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Abstract

1

The aim of data mining is to find novel and actionable in-
sights. However, most algorithms typically just find a single
explanation of the data even though alternatives could exist.
In this work, we explore a general purpose approach to find
an alternative clustering of the data with the aid of must-
link and cannot-link constraints. This problem has received
little attention in the literature and since our approach can
be incorporated into many clustering algorithm that uses a
distance function, compares favorably with existing work.

1. Introduction and Motivation

Consider the following situation practitioners typically
find themselves in: you have a collection of data to cluster
and use your favorite algorithm,A, which you know tries to
optimize functionf . AlgorithmA finds clusteringπ whose
objective function value isf(π) = x. Upon examiningπ
the clustering makes sense, for example, when clustering
face image data a natural clustering arises along the lines
of gender. However, a valid question is then: “Does there
exist another clustering which is different toπ but has an
objective function value approximately equal tox?” That is,
does there exist an alternative but equally good clustering?

Conversely, you may also find the clustering found by
A not particularly useful and actionable and wish to find
an alternative to it. Consider clustering loan applications
to determine a method to identify bad loans but the clus-
ters fall along racial lines. You may wish to find another
alternative but equally good clustering. Searching for al-
ternative clusterings, is quite reasonable since data in high
dimensional space may have many alternative clusterings
that exploit a different subset of features. Similarly, theun-
derlying phenomena in the data could be quite complex and
the data chosen to represent it insufficient to justify one sin-
gle explanation. In both these and other possible situations,
the objective functionf is not uni-modal and our aim is to
find alternative modes/clusterings. We should emphasize
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that we do not seek slight variations of existing clusterings,
rather completely different clusterings.

We can formulate the above objective as the Generalized
Alternative Clustering Problem (GA-CP).

Problem 1 Generalized Alternative Clustering Problem
(GA-CP) Given an algorithmA with an objective function
f , anexisting clusteringπ such thatf(π) = x. Does there
exists another clusteringπ′ that is different toπ and where
f(π′) ≈ f(π)?

One potential approach to the GA-CP is to construct an
algorithm with a dual objective function that simultaneously
attempts to search for a different and good clusterings. This
approach was taken by Bae and Bailey [1] and Gondek and
Hoffman [11] with considerable success. However, the dual
objective function approach ties their approaches to a par-
ticular algorithm which may or may not be suitable for the
task at hand. Another approach is to generate many clus-
terings and then sort out which are truly different as is the
case with Meta-Clustering [12] but this is not efficient for
large data sets. Still a third alternative is to remember previ-
ous clusterings and steer a sampling/search algorithm away
from them [7], but this requires creation of a Markov chain
Monte Carlo (MCMC) sampler which will require consid-
erable time to reach equilibrium. Finally, a fourth approach
is to project the data into an alternativesub-space [5] but
as we shall see this also has limitations such as not being
appropriate for lower dimensional data sets such as spatial
data.

We propose a general purpose and efficient method of
addressing GA-CP that is algorithm independent and in par-
ticular is appropriate for low dimensional data. We propose
using instance level constraints [15] to characterize the ex-
isting clustering, learn a distance function from those con-
straints and then performing a singular value decomposi-
tion of this function so as to transform the data to rule out
the previously founding clustering, but maintain the inher-
ent structure in the data. Instance level constraints statetwo
instances must be in the same cluster (must-link) or must
not be in the same cluster (cannot-link).

Formally, our aim is to create an approach that:

• Is general purpose and can address the GA-CP prob-



lem for a variety of distance based clustering algo-
rithms

• Can specifically identify what properties/parts of the
clustering to find an alternative to

• Is efficient and easily implementable

• Is usable for low dimensional (i.e. spatial) data sets

We begin this paper by describing in detail our approach
in section 2. We then discuss its properties in section
3. We show its usefulness in section 4 on several UCI
data sets comparing the approach to several others for non-
hierarchical clustering. We then illustrate the general pur-
poseness of our approach by addressing the novel problem
of finding alternative clusterings for agglomerative algo-
rithms in section 5. To our knowledge finding alternative
clusterings for agglomerative clustering has not been ad-
dressed. We then verify our approach produces intuitive
results for several real world problems including finding al-
ternative spatial clusterings of pandemic simulation datain
section 6.2. We then summarize and compare our approach
to related work in section 7 and then conclude.

