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ABSTRACT
We consider the characterization of muscle fatigue through
noninvasive sensing mechanism such as surface electromyo-
graphy (SEMG). While changes in the properties of SEMG
signals with respect to muscle fatigue have been reported
in the literature, the large variation in these signals across
different individuals makes the task of modeling and classi-
fication of SEMG signals challenging. Indeed, the variation
in SEMG parameters from subject to subject creates differ-
ences in the data distribution. In this paper, we propose a
transfer learning framework based on the multi-source do-
main adaptation methodology for detecting different stages
of fatigue using SEMG signals, that addresses the distribu-
tion differences. In the proposed framework, the SEMG data
of a subject represent a domain; data from multiple subjects
in the training set form the multiple source domains and the
test subject data form the target domain. SEMG signals are
predominantly different in conditional probability distribu-
tion across subjects. The key feature of the proposed frame-
work is a novel weighting scheme that addresses the con-
ditional probability distribution differences across multiple
domains (subjects). We have validated the proposed frame-
work on Surface Electromyogram signals collected from 8
people during a fatigue-causing repetitive gripping activity.
Comprehensive experiments on the SEMG data set demon-
strate that the proposed method improves the classification
accuracy by 20% to 30% over the cases without any domain
adaptation method and by 13% to 30% over the existing
state-of-the-art domain adaptation methods.
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1. INTRODUCTION
Daily life activities such as typing on the keyboard, dust-

ing, brooming, ironing, as well as the use of hand tools such
as scissors and knives, repetitive work in assembly lines,
repetitive lifting, involve repetitive movements of the dif-
ferent parts of the body. It has been proved that repetitive
task makes work particularly hazardous, as it is the pri-
mary cause of muscle fatigue [28, 13, 30]. According to the
US Bureau of Labor Statistics, in 2002, there were more
than 345,000 on the job back injuries, due to muscle fatigue,
which required time off from work. According to the Bureau
of Labor Statistics (2004), annual direct cost of occupational
injuries due to slip and fall caused due to muscle fatigue is
expected to exceed $43.8 billion by the year 2020 in the US.

These accidents and the consequential loss in work hours
and lifes, besides the high medical cost, can be avoided if
one can intervene such fatigue inducing repetitive activities
at an early stage by intelligent devices having the capability
for detecting different stages of fatigue. Technologies for
detecting muscle fatigue at an early stage can also be used
to remove the cause of fatigue by altering the environmental
ergonomics where possible [1].

There are a number of techniques that can be used to
objectively determine the level of fatigue in a subject. Elec-
tromyography (EMG) is a method for biosignal recording of
skeletal muscle activity. Surface Electromyography (SEMG)
allows for noninvasive recording of these biosignals. Re-
searchers have observed that certain aspects of SEMG sig-
nals change as a muscle becomes fatigued. Localized muscle
fatigue has been correlated with a shift in the power spec-
tral density of SEMG signals, root mean square (rms), in-
stantaneous frequency, zero crossing rate, mean-frequency,
median-frequency, etc. However, there is a large variation
in the values of these measures across different subjects, due
to variances in their SEMG power spectrum and their shifts.
These generally unpredictable and wide variations make the
task of modeling SEMG difficult, and the task of automat-
ing the process of signal classification as a generalized tool
challenging. The variation in SEMG parameters from sub-
ject to subject creates differences in the data distribution.
Figure 1 shows the distribution of the data over four stages
of a fatigue-causing activity, done with varying speed, for
three different subjects (subjects 1, 2, 4). The data distri-
bution shown in Figure 1 is of factor scores obtained as a
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Figure 1: Three sample subjects (subjects 1, 2, 4) with four classes (four physiological stages) in our SEMG
data set: SEMG signals are predominantly different in conditional probability distribution across subjects.

result of factor analysis [2] applied on the twelve dimensional
feature vectors derived from raw SEMG signals1. The four
physiological stages corresponding to four classes, shown in
the figure, are (l) low intensity of activity and low fatigue,
(2) high intensity of activity and moderate fatigue, (3) low
intensity of activity and moderate fatigue and (4) high inten-
sity of activity and high fatigue. We observe that the data
distribution during each stage or class varies from subject to
subject. This variation leads to predominantly conditional
probability differences across subjects.

Traditional data mining algorithms assume that training
data and test data are drawn from the same distribution,
and they may not be effective if the assumption is violated as
in the case of SEMG data over multiple subjects. One effec-
tive approach is domain adaptation which enables transfer
of knowledge between the source and target domains [22]. It
has been applied successfully in various applications [6, 11,
10, 20] including text classification (parts of speech tagging,
webpage tagging, etc), video concept detection across dif-
ferent TV channels, sentiment analysis (identifying positive
and negative reviews across domains), WiFi Localization (lo-
cating device location depending upon the signal strengths
from various access points.

