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Abstract

Disk brake squeal noise is mainly due to unstable friction-induced vibration. A typical disk brake system
includes two pads, a rotor, a caliper and a piston. In order to predict if a disk brake system will generate
squeal, the finite element method (FEM) is used to simulate the system. At the contact interfaces between
the pads and the rotor, the normal displacement is continuous and Coulomb’s friction law is applied. Thus,
the resulting FEM matrices of the dynamic system become unsymmetric, which will yield complex
eigenvalues. Any complex eigenvalue with a positive real part indicates an unstable mode, which may result
in squeal. In real-world applications, the FEM model of a disk brake system usually contains tens of
thousands of degrees of freedom (d.o.f.s). Therefore any direct eigenvalue solver based on the dense matrix
data structure cannot efficiently perform the analysis, mainly due to its huge memory requirement and
long computation time. It is well known that the FEM matrices are generally sparse and hence only the
non-zeros of the matrices need to be stored for eigenvalue analysis. A recently developed iterative method
named ABLE is used in this paper to search for any unstable modes within a certain user-specified
frequency range. The complex eigenvalue solver ABLE is based on an adaptive block Lanczos method for
sparse unsymmetric matrices. Numerical examples are presented to demonstrate the formulation and the
eigenvalues are compared to the results from the component modal synthesis (CMS).
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

It is an important technology issue to reduce squeal during braking in order to improve the
quiet and comfortable performance of vehicles; otherwise customers would lose confidence on the
quality of their vehicles if the brake squeal occurs too often. Squeal usually manifests at higher
frequencies (500Hz or higher) [1]. When brake squeal occurs, the rubbing surfaces do not stick to
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each other and the relative sliding speed is always unidirectional. Brake squeal can be defined as a
self-excited vibration caused by fluctuations in the friction forces at the pad-rotor interfaces.
Fluctuations caused by friction coefficient–velocity characteristics and fluctuations due to normal
forces between pads and rotor (even if the friction coefficient is constant) are the two theories to
explain the cause of the friction force fluctuation [2].
The FEM has already been used to predict the eigenvalues of simplified disk brake systems

[1,3–6]. For a 3-D FEM model, each node has three d.o.f.s. For any node at the pad–rotor
interfaces, Coulomb’s friction law is used to relate the d.o.f.s in the normal direction to the d.o.f.s
in the two tangential directions, causing the resulting FEM matrices to become unsymmetric. By
solving the complex eigenvalues of the newly formed matrices, one can predict if any unstable
mode is present. Any complex eigenvalues with a positive real part may indicate an unstable
mode. The real part of a complex eigenvalue is called ‘‘propensity’’, and the larger its magnitude
is, the more likely the mode is an unstable mode.
Due to the high frequency nature, a real disk brake system usually has tens of thousands of

d.o.f.s. The immediate difficulty with the FEM becomes the huge memory requirement and long
solution time. It is well known that for any direct eigenvalue solvers such as the QZ method, the
memory requirement is on the order of n2 and the total CPU time is on the order of n3; where n is
the number of d.o.f.s of the system. Thus it is impractical to use any direct complex eigenvalue
solver for brake squeal analysis.
The difficulty could be alleviated by using component mode synthesis (CMS). The CMS is an

approximation method that significantly reduces the total d.o.f.s of a large system. The basic idea
of the CMS is to divide the whole brake system into component structures [4,6]. First, the
eigenvalues and the eigenvectors are found for each individual component (such as caliper, pads,
disk rotor, etc.) by the FEM. The parts are then joined together by spring elements to construct a
brake assembly. Special friction springs are applied between the nodes at the pad–rotor interfaces
to simulate the frictional mechanism. Note that in order to solve the system, the physical
co-ordinate model is actually transformed into a modal co-ordinate model. Finally a reduced-size
eigenvalue problem is solved to identify if there are any unstable modes.
There are some limitations associated with the CMS. First, it is a kind of approximation

method. One would not use all of the modes of each component to simulate the problem;
otherwise it is meaningless to do the CMS. Second, since one can only use a small number of
modes, then the problem becomes selecting how many and what modes of each component. The
third limitation is that it is difficult to do an analysis for a quadratic eigenvalue problem (QEP)
when the damping matrix is present. The reason is that in order to form the QEP, the normal
contact forces at the pad–rotor interfaces need to be solved first so that the damping matrix can be
formed. However, it is difficult to solve the contact forces in the modal space. Another limitation
is the usage of massless springs to represent the frictional mechanism, which might lead to great
error when modelling high-frequency squeal [1].
Because of these limitations of CMS, it may be desirable to solve the disk brake system in the

