
Numer. Math. Theor. Meth. Appl. Vol. 2, No. 4, pp. 469-484

doi: 10.4208/nmtma.2009.m9008s November 2009

A High-Quality Preconditioning Technique for

Multi-Length-Scale Symmetric Positive Definite

Linear Systems

Ichitaro Yamazaki1,∗, Zhaojun Bai1, Wenbin Chen2 and Richard

Scalettar3

1 Department of Computer Science, University of California, Davis, CA 95616,

USA.
2 School of Mathematical Sciences, Fudan University, Shanghai 200433, China.
3 Department of Physics, University of California, Davis, CA 95616, USA.

Received 3 May 2009; Accepted (in revised version) 22 July 2009

Abstract. We study preconditioning techniques used in conjunction with the conjugate

gradient method for solving multi-length-scale symmetric positive definite linear sys-

tems originating from the quantum Monte Carlo simulation of electron interaction of

correlated materials. Existing preconditioning techniques are not designed to be adap-

tive to varying numerical properties of the multi-length-scale systems. In this paper,

we propose a hybrid incomplete Cholesky (HIC) preconditioner and demonstrate its

adaptivity to the multi-length-scale systems. In addition, we propose an extension of

the compressed sparse column with row access (CSCR) sparse matrix storage format to

efficiently accommodate the data access pattern to compute the HIC preconditioner. We

show that for moderately correlated materials, the HIC preconditioner achieves the opti-

mal linear scaling of the simulation. The development of a linear-scaling preconditioner

for strongly correlated materials remains an open topic.

AMS subject classifications: 65F08, 65F10, 65F50, 81-08

Key words: Preconditioning, multi-length-scale, incomplete Cholesky factorization, quantum Monte

Carlo simulation.

1. Introduction

We consider the solution of the linear system of equations

Ax = b, (1.1)

where A is an n× n multi-length-scale symmetric positive definite (SPD) matrix and b is

a given vector of length n, originating from the hybrid quantum Monte Carlo (HQMC)

∗Corresponding author. Email addresses: i.yamazaki�gmail.om (I. Yamazaki), bai�s.udavis.edu
(Z. Bai), wbhen�fudan.edu.n (W. Chen), salettar�physis.udavis.edu (R. Scalettar)

http://www.global-sci.org/nmtma 469 c©2009 Global-Science Press

470 I. Yamazaki, Z. Bai, W. Chen and R. Scalettar

simulation of a Hubbard model for studying electron interaction in correlated materials

[2,15]. The properties of the coefficient matrix A, such as dimensionality and conditioning,

depend on a set of multi-length-scale parameters from the underlying physical system to

be simulated.

Preconditioning is recognized as one of the most critical components of a robust and ef-

ficient iterative linear solver. In this paper, we focus our attention on the development of a

high-quality incomplete Cholesky (IC) factorization based preconditioner used in conjunc-

tion with the conjugate gradient method for solving the multi-length-scale system (1.1).

An IC factorization is of the form

A= RRT + E, (1.2)

where R is a sparse lower-triangular matrix with positive diagonals, and E is an error ma-

trix. A variety of IC factorization based preconditioners R have been proposed [1, 5–7, 9–

11, 13, 16, 18]. The performance of many of these preconditioners for solving (1.1) has

been reported in [3]. We observed that when a large number of elements are discarded

into the error matrix E to control the cost of computing R, the norm of the residual ma-

trix R−1AR−T − I increases significantly and the quality of the preconditioner is poor. To

overcome these drawbacks, we propose combining the two most effective IC factorizations,

namely the IC factorization with a global diagonal shift by Manteuffel [13] and the robust

IC factorization by Kaporin [11]. The resulting factorization is referred to as a hybrid In-

complete Cholesky (HIC) factorization. The HIC can adaptively balance the cost and qual-

ity of preconditioner over a wide range of the multi-length-scale parameters of interest.

We will present an algorithm to compute the HIC factorization. To efficiently accommo-

date the data access pattern of the proposed algorithm, we will introduce a sparse matrix

storage format, which is an extension of the well-known compressed sparse column (CSC)

sparse matrix storage format. We will present numerical results to demonstrate the adap-

tivity of the HIC preconditioner to varying multi-length-scale parameters. For moderately

correlated materials, the HIC preconditioner based PCG solver achieves the optimal linear

scaling of the simulation. This enables us to conduct the HQMC simulation for thousands

of electrons.

The rest of this paper is organized as follows. In Section 2, we review the existing IC

factorizations that are closely related to the HIC factorization proposed in this paper. In

Section 3, we define the HIC factorization and present an algorithm to compute the factor-

ization. In Section 4, we discuss an implementation of the HIC with a new sparse matrix

storage scheme. After detailing the form of the multi-length-scale linear system (1.1) in

Section 5, we present numerical results to demonstrate the effectiveness of the HIC pre-

conditioner in Section 6. The concluding remarks are in Section 7.

2. Incomplete Cholesky factorizations

For a general SPD matrix A, the IC factorization of the form (1.2) could fail due to

the occurrence of non-positive pivot, referred to as pivot breakdown [12]. The existence

is proven only for some special classes of matrices [13, 14, 17]. Various IC factorizations

Preconditioning Multi-Length-Scale SPD Linear Systems 471

have been proposed to avoid the pivot breakdown, see [5] and references therein. In this

section, we review two IC factorizations, which are closely related to the one proposed in

the next section.