In this paper we present a successful case study of appli-
cation of multi-source domain adaptation techniques for de-
tecting different stages of fatigue based on the Surface Elec-
tromyogram signals across multiple subjects. The proposed
framework addresses the subject based variability, predom-
inantly the distribution differences in conditional probabili-
ties in Surface Electromyogram signals. Specifically, a clas-
sifier is learnt to distinguish the four classes as shown in
Figure 1 on the basis of some labeled and unlabeled data
from the target domain (or subject). The unlabeled data are
labeled using a weighting scheme that measures the similar-
ities in conditional probabilities between the source and tar-
get domain data; the key of the proposed weighting scheme
is a joint optimization framework based on smoothness as-
sumption on the probability distribution of the target do-
main data. To the best of our knowledge, this is the first
systematic analysis of subject based variability in SEMG
signals. We have applied the proposed algorithm to Sur-
face Electromyogram signals collected from 8 people during

1More details on the twelve features derived, the factor anal-
ysis results and a real time deployment of fatigue grading
framework can be found in our earlier papers [8, 9].

a fatigue-causing repetitive gripping activity. Our extensive
experiments on the SEMG data set demonstrate that the
proposed method improves the subject independent classifi-
cation accuracy by 20% to 30% over the cases without any
domain adaptation method and by 13% to 30% over the
existing state-of-the-art domain adaptation methods.

2. PROPOSED FRAMEWORK
The proposed domain adaptation framework focuses on

learning from multiple auxiliary sources related to the tar-
get data, e.g., multiple subject data having different dis-
tributions, collected under similar physiological conditions.
Specifically, we consider the problem of detecting different
stages of fatigue in a subject for whom we have very few
labeled samples available in the training data. The training
data also includes data from many other subjects collected
under similar physiological conditions. The test subject data
forms target domain data and the multiple subject data in
the training domain form multiple auxiliary sources.

2.1 Problem Setting and Motivation
Assume that there are k subjects in the source domain.

The s-th subject in the source domain is characterized by a
sample set Ds = (xs

i , y
s
i )|ns

i=1, where xs
i is the feature vector,

ys
i is the corresponding label, and ns is the total number

of samples for the subject s. The target domain consists of
a few labeled data DT

l = (xT
i , yT

i )|nl
i=1 and plenty of unla-

beled data DT
u = xT

i |nl+nu
i=nl+1 where nl and nu are numbers of

labeled and unlabeled target domain samples respectively,
DT = DT

l

⋃
DT

u , and nT = nl + nu. The goal is to develop
a target classifier fT that can predict the labels of the un-
labeled data in the target domain, using the multi-source
domain data and a few labeled target domain data.

One simple approach for predicting the labels of the target
domain data is to combine the training samples from all sub-
jects and build a single classifier based on the pooled train-
ing samples. However, this simple approach will not work
well in our application as there are significant conditional
probability differences across subjects in the SEMG data.
A better alternative is to learn individual models for each
subject in the source domain, and then combine the hypoth-
esis generated by each of these source models, on the basis of
some similarity measures between the source and target do-
mains. The similarity measures are commonly computed by
considering each source domain data separately. This pro-



cedure has two potential limitations. First, it minimizes the
loss with respect to the probability distribution Ps(x, y|Ds)
on the source domain which will not generally coincide with
the minimal loss on the distribution PT (x, y|DT ) on the tar-
get domain. Second, it assumes all sources are independent
when computing the similarity measures, thus it does not
fully exploit the interaction among multiple sources.

Thus one of the important issues is to choose the right
similarity measure between the source and target domains
depending upon the nature of differences in the distribution.
There are predominantly conditional probability differences
in our multi-subject SEMG data as shown in Figure 1. In
addition, we observe from the figure that different classes
vary differently over subjects. For example, subjects 1 and
2 have similar data distributions of classes 1 and 3, and sub-
jects 1 and 4 have similar data distributions of class 4. Hence
computing a single similarity measure for an auxiliary source
with respect to target data does not capture the differences
at the class level. The proposed approach presented below
addresses all these challenges.