physical displacement space. However as mentioned earlier, it is impractical to solve the complex
eigenvalue problem using any direct solvers like the QZ method. Iterative methods could be a
better choice when only the eigenvalues within a certain frequency range are to be sought. The
Arnoldi and the Lanczos methods are the two most widely used iterative methods. However, a
main drawback of the Arnoldi method is that at each step all the Arnoldi vectors are transferred
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from memory to the CPU, known as ‘‘long recurrence’’ [9]. On the other hand, in the Lanczos
method, only current vectors are recalled at each step, or ‘‘short recurrence.’’
The Lanczos method originated in the 1950s. In the 1970s and 1980s most studies of the

Lanczos method were on symmetric eigenvalue problems. In 1986, Cullum and Willoughby [7]
first proposed an implementation of the non-symmetrical Lanczos method without reorthogo-
nalization. Then this method was extended to the generalized eigenvalue problem Ax ¼ lBx in
1989 [8]. It is noted that sometimes the Lanczos method may fail with ‘‘breakdown.’’ Since the
1980s, a lot of work has been done on the issue of how to fix the breakdown problem. Ye
proposed a scheme to cure the breakdown by choosing a new starting vector. This vector
generates another Krylov subspace, which is appropriately combined with the old one [10]. This
idea has been incorporated in the recently proposed ABLE algorithm by Bai and Day [9]. ABLE is
an adaptive block Lanczos method for non-Hermitian eigenvalue problems [11]. In this algorithm,
an adaptive block size scheme is used to cure breakdowns and adapt to the order of multiple or
clustered eigenvalues. ABLE also monitors the loss of biorthogonality and maintains semi-
biorthogonality among the computed Lanczos vectors, which generalizes the standard technique
used in the implementation in the symmetric Lanczos method. Another virtue of ABLE is that it
can take great advantage of the sparsity of the FEM matrices. Since the FEM matrices are
generally very sparse, the employed matrix-vector operation can be done very quickly.
In this paper, a general formulation of friction induced vibration to predict the complex

eigenvalues for a disk brake system is presented. A brief introduction about the complex
eigenvalue analysis is followed. Then the recently developed iterative method ABLE is described.
Special implementation issues about ABLE in the application to disk brake systems are also
discussed. Numerical examples on models with different number of d.o.f.s are presented. Good
agreement is achieved in comparison with the CMS.

ARTICLE IN PRESS
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2. Formulation of friction induced vibration for disk brake systems

A typical disk brake system assembly is shown in Fig. 1. In order to simplify the description of
the general formulation, a simplified model shown in Fig. 2 is used. It should be noted that
although the following derivation is based on this simplified model, the formulation is actually
valid for more complex models.
At the beginning, the equilibrium analysis for steady sliding is first presented, where a certain

instant is considered and the acceleration of the rotor is neglected. After that, the dynamic
perturbation is applied to the equilibrium state to obtain the dynamic system equations.

2.1. Equilibrium analysis for steady sliding

With reference to Fig. 2, the nodes on the rotor at the contact surface are referred to as
‘‘Master’’ nodes (all variables with superscript M), and the corresponding nodes on the pads are
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Fig. 2. A simplified disk brake system: M; master rotor; S1, S2, Slave 1 and 2 (pad); X ; Y ; tangent plane; Z; normal

direction; F, friction force; N, normal force.
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referred to as the ‘‘Slave’’ nodes (all variables with superscript S). The interface in the positive Z

direction is called interface 1 and the interface in negative Z direction is called interface 2. Assume
that the rotor rotates about the positive Z-axis as shown in Fig. 2.
The friction forces at the two interfaces are evaluated by Coulomb’s friction law. In this study,

the kinetic friction coefficient is assumed to have the form

m ¼ m0 þ aVy; ð1Þ

where both m0 and a are constants, and Vy is the relative sliding speed in the tangential direction.
The value of a usually is negative, which means the m� Vy slope is negative [1].
In Cartesian co-ordinates, the components of the friction force are

F1x ¼ F1 sin y ¼ mN1 sin y ¼ m1xN1; ð2Þ

F1y ¼ �F1 cos y ¼ �mN1 cos y ¼ �m1yN1; ð3Þ

F2x ¼ F2 sin y ¼ mN2 sin y ¼ m2xN2; ð4Þ

F2y ¼ �F2 cos y ¼ �mN2 cos y ¼ �m2yN2; ð5Þ

where N is the normal contact force, and m1x=m sin y; m1y ¼ m cos y;m2x=m sin y;m2y=m cos y:
The FEM matrix equation for the whole system can be written as