To avoid the pivot breakdown, one can first introduce a diagonal shift and then com-

pute the IC factorization proposed by Manteuffel [13]:

A+αdD = RdRT
d
+ Sd+ ST

d
, (2.1)

where αd is a scalar, D is the diagonal part of A denoted as D = diag(A), and Sd is a strictly

lower-triangular matrix. The sparsity of Rd is imposed by a drop tolerance σ1 and the

algorithm to compute the factorization (2.1) is referred to as an ICd algorithm for short.

The residual norm of the ICd factorization (2.1) is given by

‖R−1
d

AR−T
d
− I‖ = ‖R−1

d
EdR−T

d
‖

≤ ‖R−1
d
‖2‖Ed‖

≤ ‖R−1
d
‖2
�
2‖Sd‖+αd‖D‖
�

, (2.2)

where Ed = Sd − αdD + ST
d

is the error matrix. If the shift αd is chosen such that A+

αdD is strictly diagonally dominant, then the existence of the ICd factorization (2.1) is

guaranteed [13]. However, this may require a large shift αd and lead to a large residual

norm. In practice, it is sufficient to choose the shift αd satisfying

A+αdD > Sd+ ST
d

. (2.3)

Since the magnitudes of the elements of Sd are in O(σ1), αd can be chosen at the order of

σ1. There is no general strategy for finding an optimal choice of αd, and as such is often

determined by a trial-and-error strategy [4].

Note that in the ICd residual norm (2.2), the error matrix norm ‖Ed‖ is amplified by

the factor ‖R−1
d
‖2. When the matrix A is ill-conditioned, ‖R−1

d
‖ is typically large. To reduce

the amplification factor ‖R−1
d
‖2 in (2.2), Kaporin [11] proposed to impose the error matrix

of the structure

Er = RrF
T
r + FrR

T
r + Sr − Dr + ST

r ,

where Fr and Sr are lower-triangular and strictly lower-triangular matrices with the ele-

ments discarded from Rr and Fr, respectively. The sparsity of Rr is imposed by a primary

drop tolerance σ1, and the sparsity of Fr is imposed by a secondary drop tolerance σ2,

where σ2 < σ1. The diagonal matrix Dr is dynamically chosen such that

Dr ≥ Sr + ST
r . (2.4)

Hence the IC factorization proposed by Kaporin is of the form

A= RrR
T
r + RrF

T
r + FrR

T
r + Sr − Dr + ST

r , (2.5)

and can be equivalently written as

A+ FrF
T
r − Sr + Dr − ST

r =
�
Rr + Fr

��
Rr+ Fr

�T
.

472 I. Yamazaki, Z. Bai, W. Chen and R. Scalettar

Since Dr satisfies (2.4), the existence of (2.5) is guaranteed. For this reason, the algorithm

to compute the factorization (2.5) is referred to as a robust IC (RIC) algorithm.

In practice, when a nonzero value is assigned to the (i, j)-th element si j of Sr, to satisfy

the condition (2.4), we first select positive scalars δi and δ j such that δiδ j ≥ s2
i j, and then

increment the corresponding ith and jth diagonal elements di and d j of Dr by δi and δ j ,

respectively. For example, we can set δi = τi j(aii + di) and δ j = τi j(a j j + d j) with

τi j =
|si j|p�

aii + di

��
s j j + d j

� ,

as proposed in [1].

The RIC residual norm is given by

R−1
r AR−T

r − I
 =
F T

r R−T
r + R−1

r Fr + R−1
r (Sr− Dr + ST

r)R
−T
r

≤ 2‖R−1
r ‖‖Fr‖+ ‖R

−1
r ‖

2
�
2‖Sr‖+ ‖Dr‖
�
. (2.6)

Note that the magnitudes of the elements of Fr are in the order of the primary drop toler-

ance σ1, and the amplification factor is reduced to be ‖R−1
r ‖, in comparsion to the factor

‖R−1
d
‖2 in the ICd residual norm (2.2). The second-order amplification factor ‖R−1

d
‖2 only

affects the term controlled by the secondary drop toleranceσ2. Sinceσ2≪ σ1 for some ap-

plications, RIC algorithm has demonstrated superior quality over ICd algorithm and other

IC-based algorithms [11].

Unfortunately, when solving the multi-length-scale linear system (1.1), we observe that

a large number of nonzero values needs to be discarded to Sr for controlling the compu-

tational cost and storage requirement. As a result, some elements of Dr become large to

ensure the condition (2.4). Subsequently, the term ‖R−1
r ‖

2‖Dr‖ becomes dominant in the

upper bound (2.6). If we want to keep it in the same order as the term ‖R−1
r ‖‖Fr‖ in (2.6),

the secondary drop tolerance σ2 need to be set significantly smaller than σ1. This leads to

a large number of nonzeros in Fr. The computational cost and storage requirement of the

RIC algorithm become significantly more than those of the ICd algorithm.