2 The Alternative Distance Function Trans-
formation (ADFT) Approach

To achieve our aim of finding an alternative clustering
in a general purpose manner we explore a data transforma-
tion approach that converts the original dataX to a new
spaceX ′ using a distance functionD′. We note that either
the existing dataX can be transformed to a new spaceX ′

by X ′ = D′T X and the clustering algorithm uses the Eu-
clidean distance function or the old dataX can be used but
the algorithm uses the distance functionD′. At a high level
our approach can be summarized as the following steps:

1. Initial Application Step:Apply a clustering algorithm
A to X and obtain clusteringπ.

2. Characterizing Step Using Constraints:Identify and
specify composition properties ofπ using a set of
must-link and cannot-link constraints (C). For exam-
ple, we can specify must-link (cannot-link) constraints
between all points in the same (different) cluster(s) and
then learn a distance functionDπ fromC. We focus on
constraint based function learning techniques as they
allow us the flexibility to focus on different properties
of the clustering.

3. Alternative Calculation Step:Find an alternative dis-
tance functionD′

π from Dπ.

4. Transformation Step:Transform the data set according
to D′

π.

5. Re-clustering Step:Re-cluster the data using the newly
transformed data.

.
We now provide the details for the more complicated

steps.

2.1 The Mathematical Formulation

The input for a clustering algorithmA is a set of pointsX
typically in the Euclidean space. The clustering algorithm
then returns a set partitionπ of those points which can be
interpreted as thatpoints in the same cluster are similar and
those in different clusters dissimilar. This partitioning of
points could be interpreted as a transformation on the points
X → Xπ such that those points in the same cluster are
similar (close together) and those in different clusters are
different (far apart).

Our aim is to quantify this transformation that the clus-
tering implicitly performs and then construct aalternative
transformation which can be applied to the data points and
then reapply the clustering algorithm to the newly trans-
formed data set.

The Characteristic Step. We can characterize the trans-
formation thatπ represents using any number of approaches
with each emphasizing a different characteristic. For ex-
ample, we could use linear discriminant analysis (LDA)
to learn a transformation with each instance in a given
cluster having its own label. However, in this paper we
shall explore converting the characteristics/composition of
π to a set of instance level constraints (must-link and
cannot-link) [15] and then learning a distance function
from the constraints. A valid question is then why not
just cluster under the “flipped” constraints for the same
value of k to find an alternative clustering. That is if
π = {(a, b), (c, d)} then this clustering can be uniquely rep-
resented as the constraints must-link(a,b), must-link(c,d),
cannot-link(b,d) and cannot-link(b,c) (not all entail con-
straints are provided for clarity). However, flipping these
constraints for even this simple four point data set produces
cannot-link(a,b), cannot-link(c,d), must-link(b,d) andmust-
link(b,c) for which no clustering exists that satisfies all con-
straints. For similar reasons it is not desirable to learn a
distance function from the flipped constraints due to the
many inconsistent constraints that flipping could generate.
Furthermore, even if a set of non-contradictory constraints
could be generated, then trying to find just a single clus-
tering to satisfy them is known to beNP-complete [8] for
any constraint type combination involving cannot-link con-
straints. This is a large hurdle since we most certainly wish
to generate must-link constraints from points in the same
cluster and when flipping them will produce the undesirable
cannot-link constraints.
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Figure 1. The data and clustering π in the
original space.

Instead we can use a variety of algorithms that learn a
distance function from constraints [17]. Throughout this
work we use the approach of Xing and collaborators [16] to
learn our distance functions from the complete set of con-
straints generated from the clusteringπ. We leave other
variations to future work such as generating constraints only
from the undesirable parts of the clustering.

To illustrate how a distance functionDπ is representative
of π consider Figure 1. The original data consists of four
sub-populations from which the algorithm finds the verti-
cal clustering shown by the ellipses. This clustering can be
represented by the transformation matrixDπ below since it
transform the data so that the points in the same cluster are
together and those in different cluster are far apart. See the
left image in Figure 2 to see the effect of transforming the
data using this matrix.