K1;1K1;2?K1;13

K2;1K2;2?K2;13

K3;1K3;2?K3;13

K4;1K4;2?K4;13

K5;1K5;2?K5;13

K6;1K6;2?K6;13

K7;1K7;2?K7;13

K8;1K8;2?K8;13

K9;1K9;2?K9;13

K10;1K10;2?K10;13

K11;1K11;2?K11;13

K12;1K12;2?K12;13

K13;1K13;2?K13;13

2
666666666666666666666666664
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777777777777777777777777775
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666666666666666666666666664
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¼

�F1X

�F1Y

N1

F1X

F1Y

�N1

�F2X

�F2Y

�N2

F2X

F2Y

N2

P

2
666666666666666666666666664

3
777777777777777777777777775

; ð6Þ

where K is the stiffness matrix, and u is the nodal displacement vector. The subscript ‘‘other’’
denotes all other nodes not on the two interfaces. The external forces acting on ‘‘other’’ nodes are
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denoted by P: Eliminating the friction forces in Eq. (6), we get

ðK1;1 þ m1xK3;1Þ?ðK1;13 þ m1xK3;13Þ

ðK2;1 � m1yK3;1Þ?ðK2;13 � m1yK3;13Þ

0 0 1 0 0 � 1 0?0

ðK4;1 þ m1xK6;1Þ?ðK4;13 þ m1xK6;13Þ

ðK5;1 � m1yK6;1Þ?ðK5;13 � m1yK6;13Þ

ðK6;1 þ K3;1Þ?ðK6;13 þ K3;13Þ

ðK7;1 � m2xK9;1Þ?ðK7;13 � m2xK9;13Þ

ðK8;1 þ m2yK9;1Þ?ðK8;13 þ m2yK9;13Þ

0 0 0 0 0 0 0 0 1 0 0 � 1 0

ðK10;1 � m2xK12;1Þ?ðK10;13 � m2xK12;13Þ

ðK11;1 þ m2yK12;1Þ?ðK11;13 þ m2yK12;13Þ

ðK12;1 þ K9;1Þ?ðK12;13 þ K9;13Þ
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2
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777777777777777777777777775

¼

0

0

0

0

0

0

0

0

0

0

0

0

P

2
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3
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: ð7Þ

This is the equilibrium equation at steady sliding when the acceleration is ignored. Solve Eq. (7)
for the displacements, and then the normal contact forces N1 and N2 can be obtained by Eq. (6). It
should be noted that although the third and ninth rows of the matrix equation are shown to
enforce the continuity of displacement in the Z direction at the contact surfaces, the slave degrees
of freedom in Z direction are actually condensed out in real numerical implementation.

2.2. Dynamic perturbation

Dynamic perturbation is performed when a small deviation from the equilibrium position is
added to the system. By this way we can see whether the system is stable or not. By applying
dynamic perturbation [1] and ensuring the continuity of the acceleration, velocity and
displacement in the normal direction of the corresponding master and slave nodes, the following
matrix equation can be formulated:
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We rewrite the above matrix equation in the following compact form:

½M�fD .ug þ ½C�fD ’ug þ ½K �fDug ¼ fDf g; ð9Þ

where ½M�; ½C� and ½K � are the resulting mass, damping and stiffness matrices, respectively, with
the friction mechanism applied. Note that all of the matrices are unsymmetric. Like in the static
analysis, the slave d.o.f.s in Z direction at the contact surfaces are actually condensed out in real
numerical implementation. Finally the complex eigenvalue analysis on Eq. (9) can be performed.
It is noted that when a ¼ 0; the damping matrix vanishes and the static analysis is unnecessary.
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: ð8Þ
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The purpose of the static analysis is to find the normal contact force that only shows up in the
damping matrix.