3. Hybrid incomplete Cholesky factorization

In this section, we propose a hybrid algorithm of ICd and RIC, which takes advantages

of the flexibility in using the small diagonal shift αd in the ICd algorithm, and the small

amplification factor ‖R−1
r ‖ in the RIC residual norm (2.6). Specifically, we propose an

algorithm to compute an IC factorization of the form

A+αD = RRT + RF T + FRT + S+ ST , (3.1)

where α is a scalar, D = diag(A), R is a lower-triangular matrix with positive diagonals,

and F and S are strictly lower-triangular matrices. Furthermore, R, F , and S satisfy the

following properties:

Preconditioning Multi-Length-Scale SPD Linear Systems 473

1) If (i, j) 6∈ Z1, then ri j = 0;

2) If (i, j) 6∈ Z2, then fi j = 0;

3) If (i, j) ∈ Z1 or Z2, then si j = 0.

Here Z1 is a set of ordered pairs (i, j) of integers containing at least all the pairs (i, i), and

Z2 is a set of ordered pairs (i, j) such that Z1 ∩Z2 = ;, i and j ∈ {1,2, · · · , n} and i ≥ j.

The properties 1) and 2) indicate that the elements of R and F are nonzero only on Z1 and

Z2, respectively. Property 3) implies that the elements of S are zero on Z1 and Z2. Since

Z1 ∩Z2 = ;, the matrices R and F are called structurally orthogonal, that is, ri j fi j = 0 for

all pairs (i, j). Furthermore, S is structurally orthogonal to both R and F .

Special cases of (3.1) include the case where α = 0 and the set Z1 contains all the

ordered pairs (i, j), i ≥ j, then F = S = 0, and the factorization (3.1) becomes the Cholesky

factorization. If Z2 = ;, then F = 0 and the factorization (3.1) is the ICd factorization

(2.1). If the diagonal matrix αD is replaced by a diagonal matrix Dr and Dr is dynamically

updated to ensure the condition (2.4), then the factorization (3.1) is the RIC factorization

(2.5). Therefore, we refer to the algorithm to compute the factorization of the form (3.1)

as a hybrid IC (HIC) algorithm.

The HIC algorithm to compute the factorization (3.1) can be derived by comparing the

jth columns on both sides of (3.1):

(1+α)a j j =

j∑

k=1

r2
jk,

ai j = si j +

j∑

k=1

�
r jkrik + r jk fik + f jkrik

�
, for i = j+ 1, · · · , n,

which can be equivalently written as

r2
j j = (1+α)a j j −

j−1∑

k=1

r2
jk,

r j j(ri j + fi j) + si j = ai j −
j−1∑

k=1

�
r jkrik + r jk fik + f jkrik

�
, for i = j+ 1, · · · , n.

Hence, to compute the jth column r j of R, one first computes the vector v by updating the

jth column a j of A with the computed columns r1, r2, · · · , r j−1 of R and f1, f2, · · · , f j−1 of

F :

v = a j −
j−1∑

k=1

�
r jkrk + r jk fk + f jkrk

�
.

If the shift α is chosen such that v j +αa j j > 0, then the diagonal element r j j of R is given

by

r j j =
p

v j +αa j j .

474 I. Yamazaki, Z. Bai, W. Chen and R. Scalettar

The rest of the elements of r j , the elements of the jth column f j of F and the jth column

s j of S take the form

for i = j+ 1, j+ 2, · · · , n,

ri j =
vi

r j j
, fi j = 0, si j = 0, if (i, j) ∈ Z1,

ri j = 0, fi j =
vi

r j j
, si j = 0, if (i, j) ∈ Z2,

ri j = 0, fi j = 0, si j = vi otherwise.

The following pseudocode implements this algorithm to compute the R-factor, where the

sets Z1 and Z2 are defined using the prescribed drop tolerances σ1 and σ2 and σ2 < σ1:

HIC algorithm

1. for j = 1,2, · · · , n do

2. v(j : n) = a(j : n, j)

3. v(j) := (1+α)v(j)

4. for k = 1,2, · · · , j− 1 do

5. v(j : n) := v(j : n)− r(j, k)r(j : n, k)

6. v(j : n) := v(j : n)− r(j, k) f (j : n, k)

7. v(j : n) := v(j : n)− f (j, k)r(j : n, k)

8. end for

9. if v(j)≤ 0 then pivot breakdown

10. r(j, j) =
p

v(j)

11. for i = j+ 1, j+ 2, · · · , n do

12. if |v(i)|/r(j, j)> σ1 then

13. r(i, j) = v(i)/r(j, j) and f (i, j) = 0

14. else if |v(i)|/r(j, j)> σ2 then

15. f (i, j) = v(i)/r(j, j) and r(i, j) = 0

16. else

17. r(i, j) = 0 and f (i, j) = 0

18. end if

19. end for

20. end for

Note that the jth column r j of R is computed through referencing the computed columns

r1, r2, · · · , r j−1, which are on the left of r j . Therefore, the HIC algorithm is referred to as

a left-looking (columnwise) implementation. The computed columns f1, f2, · · · , f j−1 of F

(which have to be stored explicitly) are referenced to update v. In Section 4, we will

introduce a sparse matrix storage data structure for storing R and F for efficiently accom-

modating the access pattern of the HIC algorithm.

