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Summary. In the popular Newton-Krylov methods for solving large-scale systems of
nonlinear equations, inner linear systems resulting from outer Newton linearization are
solved by Krylov iterative linear solvers. The accuracy control of Krylov solvers are based
on the progress of the Newton iteration to achieve good local convergence while avoid-
ing over-solving. In practice, the efficiency and robustness of Krylov solvers rely on the
use of preconditioning. Unfortunately, the existing accuracy control schemes of Krylov
solvers cannot be applied efficiently when a left preconditioner is utilized. This is a chal-
lenge for applications where it is necessary to employ a left preconditioner. An example
of an application exhibiting this problem is Integrated Water Flow Model (IWFM), a
water resources management and planning model developed by California Department
of Water Resources. In IWFM, hydrologic quantities with different numerical scales,
namely groundwater head, stream flow and lake elevation are simultaneously simulated.
Consequently, its linear systems are badly scaled and require row equilibration and left
preconditioning. In this paper, we formulate a new accuracy control scheme that can be
used directly with left preconditioned systems to take advantages of the “cheap” residual
norm available from Krylov solvers. The new scheme not only provides flexibility in using
preconditioning but also is efficient in solving a series of nonlinear systems. In addition,
we also present a scheme to formulate adaptive damping when backtracking is not feasi-
ble. Numerical results show that the combination of new schemes reduces the number of
Newton iterations by up to 50% and reduces simulation time by up to 30% in IWFM.
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1 Introduction

In regions with limited fresh water supplies, accurate simulation of the conjunctive
use of surface water and groundwater to meet human and environmental demands is an
important component of water resources planning efforts. The planning and manage-
ment of water resource systems is greatly facilitated by integrated hydrologic applications
that simulate water movement through linked groundwater, surface water, land surface
and root zone processes such as Modflow-Surfact,11 GSFLOW,9 HydroGeoSphere16 and
IWFM.6 Applications that can simulate fully coupled surface-water and groundwater flow
also provide opportunities for interdisciplinary investigations.

These types of application incorporate multiple hydrologic processes and produce sys-
tems of nonlinear equations of the form

F (x) = 0, (1)

where F : Rn → R
n is a nonlinear function and is assumed to be continuously differentiable

everywhere. Newton-type or gradient-based methods are generally regarded as being very
efficient for solving this type of system.10 Starting with an initial guess x0, the Newton
method iteratively builds a sequence of approximate solutions {xk}:

xk+1 = xk + sk, (2)

where the update direction sk is the solution of the system of linear equations

J(xk)sk = −F (xk), (3)

and J(xk) is the Jacobian of F at xk. Krylov iterative linear solvers such as General-
ized Minimum Residual (GMRES) algorithm15 are commonly employed to solve (3). The
combined scheme is called the Newton-Krylov method or Newton-GMRES method.3 In
practice, solving (3) to a high accuracy in every Newton iteration might be computation-
ally expensive and unnecessary, especially in the early iterations. Instead, equation (3) is
solved inexactly up to an accuracy controlled by the so-called forcing term ηk, i.e., finding
sk such that:4

‖rk‖ = ‖F (xk) + J(xk)sk‖ ≤ τk ≡ ηk‖F (xk)‖. (4)

It is proven4 that such an inexact Newton method converges locally and superlinearly if
0 < ηk ≤ ηmax < 1 and ηk → 0 as k → 0. Note that at each GMRES iteration, the
residual norm ‖rk‖ is readily available and criterion (4) can be verified immediately.

A number of challenges emerge when the Newton-GMRES method is used to solve
the nonlinear systems that arise in multiscale integrated hydrologic models. One of them
comes from multiscale simulations. Modeling water movement through a catchment im-
plies the integration of multiple processes, such as infiltration, surface runoff, groundwater
flow and surface water flow that have very different spatial and temporal scales.1 In the
simulation of the Central Valley of California (see section 3), the stream flow ranges from
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zero to 1012 (cubic feet/month) while the groundwater head and lake elevation range
from 10−3 to 103 (feet). Consequently, the linear system (3) can have solution compo-
nents which spread over a very wide range of magnitudes. This makes it difficult to
ensure that each solution component is solved to its corresponding data accuracy. It has
been shown that row equilibration is a good remedy for the scaling issue.5 As row equi-
libration is a simple type of left preconditioning, subsequently, it is natural to use left
preconditioning. Furthermore, left preconditioning avoids the possible inaccuracy caused
by the post-processing, especially when the condition number of the preconditioner is
expected to be large. When a left preconditioner Mk is utilized, GMRES is applied to
the preconditioned system:

MkJ(xk)sk = −MkF (xk). (5)

Since left preconditioning changes the residual norm, the termination criterion (4) is not
immediately applicable. In this paper, we propose to formulate a tolerance τPk to control
the accuracy of the preconditioned residual norm directly:

‖rPk ‖ = ‖Mk [F (xk) + J(xk)sk] ‖ ≤ τPk . (6)

A proper choice of the tolerance τPk can also significantly reduce the number of outer
Newton iterations.