3. Complex eigenvalue analysis

Assume that the homogeneous solution for Eq. (9) has the form

uðtÞ ¼ eltw:

Substitute the above equation into Eq. (9) to obtain the quadratic eigenvalue problem (QEP)

ðl2M þ lC þ KÞw ¼ 0; ð10Þ

where l and w are the eigenvalue and the eigenvector of the system, respectively. Both are complex
in general.
The linearization method is a widely used to solve the QEP in Eq. (10). There are many

different linearization forms. In this study, the following linearization form for Eq. (10) is used:

K 0

0 I

" #
w

lw

" #
¼ l

�C �M

I 0

" #
w

lw

" #
; ð11Þ

where I is the identity matrix. Eq. (11) is in the form of the generalized eigenvalue problem

Ax ¼ lBx: ð12Þ

Mathematically, Eqs. (10) and (11) have the same eigenvalues. Note that when a ¼ 0; the damping
matrix [C] is a zero matrix. Under this circumstance, the QEP in Eq. (10) reduces to

ðl2M þ KÞw ¼ 0; ð13Þ

which is also in the form of Eq. (12) except that the eigenvalues can be solved without doubling
the size of the problem. However since ½K � and ½M� are unsymmetric, complex eigenvalue analysis
is still required when a ¼ 0:

4. ABLE: an adaptive block Lanczos method

The typical number of nodes in an FEM model for a disk brake system could well exceed
30,000. If aa0 and we linearize the QEP into a standard generalized eigenvalue problem, the
order of the eigenvalue problem will be doubled as shown in Eq. (11). Thus it is impossible to
solve the eigenvalue problem using any direct solvers such as the QZ method.
One characteristic of the FEM is that the matrices are generally very sparse. When the size of

the FEM model increases, the matrices become even sparser. The iterative method ABLE can
fully take advantage of the sparse matrix data structure.

4.1. ABLE algorithm template

The ABLE algorithm is based on the basic block Lanczos procedure (Appendices A.1 and A.2).
The pseudo-code of ABLE is presented in Appendix A.3. The detailed explanation of the

ARTICLE IN PRESS

G. Lou et al. / Journal of Sound and Vibration 272 (2004) 731–748738



algorithm such as convergence criteria, TSMGS (two-sided modified Gram–Schmidt process) and
CURE breakdown procedure, etc. can be found in Ref. [9]. Here we want to describe the four
levels of this algorithm, which let users have great freedom to choose different levels for their
special applications.
There are four logical variables, namely fulldual, semidual, treatbd and group in the ABLE

algorithm. The functions for these variables are described in the following Table 1.
With different value combinations of these four variables, there are four levels of the algorithm.
Level 1: All logical flags are false
Implement the basic block Lanczos algorithm (Appendix A.1). Essentially it runs the 3-term

short recurrences and does not save the computed Lanczos vectors. Only the eigenvalues are
computed.

Level 2. fulldual=true and other logical flags are false
Maintain full biorthogonality. At each step the current Lanczos vectors are explicitly

re-biorthogonalized against all previous Lanczos vectors by two-sided modified Gram–Schmidt
process. Eigentriplets are computed in LevelsX2.

Level 3. semidual=true and other logical flags are false

Maintain semi-biorthogonality. Less expensive in both floating point operations and memory
references than full biorthogonality.

Level 4. (fulldual=true or semidual=true) and (treatbd=true and/or group=true)
Cure breakdown by increasing the block size and/or adapt the block size to be at least the order

of any known cluster of eigenvalues.
Users may choose to implement the ABLE method to maintain full biorthogonality (Level 2) or

semi-biorthogonality (Level 3) but not both. Level 4 is implemented on the top of the Level 2 or 3.
For the disk brake system, the eigenvalue distribution of a disk brake system is unknown. It is

also unknown whether there are any clustered eigenvalues for a disk brake system. Furthermore,
the eigenvectors corresponding to the squeal frequencies are required. Thus Level 4 of ABLE with
fulldual=true is chosen to solve the eigenvalues in a certain frequency range. In this way, possible
breakdown and failure to detect clustered eigenvalues can be avoided.

5. Some implementation issues for disk brake analysis

For the disk brake system application, there are several implementation issues that need to be
taken into account before ABLE is applied to solve the eigenvalues.
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Table 1

Functions

Logical variable Functions

Fulldual Use the two-sided Gram–Schmidt process to maintain full biorthogonality at each Lanczos step

Semidual Monitor the loss of duality and correct the loss of biorthogonality at certain step

