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Abstract

A Krylov subspace based projection method is presented for model reduction of large scale
bilinear systems. A reduced bilinear system is constructed in such a way that it matches a
desired number of moments of multivariable transfer functions corresponding to the kernels of
Volterra series representation of the original system. Applications to the simulation of dynam-
ical responses of a nonlinear circuit and a micromachined device are presented to illustrate the
efficiency of the new method and compare with an approach recently proposed by Phillips.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Bilinear systems are a special class of nonlinear systems that are linear in input and
linear in state but not jointly linear in state and input. Specifically, a time invariant
single-input and single-output (SISO) bilinear system, symbolically denoted as �,
has a state form as follows:
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� :
{

ẋ(t) = Ax(t) + Nx(t)u(t) + bu(t),

y(t) = cTx(t),
(1)

with initial condition x(0) = x0. Here t is the time variable, x(t) ∈ RN is the state of
the system, N is the dimension of the state space. u(t) and y(t) are input and output
scalar functions. A, N ∈ RN×N and b, c ∈ RN are constant matrices and vectors.

Bilinear systems arise as natural models for a variety of physical and biomedical
processes. The study of such systems goes back to early 1960s. A comprehensive
treatment of the bilinear systems, including system characterization, structural prop-
erties, stability and applications, can be found in [14]. Our current interest in studying
of model reduction of the bilinear system (1) stems from the need of simulation of
large scale nonlinear systems of the form{

ẋ(t) = f(x(t)) + g(x(t))u(t),

y(t) = cTx(t),
(2)

with initial condition x(0) = x0, where as above, x(t) is the state vector of dimension
N , u(t) and y(t) are input and output scalar functions. c is an output measurement
array. The nonlinear vector-valued functions f, g : RN → RN are sufficient smooth
and f has an equilibrium. Origins of such system include the simulation of time-
varying nonlinear circuit elements by independent excitation source [7,3], and MEMS
devices, such as micro-pressure sensor [15]. The modeling of dynamical behavior of
a voltage-controlled parallel-plate electrostatic actuator also derives a set of state
equations of the form (2) [24, p. 138]. Such an electrostatic actuator invokes multi-
domain parameters, such as mass, stiffness and damping in the mechanical domain,
and an excitation force network in the electrical domain. With a linearization near
an equilibrium point of f or the Carleman bilinearization, the nonlinear system (2)
can be approximated by a bilinear system of the form (1). Carleman bilinearization
allows high degree nonlinearity to be explicitly and systematically incorporated in
the bilinear system approximation. This will be further discussed in Section 5.

In this paper, we develop a computational technique for reduced-order modeling
of the bilinear system (1). For a given bilinear system �, another bilinear system �̂ is
constructed such that it has a much smaller state dimension, yet still retains the original
behavior under investigation to high accuracy. An accurate and effective reduced
system thus replaces the original one and can be applied for a variety types of analysis
of physical systems it emulates. Consequently, we can significantly reduce design and
simulation time to meet today’s high demand for short product development times.

The model reduction of bilinear systems was recently studied by Phillips [17,18].
The technique presented in this paper is inspired by his work. We shall clarify theo-
retical and algorithmic differences of the two approaches in Section 3 and compare
their performance on two case studies in Section 5. Karhunen–Loève expansion based
methods and methods of balanced truncation are two most well-known methods for
model reduction of nonlinear systems. The former methods are methods of least-
squares approximation and are known in literature by several names, including proper
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orthogonal decomposition (POD) and principal component analysis (PCA). The
latter methods are the extensions of successful balanced truncation methods for linear
systems to nonlinear systems. The interested reader is referred to [10,23,12,13] and
references therein. Krylov subspace based projection methods have made remarkable
progresses and successes for model reduction of very large linear systems over the
past decade, see for example [5,8,16,6,1]. It is an active research topic to extend
these Krylov subspace based projection methods to large scale nonlinear systems
[20,3,9,19]. Bilinear systems are a special class of nonlinear systems, and can approx-
imate nonlinear systems of the form (2) in a systematical way up to a desired degree
of accuracy by using the Carleman bilinearization procedure. In this paper, we shall
examine this approach for two nonlinear systems arising from MEMS and circuit
simulation applications.

The outline of the rest of the paper is as follows. In the next section, we begin
with a review of basics of Volterra series representation theory of bilinear systems to
introduce essential concepts on transfer functions and moments, and to formally define
the goal of model reduction. A projection framework and its theoretical properties are
presented in Section 3. In Section 4, we consider a practical implementation of the
projection framework. Two applications of this implementation for model reduction
of nonlinear systems arising from nonlinear circuit and micromachined devices are
presented in Section 5. Some concluding remarks are in Section 6.