To improve the likelihood as well as the convergence rate of the Newton-GMRES
method, a backtracking strategy is often used.7,12 Backtracking determines the step size
for the Newton update direction sk through repeated tests to ensure a sufficient reduction
in ‖F (·)‖. This becomes impractical and may not be feasible for integrated hydrologic
models, such as IWFM where significant additional hydrologic computational procedures
are embedded in the formulation of ‖F (·)‖. It is also reported that backtracking in the
Newton-GMRES method tends to fail when a strict criterion is used for the GMRES
solver.17 The second contribution of this paper is to introduce simple adaptive damping
factors in place of backtracking loop to determine the step sizes. These damping factors
are based on the reduction of ‖F (·)‖ up to the current Newton iterations to improve the
convergence of the inexact Newton method when backtracking is not feasible.

2 Newton-GMRES method

A high-level description of the inner-outer Newton-GMRES iterative method with step
size selection proceeds as follows:

1: for k = 0, 1, 2, . . . do

2: Solve (5) iteratively by GMRES with stopping criterion τk
3: Compute damping factor θk
4: Update xk+1 = xk + θksk
5: end for

Two critical parameters for the success of the method are the termination criterion τk for
the inner iteration (line 2) and the damping factor θk (line 3) for the outer iteration.
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One choice of the termination criterion τk, is to apply the stopping criterion (4) using
the following widely used forcing term

ηk = γ

(

‖F (xk)‖

‖F (xk−1)‖

)α

, (7)

where γ ∈ (0, 1] and α ∈ (1, 2] are adjustment parameters.8 However, when left pre-
conditioning is utilized, the residual norm ‖rk‖ is not directly available. To apply the
termination criterion (4), one needs to formulate the approximate solution sk explicitly
at every GMRES iteration to compute ‖rk‖. This is computationally expensive. Fur-
thermore, we observe that the termination criterion (4) is not appropriate for multiscale
simulations. It is imposed on the original system which has variables spanning a wide
range of magnitudes. It is more sensitive to changes in the variables of large scale, which
can cause premature termination before the variables of small scales are solved up to the
desired accuracy.

In this paper, we propose a termination criterion that applies directly on the precon-
ditioned residual norm ‖rPk ‖ defined in (6), which is readily available at each GMRES
iteration, namely the “cheap” residual norm. Our proposed termination criterion for the
GMRES solver is

‖rPk ‖ ≤ τPk =
γM

(1 + k)ρ
‖F (xk)‖

max{‖F (x0)‖, ‖F (xk−1)‖}
(8)

where ρ > 0 is a parameter to control the influence of the quantity 1/(1+k)ρ and γM > 0
is a constant such that

‖M−1
k ‖γM <

1

2
‖F (x0)‖ for all k ≥ 0. (9)

Using the relation rk = M−1
k rPk , it can be shown that the criterion (8) implies

‖rk‖ ≤ ηMk ‖F (xk)‖, (10)

where the forcing term is

ηMk =
‖M−1

k ‖ τPk
‖F (xk)‖

.

We can show that ηMk ≤ ηmax = 1/2 < 1 and ηMk → 0 as k → 0. This guarantees that the
Newton-GMRES with termination criterion (8) still converges locally and superlinearly
(see Section 1).

On the choice of γM to satisfy the condition (9), we note that if Mk is an incomplete
LU (ILU) preconditioner,14 then an estimate of ‖M−1

k ‖ can be obtained at a fixed k.
Furthermore, as k varies, the condition numbers of the ILU preconditioners Mk can be
controlled by adaptively adjusting the process of dropping small entries.2 In practice, a
rough estimate of ‖M−1

k ‖ is often sufficient.
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Now let us explain why τPk is also an adequate stopping tolerance for the inner GMRES
iteration. First, we observe that when the constant γM satisfies the condition (9), τPk is
on the same numerical scale of ‖rPk ‖. Second, the asymptotic behavior of τPk is dominated
by ‖F (xk)‖/‖F (x0)‖. When ‖F (xk)‖/‖F (x0)‖ decreases rapidly, xk is close to the exact
solution and a strict criterion (small tolerance τPk ) should be imposed for solving the inner
linear system (5). Third, when no or little progress is made towards the solution in the
early Newton iterations, the quantity 1/(1 + k)ρ ensures that there are still a sufficient
number of inner iterations. This is particularly desirable for applications with expensive
outer Newton iterations.

Next let us discuss the formulation of the damping factor θk. Backtracking requires that
there is a sufficient reduction in ‖F (·)‖ in each Newton iteration. ‖F (xk + θksk)‖ needs
to be computed repeatedly at different step sizes θk (a.k.a. damping factors) before a
suitable one is found.7,12 To avoid backtracking, we propose to use the following adaptive
damping factor

θk =

(

1 + µ
‖F (xk)‖

max{‖F (x0)‖, ‖F (xk−1)‖}

)

−1

for k > 0 (11)

with an initial value θ0 ∈ (0, 1), where µ > 0 is a parameter. It is easy to see that
θk ∈ (0, 1) for all k. If the Newton process converges, i.e. ‖F (xk)‖ → 0 as k → ∞, then
θk → 1 as k → ∞. The convergence rate of θk is controlled by µ. The smaller µ is, the
faster θk approaches 1. Typically, θ0 is chosen in (10−3, 10−1) and µ is in [10−3, 1). The
defaults are θ0 = 10−1 and µ = 10−1.