Treatbd Cure the breakdown by increasing the block size

Group Adapt the block size to the order of the cluster of the convergent Rayleigh–Ritz values
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First of all, the matrix size finally generated (after applying the friction mechanism) is huge
(a typical matrix size is 100,000-by-100,000) but very sparse. Thus only the non-zero entries, i.e.,
the row numbers, column numbers and the values of the entries are stored. In this way, the storage
requirement for the matrices of the typical problem is less than one hundred megabytes
(200Mbytes).
Secondly the magnitudes of the mass and the stiffness matrices are quite different. Typically the

stiffness matrix magnitude is 108 times larger than that of the mass matrix. That could result in
numerical loss of biorthogonality especially when the matrix size is large. A treatment we apply to
the matrices is the simple scaling, i.e., using the infinity-norm of the individual matrix to scale the
norms of the matrices to the same magnitude. In this way, ABLE will never numerically fail in our
application.
Another issue we need to take into account is the frequency search range of the squeal. The disk

brake system has complex eigenvalues and their distribution is on the complex plane. Numerically
we can only find eigenvalues in a certain circle on the complex plane. The Rayleigh–Ritz triplets
found by the Lanczos procedure actually approximate the outer eigentriplets of a matrix
(Appendix A.2). The shift-and-invert spectral transformation is used to find the inner eigenvalues
of a matrix.
Mathematically, if (l;x) is an eigenpair for matrix A, i.e., Ax ¼ lx; and sal; then the shift-

and-invert eigenvalue problem is

ðA � sIÞ�1x ¼ l0x; ð14Þ

where l0 ¼ 1=l� s: This spectral transformation would effectively find the eigenvalues nearby the
shift s since the eigenvalues with largest magnitudes correspond to the nearby eigenvalues that are
nearest to the shift. Similarly, for a general eigenvalue problem as Eq. (12), by using the shift-and-
invert spectral transformation, it can be reduced to a standard eigenvalue problem

ðA � sBÞ�1Bx ¼
1

l� s
x: ð15Þ

The audible noise of a disk brake system is usually in the range from 20Hz to 20 kHz. If we set the
shift to zero, i.e., let s ¼ 0; then ABLE can find the desired number of eigenvalues in the circle
centering at origin (0, 0) on the complex plane. By checking the frequencies found, ABLE can find
eigenvalues within the user specified frequency range.
A potential drawback of the shift-and-invert technique is to find the inverse of a matrix, which

will be used for matrix–vector multiplication during iteration. Instead of using the inverse of a
matrix, the LU factorization of the matrix is used.
The only problem left is to find an LU factorization for a large sparse unsymmetrical matrix. It

is desired that the resulting L and U are not too dense, i.e., not too many non-zeros after
factorization. The reason is that too many non-zeros of L and U will require a lot of memory and
the sparsity of LU will largely affect the speed of matrix–vector multiplication and thus the whole
iterative speed. A recently developed unsymmetric-pattern multi-frontal method by Davis and
Duff [12] is used in this paper to perform the LU factorization.
Since we use shift-and-invert for the eigenvalue problem, an LU factorization for matrix ½K � is

required when a ¼ 0: When aa0; the QEP of Eq. (10) needs to be solved. By using the
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linearization form of Eq. (11), we only need to perform the LU factorization on the original
matrix ½K � instead of the augmented matrix A: The proof is as follows.
Assume that ½K � ¼ ½L1�½U1�: From Eq. (11),

½A� ¼
K 0

0 I

" #
¼ LU ¼

L11 0

L21 L22

" #
U11 U12

0 U22

" #
¼

L11U11 L11U12

L21U11 L21U12 þ L22U22

" #
:

Then, ½L1� ¼ ½L11�; ½U1� ¼ ½U11�: Since in the application of disk brake squeal prediction, matrix
½K � is non-singular, both ½L1� and ½U1� are not singular. Thus we have ½U12� ¼ ½L21� ¼ ½0� and
½I � ¼ ½L22�½U22�: The simplest form of ½L22� and ½U22� would be the identity matrix. Thus the LU
factorization of ½A� can be easily written as

½A� ¼
K 0

0 I

" #
¼

L 0

0 I

" #
U 0

0 I

" #
:

Hence by using the linearization form of Eq. (11), the total CPU time and memory requirement
can be dramatically reduced.