2.2 Proposed Approach
We learn a classifier fT for the target domain data, us-

ing a few labeled samples and a large number of unlabeled
samples from the target domain. The key of our proposed
approach is a novel weighting scheme that integrates multi-
ple source domain data using a set of weights, one for each
source domain. We use these weights to compute the labels
of the unlabeled target domain data, called “pseudo labels”.
The target domain prediction model is then learnt from both
labeled and pseudo labeled target domain samples in a reg-
ularized framework. Specifically, the proposed multi-source
domain adaptation framework is given as follows:

min
fT ∈HK

γA‖fT ‖2
K +

1

nl

nl∑
i=1

V (xi, yi, f
T ) + Ωr(f

T
u ) + Ωm(fT )

(1)
The first term controls the complexity of the classifier fT

in the Reproducing Kernel Hilbert Space (RKHS) HK , γA

controls the penalty factor, the second term is the empirical
error of the target classifier fT on the few labeled target
domain data DT

l , and nl is the number of labeled target
domain data. The empirical error on the unlabeled target
data, labeled using a conditional probability based weight-
ing scheme, forms the third term. This regularizer enforces
the target classifier fT to have similar decision values to
the auxiliary source which has similar conditional probabil-
ity distribution, explained in detail in Subsection 2.3. The
fourth term is a manifold based regularizer based on the
smoothness assumption [4] on target domain data: if two
points xi and xj are close to each other in the intrinsic ge-
ometry of marginal distribution then they are most likely to
have similar conditional probabilities, i.e., fT (xi) should be
similar to fT (xj). The manifold based regularizer is defined
as in [4]:

Ωm(fT ) =
γI

n2
T

fT ′
LfT . (2)

where L is the graph Laplacian matrix constructed on DT ,
fT = [fT (x1), · · · , fT (xnT )], γI controls the complexity of
the function fT in the intrinsic geometry of the marginal
probability of x and the normalizing coefficient 1

n2
T

is the

natural scale factor for the empirical estimate of the Laplace

operator, and the symbol ′ is used to represent the matrix
or vector transpose operation.

2.3 Multi-Source Weighting
Let fT

u = [fT
nl+1 · · · fT

nT
]′ be the decision values of the tar-

get classifier fT for the unlabeled target domain data and let
fs

u = [fs
nl+1 · · · fs

nT
]′ be the decision values of the s-th aux-

iliary classifier for the same unlabeled target domain data.
Let γs be the measure of relevance or similarity between the
distributions of the s-th source and the target data, and let
fT

j = fT (xj) be the decision value of target classifier on
the target domain data xj and fs

j = fs(xj) be the decision
value of the s-th auxiliary source classifier on xj . We use a
weighted combination of the k source domain classifiers fs

to estimate the target classifier. Specifically, the estimated
label (ŷj) of the unlabeled target data xj based on the k
source domain classifiers fs is given by

ŷj =
k∑

s=1

γsf
s
j , (3)

where γs > 0 is the weight for the s-th source. We assume
that the weights are normalized, that is,

∑
s γs = 1. The

auxiliary classifier fs for the s-th source is pre-computed
based on its respective data. The auxiliary classifiers fs

and the target classifier fT can be trained using different
kernels or even different learning methods. The resulting
regularizer, Ωr(f

T
u ), named as relevance based regularizer

measures the difference between the target classifier decision
value and the estimation based on multiple source data, and
is defined as follows:

Ωr(f
T
u ) =

θ

2

nT∑
j=nl+1

‖fT
j −

k∑
s=1

γsf
s
j ‖2, (4)

where θ > 0 is a constant.
The weight γs which provides a measure of relevance be-

tween the s-th auxiliary source domain and the target do-
main is computed on the basis of a Conditional Probability
based Weighting Scheme, which evaluates the similarities in
distributions between the source and target domains pre-
dominantly based on conditional probability differences.

Next, we show how to estimate the weights γs’s. The pro-
posed weighting scheme evaluates the similarities between
auxiliary source data and the target domain data consider-
ing the similarities in their conditional probabilities.

Let F S
i = [f1

i · · · fk
i ] be the 1×k vector of predicted labels

of k auxiliary source models for the i-th sample of target
domain data. Let γ = [γ1 · · · γk]T be the k×1 weight vector,
where γs is the weight corresponding to the s-th auxiliary
source. Following (3), the predicted label for the i-th sample
of target domain data is

ŷi =
k∑

s=1

γsf
s
i = F S

i γ. (5)

This motivates us to estimate the weight vector γ based on
the smoothness assumption on the conditional probability
distribution: we compute the optimal weight vector γ by
minimizing the difference in predicted labels between two
nearby points in the target domain. Specifically, the pro-



posed weighting framework solves the following problem:

min
γ:γ

′
e=1,γ≥0

nl+nu∑
i,j=nl+1

(F S
i γ − F S

j γ)2Wij (6)

where F S
i γ and F S

j γ are the predicted labels for i-th and j-
th samples of target domain data and Wij is the edge weight
between the two samples. We can rewrite the minimization
problem as follows:

min
γ:γ

′
e=1,γ≥0

γ
′ (

F S
)′

LuF Sγ (7)

where F S is an nu × k matrix with each row of F S being
the 1 × k vector of k predicted labels for a sample of target
domain data and Lu is graph Laplacian associated with the
target domain data DT

u , given by Lu = D − W , where W
is the adjacency graph defining edge weights between the
samples in the target domain data, and D is the diagonal
matrix given by Dii =

∑n
j=1 Wij .

