3n°
GSVD-R 6j27l3 15j2n3
Postprocessing 0 0

estimates of work; the lower order terms of costs have been omitted.* GSVD-R stands for
the GSVD of two n X n triangular matrices.

From Table 5.1, we see that the cost of all three algorithms is of order of n3. However,
the actual cost of each algorithm strongly depends on the distribution of the generalized
singular value pairs. j; and j; are the total number of sweeps required in Stewart’s and
Paige’s algorithms. Empirically, they vary from 2 to 10. In Van Loan’s algorithm, the cost
of the second SVD depends on k, the number of small singular values from the first SVD.

Largely different scaling of A and B may cause numerical disadvantage to Stewart’s
and Van Loan’s algorithms if we directly combine them together and start with the QR
factorization of matrix G = (AT,BT)T. This disadvantage can be circumvented if we
scale one of the matrices in advance. Specifically, suppose ||A|| > ||B||. Then we define

s = ||B||/[|Al|. Let
S 21

be the GSVD of sA and B. Then the GSVD of A and B is given by

A iv 0 )y
() = (% 7) (3 )moe
U o ) -
- (0 V)(E'l)wlR’O)QT

where ¥} = %ElD, ¥4 = ¥, D, the diagonal scaling matrix D being chosen so that ¥} and
¥ are normalized, i.e., E’ITE’I + E'QTE’Z =1.

Practical implementation of the three algorithms, with the help of BLAS and the stan-
dard linear algebra packages, such as LINPACK [22] and LAPACK (3], is fairly easy, apart

“Here we adapted the flop count of basic standard decompositions from [28]: the QRD of m x n A:
202 (m — n/3) + 4(m?*n — mn? 4+ n°/3), the SVD of m x n A: 4m’n + 8mn’ + 9n°.
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from the need to deal with the different cases for the dimensions m,p and n. It should
be mentioned that because of restrictions in the existing sophisticated SVD subroutines,
such as SSVDC from LINPACK or SGESVD from LAPACK, we cannot pass orthogonal
matrices into such subroutines, and update them during the course of computing the SVD.
Hence, Van Loan’s algorithm has to use two extra n X n arrays as workspace to store the
middle orthogonal matrices in the second SVD, and use them to do updating later.

Extensive numerical experiments on the numerical stability and accuracy of Paige’s
direct GSVD algorithm with Bai and Demmel’s 2 x 2 GSVD kernel have been reported
in [7]. A portable FORTRAN 77 code SGGSVD for computing the generalized singular
value decomposition basing Paige’s direct algorithm has been developed by Bai, Demmel
and Zha. It can be obtained from the author.

5.6 Parallel algorithms

Parallel versions of the three algorithms have been discussed in the literature, although so
far there have been no practical implementations.

As we have seen, Van Loan’s algorithm is based on two standard decompositions: the
QR decomposition and the SVD. Following the parallel algorithms for computing the QR
decomposition and the SVD, Kaplan and Van Loan [33] proposed a scheme for computing
the CSD in O(n?) times on an O(n?) systolic array. Luk and Qiao [38] modified Kaplan and
Van Loan’s scheme, and obtained an algorithm with O(nlogn) time on O(n?) processors.
As for Stewart’s algorithm, it is clear that how a parallel version will depend on the use of
a parallel Jacobi method.

In an appendix of Paige’s paper [43], he notes that Gentleman has proposed a parallel
implementation of his algorithm. Luk [37] discussed the details of Paige’s algorithm for
computing the GSVD of two n X n triangular matrices when one of them is nonsingular.
A parallel implementation of Paige’s algorithm in the general case is discussed by Bai [6],
where the proposed scheme costs O(n?) time for parallel preprocessing, and O(n?/p) time
for the GSVD of two upper trapezoidal matrices, where p is the dimension of the triangular
array of processors.

6 Further Generalization of the Singular Value Decompo-
sition

There are many possible further generalizations of the singular value decomposition. We
cannot mention all of them in detail in this paper.

First, in some applications, we may be given two matrices A and B having the same
number of rows. The problem is what the GSVD formula should be in this case. Such a
problem is called the product singular value decomposition (PSVD). In particular, if B is
nonsingular, the PSVD should give the SVD of B~!A. This subject and its applications
have been addressed in [31,25]. Most of the numerical techniques discussed in this paper
can be extended to this situation.

The extension of the GSVD of two matrices (A, B) to a triple matrix (A, B,C) has been
proposed by Zha [63] under the name of the restricted singular value decomposition (RSVD),
and by Ewerbring and Luk [24] under the name of the HK singular value decomposition
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(HK-SVD). Numerical experiments are in [13]. Some of them are still subject to debate
and further development.
A proposal has been made by De Moor, Golub and Zha [20,21] for standardizing the

nomenclature of the generalization of the SVD to any number of matrices with conforming
dimensions.