Preconditioning Multi-Length-Scale SPD Linear Systems 475

Alternatively, there is a right-looking implementation, in which the columns r j+1, r j+2,

· · · , rn are updated by column r j . This implementation discards the jth column of F once

the columns r j+1, r j+2, · · · , rn are updated with it, thus saving storage costs. However,

updating the columns r j+1, · · · , rn in a sparse data format is computationally expensive.

A performance comparsion between the right-looking and left-looking implementations is

in [19].

We now turn to compare the quality of HIC (3.1) and ICd (2.1). Let us first compare

the choice of diagonal shifts α and αd and the corresponding residual norms. The HIC

factorization (3.1) can be equivalently written as

A+ F F T − S +αD− ST = (R+ F)(R+ F)T . (3.2)

For the existence of the factorization, the shift α needs to be chosen such that

A+ F F T +αD > S+ ST . (3.3)

Note that the magnitudes of the elements of S are in the order of the secondary drop

tolerance σ2. Therefore, α can be chosen at the order of σ2. Recall that the ICd shift α

needs to be O (σ1) for satisfying (2.3).

The residual norm of the HIC factorization (3.2) is bounded by

R−1AR−T − I
 =
F T R−T + R−1F + R−1(S −αD+ ST)R−T

≤ 2‖R−1‖‖F‖+ ‖R−1‖2(2‖S‖+α‖D‖). (3.4)

The amplification factor ‖R−1‖2 affects the term of the order σ2. In the residual norm

(2.2), the amplification factor ‖R−1‖2 affects the term of the order σ1. Since σ2 ≤ σ1, the

HIC residual norm (3.4) is generally smaller than the ICd residual norm (2.2).

Next, let us compare HIC (3.1) with RIC (2.5). As discussed in Section 2, the diagonal

matrix Dr of RIC is dynamically updated to ensure the condition (2.4). The magnitudes

of the elements of Sr are in the order of σ2, which is in the same order as S of HIC (3.1).

However, due to the presence of the positive definite matrix A+ F F T in (3.3), the elements

of αD that satisfy the condition (3.3) can be chosen to be smaller than those of Dr in order

to satisfy (2.4). This indicates that the HIC residual norm (3.4) is generally smaller than

the RIC residual norm (2.6).

4. Implementation issues

In this section, we propose a sparse matrix storage format to accommodate the data

access pattern of the HIC algorithm described in Section 3. We note that on lines 4 to 8 of

the HIC algorithm, the nonzeros of the matrices R and F are accessed to compute the array

v. Specifically, v is first updated with the kth columns rk of R and fk of F for each nonzero

r jk in the jth row of R, and then v is updated with rk for each nonzero f jk in the jth row of

F . To accommodate this specific data access pattern, we propose a sparse matrix storage

format to simultaneously store a pair of matrices of the same dimension.

476 I. Yamazaki, Z. Bai, W. Chen and R. Scalettar

Let us consider two matrices A and B of dimension m× n and denote the numbers of

nonzeros in A and B by nnzA and nnzB, respectively. Then, we store A and B in a set of six

arrays, respectively:

valA, rowA, ptrA, linkA, headA, nextB,

valB, rowB, ptrB, linkB, headB, nextA,
(4.1)

where

valA is a real array of length nnzA that stores the values of the nonzeros of A as they are

traversed in a columnwise fashion.

rowA is an integer array of length nnzA that stores the row indexes of the nonzeros

in valA. If valA(k) = ai j, then rowA(k) = i.

ptrA is an integer array of length n+1. ptrA(j) points to the location of valA that stores

the first nonzero in the jth column of A. By convention, ptrA(n+ 1) = 1+ nnzA.

headA is an integer array of length n. headA(i) specifies the location of valA that stores

the right-most nonzero in the ith row of A, which is referred to as the head of the ith

row.

linkA is an integer array of length nnzA that forms a linked-list of the nonzeros in the

same row of A. Specifically, if valA(k) = ai j , then linkA(k) specifies the location of

valA that stores the nonzero on the immediate left of ai j in the ith row of A. If such

a nonzero does not exist, then linkA(k) = 0.

nextB is an integer array of length nnzA that links a nonzero of A with a nonzero of

B. Specifically, if valA(k) = ai j , then nextB(k) specifies the location of valB that

stores the first nonzero of B below the ith row in the jth column. If such a nonzero

does not exist, then nextB(k) = 0.

valB, rowB, ptrB, headB, linkB, and nextA for B are defined in the same way.

Note that the first three arrays valA, rowA and ptrA define a storage format commonly

known as the compressed sparse column (CSC) format [8]. The extension of CSC format by

adding the fourth and fifth arrays headA and linkA was proposed in [1], which we refer

to as a CSC with row access (CSCR) format. The storage format (4.1) to simultaneously

store a pair of matrices A and B in CSCR with additional linkage arrays nextA and nextB

is an extension of CSCR (CSCRe).