With a few exceptions, we will follow the notational conventions used in numerical
computing. The boldface letters are used to denote vectors and matrices. The identity
matrix is denoted by I and the zero matrix by 0. The actual dimensions of these
matrices should be apparent from the context. vi denotes the ith column of the matrix
V. V[p] denotes the first p columns of V. The sets of real numbers, column N -
vectors and N × N matrices are denoted by R, RN and RN×N , respectively. Finally,
Kq(A, R) denotes a (block) Krylov subspace generated by a matrix A with a block
of starting vectors R, i.e., Kq(A, R) = span{R, AR, A2R, . . . , Aq−1R}.

2. Bilinear systems and reduced-order modeling

The Volterra series representation of nonlinear systems is a commonly used system
characterization, which generalizes the concept of the linear system impulse response
and its Laplace transform, transfer function and moments. For a linear time-invariant
SISO system of the form{

ẋ(t) = Ax(t) + bu(t),

y(t) = cTx(t),

with the assumption of zero initial condition, the input–output behavior can be
described by the following convolution representation:

y(t) =
∫ t

0
h(σ)u(t − σ) dσ,



Z. Bai, D. Skoogh / Linear Algebra and its Applications 415 (2006) 406–425 409

where u(t) is the input signal, y(t) is the output signal, and h(t) = cTeAtb is the
impulse response which is also called a kernel. For a complete theory of linear systems,
see for example [11].

A generalization of the convolution representation for the bilinear system (1) is
given by the Volterra series

y(t) =
∞∑

k=1

yk(t),

where yk(t) is the kth subsystem convolution representation given by

yk(t) =
∫ t

0

∫ t1

0
· · ·

∫ tk−1

0
h(t1, t2, . . . , tk)u(t − t1 − t2 − · · · − tk) · · ·
× u(t − tk) dtk · · · dt1,

and the associated degree-k (regular) kernel h(t1, t2, . . . , tk) is given by

h(t1, t2, . . . , tk) = cTeAtk NeAtk−1N · · · eAt2 NeAt1 b, (3)

see for example [21,14,22]. Here for simplicity, we assume that x(0) = x0 = 0.
The multivariable Laplace transform of the degree-k kernel (3) defines the kth

transfer function:

H(s1, s2, . . . , sk) = cT(skI − A)−1N(sk−1I − A)−1N · · ·
· (s2I − A)−1N(s1I − A)−1b. (4)

By rewriting the above transfer function as

H(s1, s2, . . . , sk) = (−1)kcT(I − skA−1)−1A−1N · · ·
· (I − s2A−1)−1A−1N(I − s1A−1)−1A−1b

and by making use of the Neumann expansion

(I − sA−1)−1 = I + sA−1 + s2A−2 + s3A−3 + · · · ,
the transfer function H(s1, s2, . . . , sk) of the kth subsystem can be expanded in a
multivariable Maclaurin series

H(s1, s2, . . . , sk) =
∞∑

�k=1

· · ·
∞∑

�1=1

m(�1, �2, . . . , �k)s
�1−1
1 s

�2−1
2 · · · s�k−1

k ,

where

m(�1, �2, . . . , �k) = (−1)kcTA−�k N · · · A−�2 NA−�1 b (5)

are called (low frequency) multimoments of the kth subsystem. For example, the
transfer function H(s1) of the first subsystem can be written in the series

H(s1) = cT(s1I − A)−1b =
∞∑

�1=1

m(�1)s
�1−1
1 ,
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where the associated (low frequency) moments are m(�1) = −cTA−�1 b. Similarly,
the transfer function H(s1, s2) of the second subsystem can be written in the series

H(s1, s2) = cT(s2I − A)−1N(s1I − A)−1b =
∞∑

�2=1

∞∑
�1=1

m(�1, �2)s
�1−1
1 s

�2−1
2 ,

where the corresponding (low frequency) moments are m(�1, �2) = cTA−�2 NA−�1 b.
Alternatively, one can expand the transfer function H(s1, s2, . . . , sk) at si = ∞

for i = 1, 2, . . . , k, and obtain the so-called high frequency moments. Furthermore,
one can also expand the transfer function at zero for some variables si and at infinity
for other variables sj , and obtain the so-called mixed frequency moments.