Dπ =

[

1 0
3 1

]

The Alternative Calculation Step. Given the charac-
teristic distance functionDπ interpreting what this trans-
formation is and how to find an alternative transformation
is difficult. To help our understanding we can decompose
Dπ using singular value decomposition (SVD) such that
Dπ = HSA whereH is the hanger matrix,S the stretcher
matrix andA the aligner matrix. For example using our
example we find:

Dπ =

[

1 0
3 1

]

= HSA

≈

[

0.96 −0.29
0.29 0.96

] [

3.3 0
0 0.3

] [

0.29 −0.96
0.96 0.29

]

Although SVD is used extensively in areas such as latent
semantic index by the mining community the geometric in-

terpretation of the results are often overlooked and we now
explain them. The transformation thatDπ performs can be
decomposed into three separate transformations that are ap-
plied one after the other reading right to left. The aligner
matrix (A) creates a new orthonormal basis with each basis
being written as a row vector inA. In our example the data
is re-aligned nearly 90 degrees clock-wise and we can vi-
sualize the new basis by tilting our heads to the right when
looking at the image in Figure 1. The stretcher matrix (S)
is a diagonal matrix with the entrysi,i stretching (if the en-
try is greater than 1) or compresses (if the entry is less than
1) along theith dimension in thenew basis. In our exam-
ple it stretches about 3 times along the newx dimension
and compressing the data nearly a third along the newy di-
mension. Finally the hanger matrices comprises of column
vectors that rotate the data in the direction of the vectors.

Given this decomposition ofDπ we now wish to cre-
ate an alternative distance function to cluster under. When
creating this new function we wish to make sure the al-
gorithm does not rediscover the clusteringπ. To achieve
this we wish to make those points that were close together
in the same cluster far apart and those far apart close to-
gether since we generated both must-link and cannot-link
constraints fromπ. However, in performing this transfor-
mation it is important not to completely destroy the inher-
ent structure in the data, otherwise the resultant clustering
would be not particularly useful. To achieve the above we
keep the same alignment and rotation but can “flip” the
stretching and the compressing by using the inverse ofS.
Therefore, we can state that the new transformation is:

D′

π = HS−1A (1)

We shall see that this computation has an interpretation
in a system of linear equations context in section 3. We can
then transform the data to new positions usingX ′ = D′T

π X .
In our example the new positions of the points are shown in
Figure 2 (middle) and we can see that the points in the same
clusters are now far apart and vice-versa.

A valid question is why not use the orthogonal projec-
tion (defined asD′ = I − D(DT D)−1DT ) as used by oth-
ers [5] with the substitutionD = Dπ. We see that when
doing this the orthogonal projection (Figure 2 right) is less
efficient at “reversing” the transformation that representsπ.
Furthermore, when we do learn a distance function from the
vertical clustering the typical function returned is:

Dπ =

[

3 0
0 1

3

]

which stretches the data three times along thex− axis and
compresses the data by one third along they − axis. The
transformation shown by our approach and the orthogonal
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Figure 2. For the matrix Dπ = {1 0; 3 1}, the data mapped into a space using Dπ (left), mapped using
D′

π (middle) and mapped using the orthogonal projection [5] (ri ght). Note all images are scaled so
they are comparable.

projection are shown in Figure 3. As we can see the or-
thogonal projection maps all points to the origin. We shall
see in the related work section this is because no sub-space
orthogonal toDπ exists. It is quite likely that in lower di-
mensional space that no or a very rudimentary orthogonal
sub-space exist.

3 Properties and Advantages Of Our Ap-
proach

We now discuss several properties and advantages of our
approach.

3.1 The Approach Is Applicable For A Va-
riety of Dπ

This is a straight-forward result of the SVD being de-
fined for any square or rectangular matrix. This makes the
work also applicable for dimension reduction approaches
whereDπ will haves rows andm columns and will reduce
the space fromm to s dimensions.

3.2 The Approach Performs a Linear
Transformation

When transforming the instance space to find an alter-
native clustering our aim is two fold. Firstly, we wish to
explicitly reverse the transformation representing the clus-
tering we have already found. We can do this by encoding
the properties as constraints and learn a distance function
from them. In this way we explicitly allow specification of
what properties are undesirable in the clustering. However,
when reversing these properties we do not wish to unduly
effect the inherent structure in the data, by say performinga

non-linear transformation, so that we are effectively cluster-
ing some other data set that bears little relation to the data
set under consideration.