7 Summary and Open Problems

We have seen that since Stewart and Van Loan proposed the CSD of a partitioned orthonor-
mal matrix and the GSVD of two matrices having the same number of columns, exciting
progress has been made. It has become an active area of research to study their theoretical
background, perturbation analysis, applications and numerical computation. Some of these
issues are well understood, and some of them are still subject to debate.

To end this paper, we propose some open problems.

The three existing algorithms are all designed for the stable computation of the GSVD in
triangular form (Theorem 2.3). There is no stable algorithm known to compute the GSVD in
diagonal form (Theorem 2.4). We suggest that we should try to use the GSVD in triangular
form if at all possible. We should be cautious if we have to transform the triangular form
GSVD to the diagonal form. The reader is referred to [23] for the discussion of numerical
stability of matrix inversion.

Scaling often results in a better conditioned problem. Our new perturbation bound
(Theorem 3.3) and Demmel and Veseli¢’s perturbation bound (Theorem 3.4) reflect certain
advantages if we first scale the problem appropriately. It is clear that the current three
methods cannot take advantage of scaling in the same spirit as the Jacobi method for the
eigenvalue and singular value problems [19]. No algorithm has been seen to satisfy the
componentwise or columnwise backward stability conditions (3.4) and (3.6). Recent work
of Deichmoller [61] is along this line, but further investigation is needed.

In some applications, the given matrices A and B may have certain structure, such as
band structure. It is not well understood how one should modify the existing algorithms to
take advantage of structure.

Finally, all existing parallel algorithms are as yet theoretical. The algorithm design,
numerical implementation and performance evaluation on real parallel machines will be the
subject of future study.
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Appendix: Specifications of SGGSVD

SUBROUTINE SGGSVD( COMPU, COMPV, COMPQ, M, P, N, KA, KB, A, LDA,

$ B, LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
$ IWORK, WORK, INFO )
%*
* =========:::::::::::::::::::::::::::::::::::==========================
*
* Copyright (C) 1992, Zhaojun Bai, James Demmel and Hongyuan Zha
* All rights reserved. Use at your own risk. April 3, 1992
* Please send any comments by e-mail to
%*
* bai@ms.uky.edu or
* demmel@wsparc.berkeley.edu or
* zhaQcholesky.stanford.edu
*
* e S e e P T T P T T
%*
* .. Scalar Arguments ..
CHARACTER COMPQ, COMPU, COMPV
INTEGER INFO, KA, KB, LDA, LDB, LDQ, LDU, LDV, M, N, P
* .. Array Arguments ..
INTEGER IWORK( * )
REAL AC LDA, * ), ALPHA( * ), B( LDB, * ),
$ BETA( * ), Q( LDQ, * ), U( LDU, * ),
$ V( LDV, * ), WORK( * )
*
*
* Purpose
* =======

SGGSVD computes the generalized singular value decomposition of the
M by N matrix A and P by N matrix B:

v 1«[A1+*qQ=[D1 1+x[ OR]
L v’] [ B] [ D2 ]

where U, V and Q are orthogonal matrices, R is an upper tridiagonal
matrix, D1 and D2 are "diagonal' matrices, KA and KB are integer
outputs defined as follows and Z’ means the transpose of Z.

If M-KA-KB >= 0,

U’ *A*Q = D1*[ O R ]

= KA [1 ol1=x[ o R11 R12 ] KA
KB Lo ¢ [ o 0 R22 ] KB
M-KA-KB [ 0 0]
V’*B*Q = D2*[ O R ]
= KB [fo s1=x[ o R11 R12 ] KA
P-KB Lo o] [ o 0 R22 ] KB

AR TR K R TR TN S JEE BEE SR JEE BEE NN B T

KA KB N-KA-KB KA KB
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* vwhere

*

* C = diag( ALPHA(KA+1), ... , ALPHA(KA+KB) ),

* S = diag( BETA(KA+1), ... , BETA(KA+KB) ), C**2 + S**¥2 = I,

* The nonsingular triangular matrix R = [ R11 R12 ]

* [ 0 R22]

* is stored in A(1:KA+KB,N-KA-KB+1:N).

*

* if M-KA-KB < 0,

*

* U’*A*Q = Di*[ O R ]

* = KA [T o o 1=*T[o R11 R12 R13 ] KA

* M-kA [0 ¢ o 1 [o 0 R22 R23 ] M-KA

* [o 0 0 R33 ] KA+KB-M
*

* V’*B+Q = D2*[ O R ]

* =M-KpA [0 s 0 J1=*T[o R1i1 R12 R13 ] KA

* KA+KB-M[LO o I 1 [o 0 R22 R23 ] KB

* P-KB Lo o o 1 Lo 0 0 R33 ] KA+KB-M
* KA M-KA KA+KB-M N-KA-KB KA M-KA KA+KB-M

*

* where

*

* C = diag( ALPHA(KA+1), ... , ALPHA(M) ),

* S = diag( BETA(KA+1), ... , BETA(M) ), C#*2 + S¥*2 = I.