3 Numerical experiments

In this section, we illustrate the effectiveness of the Newton-GMRES method with the
proposed termination criterion (8) and adaptive damping factor (11) in solving nonlinear
systems of equations arising from IWFM simulations. IWFM is an integrated hydrologic
model that simulates groundwater flow, surface water flow and groundwater-surface wa-
ter interactions as well as other components of the hydrologic system. The discretized
groundwater flow equations, stream flow equations and lake storage equations are implic-
itly coupled to form systems of nonlinear equations corresponding to different time steps.
Solving these nonlinear systems is the most time-consuming component and accounts for
about 80% of the total time in a typical IWFM simulation. Moreover, IWFM simulations
not only incorporate systems with the multiscale phenomena but also have significant
hydrologic computations, namely the calculation of water demand, groundwater pumping
and stream diversion adjustments, embedded in the outer Newton iteration. Therefore,
backtracking is impractical.

The Newton-GMRES methods with termination criterion (4) and (8) are implemented
in IWFM (version 3.02). In addition, the damping factor (11) is also included. The
implementation of GMRES with ILU preconditioner is based on SPARSKIT (version 2).13
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Simulation FMP RefinedC2V

Time step 1 100 1 2 150 300

Newton iters. 8 (13) 5 (9) 9 (43) 10 (26) 9 (19) 8 (30)
GMRES iters. 121 (45) 84 (74) 148 (120) 141 (113) 124 (85) 128 (79)

Table 1: The numbers of inner and outer iterations of the Newton-GMRES method using the new
stopping criterion (8) with adaptive damping factor (11) versus the standard stopping criterion (4) (in
parentheses).

All of our numerical experiments were carried out on a dual-core Intel 2.40GHz processor
with 2GB RAM and Intel compilers Fortran (ifort) and C++ (icc) (version 11.1).

The following two simulations are used for numerical experiments:

FMP: this is hypothetical simulation using 104 time steps. FMP is modeled as a four-layer
aquifer system, and has a total of 46460 nodes, which includes 46000 ground-water
nodes and 460 stream nodes.

RefinedC2V: this is a simulation for the Central Valley of California with the spatial
domain of approximately 20,000 square mile. We consider a three-layer aquifer
system for the period from 1972 to 2003 using 372 monthly time steps. RefinedC2V
has a total of 95068 nodes, which includes 90537 ground-water nodes (in three
layers), 4529 stream nodes and 2 lake nodes.

In both simulations, the outer Newton iteration stops when ‖F (xk)‖/‖F (x0)‖ ≤ 10−7 and
‖xk − xk−1‖ ≤ 10−3. In addition, the parameters ρ = 1.5, τmin = 10−6 and θ0 = µ = 10−1

γM=10 were used.
Let us first examine the performance of the Newton-GMRES method at selected time

steps. Table 1 details the numbers of Newton and GMRES iterations in the selected time
steps. As we can see, the proposed stopping criterion (8) significantly reduces the number
of outer Newton iterations while uses more inner GMRES iterations. This indicates that
the termination criterion (8) is more strict than the criterion (4). Strict criterion demands
more PGMES iterations but produces more accurate update directions and thus reduces
the number of Newton iterations. The corresponding convergence history in terms of the
relative nonlinear residual norm ‖F (xk)‖/‖F (x0)‖ is shown in Figure 1 for the selected
time steps of RefinedC2V simulation. Both approaches suffer temporary increases at the
beginning. However, when there is no or little progress towards the solution, damping
reduces the step size for the update direction sk and makes the temporary increases less
severe in the proposed approach. In addition, more accurate update directions also help
to achieve more steady convergence.

Next we show the the effectiveness of the proposed approach in terms of overall per-
formance in the simulations. Table 2 records the total numbers of Newton and GMRES
iterations as well as the elapsed time for the two simulations. It shows that the proposed
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Figure 1: Convergence history of Newton-GMRES method with the standard stopping criterion (4)
(left) and the new stopping criterion (8) with adaptive damping factor (11) (right) for selected steps of
RefinedC2V simulation.

Simulation FMP RefinedC2V

Method NP MNP NP MNP
Newton iters. 3755 2269 6251 3203
GMRES iters. 33329 34652 31099 50811
Time(sec.) 524 408 2659 1753

Table 2: Overall performance of the Newton-GMRES method using the standard stopping criterion (4)
(in the NP column) and using the new stopping criterion (8) with adaptive damping factor (11) (in the
MNP column)

approach decreases the number of Newton iterations by about 40-50% and the simulation
time by about 20-30%.
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