The minimization problem in (7) is a standard quadratic
problem and can be solved by applying many existing solvers.
We simply use the ‘quadprog’ function in MATLAB. With
the computed weights, the labels for the unlabeled target
domain data, called psuedo labels, are computed using (3),
and are substituted into the regulariser in (4).

Intuitively, by enforcing that nearby points in the marginal
distribution of the target data have similar class labels (or
conditional probability) via the optimization in (7), the pro-
posed weighting scheme is likely to give higher weights to
those sources with the conditional probability distribution
similar to the target data. This is verified in our empirical
study on both SEMG and synthetic data. If a source has a
conflicting conditional distribution as the target, it is likely
to get a low or even zero weight. In addition, different from
many existing weight schemes which compute the weights by
considering each source independently, the proposed weight-
ing scheme computes the optimal value of γ or the optimal
weights of all the k sources simultaneously, thus taking the
potential interaction among multiple subjects in the source
domain into account.

2.4 Proposed Algorithm
Using the least square error and substituting the regular-

izers we can rewrite (1) as follows:

min
fT ∈HK

γA‖fT ‖2
K +

1

nl

nl∑
i=1

(fT
i − yT

i )2

+
θ

2

nT∑
j=nl+1

‖fT
j −

k∑
s=1

γsf
s
j ‖2 +

γI

n2
T

fT ′
LfT (8)

By the Representer theorem [24], we can find an optimal
solution of (8), which is a linear expansion of the kernel
function K, over both the labeled DT

l and the pseudo labeled
target domain data DT

u given as follows:

fT (x) =

nl+nu∑
i=1

αiK(xi, x). (9)

Substituting this into (8), we can obtain the optimal α =
[α1 · · · · · · · · ·αnl+nu ]T by solving the following optimization

problem:

min
α

1

nl + θnu
(Y − Kα)

′
J(Y − Kα)

+γAα
′
Kα +

γI

(nu + nl)
2
α

′
KLKα (10)

where K is the (nl +nu)×(nl+nu) kernel Gram matrix over
the target domain data, Y is the label vector over labeled
and pseudo labeled target domain data points given by:[

y1 · · · ynl

∑
s

γs(nl+1)f
s
(nl+1) · · ·

∑
s

γs(nl+nu)f
s
(nl+nu)

]

(11)
L is the graph Laplacian defined over labeled and pseudo
labeled target domain data, and J is a diagonal matrix of
size (nl + nu)× (nl + nu) given by J = diag(1, · · · 1, θ, · · · θ)
with the first nl diagonal entries as 1 and the rest as θ. θ is
assigned a number between 0 and 1, thus the pseudo labels
of the target domain data get smaller weights compared to
the labels of the labeled target domain data. From (10), the
optimal α∗ is given by:

α∗ =

(
JK + γA(nl + θnu)I +

γI(nl + θnu)

(nu + nl)
2

LK

)−1

JY.

With the computed α∗, the prediction of any unseen test
data x is given by:

fT (x) =

nl+nu∑
i=1

α∗
i K(xi, x). (12)

Since the proposed domain adaptation framework is based
on multiple sources whose similarities to target domain data
or weights are computed based on a conditional probability
based weighting scheme, we refer the proposed framework as
Conditional Probability based Multi-Source Domain Adapta-
tion (CP-MDA).

3. RELATED WORK
Most of the existing methods measure the similarity be-

tween a particular source and the target domain based on
the similarity of their marginal probabilities. Shimodaira et
al. [27] biased the training samples by their test-to-training
ratio to match the marginal distribution of the test data.
Sugiyama et al. [29] proposed to reduce the gap in marginal
probabilities by minimizing the KL-divergence between test
and weighted training data and Bickel et al. [5] discriminated
training against test data with a probabilistic model that ac-
counts for the marginal probability difference between train-
ing and test distribution. There are several other methods
which are also based on marginal probability differences us-
ing Maximum Mean Discrepancy [7] as a measure such as
Kernel Mean Matching [14] and Transfer Component Anal-
ysis [20]. The proposed domain adaptation framework CP-
MDA, differs from all these methods in two ways: (1) it is
predominantly based on conditional probability differences,
and (2) it is based on multiple source domains.