* R = [ R11 R12 R13 ] is a nonsingular upper triangular matrix,

* [ 0 R22 R23]

* [ o o0 R33]

* [R11 R12 R13 ] is stored in A(1:M, N-KA-KB+1:N)

* [ 0 R22R23]

* and R33 is stored in B(M-KA+1:KB,N+M-KA-KA+1:N)

*

* The computation of the orthogonal transformation matrices U, V and Q
* are optional.

*

* The algorithm is based on the following papers:

*

* C. Paige, Computing the generalized singular value decomposition,

* SIAM J. Sci. Stat. Comput. 7(1986), pp.1126-1146.

* Z. Bai and J. Demmel, Computing the generalized singular value

* decomposition. No. UCB/CSD 91/645, Computer Science Division,

* Univ. of Calif., Berkeley, August 1991. Also as Research report
* 91-09, Dept. of Math., Univ. of Kentucky, Lexington, August 1991.
* Z. Bai and H. Zha, A new preprocessing algorithm for the computation
* of the generalized singular value decomposition, manuscript,1992.
*

*

Arguments

*

COMPU  (input) CHARACTER*1
= ’N’: Orthogonal matrix U is not computed;
= ’0U’: U is computed.

* * K K *
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*****************************************************

COMPV

COMPQ

KA
KB

LDA

LDB

ALPHA
BETA

(input) CHARACTER#*1
= ’N’: Orthogonal matrix V is not computed;
'V’: V is computed

(input) CHARACTER*1

= ’N’: Orthogonal matrix Q is not computed;
= ’Q’: Q is computed.

(input) INTEGER
The number of rows of the matrix A. M >= 0.

(input) INTEGER
The number of rows of the matrix B. P >= 0.

(input) INTEGER
The number of columns of the matrices A and B. N >= 0.

(output) INTEGER

(output) INTEGER

The index of subblocks in the decomposition, see Purpose
for details.

(input/output) REAL array, dimension (LDA,N)

On entry, A contains the matrix whose decomposition is to
be computed.

On exit, A contains the triangular matrix R, or part of R,
see Purpose for details.

(input) INTEGER
The leading dimension of matrix. LDA >= MAX(M,1).

(input/output) REAL array, dimension (LDB,N)

On entry, B contains the matrix whose decomposition is to
be computed.

On exit, B contains the triangular matrix R if appropriate,
see Purpose for details.

(input) INTEGER
The leading dimension of matrix. LDA >= MAX(P,1).

(output) REAL array, dimension (KA+KB)
(output) REAL array, dimension (KA+KB)
On exit, ALPHA and BETA contain the nontrivial generalized
singular value pairs of A and B;
if M-KA-KB >= 0,
ALPHA(1:KA)
BETA(1:KA)
if M-KA-KB < O,
ALPHA(1:KA)=0ONE, ALPHA(KA+1:M)=C, ALPHA(M+1:KA+KB)=ZERO
BETA(1:KA) =ZERO, BETA(KA+1:M) =S, BETA(M+1:KA+KB) =ONE

ONE, ALPHA(KA+1:KA+KB)
ZERO, BETA(KA+1:KA+KB)

C,
S,

(output) REAL array, dimension (LDU,M)
On exit, if COMPU = ’U’, U contains the orthogonal matrix
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which premultiplies matrix A.
If COMPU = ’N’, U is not referenced.

LDU (input) INTEGER
The leading dimension of matrix U. LDU >= MAX(M,1).

v (output) REAL array, dimension (LDV,P)
On exit, if COMPU = ’V’, V contains the orthogonal matrix
which premultiplies matrix B.
If COMPV = ’N’, U is not referenced.

LDV (input) INTEGER
The leading dimension of matrix V. LDA >= MAX(P,1).

Q (output) REAL array, dimension (LDQ,N)
On exit, if COMPU = ’Q’, Q contains the orthogonal matrix
which post-multiplies matrix B.
If COMPQ = ’N’, Q is not referenced.

LDQ (input) INTEGER
The leading dimension of matrix. LDQ >= MAX(N,1).

IWORK (workspace) INTEGER array, dimension (N)
WORK (workspace) REAL array, dimension (MAX( M, P, 3%N )+N)
INFO (output) INTEGER

On exit, if INFO
= 0; successful return.

; if INFO 1, the preprocessing failed.
if INFO = 2, the Kogbetliantz procedure failed.

*********************************

0; if INFO = -i, the i-th argument had an illegal value.
0
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