The goal of reduced-order modeling is that for the given bilinear system � (1),
find a reduced bilinear system �̂ of the same form but with many fewer states, such
that the output behavior of the original system � is faithfully retained by the reduced
system �̂ for an admissible set of inputs u(t). Specifically, in this paper, we study the
problem to be solved is thus: for given matrices A, N ∈ RN×N and vectors b, c ∈ RN

of the bilinear system �, find matrices Â, N̂ ∈ Rn×n and vectors b̂, ĉ ∈ Rn, such that
n < N and a prescribed number of moments of the reduced bilinear system

�̂ :
{ ˙̂x(t) = Âx̂(t) + N̂x̂(t)u(t) + b̂u(t),

ŷ(t) = ĉTx̂(t),
(6)

matches the corresponding moments of the original bilinear system �. Such a pre-
scribed number is specified by two positive integers r and q, where r corresponds to
the transfer functions H(s1), H(s1, s2) to H(s1, s2, . . . , sr ) of the first r subsystems,
and q corresponds to the order of approximation to these transfer functions. Namely,
for given r and q, we want to construct a reduced bilinear system �̂ satisfying the
following moment-matching condition

m(�1, �2, . . . , �k) = m̂(�1, �2 . . . , �k) (7)

for k = 1, 2, . . . , r and �1, �2, . . . , �k = 1, 2, . . . , q. Here

m̂(�1, �2, . . . , �k) = (−1)k ĉTÂ−�k N̂ · · · Â−�2 N̂Â−�1 b̂

are the moments of the transfer function of the kth subsystem of the reduced system
�̂ defined in the following multivariable Maclaurin series:

Ĥ (s1, s2, . . . , sk) =
∞∑

�k=1

· · ·
∞∑

�1=1

m̂(�1, �2, . . . , �k)s
�1−1
1 s

�2−1
2 · · · s�k−1

k .

The total number of the moments matched is q + q2 + · · · + qr . The condition (7)
implies the following orders of approximations in terms of transfer functions:

H(s1, s2, . . . , sk) = Ĥ (s1, s2, . . . , sk) + O
(
s
q1
1 s

q2
2 · · · sqk

k

)
(8)

for k = 1, 2, . . . , r , where q1, q2, . . . , qk � q and at least one of them is equal to q.
We note that the approximation orders in (8) are generally not necessary to be the

same for all transfer functions H(s1, s2, . . . , sk). In Section 4, this condition will be
relaxed in a practical algorithm.
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3. A projection framework

In this section, we present a projection framework for constructing the reduced
bilinear system �̂ (6) with the desired moment-matching property (7). At the end
of this section, we clarify the differences between our approach and a previous one
proposed by Phillips [17,18].

From the expression of moments (5) and the practice in Krylov subspace based
projection methods for linear systems, we first define the following sequence of Krylov
subspaces for the desired number of moment-matching specified by r and q:

span{V(k)} = Kq

(
A−1, A−1NV(k−1)

)
(9)

for k = 2, 3, . . . , r with span{V(1)} = Kq(A−1, A−1b). Then define V as the basis
of a union of these subspaces:

span{V} = span

{
r⋃

k=1

span{V(k)}
}

. (10)

The subspace spanned by V will be the projection subspace, denoted asP, for reduced-
order modeling of the bilinear system (1). Before we proceed, a few remarks are in
order. First, if there is no deflation, namely, the column vectors of V(k) are linearly
independent, then the dimension of the projection subspace P is n = ∑r

k=1 qk . This
is equal to the desired number of moments to be matched, see (7). Second, as we state
at the end of Section 2, the dimensions of the block Krylov subspaces Kq in (9) do
not have to be the same for all k. Similarly, the number of starting vectors for defining
Kq in (9) can just take a portion of columns of V(k−1). In Section 4, we will present
a practical algorithm to provide these options.

We now derive a reduced bilinear system using a projection formulation. We
assume that the basis V of the projection subspace P is orthonormal, i.e., VTV = I.
First by multiplying A−1 to the first equation in the original model (1) from the left,
it yields{

A−1ẋ(t) = x(t) + A−1Nx(t)u(t) + A−1bu(t),

y(t) = cTx(t).
(11)

Recall that the concept of projecting the states of the original systems onto the sub-
space P spanned by V can be viewed as performing a change of variables

x(t) ≈ Vx̂(t), (12)

where x̂(t) ∈ Rn. Substituting (12) into (11) and multiplying the first equation of (11)
with VT from the left yield{

VTA−1V ˙̂x(t) = x̂(t) + VTA−1NVx̂(t)u(t) + VTA−1bu(t),

ŷ(t) = cTV x̂(t).
(13)

Then a reduced-order model of the bilinear system (1) is naturally defined as

�̂ :
{ ˙̂x(t) = Âx̂(t) + N̂x̂(t)u(t) + b̂u(t),

ŷ(t) = ĉTx̂(t),
(14)
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where

Â = (VTA−1V)−1, N̂ = ÂVTA−1NV, b̂ = ÂVTA−1b, ĉ = VTc.