6. Numerical examples

In this section, three test cases for two different geometry models are given to demonstrate the
ABLE algorithm. In the first two test cases, a is equal to zero. The eigenfrequencies of the unstable
modes predicted by the current approach and the component mode synthesis (CMS1) are
compared to validate both the FEM formulation and the ABLE algorithm. The third test case is
an aa0 case.
Two different models are used for the two a ¼ 0 test cases. The first test case uses a coarse mesh

model, which has a total of 1319 second order 10-node solid parabolic tetrahedron elements with
a total of 2812 nodes. Ground springs and fixed d.o.f.s on certain nodes are used as the boundary
conditions. The total number of d.o.f.s in this model is 7998. The FEM mesh is shown in Fig. 3.
The second test case uses a finer mesh model, which has a total number of 15,376 second order

10-node solid parabolic tetrahedron elements with a total of 29,978 nodes. Ground springs and
fixed d.o.f.s on certain nodes are used as the boundary conditions. The total number of d.o.f.s in
this model is 89,754. The FEM mesh for the second test case is shown in Fig. 4.
The third test case is for aa0: In this test case, the finer mesh model is used but small changes

on the boundary conditions are applied.
In all three test cases, the friction coefficient m is set to 0.4 and we let ABLE find the first 100

modes for each case. The computation device is a PC with an AMD Athlon XP2000+CPU and
1.5GB RAM.
For the first test case, the sparsity of stiffness matrix is 0.778% and that of the mass matrix is

0.013%. The ABLE algorithm uses 37 s to find the first 100 modes for this system. Predicted
unstable modes by both the current approach and the CMS are listed in Table 2. Very good
agreement is observed between the current approach and the CMS.
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For the second test case, the sparsity of the stiffness matrix and the mass matrix is 0.0770% and
0.0011%, respectively. The time for ABLE to find the first 100 modes is 639 s (about 11min). Only
one unstable mode is predicted by both the current approach and the CMS. The comparison is
shown in Table 3.
In the third test case, ABLE is used to find the eigenvalues for a QEP. Note for a QEP, the

order of the matrix is doubled. Thus in this case, the total number of d.o.f.s is 179,508 and
the sparsity of matrix A and matrix B in Eq. (12) is 0.0195% and 0.00056%, respectively. From
the second test case, it is seen that the first unstable mode for a ¼ 0 is at 8.043 kHz. Since current
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Fig. 3. FEM mesh of model 1.

Fig. 4. FEM mesh of model 2.
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implementation of ABLE is all in-core, due to the 1.5GB memory limitation on our PC, we
cannot find any eigenfrequencies around 8.043 kHz for the QEP when the order of the matrix is
doubled. Therefore, we have slightly changed the boundary conditions in the second test model to
generate some low-frequency unstable modes. Then we re-run the a ¼ 0 test case after the change
of boundary conditions. Two unstable modes are captured by ABLE when a ¼ 0: one at
2.783 kHz with propensity equal to 123 and the other at 8.043 kHz with propensity equal to 6.
Then we set a ¼ �1� 10�5 s=mm and apply a uniform pressure of 0.5MPa to each of the two
pads. The angular frequency of the rotor is set at 0.75Hz. The time used by ABLE to find the first
100 modes of the system is 1253 s (about 21min, twice as the a ¼ 0 case). The unstable modes
found by ABLE is listed in Table 4. More unstable modes are captured due to aa0:

7. Conclusions

An FEM formulation of friction-induced vibration to predict disk brake squeal is presented in
this paper. A snapshot at steady sliding is first taken and the static equilibrium equation is solved.
Then small perturbation is applied to the equilibrium state to obtain the dynamic system equation
for stability study. Due to the friction between the pads and the rotor, the FEM matrices become
unsymmetric, which results in complex eigenvalues. Any eigenvalue with a positive real part,
which is defined as the propensity, may indicate an unstable mode. The bigger the propensity is,
the most likely the mode is an unstable mode.

ARTICLE IN PRESS

Table 2

Comparisons between the current approach and the component mode synthesis for test case 1 (unstable modes in the

first 100 modes, m ¼ 0:4; a ¼ 0)

Current approach CMS

Frequency (kHz) Propensity Frequency (kHz) Propensity

8.922 5.84 8.920 8.44

11.118 4.32e+03 11.140 4.33e+03

11.827 65.90 11.826 66.30

12.218 129.0 12.172 133.5

15.729 132.0 15.727 133.2

20.975 2.67e+03 20.983 2.68e+03

22.217 1.03e+03 22.223 1.01e+03

22.272 1.92e+03 22.280 1.91e+03

22.985 651.0 22.982 650.9

Table 3

Comparisons between the current approach and the component mode synthesis for test case 2 (unstable modes in the

first 100 modes, m ¼ 0:4; a ¼ 0)

Current approach CMS

Frequency (kHz) Propensity Frequency (kHz) Propensity

8.043 5.00 8.043 7.02
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A negative m2v slope is assumed in the kinetic friction coefficient. When a ¼ 0 (which means
the friction coefficient is a constant), solving a QEP can be avoided because the damping matrix is
zero. When aa0; the size of the problem is doubled after the QEP is linearized. Nevertheless, a
special linearization form of the QEP is used (Eq. (11)) so that the LU factorization is needed only
for the stiffness matrix, instead of for the augmented matrix. This is an important step because the
LU factorization could become the bottleneck of the whole procedure.
The recently developed ABLE algorithm is used to solve the complex eigenvalue problem.