This is unlikely to occur in our approach since we are
effectively performing just alinear transformationon the
data. All of our matrices returned by the SVD:H , S and
A are linear transformations of the data since they represent
rotation, stretching and realignment which are known to be
linear. As is well known, a combination of linear transfor-
mation is also a linear transformation and being an example
of an affine transformation preserves important properties
such as the co-linearity of points.

3.3 The Approach Finds a Least Squares
Solution

Consider our approach whereX is the original set of
points in a space from which a good clustering character-
ized by the transformationDπ exists. A valid question is
then, what could be a new set of positions (X ′) so when
Dπ is applied toX ′, the result is a transformation back to
X . That isX ′ represents the alternative point positions that
would reverse the effect ofDπ so as to transform the posi-
tions back to those inX .

This can be framed as a least squares minimization prob-
lem withX ′ being unknown.

||DπX ′ − X ||2 (2)

The well known Moore-Penrose pseudo-inverse gives us
the solution where as beforeH, S, A are the hanger, stretch
and aligner matrices obtained from the SVD ofDπ.

X ′ = (AT S−1HT )T = HS−1A (3)

We note that equation 3 is precisely equation 1. A vi-
sual interpretation of this can be obtained by considering
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Figure 3. For the matrix Dπ{3 0; 0 1

3
}, the data mapped into a space using Dπ (left), mapped using

D′

π (middle) and mapped using the orthogonal projection (right ).

our previous example shown in Figure 2. ApplyingDπ to
the data set in the center image will produce the original
data set shown in Figure 1.

4 Applications to Non-Hierarchical Cluster-
ing

In this experimental section we compare our results
against three algorithms (see Section 7) to illustrate thatour
general approach can find alternative clusterings that are of
reasonable quality. We used the same data sets as used by
[1].

The authors of COALA have already shown their ap-
proach outperformed the CIB approach of Gondek and
Hoffman and we also compare our approach against the two
approaches in [5] which deals with orthogonal sub-space
projections. Cui et’ al report success using thek-means al-
gorithm and hence we also applyk-means after applying
our ADFT approach. Our results are shown in Table 1. We
begin by computing two measures of clustering quality, the
Generalized Dunn index (DI) [1] and Vector Quantization
Error (VQE) in columns 2 and 3 for the set partition (πl)
defined by the extrinsic labels. This is one experimental
setup used in [1] and has the benefit of producing an al-
gorithm independent initial clustering which the algorithms
will attempt to find a good and alternative clustering to. The
DI is a measure of the minimum distance between two clus-
ters calculated as the average distance between each pair of
points that are in different clusters, this is then normalized
by the maximum cluster diameter [4]. We report the VQE
as it is the objective function thatk-means minimizes and
allows us to compare our results with the work described in
[5].

Then for the COALA algorithm (columns 4,5 and 6) we
report the properties of the alternative clustering found after
using the criterionω = 0.6 as used in their work [1]. The
Jaccard index (JI) [1] is a measure of similarity between

two clusters and hence unlike the DI with the JI the lower
the better in our application.

We note that our approach typically finds more different
(as measured by the JI) clustering that are typically more
compact (as measured by VQE), but not as well separated
(as measured by the DI) compared to COALA. This is to be
expected as minimizing VQE is the objective ofk-means
and the DI is effectively the join criterion used by [1] in
their average linkage algorithm. Comparing our work to Cui
and collaborator’s work our approach typically finds equally
different clusterings but our clusterings tend to have better
quality when measured by both the DI and VQE. This can
be explained since these lower dimensional data sets do not
necessarily contain a useful orthogonal subspace.

5 Applications to Hierarchical Clustering

In this section, we present the first results, to our knowl-
edge, on finding alternative dendrograms. We begin by run-
ning a complete linkage algorithm on the data to obtainπ.
We then cut the dendrogram at the pointk equals the num-
ber of extrinsic classes and learn a distance functionD from
the constraints generated from those clusters. We then use
equation 1 to findD′ and transform the data and then reap-
ply the same algorithm to obtainπ′. Our hope is that the
two dendrograms will be different but need not be if an al-
ternative structure does not exist. Table 2 shows our results.
We compare dendrograms by cutting the dendrogram at the
levelk equals the number of extrinsic labels and then mea-
suring the the JI, DI and VQE. Averaging these properties
over all levels is undesirable as the lower levels of the den-
drogram tend to dominate this calculation. We see that for
these data sets there exists alternative dendrograms that are
comparable in quality.