Several algorithms have been developed in past to combine
knowledge from multiple sources. Luo et al. used consen-
sus maximization as the basis of combining multiple source
data [18]. Mansour et al. based the transferability of knowl-
edge on a distribution weighted combination of the hypoth-
esis generated by the independent sources [19]. The theoret-



ical proof of both frameworks are based on strong assump-
tions on the predictive power of the individual source do-
mains on the target domain data. In [26], a clustering based
knowledge transfer was proposed for applications with dif-
ferent class labels across source and target domains, unlike
the application addressed in this paper.

The proposed framework is related to two multi-source
domain adaptation frameworks including Domain Adapta-
tion Machine (DAM) [11] and Locally Weighted Ensemble
(LWE) [12]. The proposed framework differs from DAM
in the way the weights are computed for different auxil-
iary sources. In DAM, the weight assigned to each auxil-
iary source is obtained by measuring the marginal proba-
bility distribution difference between the target domain and
the particular auxiliary source only, using an empirical esti-
mate of the difference based on the Maximum Mean Discrep-
ancy measure [7]. The proposed framework however com-
putes weights for the auxiliary source data considering pre-
dominantly conditional probability distribution of the target
data. The weights for all sources are computed in a joint
optimization framework, which takes the interaction among
multiple auxiliary sources into account.

The proposed framework differs from LWE [12] in that in
LWE, the label y of an unlabeled target domain data x is
computed using a local weighting ensemble (LWE) scheme:

P (y|x) =
k∑

i=1

wMi,xP (y|Mi, x) (13)

where P (y|Mi, x) is the prediction made by one of the k
models Mi for target data point x and wMi,x is the weight
of the model Mi at point x computed by comparing the
similarity graphs of the source and target data around point
x. Different from the proposed weighting scheme where we
compute all weights in a joint framework, the weight for each
auxiliary classifier is computed independently [12].

We also compare our framework with representative single-
source domain adaptation algorithms such as Kernel Mean
Matching (KMM) proposed by Huang et al. [14], Transfer
Component Analysis (TCA) proposed by Pan et al. [21]
and KMapEnsemble (KE) proposed by Zhong et al. [31].
KMM re-weights the samples in the source domain so as
to minimize the marginal probability difference between the
source and target domain using Maximum Mean Discrep-
ancy (MMD) as the measure. TCA is based on feature map-
ping so as to reduce the marginal probability differences be-
tween the source and target distributions again using MMD
as the measure. KE differs from the first two algorithms, in
which it addresses the conditional probability differences by
sample selection after performing a feature mapping step to
reduce the marginal probability differences.

There was some classification work dealing with physio-
logical signals using neural networks [17] and linear discrim-
inant analysis [15]; they achieved moderate generalization
performance across subjects. To the best of our knowledge
we report the first systematic empirical analysis of domain
adaptation methods to address the distribution differences
due to the subject based variability in physiological signals.

4. EXPERIMENTS
The proposed algorithm has been evaluated on a synthetic

dataset and on real-world SEMG data collected from 8 dif-
ferent subjects during a fatigue-causing exercise.
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Figure 2: The synthetic dataset includes two source
domains (D1 and D2) and one target domain with
conflicting conditional probabilities.

4.1 Experimental Setup

4.1.1 Synthetic data
The synthetic data set consisting of two source domains

D1 and D2 and a target domain as shown in Figure 2, are
generated from several Gaussian distributions with different
mean and variances. Source domain D1 has 20 positive and
90 negative examples and source domain D2 has 25 positive
and 100 negative examples. There are conflicting conditional
probabilities between D1 and D2 as shown in four regions
(A1, A2, A3 and A4) in Figure 2. The target domain has
180 positive and 60 negative examples. Region A5 of the
target domain is similar to D1, while region A6 is similar to
D2. Thus the data exhibits conflicting and varied difference
in conditional probability between the source domains and
the target domain.

4.1.2 SEMG data
The SEMG data was collected during a repetitive grip-

ping action performed by the forearm. Figure 3 shows the
subject with surface EMG differential electrodes on the ex-
tensor carpi radialis muscle to record the SEMG signal. The
subject performs a cycle of flexion-extension of forearm as
shown in Figure 3 at two different speeds, i.e., low speed
(1 cycles/sec) and high speed (2 cycles/sec) repetitively for
about 4 minutes. The cycles of low and high speed are al-
ternated after every minute to form four phases (or classes)
as discussed in the introduction.

The raw SEMG activity was recorded by Grass Model 8-
16C at 1000Hz and passed through a band pass filter of 20Hz
to 500Hz. The data was collected and saved by the LabView
software (from National Instruments) running on a PC. Data
of the order of 1.92 Million samples (1000× 4× 60× 8), was
collected from 8 subjects including male and female of the
age group of 25 years to 45 years. A set of twelve am-
plitude and frequency domain features including mean fre-
quency, median frequency, spectral energy, spectral entropy,
root mean square, number of zero crossings, to mention a
few are derived from running windows of 1000 time samples
with 50% overlap [16].