(15)

The forms of the matrices Â and N̂ in (15) are quite unusual. However, this formulation
is essential to achieve the maximum level of moment matching from the projection
method. This will be justified by the following theorem and comments. In numerical
simulation, the explict inverse of VTA−1V can be avoided if we work with the reduced
system in the form (13).

Theorem 3.1. For k = 1, 2, . . . , r, the qk moments m̂(�1, �2, . . . , �k) of the kth sub-
systems of the reduced system �̂ matches the qk moments m(�1, �2, . . . , �k) of the
original system �, where �1, �2, . . . , �k = 1, 2, . . . , q.

Proof. In the following, we shall prove the moment-matching property for the first
and second subsystems in detail. The proof for higher degree kernels can be shown
straightforwardly by induction.

First we note that by the construction of the basis V shown in (10), the following
vectors are in the projection subspace P:

A−�1 b,

A−�2 NA−�1 b,
. . . ,

A−�k NA−�k−1N · · · A−�1 b,
. . . ,

A−�r NA−�r−1N · · · · · · · · · A−�1 b,

where �1, �2, . . . , �r = 1, 2, . . . , q. Under the assumption of nondeflation, the total
number of vectors in the basis is n = ∑r

k=1 qk .
Next, we note the fact that if the basis V of P is orthonormal, then for any vector

z ∈ P,

z = VVTz. (16)

We now prove that the moments m̂(�1) = −ĉTÂ−�1 b̂ of the first subsystem of the
reduced system �̂ matches the corresponding moments m(�1) of the original system
� for �1 = 1, 2, . . . , q. Since the vectors A−�1 b are in P, by (16), we have

A−�1 b = VVTA−�1 b, (17)

Repeatedly using (17), it yields

VÂ−�1 b̂ = V(VTA−1V)�1 ÂVTA−1b

= V(VTA−1V)�1−1VTA−1b



Z. Bai, D. Skoogh / Linear Algebra and its Applications 415 (2006) 406–425 413

= V(VTA−1V)�1−2VTA−1VVT A−1b

= V(VTA−1V)�1−2VTA−2b
...

= VVTA−�1 b = A−�1 b. (18)

Multiplying the first and last terms in (18) with cT from the left, it yields the moment-
matching property for the first subsystem

m̂(�1) = −ĉTÂ−�1 b̂ = −cTA−�1 b = m(�1),

for �1 = 1, 2, . . . , q.
Next we prove that the moments m̂(�1, �2) = ĉTÂ−�2 N̂Â−�1 b̂ of the second sub-

system of the reduced system �̂ match the corresponding moments m(�1, �2) of the
original system � for �1, �2 = 1, 2, . . . , q.

By the definitions of Â and N̂ (15) and Eqs. (16) and (18), we have

VÂ−�2 N̂Â−�1 b̂ = VÂ−�2 N̂VTA−�1 b by (18)

= VÂ−�2 · ÂVTA−1NV · VTA−l1 b by definition of N̂

= VÂ−�2 ÂVTA−1NA−�1 b by (16)

= V(VTA−1V)�2−1VTA−1NA−�1 b by definition of Â

= A−�2 NA−�1 b, (19)

where the last equality is obtained by using the same recursive derivation as shown
in (18). After multiplying the first and last terms in (19) with cT from the left, we
immediately have

m̂(�1, �2) = ĉTÂ−�2 N̂Â−�1 b̂ = cTA−�2 NA−�1 b = m(�1, �2)

for �1, �2 = 1, 2, . . . , q. Thus the q2 moments for the second subsystem matches
those of the original system. �

The work presented in this section is inspired by the work of Phillips [17,18].
In [17,18], the projection subspace P is defined as a union of the following Krylov
subspaces:

span{V(k)} = Kq

(
A−1, NV(k−1)

)
for k = 2, 3, . . ., with span{V(1)} = Kq(A−1, b). Let V be an orthonormal basis of
P, then the matrices Â and N̂ and the vectors b̂ and ĉ for the reduced system are
defined by

Â = VTAV, N̂ = VTNV, b̂ = VTb, ĉ = VTc.