Example. Consider the following pair of 5× 5 matrices A and B:

A=

7.3

4.1 7.4

2.7 4.3 9.3 6.8

2.0 2.1 8.4 6.3

2.7 0.1

and B =

9.9

5.8

4.2 5.2 3.3

4.3 2.3

5.8 7.6

. (4.2)

By the CSCRe format (4.1), the matrix A is stored as

Preconditioning Multi-Length-Scale SPD Linear Systems 477

4.1 2.0 2.7 7.3 2.7 0.1 4.3 2.1 7.4 9.3valA

2 4 5 1 3 5 3 4 2 3rowA

1 4 7 9 12 14ptrA

0 0 0 0 0 3 5 2 1 7linkA

4 9 12 13 6headA

1 3 0 4 6 0 0 0 8 0nextB

8.4 6.8 6.3

4 3 4

8 10 11

0 9 0
,

and the matrix B is stored as

4.2 4.3 5.8 5.8 5.2 7.6 9.9 3.3 2.3valB

3 4 5 2 3 5 1 3 4rowB

1 4 7 8 9 10ptrB

0 0 0 0 1 3 0 5 2linkB

7 4 8 9 6headB

2 3 0 5 6 0 7 11 0nextA
.

After the matrices A and B are stored in the CSCRe format, we can see that the following

data access patterns can be directly accommodated: (a) The nonzeros in the same column

of A can be accessed in ascending order of row indexes using valA, rowA, and ptrA. For

example, the nonzeros 4.1, 2.0, and 2.7 in the first column of A can be retrieved from

valA at the contiguous locations starting at ptrA(1) = 1 and ending at ptrA(2)− 1 = 3.

(b) The nonzeros in the same row of A can be accessed using valA, headA, and linkA.

For example, to retrieve the nonzeros 7.4 and 4.1 in the second row of the matrix A, note

first that headA(2) = 9. Thus, the nonzero 7.4 in the second row is stored in valA(9).

Since linkA(9) = 1, the next nonzero 4.1 in the same row is stored in valA(1). Finally,

linkA(1) = 0, indicating that all the nonzeros in the row have been retrieved. (c) The

nonzeros bi j of B below the kth row in the same column as a nonzero ak j of A can be

accessed in ascending order of row indexes using nextB, ptrB, valB, and rowB. For

example, consider the nonzero a21 = 4.1 of A which is stored in valA(1). Then, the

nonzeros 4.2, 4.3, and 5.8 of B below the second row in the first column can be retrieved

478 I. Yamazaki, Z. Bai, W. Chen and R. Scalettar

from valB at the contiguous locations starting at nextB(1) = 1 and ending at ptrB(2)−
1 = 3. Similarly, since the nonzero b13 = 9.9 of B is stored in valB(7), the nonzeros 4.3

and 2.1 of A below the first row in the third column can be read from valA at the locations

starting at nextA(7) = 7 and ending at ptrA(4)− 1= 8.

Let us now consider how to implement the key steps of the HIC algorithm using the

CSCRe format (4.1). At the line 6, the array v is updated with the kth column fk of F for

each nonzero r jk in the jth row of R. This is implemented by the following subroutine,

where the computed columns of R and F are stored in the CSCRe format.

UPDATE(j, nnzv ,indV,v,valR,headR,linkR,nextF,valF,rowF)

1. ℓ= headR(j)

2. while ℓ 6= 0

3. t = nextF(ℓ)

4. while rowF(t) > j

5. if v(rowF(t)) = 0 then

6. nnzv := nnzv + 1

7. indV(nnzv) := rowF(t)

8. end if

9. v(rowF(t)) := v(rowF(t))− valR(ℓ)valF(t)

10. t := t + 1

11. end while

12. ℓ= linkR(ℓ)

13. end while

In the above subroutine, the nonzeros r jk in the jth row of R are accessed using headR,

valR, and linkR (lines 1, 9, and 12). Then, the nonzeros of F in the kth column below the

jth row are accessed using nextF, valF, and rowF; the location of valF that stores the

first nonzero is specified by nextF (line 3), and the rest of the nonzeros are retrieved from

valF at the contiguous locations thereafter (lines 4 to 11). To identify the last nonzero in

the kth column of F , the diagonal elements of F are stored even though they are all zero.

Hence, when the row index is less than or equal to j (line 4), the nonzero corresponds to

the (k+ 1)th diagonal element of F . Note that ptrF is not used.

On line 7 of the HIC algorithm, the array v is updated with the kth column rk of R for

each nonzero element f jk in the jth row of F . This is done by calling the subroutine UPDATE

with the arguments (j, nnzv, indV, v, valF, headF, linkF, nextR, valR, rowR). The

line 5 of the algorithm can be implemented in a similar fashion.

On line 13 of the HIC algorithm, if the magnitude of v(i) is greater than a prescribed

primary drop tolerance σ1, then it is assign v(i) to the element ri j of R. The following

subroutine saves ri j by inserting ri j into the data structure.