Note, these results are not comparable with Table 1 since
the starting clusterings are different.



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 13 14 15
Data DI VQE JI DI VQE JI DI VQE JI DI VQE JI DI VQE
Set (πl) (πl) [1] [1] [1] AFDT AFDT AFDT [5] [5] [5] [5] [5] [5]

Alg 1 Alg 1 Alg 1 Alg 2 Alg 2 Alg 2
Glass 0.21 911 0.26 0.83 855 0.24 0.58 505 0.27 0.50 721 0.21 0.41 801
Ion. 0.65 3086 0.54 1.21 3207 0.43 0.98 2421 0.40 0.9 2650 0.4 0.86 2630
ESL 0.38 1374 0.28 0.62 1885 0.24 0.73 1787 0.28 0.65 2454 NA NANA
Veh. 0.56 2.4× 0.26 1.05 5.5× 0.18 0.57 5.4× 0.20 0.59 1.0× 0.17 0.46 2.6×

107 106 106 107 107

Table 1. Results of Comparing Several Alternative Clusteri ng Approaches for Non-Hierarchical Clus-
tering. Note DI=Dunn Index, JI=Jaccard Index, VQE = Vector Q uantization Error. Results are aver-
aged over ten random restarts of each algorithm if appropria te. Note for the ESL data set k > m and
hence the transformation performed by algorithm 2 in [5] is u ndefined.

Dataset DI VQE JI DI VQE
(πk) (πk) (πk, π′

k) (π′

k) (π′

k)
Glass 0.88 1244 0.68 0.63 1023
Ion. 0.79 9278 0.51 1.15 11437
ESL 0.77 594 0.35 0.81 650

Vehicle 0.64 7028 0.48 0.80 7764

Table 2. The result of applying our tech-
nique for agglomerative complete linkage al-
gorithms.

6 Two Real World Examples

The comparison on UCI data sets yields interesting com-
parative insights and we now validate the work on several
real world problems and attempt to understand the alterna-
tive explanations.

6.1 Hand Written Digits on a Stylus

In this section we present results on the classic Pen-Digit
data set which consists of handwritten digits recorded on
a pen-based tablet. Each instance corresponds to a single
digit and has 16 attributes, which represent the 8x, y posi-
tions of the pen as the digit is being written. Each pair of
co-ordinates is sampled as the digit is being written. Users
were free to write the digits in any form they wanted. By
applying our algorithm, we hope to find alternative explana-
tions of how people write digits with respect to how quickly
they are written and the structure how the digit is created.

After runningk-means algorithm fork = 2 on the orig-
inal handwritten data set, clusteringπ1 is obtained. Each
group’s centroids are shown in Figure 4. Although the most
frequently occurring digits in each cluster do not appear to

have much in common, the centroids of the 2 clusters ex-
plain two distinct ways that digits are written. The cluster
on the top shows that people write digits in this cluster in a
counter-clockwise way with a constant speed. Note that the
way thex, y co-ordinates were recorded means that a longer
distance between adjacent co-ordinates indicate a high writ-
ing speed. The clustering on the bottom explains that people
can also write digits from left to right then go down, with
initially a very high speed then considerably slower.

We follow our approach discussed earlier and create a
new distance matrixD′ using equation 1, transform the data
and then reapplyk-means fork = 2 to obtainπ2. The cen-
troids of each cluster are shown in Figure 5. The cluster
on the top shows that another two-way explanation on how
people write digits can be that some are written clockwise
(not counter-clockwise as before) with a smooth speed on
most strokes except when writing initially and in the mid-
dle of the character. The clustering on bottom explains that
people write the remaining digits from left to right down
then go left down, but the writing speed is increasing grad-
ually and dramatically. Note, this is similar in shape to the
bottom cluster in Figure 4 but thespeed of writing the digit
is backwards. In the earlier clustering the digit is written
very quickly initially then slowly, in this clustering the digit
is written very slowly initially then quickly.