These are simpler ways to define the projection subspace and the reduced system than
our definitions of the projection subspace (9) and the reduced system (14) and (15).
However, by a careful analysis, it can be shown that the reduced system defined in
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this way does not satisfy the desired moment-matching and approximation properties
(7) and (8), and the similar ones in [17,18]. In fact, the reduced system constructed
in this way matches some low frequency moments, some high frequency moments,
and even some mixed frequency moments. Numerical examples in Section 4 show
that the resulting reduced system in this way is less accurate and stable.

4. A practical algorithm

In this section, we describe a practical implementation of the projection framework
to match moments m(�1) and m(�1, �2) corresponding to the first and second degree
kernels of the bilinear system �. This is our anticipation of the situations where this
algorithm is of the most frequent use.

To match some of moments of the first and second subsystems, by Section 3, the
projection subspace P should be defined as follows:

P = span{V} = span
{
span{V(1)} ∪ span{V(2)}}, (20)

where

span{V(1)} = Kq1(A
−1, A−1b) and span{V(2)} = Kq2

(
A−1, A−1NV(1)

[p2]
)
.

The nonnegative integers q1, q2 and p2 are prescribed parameters with p2 � q1. V(1)
[p2]

denotes the first p2 columns of the matrix V(1). For r = 2, this is a more general case
than the projection subspace defined in (9), which corresponds to the special choice
q1 = p2 = q2 = q. If there is no deflation, namely, the column vectors of V(1) and
V(2) are linearly independent, then the dimension of the projection subspace P is
n = q1 + p2q2. Following the discussion in Section 3, it is immediately seen that the
following moments are preserved:

m(�1) = m̂(�1) for �1 = 1, 2, . . . , q1,

m(�1, �2) = m̂(�1, �2) for �1 = 1, 2, . . . , p2 and �2 = 1, 2, . . . , q2.

This implies that we have the following approximations of the transfer functions of
the first and second subsystems:

H(s1) = Ĥ (s1) + O(s
q1
1 ),

H(s1, s2) = Ĥ (s1, s2) + O(s
p2
1 � s

q2
2 ).

Here s
p2
1 � s

q2
2 stands for the product of the powers of the variables s1 and s2 with

either s
p2
1 or s

q2
2 true.

An algorithm template for generating an orthonormal basis V of the projection
subspace P goes as follows.

Algorithm for generating an orthonormal basis V of P
Input: A, N, b, q1, q2 and p2 with p2 � q1
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Output: V as defined in (20) with VTV = I.

1. r = A−1b
2. v(1)

1 = r/‖r‖2
3. for i = 1 : q1 − 1
4. r = A−1v(1)

i

5. h = (V(1)
[i] )Tr

6. r = r − V(1)
[i] h

7. if ‖r‖2 = 0, deflation
8. v(1)

i+1 = r/‖r‖2
9. end

10. G = A−1NV(1)
[p2]

11. V(2) = orth(G)

12. for i = 1 : p2(q2 − 1)

13. r = A−1v(2)
i

14. h = (
V(2)

[p2+i−1]
)Tr

15. r = r − V(2)
[p2+i−1]h

16. if ‖r‖2 = 0, deflation
17. v(2)

p2+i = r/‖r‖2
18. end
19. V = orth([V(1)V(2)])

The following comments are in order.

• Steps 1 to 9 consist of the well-known classical Gram–Schmidt process to generate
an orthonormal basis V(1) of the Krylov subspace Kq1(A

−1, A−1b). They are
also known as the Arnoldi process. In this case, only the basis vectors are saved.
Similarly, steps 11 to 18 consist of the block classical Gram–Schmidt process,
executed sequentially, to generate an orthonormal basis V(2) of the Krylov subspace
Kq2

(
A−1, A−1NV(1)

[p2]
)
.

• In steps 11 and 19, we use function orth(X) to stand for the Gram–Schmidt process
or QR decomposition for generating an orthonormal basis for the range of X.

• The matrix-vector products in steps 1, 4, 10 and 13 should be implemented by
solving the linear systems of equations with the coefficient matrix A.

• When the deflation happens at step 7 or 16, step 8 or 17 is skipped. In a working pro-
gram, the deflation should be properly handled, see for example, thegsreorthog
procedure in [25, p. 287].