Preconditioning Multi-Length-Scale SPD Linear Systems 479

INSERT(i,v, nnzR,valR,rowR,headR,linkR, prvF , nnzF ,nextR)

1. nnzR := nnzR+ 1

2. valR(nnzR) = v(i)

3. rowR(nnzR) = i

4. linkR(nnzR) = headR(i)

5. headR(i) = nnzR

6. for k = prvF , prvF + 1, · · · , nnzF

7. nextR(k) = nnzR

8. end for

9. prvF = nnzF + 1

A few remarks are in order. (a) On lines 1 to 3, v(i) is stored as the element ri j of R. (b)

On lines 4 and 5, the element ri j is inserted into the linked-list of the nonzero elements

in the ith row of R. (c) Let rk j be the last nonzero element assigned to the jth column of

R before the element ri j . Then, prvF in the arguments specifies the location of valF that

stores the first nonzero element of F below the kth row in the jth column. On lines 6 to 8,

prvF is used to link the nonzero elements of F to the nonzero element ri j of R.

If the magnitude of v(i) on line 15 of the HIC algorithm is less than or equal to σ1

but greater than a prescribed secondary drop tolerance σ2, then v(i) is assigned to the

element fi j of F . This is done by calling the subroutine INSERT with the arguments (i, v,

nnzF , valF, rowF, headF, linkF, prvR, nnzR, nextF).

5. Multi-length-scale linear systems

In this section, we describe the multi-length-scale SPD linear systems of equations orig-

inating from the hybrid quantum Monte Carlo (HQMC) simulation of the Hubbard model,

a powerful tool for studying the electron interactions that characterize the magnetic and

transport properties of correlated materials [15]. The numerical solution of such multi-

length-scale linear systems is a computational bottleneck in the HQMC simulation [2, 3].

Specifically, the coefficient matrix A of the multi-length-scale system (1.1) is defined as

A=

I + BT
2 B2 −BT

2 B1

−B2 I + BT
3 B3 −BT

3
. . .

. . .
. . .

−BL−1 I + BT
L BL BT

L

BT
1 −BL I + BT

1 B1

, (5.1)

where for ℓ= 1,2, · · · , L, Bℓ is an N × N matrix defined by the product

Bℓ = BeDℓ .

480 I. Yamazaki, Z. Bai, W. Chen and R. Scalettar

B is an N × N matrix given by the Kronecker product:

B =
�
B(1)m B(2)m

�
⊗
�
B(1)m B(2)m

�
,

and B(1)m and B(2)m are m×m matrices defined as

B(1)m =

C

C
. . .

C

C

, B(2)m =

coshθ sinhθ

C
. . .

C

sinhθ coshθ

,

where

C =

�
coshθ sinhθ

sinhθ coshθ

�

and θ is a scalar. The matrix Dℓ of order N is diagonal:

Dℓ = ηdiag(h(ℓ)) + ν I ,

where η and ν are scalars and h(ℓ) is a random vector of length N . Therefore, the order of

the matrix A is n= N × L = m×m× L. The matrix A is extremely sparse, having about 68

nonzeros per column.

The integer N is the total number of the sites on an m×m rectangular spatial lattice,

N = m×m. The random vector h(ℓ) is called the Hubbard-Stratonovich configuration. The

scalars η, ν and θ are defined as

η= γ∆τ(2U)
1

2 , ν = µ∆τ, θ = t∆τ,

where γ = 1 or −1, ∆τ = β/L. Scalars β , t, U and µ are parameters specifying the (in-

verse) temperature, kinetic energy, potential energy and chemical potential of the under-

lying physical system, respectively. The scalar L is the number of imaginary time-intervals.

These system parameters, namely N , L, β , t, µ and U , define the properties of the under-

lying physical systems. The linear system (1.1) is referred to as a multi-length-scale linear

system since the dimensionality, eigenvalue distribution and conditioning of the coefficient

matrix A depends on the choice of the system parameters. Fig. 1 shows the condition

numbers of A as a function of N , β and U . As we can see, the matrix A becomes ex-

tremely ill-conditioned as the values of β and U increase. This is the case for the so-called

strongly-interacting system [3,15].

6. Numerical results

In this section, we present numerical results of the preconditioned conjugate gradient

method to solve the multi-length-scale linear systems (1.1) with the ICd, RIC and HIC

preconditiners. We will only present the performance data for the choice of parameters

Preconditioning Multi-Length-Scale SPD Linear Systems 481

64 144 256 400 576 784 1024
10

5

10
6

10
7

10
8

10
9

10
10

(L,β,t,µ)=(40,5,1,0)

N

C
on

di
tio

n
nu

m
be

r
of

 A
σ

U=2
U=4
U=6

1 2 3 4 5 6 7 8 9 10
10

3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

(N,∆τ,t,µ)=(16x16,1/8,1,0)

β

C
on

di
tio

n
nu

m
be

r
of

 A
σ

U=2
U=4
U=6

Figure 1: Condition numbers of the Hubbard matrix A as a funtion of N (left) and β (right).
N = 48× 48, L = 80, β = 10, t = 1, µ = 0 and U = 0,1,2, · · · , 6. The dimension of the

linear system is n= 48×48×80= 184,320. Numerical results for other sets of parameters

can be found in [19]. To reflect the realistic HQMC simulation, the entries of the Hubbard-

Stratonovich configuration h(ℓ) is set to follow the Gaussian distribution with a mean of

zero and standard deviation of two. The right-hand-side vector b is set such that elements

of the exact solution vector x are uniformly distributed in the interval [0,1). For a fair

comparison, all preconditioners were constructed to have about the same sparsity (about

25 nonzeros per row). This is accomplished by choosing the shift αd = 5× 10−3 and the

drop tolerance σ1 = 5× 10−3 for ICd, (σ1,σ2) = (5.0× 10−3, 2.5× 10−4) for RIC, and

α= 7.0× 10−4 and (σ1,σ2) = (7.0× 10−3, 7.0× 10−4) for HIC.