Each subject data consists of around 280 to 400 samples of
12 dimensional feature vectors, belonging to four classes with
around 70 to 100 samples per class (some subjects who got
fatigued sooner and hence could not maintain the required
uniform speed for 1 minute the time period was reduced to
30 to 45 secs per phase, hence the number of samples varies
between different subjects).

4.1.3 Experimental Procedure
To evaluate the effectiveness of the proposed method, we

compare the results with four baseline methods, including



Figure 3: SEMG data collection during a repetitive
gripping activity

SVM-C, SVM-M, SMA, and TSVM (Transductive SVM),
and two recently proposed multi-source learning methods,
including Locally Weighted Ensemble (LWE) [12] and Do-
main Adaptation Machine (DAM) [11]. More details on
LWE and DAM are given in Section 3.

SVM-C refers to all but one method where the training
data comprises of data from seven subjects and the test data
is the data from the remaining subject. SVM-M, refers to
the majority voting based ensemble framework. The class
y assigned to each unlabeled test data x is maxy NV (y|x)
where NV (y|x) is the number of votes given for class y for
a particular test sample x by the seven auxiliary sources.
SMA refers to simple model averaging, which provides equal
weight to all the classifiers learned on each auxiliary source
domain in an weighted ensemble framework used to gener-
ate the label for the target domain data. TSVM refers to
Transductive SVM [3] implemented in the svmlight package.
It is a semi-supervised method where the training data con-
sists of labeled data from all seven subjects from the source
domain and unlabeled data from the target subject.

We vary the number of labeled samples per class in the
target domain. DAM(1) and DAM(7) refer to the DAM
framework with 1 and 7 target domain labeled samples per
class respectively. The proposed CP-MDA method is also
implemented using 1 and 7 labeled data from target domain,
referred as CP-MDA(1) and CP-MDA(7) respectively. For
both cases the unlabeled data from the target domain, is
fixed at 10% of the target domain data. The weights of the
auxiliary sources computed by the proposed method are also
based on this 10% unlabeled target domain data. The rest
of the target domain data is treated as unseen target domain
data. All the methods are tested on the same pool of unseen
unlabeled target domain data. The accuracies are computed
in a subject independent manner.

We mention here briefly some of the parameters used in
implementing the existing and the proposed method. The
values of γA and γI were kept as 0.014 and 0.01 respectively,
as suggested in [4]. The Laplacian graph matrix used in
calculating the weights was set as ‘binary’ type based on
the N nearest neighbors with N = 10. The value of Θ was
estimated via 5-fold cross validation on the set {i10−2|i =
0, 1, · · · , 100}.
4.2 Results and Analysis

4.2.1 Synthetic data
Figure 4 shows the classification accuracies of different

methods on the synthetic dataset. The classification accu-
racies on the target domain data when the SVM classifier
is applied on the source data D1 or D2 without using any
transfer learning methodologies are 62.97% and 72.61%, re-
spectively.
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Figure 4: Comparative performance of different
methods on the synthetic data - Accuracy (%)

We observe that SVM-C and SMA perform poorly. This
may be attributed to the conflicting conditional probabili-
ties between the two training sets, that degrade the perfor-
mance of the classifier when learned on the combined data.
In addition, there is a conditional probability difference with
the test data, hence the brute-force use of knowledge with-
out evaluating similarities between the source and the target
data degrades the performance of the classifier in the target
domain [25] related to negative transfer [23].

We also observe that CP-MDA(1) improves the classifi-
cation accuracy by 20% to 50% over the baseline methods
without any transfer learning and by 11% over LWE. We
also observe that CP-MDA(1) outperforms DAM(7). Since
the target classifier is learned using some labeled and some
pseudo labeled data, which is labeled using the proposed
weighting scheme, hence higher classification accuracy ver-
ifies the effectiveness of the proposed weighting scheme in
Section 2.3.

To further evaluate the effectiveness of the proposed weight-
ing scheme, we compared three different weighting schemes
using the weighted ensemble methodology of LWE in (13).
MMD-WE refers to the method when weights are computed
based on MMD, and CP-MDA-WE refers to the method
when weights are computed based on the proposed frame-
work in (7). The accuracies using LWE, MMD-WE, and
CP-MDA-WE are 78.6%, 72.75%, and 80.54%, respectively.
To examine why the proposed method outperforms the other
two, we report the predictive power of each of the two source
data (D1, D2) as well as the weights obtained by different
methods. The classification accuracies obtained using the
source data D1 and D2 individually are 62.97% and 72.61%,
respectively. The weights for D1 and D2 obtained by MMD-
WE are 0.93 and 0.06, respectively; the weights for D1 and
D2 obtained by CP-MDA-WE are 0.08 and 0.91, respec-
tively. Thus, the weights obtained by the proposed method
match the predictive powers of the source data better than
MMD-WE.