What is quite remarkable is that these are two genuinely
alternative explanations of the data as Table 3 indicates.
They are quite different as indicative of the low JI but have
very similar quality measures.

6.2 Pandemic Simulation Data

An interesting problem posed
at a recent SIAM DM workshop
(http://www.cs.dartmouth.edu/ cbk/sdm07/)
is the division of a large geographic area into distinct
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Figure 4. The centroids of the first clustering
π1 found.

DI(π1) DI(π2) VQE(π1) VQE(π2) JI(π1, π2)
0.83 0.83 1886 1919 0.36

Table 3. The Comparison Between Two Clus-
terings Found in the Pen Digit Data Set.

spatio-demographic regions on which various pandemic
preparation sub-policies can be enacted. In this context, the
data to be mined is the aggregated normalized household
data containing information such as thex, y location of
the house, income, age, household size, total number of
trips and the distance, etc. Each tuple in this database is
effectively the averaged snapshot of the population at the
end of a pandemic simulated period over many different
simulation runs. Ideally, decision regions should (1)
include a collection of households that are homogeneous
with respect to the infection rate (i.e., most households in
the collection have a high rate of infection or a low rate
of infection) and (2) be easy to isolate. At its core, the
problem of finding decision regions is a clustering problem
that involves breaking down the area of Portland (see
Figure 6) into distinct regions.
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Figure 5. The centroids of the second cluster-
ing π2 found.

Clustering the data with a Euclidean distance metric
shows that homogeneous regions do exist. Figure 7 shows
clustering of Portland households where each household is
colored according to which of the twenty-five clusters it be-
longs to. Applying our approach we obtain an alternative
clustering shown in the bottom of the same figure. When
measuring the usefulness of the clustering with respect to
the infection rates of each household, we find the two clus-
tering are similar but the figures show that one clustering
(the bottom) has better spatial properties in that the regions
are contiguous. We note that sincek = 25 andm = 10
(dimension) the second approach of Cui and collaborators
[5] could not be used on this data set.

7 Related work

As discussed in the introduction there are four pri-
mary approaches to finding alternative clusterings: a) Dual-
objective function algorithms, b) Generate and collect al-
gorithms, c) MCMC samplers with memories and d) Data
transformation approaches. We have mentioned that the
generate and collect approach algorithms such as Meta-
Clustering [12] and the MCMC sampler approaches are not



Figure 6. One of the Case Study Areas: Port-
land, OR. Forming decision regions will in-
volve dividing this entire region into sub-
regions.

efficient for large data sets. We now discuss related works
for approaches a) and d).

The seminal paper on finding alternative clusterings was
by Gondek and Hofmann [11]. In their work, they explored
the idea of using the conditional information bottleneck
(CIB) approach to find an alternative clustering to a given
non-novel clustering. Their approach subtracts the back-
ground knowledge about the given clustering by maximiz-
ing conditional mutual information, but is limited since it
requires the explicit joint distribution information between
the cluster labels and the relative features which can be diffi-
cult to formalize. Though their experimental results clearly
illustrated the approach can find alternative clustering toa
given clustering it is limited toinformation alternatively(as
defined by only the cluster labels) and for problems in the
CIB framework.

In 2006, Bae and Bailey showed that Gondek’s approach
had several short-comings: firstly, it was limited to the con-
ditional bottleneck approach that requires a joint distribu-
tion and that CIB often found clusterings that though differ-
ent were not high quality when measured by the DI. Their
COALA approach which centers around using flipped con-
straints to generate an alternative clustering of good qual-
ity (when measured by the Dunn index). COALA [1] is
a heuristic approach using only cannot-linked constraints
(two instances must not be in the same cluster) to generate
a single different clustering.

These approaches have been well demonstrated to be
useful but have a limited scope of application which differ-
entiates our work. In particular, both CIB and COALA are
limited to finding orthogonal partitions but our approach is
applicable to most algorithms that makes use of a distance

Figure 7. Two Alternative Clusterings Found
of Portland Oregon with each of the 25 clus-
ters color-coded. The two alternative clus-
terings are comparable when measured on
the ability to differentiate infected/uninfected
households but have different spatial proper-
ties.

function such as:k-means, CLARANS, DBSCAN, ag-
glomerative and divisive hierarchical algorithms etc. [13].