The IC algorithms and PCG method discussed in this paper have been implemented in

Fortran 95. The initial PCG iterate is set to be zero. The PCG iteration is declared to be

convergent when the computed solution bx has three correct significant decimal digits, i.e.,

‖x − bx‖2/‖x‖2 ≤ 10−3. This is sufficient for the practical needs of the HQMC simulation.

All data was collected on an HP Itanium2 workstation with 1.5GHz CPU and 2GB of main

memory. Intel Math Kernel Library 7.2.1 and the -O3 optimization option were used to

compile the programs. Taking the effects of the randomness into the account, the reported

data are the averages of fifty runs.

Let us first compare the PCG convergence rate by showning the numbers of iterations

in the following table:

U 0 1 2 3 4 5 6

ICd 14 32 72 190 1,087 3,795 5,400

RIC 12 29 66 106 1,026 3,683 5,412

HIC 35 28 51 132 685 2,029 2,978

From the table, we see that the HIC preconditioner makes significant improvement in terms

of the convergence rate. We note that there is a large jump from U = 3 to U = 4, which

is due to the fact that the coefficient matrices A are extremely ill-conditioned for large U .

482 I. Yamazaki, Z. Bai, W. Chen and R. Scalettar

This jump leads to the large amplification factors ‖R−1‖ in the ICd, RIC and HIC residual

norms.

As discussed in Section 3, the higher quality of the HIC preconditioner is due to the

fact that the diagonal elements of the error matrix A− RRT are smaller than those of ICd

and RIC preconditioners. Note that the shift α = 7.0× 10−4 of HIC is about an order of

magnitude smaller than the shift αd = 5.0×10−3 of ICd. The following table indicates that

the diagonal elements of the HIC error matrices are about two orders of the magnitude

smaller than the ones of RIC.

U 0 1 2 3 4 5 6

HIC/RIC (α‖D‖1)/‖Dr‖1 0.013 0.029 0.037 0.053 0.067 0.076 0.096

RIC/ICd ‖Dr‖1/(αd‖D‖1) 10.45 4.85 3.76 2.66 2.08 1.85 1.46

From the table, we also see that the orders of diagonal elements of RIC and ICd are about

the same. Hence, it takes about the same numbers of PCG iterations to converge using the

RIC and ICd preconditioners.

The CPU time of computing the ICd preconditioners is between 1.23 to 1.32 seconds

for different U . It is 5.46 to 6.36 seconds for the RIC preconditioners, and 3.24 to 4.23

seconds for the HIC preconditioners. The following table shows the total CPU elapsed time

(in seconds) to solve the multi-length-scale linear systems (1.1):

U 0 1 2 3 4 5 6

ICd 1.87 2.86 4.77 10.48 53.49 184.76 287.47

RIC 6.13 7.86 9.40 15.05 56.77 188.05 301.71

HIC 4.94 5.49 6.68 10.67 38.09 104.88 167.55

As we can see, the HIC preconditioners significantly reduce the total solution time for

strongly-interacting system, namely U ≥ 4. For U ≤ 3, the total CPU time of HIC pre-

conditioners is greater than those of ICd preconditioners due to the higher cost of the HIC

preconditioners. Note that the HIC construction time can be reduced by using larger drop

tolereances. As discussed in Section 3, the HIC factorization is a generalization of the ICd

factorization, and optimal performance of the HIC is at least as good as that of the ICd.

Therefore, by adaptively adjusting the drop tolerances, the HIC can adapt to the varying

mathematical properties of the multi-length-scale linear systems.

Finally, we examine the scaling property of the HIC-based PCG solver with respect to

the parameter N of the dimensionality and the potential energy parameter U = 0,1,2,3.

The drop tolerances of the HIC factorization are chosen such that all R-factors have about

55 nonzero elements per row. The left plot of Fig. 2 shows that the numbers of PCG

iterations only grows slowly as N increase. As a result, the solution time scales linearly

with N (see the right plot of Fig. 2). In the figure, the dashed lines are the ideal linear

scaling lines using the solution times taken at N = 48× 48 and U = 1 and 3. Hence, we

conclude that the HIC-based PCG solver achieves the property of optimal linear-scaling.

Unfortunately, the similar linear-scaling property does not hold when U ≥ 4.

Preconditioning Multi-Length-Scale SPD Linear Systems 483

64256 576 1024 1600 2304 3136 4096
0

10

20

30

40

50

60

70

80

90

100

N

P
C

G
 it

rs
.