ABLE is an adaptive block Lanczos method for sparse unsymmetric matrices. The ABLE
algorithm also avoids breakdowns and eliminates slow convergence by adaptively changing the
block size and maintaining the full biorthogonality of the Lanczos vectors. Numerical examples
show that the unstable modes predicted by ABLE are in good agreement with the results from the
CMS when a ¼ 0: When aa0; no CMS results are available for comparison, but the linearization
form of the QEP along with ABLE has shown very promising initial results.
The main memory is used for storing L, U factors and the Lanczos vectors. If we can adaptively

involve out-of-core implementation of the algorithm when the problem size increases, the size of
the problem to be solved on PC can be increased a lot.
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Appendix A. Procedures and codes

A.1. Basic block Lanczos procedure

The basic block non-Hermitian Lanczos algorithm is presented in Fig. 5. It is a variation of the
original Lanczos procedure.
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Table 4

Unstable modes predicted by current approach for test case 3 (unstable modes in the first 100 modes, m ¼ 0:4; aa0)

No. Frequency (kHz) Propensity

1 0.805 12.6

2 1.806 165.6

3 2.176 12.6

4 2.783 120.1

5 3.071 60.97

6 3.249 34.4

7 3.389 14.24

8 4.376 11.9

9 4.898 23.8
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In the following derivation, superscript ‘‘H’’ denotes the conjugate transpose operator for a
matrix and subscript ‘‘j’’ denotes the Lanczos step. Given an n-by-n matrix A and initial n-by-p
block vectors P1 and Q1 with PH

1 Q1 ¼ I ; the block Lanczos procedure uses the following short
three term recurrences:

Bjþ1P
H
jþ1 ¼ PH

j A � AjP
H
j � CjP

H
j�1; ðA:1Þ

Qjþ1Cjþ1 ¼ AQj � QjAj � Qj�1Bj ðA:2Þ

to generate two sequences of n � p multiple vectors Q1;Q2;y;Qj and P1;P2;y;PjðP0 ¼ Q0 ¼ 0Þ;
namely the left and right Lanczos vectors. These vectors are the biorthonormal bases of the
Krylov subspaces

KjðA;Q1Þ ¼ span Q1;AQ1;A
2Q1;y;Aj�1Q1

	 

and

KjðAH ;P1Þ ¼ spanfP1;A
HP1; ðAHÞ2P1;y; ðAHÞj�1P1g:

After j steps, the Lanczos procedure determines a block tridiagonal matrix

Tj ¼

A1 B2

C2 A2 &

& & Bj

Cj Aj

2
6664

3
7775; ðA:3Þ

and matrices of the left and right Lanczos vectors

Pj ¼ ðP1;P2;y;PjÞ and Qj ¼ ðQ1;Q2;y;QjÞ:
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1. Choose starting n×p vectors P1 and Q1 so that IQP 1
H

1 =
2. 1

HH
1 AQS;A)(PR ==

3. for j=1,2,…
1.  SPA H

jj =

2.  H
jjAP-RR = ; jjAQ-SS =

3. compute the QR decompositions: H
1j1j BPR ++= ; 1j1j CQS ++=

4. compute singular value decomposition: H
jjj1j

H
1j VUQP =++

5. if Σ j is (nearly) singular, stop

6.  1/2
jj1j1j U  ΣBB = ++ ; 1j

H
j

1/2
j1j CVC ++ =

7.  -1/2
jj1j1j UPP = ++ ; -1/2

jj1j1j VQQ = ++

8.  HH
j1j

H
1j )PC-A(PR ++= ; 1jj1j BQ-AQS ++=

Σ

Σ Σ

Σ

Fig. 5. Simple block non-Hermitian Lanczos algorithm.
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They satisfy the governing relations

PH
j A ¼ TjP

H
j þ EjBjþ1P

H
jþ1; ðA:4Þ

AQj ¼ QjTj þ Qjþ1Cjþ1E
H
j ; ðA:5Þ

where Ej is a tall skinny matrix whose bottom square is an identity matrix and elsewhere are zeros.
Furthermore, Pj and Qj satisfy the biorthonormal condition