4.2.2 SEMG data
We compare different methods including SVM-C, SVM-

M, SMA, TSVM, LWE, DAM and the proposed CP-MDA.
The results are summarized in Table 1. The first column of
the table indicates the subject data under test (target do-
main). The training data (source domain) consists of the
data from the remaining seven subjects. Similar to the
results obtained in the case of synthetic data we see that



Table 1: Comparative performance of different methods on SEMG data - Accuracy (%)
Test Sub SVM-C SVM-M SMA TSVM LWE DAM(1) DAM(7) CP-MDA(1) CP-MDA(7)

1 70.76 33.9 44.96 49.09 67.44 74.83 77.43 81.93 85.25
2 43.69 50.76 44.61 55.68 77.54 81.36 83.35 84.73 87.7
3 50.11 56.85 56.84 65.09 75.55 74.77 78.99 82.45 85.06
4 59.65 47.93 49.67 56.98 81.22 80.63 84.32 81.27 86.4
5 40.37 44.79 50.15 62.5 52.48 76.74 81.14 80.74 86.62
6 59.21 61.45 60.33 71.32 65.77 59.21 74.28 83.12 88.09
7 47.13 46.91 45.76 60.73 60.32 74.27 83.31 81.57 86.4
8 69.85 64.53 74.46 68.55 72.81 84.55 86.6 88.5 90.56

Average 55.09 50.85 53.34 61.24 69.14 75.79 81.18 83.04 87.01

Table 2: Comparison of SVM-T, DAM, and CP-
MDA on Subject 6 (top) and Subject 7 (bottom) in
terms of accuracy (%) when the number of labeled
target domain data per class varies.

Number of labeled data per class
Method 1 2 3 4 6 7
SVM-T 4.26 4.26 49.09 73.63 84.69 85.67
DAM 59.12 59.21 59.35 59.59 65.03 74.28

CP-MDA 83.12 83.12 85.45 87.58 87.77 88.09
SVM-T 10.59 45.5 77.79 83.25 85.48 84.97
DAM 74.27 75.11 79.10 81.19 82.43 83.3

CP-MDA 81.57 83.99 85.81 86.24 86.32 86.4

SVM-C, SVM-M, SMA, and TSVM perform very poorly.
We observe significant improvement in classification accu-
racy when domain adaptation methodologies are employed.
The proposed method CP-MDA(1) provides a 20% to 30%
improvement over the baseline methods including SVM-C,
SVM-M, SMA and TSVM. The classification accuracies of
the proposed method are in average 13% higher than LWE.
It is also observed as in the case of synthetic data that CP-
MDA(1) performs not only better than DAM(1) but also
better than DAM(7) in 5 out of 8 cases. These results verify
the effectiveness of the proposed method.

Next, we evaluate the performance of CP-MDA when the
number of labeled target domain data varies. We compare
CP-MDA with DAM and SVM-T. SVM-T refers to an SVM
classifier trained on the labeled target domain data. The
results for two subjects are summarized in Table 2; we ob-
tain similar results for the other six subjects and the results
are omitted. We can observe from the table that when the
number of labeled target domain data per class is small, e.g.,
1 to 4 samples per class, both domain adaptation methods
perform much better than SVM-T. But with an increasing
number of labeled data from the target domain the accu-
racies become comparable. However the proposed method
always performs better than the other two methods. This
result demonstrates that domain adaption is especially use-
ful when the amount of labeled target domain data is small.

Similar to the synthetic data case, we compare the per-
formance of the weighting schemes used in LWE, DAM and
CP-MDA. Table 3 summarizes the results for different test
cases. We observe that CP-MDA-WE performs better than
the other methods in 6 out of 8 cases, and LWE performs
better in the remaining 2 cases. Recall that like CP-MDA-
WE, LWE computes weights for the auxiliary source domain
based on the conditional probability differences between the

source and target domains, while MMD-WE computes the
weights based on the marginal probability differences only.
Since SEMG data has significant conditional probability dif-
ferences, CP-MDA-WE and LWE are expected to outper-
form DAM-WE.

Table 3: Comparison of different weighting schemes
for different test subjects - Accuracy (%).