HIC−PCG, (L,β,t,µ) = (80,10,1,0), α=σ
2
=2x10−4, and σ

1
=2x10−3

U=0
U=1
U=2
U=3

64256 576 1024 1600 2304 3136 4096
0

5

10

15

20

25

30

35

40

45

N

T
−

tim
e

(s
)

HIC−PCG, (L,β,t,µ) = (80,10,1,0), α=σ
2
=2x10−4, and σ

1
=2x10−3

U=0
U=1
U=2
U=3

Figure 2: Left: the number of iterations. Right:the CPU elapsed time.
7. Conclusion

We have introduced a hybrid IC preconditioning algorithm to solve the multi-length-

scale SPD linear systems (1.1) and (5.1). The numerical results have demonstrated that

the HIC preconditioner is an effective preconditioner for solving the multi-length-scale

SPD linear systems for a wide range of parameters of interest. It shows that for moderately

interacting physical systems (U < 3), the HIC-based PCG linear solver scales linearly with

respect to the dimensionality of the system. Thus it enables the HQMC simulation of

thousands of moderately interacting electrons [19]. The development of a preconditioner

that enables the optimal linear-scaling for strongly-interacting systems remains an open

problem.

Acknowledgments The work was supported in part by the US National Science Founda-

tion grant 0611548 and in part by the US Department of Energy grant DE-FC02-06ER25793.

We thank the anonymous referees for their insightful comments.

References

[1] M. AJIZ AND A. JENNINGS, A robust incomplete Choleski-conjugate gradient algorithm, Int. J.

Numer. Meth. Engng., (1984), pp. 949–966.

[2] Z. BAI, W. CHEN, R. SCALETTAR, AND I. YAMAZAKI, Robust and efficient numerical linear algebra

solvers and applications in quantum mechnical simulations, in Proc. The Fourth International

Congress of Chinese Mathematician (ICCM), L. Ji, K. Liu, Y. Yang, and S. Yau, eds., 2007,

pp. 253–268.

[3] Z. BAI, W. CHEN, R. T. SCALETTAR, AND I. YAMAZAKI, Lecture notes on advances of numerical meth-

ods for quantum Monte Carlo simulations of the Hubbard model, CSE-2007-36, Department of

Computer Science, University of California, Davis, 2007.

[4] S. BALAY, K. BUSCHELMAN, W. D. GROPP, D. KAUSHIK, M. KNEPLEY, L. C. MCINNES, B. F. SMITH,

AND H. ZHANG, PETSc User’s Manual, technical Report ANL-95/11 - Revision 2.1.5, Argonne

National Laboratory, 2002.

484 I. Yamazaki, Z. Bai, W. Chen and R. Scalettar

[5] M. BENZI, Preconditioning techniques for large linear systems: A survey, J. Comput. Phys., 182

(2002), pp. 418–477.

[6] M. BENZI AND M. TUMA, A robust incomplete factorization preconditioner for positive definite

matrices, Numer. Linear Algebra Appl., 10 (2003), pp. 385 – 400.

[7] M. BENZI AND M. TUMA., A robust preconditioner with low memory requirements for large sparse

least squares problems, SIAM J. Sci. Comput., 25 (2003), pp. 499–512.

[8] I. S. DUFF, A survey of sparse matrix research, in Proc. IEEE, vol. 65, 1977, pp. 500–535.

[9] V. EIJKHOUT, The ‘weighted modification’ incomplete factorization method, LAPACK Working

Note 145, UT-CS-99-436, Computer Science Department, University of Tennessees, 1999.

[10] A. JENNINGS AND G. M. MALIK, Partial elimination, Journal of the J. Inst. Math. Appl., 20

(1977), pp. 307–316.

[11] I. E. KAPORIN, High quality preconditioning of a general symmetric positive definite matrix based

on its U T U+U T R+RT U-decomposition, Numer. Linear Algebra Appl., 5 (1998), pp. 483–509.

[12] D. S. KERSHAW, The incomplete Cholesky-conjugate gradient method for the iterative solution of

systems of linear equations, J. Comput. Phys., 26 (1978), pp. 43 – 65.

[13] T. A. MANTEUFFEL, An incomplete factorization technique for positive definite linear systems,

Math. Comp., 34 (1980), pp. 473–497.

[14] J. MEIJERINKAND AND H. A. VAN DER VORST, An iterative solution method for linear systems of

which the coefficient matrix is a symmetric M-matrix., Math. Comp., 31 (1977), pp. 134–155.

[15] R. T. SCALETTAR, D. J. SCALAPINO, R. L. SUGAR, AND D. TOUSAINT, A hybrid-molecular dynamics

algorithm for the numerical simulation of many electron systems, Phys. Rev. B, 36 (1987),

pp. 8632–8641.

[16] M. TISMENETSKY, A new preconditioning technique for solving large sparse linear systems, Linear

Algebra Appl., (1991), pp. 331–353.

[17] R. S. VARGA, E. B. SAFF, AND V. MEHRMANN, Incomplete factorizations of matrices and connections

with H-matrices, SIAM J. Numer. Anal., 17 (1980), pp. 787–793.

[18] X. WANG, K. A. GALLIVAN, AND R. BRAMLEY, CIMGS: An incomplete orthogonal factorization

preconditioner, SIAM J. Sci. Comput., 18 (1997), pp. 516–536.

[19] I. YAMAZAKI, High-quality preconditioning techniques for multi-length-scale symmetric positive

definite matrices and their applications to the hybrid quantum Monte Carlo simulation of the

Hubbard model, PhD thesis, University of California, Davis, 2008.