Once the orthonormal basis V is generated, the reduced system (14) is derived
by computing Â, N̂, b̂ and ĉ as defined in (15). Substantial computational savings
could be obtained by exploiting the structures of A and N in a working program. The
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explicit inverse in defining Â can be avoided if we work with the reduced bilinear
system as in the form (13).

5. Numerical examples

In this section, we present two case studies for the model reduction of nonlinear
systems based on bilinearization approach presented in the previous sections. All
numerical simulations were run in Matlab on a SUN 440 MHz Ultra 10 worksta-
tion. We used Matlab’s ode15s for solving ordinary differential equations under
investigation.

Example 1. We use an electrostatic gap-closing actuator, a frequently used microma-
chined device shown in Fig. 1, as an example to compare the accuracy of our approach
presented in Section 4 and Phillips’ method [17,18] as described at the end of
Section 3.

The governing equation for simulating the dynamical response of the actuator in
SUGAR 2.0 [4] is given by{

Mq̈ + Dq̇ + Kq = bu(q, t)

y = lTq,
(21)

where q is a state vector of length No. M, D and K are the No × No multi-energy
domain system matrices, which are analogous to the mass, damping and stiffness of a
purely mechanical system. u(q, t) is the input excitation source including nonlinear
electrostatic force. y(t) is the output of the system. Vector b is an input influence
array to indicate the position input excitation. l is chosen to extract the components
of the state vector of interest.

In this example, a 2 �m by 100 �m flexure is attached to a 5 �m by 100 �m
moveable plate that extends from node b to node c. The parallel plate approximation
is used to calculate the total force to the plate. b only has two ones in the components
corresponding to the direction of force at nodes b and c. l only has one in the component
corresponding to the node c.

u(q, t) = −1

4
ε0A

v(t)2

gap(q)2
,

where ε0 is the permitivity of free space, gap(q) is the distance between the 2 plate
electrodes, A is the area facing the gap, and v(t) is the voltage between the electrodes.

I

gap

b

V
in

-+

c

Fig. 1. An electrostatic gap-closing actuator.
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M and K are derived using linear beam theory, while D is based on simple Couette
damping and is proportional to M. All structures are fabricated in a 2 �m polysilicon
layer. The order of the model (21) is No = 30.

We now show an approximation of the model (21) by a bilinear model (1). First,
we note that the model (21) can be equivalently cast in the following form:{

Cẋ + Gx = b u(x, t),

y = lTx,
(22)

where

x =
[

q
q̇

]
, C =

[
D M
I 0

]
, G =

[
K 0
0 −I

]
, b :=

[
b
0

]
, l :=

[
l
0

]
.

Furthermore, the system (22) can be rewritten in the form of (2). By a linearization
near an equilibrium point xe of the state evolution function, we obtain a bilinear
system of the form (1).

In numerical simulation, a piecewise linear voltage function v(t) is applied across
the gap. The voltage v(t) ramps from 5 V at t = 10 �s to 12 V at t = 500 �s, and
then drops to 0 V. The displacement component of node c in the direction of force
is observed. The initial voltage step causes the device to oscillate. As the voltage
increases at a linear rate, the gap decreases at a nonlinear rate due to the electrostatic
force increasing proportionally to 1/gap2. This force also causes the period of oscil-
lation to increase. Once the voltage is removed, the actuator exponentially decays
back to equilibrium due to viscous air damping.

This phenomenon is captured in the numerical simulation as shown in Figs. 2 and 3.
Fig. 2 shows the displacements over the time interval [0, 3 × 10−4] by three different
approaches, namely, solving the original system (22), solving the reduced bilinear
system �̂ generated by the algorithm described in Section 4 and Phillips’ method
[17,18] as described at the end of Section 3. The reduced system �̂ (6) by the new
algorithm faithfully reproduces the displacement behavior of the original system �.
In contrast, Phillips’ method does poorly. Fig. 3 shows the decay back to equilibrium
simulated by the reduced system (6). Comparing with the results reported in [4,2],
Fig. 3 shows that the reduced bilinear system captures the essential behavior of the
original system. Just for the record, it took 16 seconds to produce the results shown
Fig. 3. On the other hand, after more than 10 h, we still could not solve the original
system over the same time interval.

Example 2. We consider a nonlinear system of the form{
v̇(t) = f(v(t)) + bu(t),

y(t) = cTv(t),
(23)

with initial condition v(0) = v0, where v ∈ RNo is the state variables. u(t) and y(t)

are input and output functions, respectively. b ∈ RNo is the input distribution array.
c ∈ RNo is the output measurement array. We assume that the nonlinear state evolution
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Fig. 2. Displacements of node c computed based the full system, and reduced ones by our method and
Phillips’ method.

function f(x) : RNo → RNo possess a sufficient degree of smoothness, and has an
equilibrium. Without loss of generality we take this equilibrium at 0, i.e., f(0) = 0.