PH
j Qj ¼ I : ðA:6Þ

A.2. Eigenvalue approximation

To use the Lanczos procedure to approximate the eigenvalues and the eigenvectors of A; we
solve the eigenvalue problem of the jp � jp block tridiagonal matrix Tj after step 3.3 in Fig. 5.
Each eigentriplet (i.e., eigenvalue and left/right eigenvector y;wH ; z) of Tj;

wHTj ¼ ywH and Tjz ¼ zy;

determines a Rayleigh–Ritz triplet (y; yH ;x), where yH ¼ wHPH
j and x ¼ Qjz: Rayleigh–Ritz

triplets usually approximate the outer eigentriplets of A:
Let s and r denote the corresponding left and right residual vectors. By Eqs. (A.4) and (A.5), we

have

sH ¼ yHA � yyH ¼ ðwHEjÞBjþ1P
H
jþ1; ðA:7Þ

r ¼ Ax � xy ¼ Qjþ1Cjþ1ðEH
j zÞ: ðA:8Þ

The residuals determine a backward error bound for the triplet. From the biorthonormal
condition, Eq. (A.6), we combine Eqs. (A.7) and (A.8) to get

yHðA � F Þ ¼ yyH ; ðA:9Þ

ðA � FÞx ¼ xy; ðA:10Þ

where the backward error matrix F is

F ¼
rxH

jjxjj22
þ

ysH

jjyjj22
: ðA:11Þ

Note that jjF jj2F ¼ jjrjj22=jjxjj
2
2 þ jjsH jj22=jjyjj

2
2: Thus the left and right residual norms bound the

distance to the nearby matrix to A with eigentriplet (y; yH ;x).
By examining Eqs. (A.7) and (A.8), we notice that one of the remarkable features of the

Lanczos algorithm is that the residual norms jjsH jj2 and jjrjj2 are available without explicitly
computing yH and x: There is no need to form yH and x until their accuracy is satisfactory.
The Lanczos algorithm may breakdown before convergence because the matrix PH

jþ1Qjþ1

(Fig. 5, step 3.4) is singular. Moreover the computed Rayleigh–Ritz triplets may converge slowly
due to the loss of biorthogonality among the computed Lanczos vectors Pj and Qj; or the block
size is smaller than the order of cluster of the desired eigenvalues. The ABLE algorithm avoids
breakdowns and eliminates slow convergence by adaptively changing the block size and
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maintaining the full biorthogonality of the Lanczos vectors, i.e., jjPH
j Qj � I jjEe; or semi-

biorthogonality of the Lanczos vectors, i.e., jjPH
j Qj � I jjE

ffiffi
e

p
; where e is the machine epsilon.

A.3. Pseudo code of ABLE

1. Choose starting vector P1 and Q1 PH
1 Q1 ¼ I

2. R ¼ ðPH
1 AÞH ; S ¼ AQ1

3. for j ¼ 1; 2;y
1. Aj ¼ PH

j S
2. R ¼ R � PjA

H
j ; S ¼ S � QjAj

3. compute the eigendecomposition of Tj; and test for convergence
4. R ¼ R � PjA

H
j ;S ¼ S � QjðPH

j SÞ
5. compute the OR decompositions: R ¼ Pjþ1B

H
jþ1;S ¼ Qjþ1Cjþ1

6. if R or S is rank deficient and (fulldual=true or semidual=true)
call TSMGS to biorthogonalization

end if
7. compute the singular value decomposition: PH

jþ1Qjþ1 ¼ USVH

8. if w ¼ minðdiagðSÞÞotolbd;
breakdown=true

if breakdown=true and treatbd=false
method fails

end if
end if

9. if group=true and (fulldual=true or semidual=true)
compute the maximal order of converged RR values

end if
10. if (breakdown=true and treatbd=true) or group=true

call CURE to cure breakdown or adapt to the cluster
end if

11. Bjþ1 ¼ Bjþ1US1=2;Cjþ1 ¼ S1=2VHCjþ1;Pjþ1US�1=2;Qjþ1 ¼ Qjþ1VS�1=2

12. if fulldual=true
call TSMGS to maintain full biorthogonality

else if semidual=true

call SEMI to monitor the loss biorthogonality and correction if
necessary

end if
13. R ¼ ðPH

jþ1A � Cjþ1P
H
j ÞH ;S ¼ AQjþ1 � QjBjþ1

4. end
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