Test Sub LWE MMD-WE CP-MDA-WE
1 67.44 68.27 75.12
2 77.54 69.48 83.23
3 75.55 71.84 75.68
4 81.22 62.65 81.09
5 52.48 68.32 78.16
6 65.77 58.91 76.11
7 60.32 67.75 75.07
8 72.81 66.11 78.71

Average 69.14% 66.66% 77.89%

The proposed algorithm CP-MDA computes weights for
each class for each of the auxiliary source domain data, thus
exploiting the similarities and dissimilarities at the class
level. Table 4 shows the weights for four different classes
assigned to each training subject in the source domain for
test subject 1 in the target domain. We observe that the
proposed weighting scheme assigns different weights to dif-
ferent auxiliary source domain data (subject data) for dif-
ferent classes. Subjects 5 and 8 get higher weights for class
1, subject 7 gets a higher weight for class 2, subject 5 gets
a higher weight for class 3, and for class 4 subject 4 gets
a higher weight. We observe from Figure 1 that the data
distribution of class 4 of subject 1 is very similar to that of
class 4 of subject 4.

Table 4: Weights computed by CP-MDA for four
different classes for each of the source domain sub-
jects 2-8 for test target subject 1.

Class Target subject
2 3 4 5 6 7 8

1 0 0 0.02 0.50 0.48 0 0
2 0 0.01 0.03 0 0.11 0.74 0.11
3 0 0.02 0.12 0.75 0 0.01 0.11
4 0.09 0.02 0.66 0.11 0.11 0.01 0

One of the key advantage of the proposed algorithm is
that it exploits the information from multiple source do-
mains for classifying the target data. It will be interesting
to study how the number of sources used in the training set
affects the classification. Figure 5 presents the error rates
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Figure 5: The effect of the number of auxiliary source domains (horizontal axis) in the training set on the
proposed CP-MDA algorithm in terms of the classification error rates (%) for all eight subjects.

obtained for each test subject when the number of subjects
in the source domain varies (from 1 to 7); we simply keep
adding subjects to the training set in increasing order of the
subject number. We observe that for all subjects, the error
rate decreases monotonically when the number of subjects
increases. These results demonstrate the effectiveness of the
proposed algorithm for extracting useful information from
multiple sources.

Table 5: Comparison of CP-MDA with three single
source domain adaptation algorithms (KMM, TCA,
and KE) - Accuracy(%).

Test Sub CP-MDA(7) KMM TCA KE
1 85.25 65.15 45.15 71.85
2 87.7 46.96 68.93 74.62
3 85.06 59.55 56.78 74.79
4 86.4 73.38 52.68 69.35
5 86.62 45.31 60.15 73.44
6 88.09 70.62 76.92 83.92
7 86.4 51.13 55.64 77.97
8 90.56 42.79 67.24 79.48

Average 87.01 56.86 53.84 75.67

To evaluate the benefit of a multi-source domain adap-
tion framework for addressing subject based variability, we
compare the proposed algorithm with three representative
single-source domain adaption algorithms discussed in Sec-
tion 3. Table 5 summarizes the classification accuracies ob-
tained by different methods for each of the test subjects.
The target data is from the subject shown in column 1 and
the source data consists of the combined data from the re-
maining seven subject. Classification results were averaged
over 10 runs with different sets of randomly selected 7 la-
beled samples per class from the target domain data. We
can observe from the table that combining all the subject
data and forming a single domain degrades the performance.
We also observe that among the three single domain adap-
tion algorithms, KMM or TCA which consider the marginal

probability differences only perform worse than KE. These
results are expected as SEMG data has significant condi-
tional probability differences. Our results demonstrate the
effectiveness of the proposed multi-domain framework for
dealing with subject based variability in SEMG data.

5. CONCLUSION
We consider the characterization of muscle fatigue through

noninvasive sensing mechanism such as surface electromyo-
graphy (SEMG). The variation in SEMG parameters from
subject to subject creates a difference in the data distri-
bution, thus traditional data mining algorithms may not
be effective. In this paper, we propose a transfer learn-
ing framework based on the multi-source domain adaptation
methodology for detecting different stages of fatigue using
SEMG signals. The proposed CP-MDA framework differs
from most existing work in domain adaption in that it ad-
dresses the conditional probability distribution differences
across domains based on a novel weighting scheme. We
have validated the proposed framework using a synthetic
dataset and real-world SEMG data collected from eight dif-
ferent subjects during a fatiguing exercise. Our comprehen-
sive experiments demonstrate the effectiveness of the pro-
posed framework and suggest that it is possible to develop a
generalized framework with SEMG data. This increases the
scope of application of SEMG data for fatigue detection in
a larger scale beyond training and rehabilitation settings for
monitoring during daily life and industrial work, as it alle-
viates the need for subject specific calibration for assessing
the physiological state across subjects.

We plan to extend the proposed framework to applications
involving other types of physiological signals for developing
generalized models across subjects for emotion and health
monitoring in everyday life, industrial work and geriatric
care [17, 15]. In addition, we plan to study the generalization
performance of the proposed framework.
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