Suppose that the power series expansion of f(x) about the equilibrium point 0 is
written as

f(v) = A1v + A2(v ⊗ v) + A3(v ⊗ v ⊗ v) + · · · , (24)

where A1 ∈ RNo×No is the Jacobian or the first derivative of f, and A2 ∈ RNo×N2
o

is the second derivative matrix of f, and so on. ⊗ is the Kronecker product. The
linearization of the nonlinear system (23) simply takes the first term in (24) and
yields a linear system of the form{

v̇(t) = A1v(t) + bu(t),

y�(t) = cTv(t).
(25)

If we consider the first two terms of the expansion (24), then by Carleman bilineari-
zation up to the second order, the nonlinear system (23) can be approximated by the
following bilinear system:{

ẋ(t) = Ax(t) + Nx(t)u(t) + bu(t),

yb(t) = cTx(t),
(26)
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Fig. 3. Displacement of node c, back to equilibrium simulated by the reduced system.

where

x =
[

v
v ⊗ v

]
, b :=

[
b
0

]
, c :=

[
c
0

]
,

A =
[

A1 A2
0 A1 ⊗ I + I ⊗ A1

]
, N =

[
0 0

b ⊗ I + I ⊗ b 0

]
.

For the details of Carleman bilinearization process, see [21,22]. We note that the
dimension of the state space of the resulting bilinear system (26) is N = No + N2

o ,
which is significantly higher than the state dimension of the original system (23). This
is the major obstacle to using the Carleman bilinearization for a very large nonlinear
system with high degree of nonlinearity necessary. However, in the following, we
show that a model reduction technique, we are able to obtain a satisfactory reduced
bilinear system of the state dimension n even much smaller than the original dimension
No.

Let us consider an RC circuit with nonlinear resistors and an independent current
source proposed by Chen and White [3], see Fig. 4. Let u(t) be the input-signal to
the independent current source and v1, v2, . . . , vNo be the node voltages. By apply-
ing Kirchhoff’s current law and assuming C = 1 for each capacitor, we obtain the
nonlinear system (23), where
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Node nNode n-1Node 2Node 1

i=u(t)

g g g g

C C C C Cg

Fig. 4. A nonlinear RC circuit [3].

f(v) = [fk(v)] =



−g(v1) − g(v1 − v2)

g(v1 − v2) − g(v2 − v3)
...

g(vk−1 − vk) − g(vk − vk+1)
...

g(vNo−1 − vNo)


, b = c :=


1
0
...

0

 .

The output signal y(t) is the voltage between node 1 and ground. The current through
each resistor will have the following voltage dependence:

g(v) = exp(40v) + v − 1. (27)

With the second-order approximation of g(v), the first component of f (v) can be
written as

f1(v) = −82v1 + 41v2 − 1600v2
1 + 800v1v2 + 800v2v1 − 800v2

2 + · · · .
(28)

The second component of f (v) is

f2(v) = 41v1 − 82v2 + 41v3 + 800v2
1 − 800v1v2

− 800v2v1 + 800v2v3 + 800v3v2 − 800v2
3 + · · · . (29)

In general, the kth component of f(v) can be written as

fk(v) = 41vk−1 − 82vk + 41vk+1 + 800v2
k−1 − 800vk−1vk

− 800vkvk−1 + 800vkvk+1 + 800vk+1vk − 800v2
k+1 + · · · . (30)
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Finally, the last N th component of f (v) is

fNo(v) = 41vNo−1 − 41vNo + 800v2
No−1 − 800vNo−1vNo

− 800vNovNo−1 + 800v2
No

+ · · · . (31)

These expressions can be rewritten in matrix notation in the expansion form (24). The
coefficient matrix A1 of the first term is given by

A1 =


−82 41
41 −82 41

. . .
. . .

. . .
41 −82 41

41 −41

 .