Cui and collaborator’s [5] explore two approaches to
finding orthogonal clusterings using an orthogonal sub-
space projection. The orthogonal sub-space projection as
defined by [5] isD′ = I − D(DT D)−1DT . The orthog-
onal projection essentially finds an orthogonal sub-space to
D such that ifD defines a sub-space then another sub-space
D′ is defined as being orthogonal ifevery vector inD is
orthogonal toevery vector inD′. This is a very strong re-
quirement and as we saw in Figures 2 and 3 can lead to
undesirable properties in lower-dimensional space.

In their first method the instances in a cluster are pro-
jected onto a sub-space orthogonal to the centroid of that



cluster, this means thatD will be a column vector (the cen-
troid’s location). In their second approach the matrixD in
their work is learnt by extracting thek principal components
from the all the cluster centroid vectors of the clustering that
has already been found. This essentially determines the fea-
tures that are most different/variable between the centroids
and is written ask column vectors which defines am × k

matrix. We can now better explain the unusual results in
Figure 2 and 3. Consider in four dimensional space if the
PCA of the centroids is:

D =









1 0 0.5
0 1 0
0 0 0.5
0 0 0









Since PCA is attempting to find the orthogonal projec-
tions with most variance then the matrixD need not be
sparse. Then the only sub-space alternative to these 3 vec-
tors is the one dimensional space whose transformation ma-
trix is below.

D′ =









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1









Therefore, though being useful in high dimensional
space the approach of orthogonal projection may not be ap-
propriate for lower dimensional space as our experimental
results in Table 1 indicate since orthogonal sub-spaces may
not be very meaningful. Furthermore, ifk > m wherek

is the number of clusters andm is the number of dimen-
sions, then their second approach cannot be applied. This is
so since each column vector attempts to represent a ortho-
normal basis (having being obtained from PCA). If there
arek such ortho-normal basic vectors then there exists no
orthogonal projection onto a space of justm dimensions if
k > m. This is unlikely to occur in high dimensional data
sets like images whenm is in the thousands but for spatial
and other data sets it is often the case thatk > m.

8 Conclusion

Finding alternative clusterings is an important problem
in data mining which has great practical significance. Sev-
eral successful approaches that are algorithm dependent
[11, 1] and an approach [5] that finds orthogonal sub-spaces
have recently been proposed.

We propose a general purpose approach that can be used
with any number of clustering algorithms. The approach
takes an existing clustering and learns a distance function
from constraints extracted from the clustering. We then ap-
ply SVD to this learnt distance function and use equation 1

to obtain an alternative clustering that has the property that
points that were in the same cluster in the original clustering
are now far apart. The application of equation 1 also has a
least squares interpretation that the transformed points are
placed to “counter-act” the effect of the transformation ma-
trix learnt from the constraints so as to restore the original
positions of the points.

Our approach has several pragmatic benefits over these
other techniques. Firstly, unlike the work of [11, 1] it is
not limited to a particular clustering algorithm and can be
applied to any algorithm that uses a distance function. It
also has the advantage over the orthogonal sub-space work
of [5] since it works well in lower dimensional space (as
shown in Table 1) and unlike Algorithm 2 in their work is
applicable ifk > m which is often the case in spatial data
sets.

We demonstrated our approach on non-hierarchical clus-
tering problems and showed it could find as different or
more different clusterings than the COALA algorithm.
When measuring the quality of the alternative clusterings
using the VQE (the objective function of thek − means

algorithm we used) our approach was better on all four data
sets, but when measuring quality on the DI (the objective
function of their algorithm) their approach was better on
three of the data sets. Comparing our approach with the or-
thogonal sub-space projection approaches [5] we found our
approach found more different and better quality clusterings
on these low dimensional data sets. We then showed that
our approach could be used for agglomerative clustering to
find alternative dendrograms which is to our knowledge a
novel problem.

We applied our approach to two real world data sets:
pen digit drawing on a style and pandemic simulation data
and obtained interpretable results that show our approach
finds alternative explanations of the data. Future work will
involve more precise ways of specifying constraints so as
to tag some parts of the clustering as being desirable and
should be kept and others that an orthogonal clustering
should be found for.
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