Now let us consider the coefficient matrix A2 of the second term in the expansion
(24). Note that A2 is of dimension No × N2

o . If we order the second order terms vivj

in the vector v ⊗ v as the ((i − 1)No + j)th component, then from (28)–(31) we see
that the nonzero entries of A2 are as follows:

• in the first row,

A2(1, 1) = −1600, A2(1, 2) = 800,

A2(1, No + 1) = 800, A2(1, No + 2) = −800;

• in the second row,

A2(2, 1) = 800, A2(2, 2) = −800,

A2(2, No + 1) = −800, A2(2, No + 3) = 800,

A2(2, 2No + 2) = 800, A2(2, 2No + 3) = −800;

• in general, in the kth row, where 2 < k < No − 1,

A2(k, (k − 2)No + k − 1) = 800, A2(k, (k − 2)No + k) = −800,

A2(k, (k − 1)No + k − 1) = −800, A2(k, (k − 1)No + k + 1) = 800,

A2(k, kNo + k) = 800, A2(k, kNo + k + 1) = −800;

• and in the last row

A2(No, (No − 2)No + No − 1) = 800, A2(No, (No − 2)No + No) = −800,

A2(No, (No − 1)No + No − 1) = −800, A2(No, (No − 1)No + No) = 800.
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We observe that the matrices A1 and A2 are extremely sparse. For example, the
number of nonzero entries of the No × N2

o matrix A2 is approximately equal to 6No.
Furthermore, the matrices A and N in the bilinear system (26) are highly structured.
These properties can be exploited in depth for computational efficiency in both storage
and CPU time. A detailed discussion on these issues is beyond the scope of this
paper.

In our numerical simulation, we used No = 200. As a result, the bilinear system
(26) is of the dimension N = No + N2

o = 40, 200. Figs. 5 and 6 show the outputs
y(t) for input functions u(t) = e−t and u(t) = (cos(2�t/10) + 1)/2, respectively.
Numerical results of four approaches are reported in these figures. The first approach
is to solve the original system (23) directly. The second approach is to use the line-
arized system (25). The third and fourth approaches are model reduction algorithms,
namely, the new algorithm presented in Section 4, and Phillips’ method [17,18]. We
highlight the following two observations: (a) The reduced bilinear system approach is
significantly better than the linearization and the new algorithm is more accurate than
Phillips’ method. (b) As a result of Carleman bilinearization, the state dimension
of the bilinear system (26) is increased dramatically. For example, when the state
dimension of the original system is No = 200, the state dimension of the bilinear
system at the second-order approximation is increased to N = 40,200. Fortunately,
the state dimension of the reduced systems can be in fact very small, even much
smaller than the original system No. In this example, the reduced system of order 21
essentially reproduces the output behaviors of the order original system of order 200.
Finally, we note that in our experiments, we observed that the stability of the reduced
system defined by Phillips’ method is highly sensitive to the choice of the parameters
q1, q2 and p2, as illustrated in Fig. 7.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Time (second)

V
ol

ta
ge

 a
t N

od
e 

1

Transient Responses, n = 21 (q
1
 = 20,p

2
 = 1,q

2
 = 1)

Original Model
Linear Model
Reduced Bilinear Model
Reduced Bilinear Model (Phillips)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

–5

10
–4

10
–3

10
–2

10
–1

10
0

Time

R
el

at
iv

e 
er

ro
rs

Relative errors, n = 21 (q
1
 = 20,p

2
 = 1,q

2
 = 1)

Linear model
Reduced Bilinear Model
Reduced Bilinear Model (Phillips)

Fig. 5. Left: Output y(t) of the nonlinear RC circuit for u(t) = e−t . Right: Relative errors with respect to
the original system.
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Fig. 6. Left: Output y(t) of the nonlinear RC circuit for u(t) = (cos(2�t/10) + 1)/2. Right: Relative
errors with respect to the original system.
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Fig. 7. Sensitivity of Phillips’ method to the parameters p1, q2, p2, u(t) = e−t .

6. Concluding remarks

A Krylov subspace based projection method is presented for reduced-order mod-
eling of the bilinear system �. Although the system matrices as defined in (14) for
the reduced system �̂ is unconventional compared to the one proposed in [17,18],
we have shown that they are the right ones to use for satisfying the desired moment
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preservation and transfer function approximation (7) and (8). We have demonstrated
the advantages of this new definition in two applications. It is an open question to
connect the accuracy of the output approximation with the optimal degrees of transfer
function approximations and the corresponding number of matching-moments.

Carleman bilinearization is a systematical way to approximate a nonlinear system,
such as in the form of (2), to a desired degree of nonlinearity. However, the order of the
resulting bilinear system increases dramatically. It is essential to exploit the underlying
structure. Memory requirement may eventually become a bottleneck. Recently, a
piecewise-linear system approximation of a nonlinear system is presented in [19]. It
is an interesting project to compare these two approaches.
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