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Clustering with constraints is an important recent development in the clustering literature. The addition of con-
straints allows users to incorporate domain expertise intothe clustering process by explicitly specifying what are
desirable properties in a clustering solution. This is particularly useful for applications in domains where consid-
erable domain expertise already exists. In this first extensive survey of the field, we discuss the uses, benefits and
importantly the problems associated with using constraints. We cover approaches that make use of constraints
for partitional and hierarchical algorithms to both enforce the constraints or to learn a distance function from the
constraints.
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1. INTRODUCTION AND MOTIVATION

Semi-supervised learning is a recent innovation in data mining, machine learning and pat-
tern recognition that is at the intersection of supervised and unsupervised learning. The
field has received much attention since using both unlabeleddata and some human su-
pervision has many benefits, including allowing applications to fields where human anno-
tating of each instance (such as labeling instances) is expensive. This new field can be
broadly broken into two areas: a) the addition of unlabeled data to supervised classifier
learning and b) the addition of some supervision into clustering. The former already has
several excellent survey papers [Seeger 2000; Zhu 2005] that have served to quickly bring
researchers up to speed in the area. However, though the areaof adding supervision to
clustering has been very popular in the data mining field (best paper awards in the area

1This work was presented as a tutorial at the IEEE ICDM Conference 2005 and ACM KDD Conference 2006.
The slides of those tutorials are available at www.constrained-clustering.org
2Many of the algorithms presented in this paper are availablefor download at www.constrained-clustering.org
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were won for KDD 2004 [Basu et al. 2004], SDM 2005 [Davidson and Ravi 2005a] and
IEEE 2005 [Gondek and Hofmann 2004]) no survey papers exist.Furthermore, relevant
work on the topic is published in venues that may not be read bydata mining researchers.
The purpose of this survey paper is to span the relevant sub-fields of the area of clustering
with supervision in the form of constraints and give a cohesive presentation of important
algorithms and results. We hope this survey will prepare researchers to explore the field
and practitioners to use existing algorithms.

Clustering is ubiquitously used in data mining as a method ofdiscovering novel and
actionable subsets within a set of data. Given a set of dataX, the typical aim of partitional
clustering is to form ak-block set partitionΠk of the data. The process of clustering
is important since, being completely unsupervised, it allows the addition of structure to
previously unstructured items such as free-form text documents. For example, [Cohn et al.
2003] discuss a problem faced by Yahoo!, namely that one is given very large corpora
of text documents/papers/articles and asked to create a useful taxonomy so that similar
documents are closer in the taxonomy. Once the taxonomy is formed, the documents
can be efficiently browsed and accessed. Unconstrained clustering is ideal for this initial
situation, since in this case little domain expertise exists to begin with. However, as data
mining progresses into more demanding areas, the chance of finding actionable patterns
consistent with background knowledge and expectation is limited. For example, [Wagstaff
et al. 2001a] show that clustering GPS trace data from automobiles withk-means so as to
find lanes produces clusters quite different from the required elongated clusters (see Figure
12). They instead make use of background knowledge that highway lanes are four meters
in width, and any two cars more than four meters apart in the direction perpendicular to the
road direction must be in different lanes/clusters. In thisway, they are placingconstraints
on certain properties of the final clustering.

Clustering with constraints allows the incorporation of background domain expertise
with work so far incorporating knowledge in the form of instance level constraints. The
two types of constraints introduced by Wagstaff [Wagstaff and Cardie 2000] are must-
link denoted byc=(x,y) and cannot-link denoted byc6=(x,y), meaning that two instance
x andy must be in the same cluster or cannot be in the same cluster respectively. Must-
link and cannot-link constraints, though apparently simple, share interesting properties.
Must-link constraints are an example of an equivalence relation and hence are symmetrical,
reflexive and transitive; this means thatc=(x,y) andc=(y,z)⇒ c=(x,z) such thatx,y,z
form a connected component, i.e., each is connected to the other via an explicit or implied
must-link constraint. Formally:

Observation 1 Must-link Constraints are Transitive. Let CCi andCCj be connected com-
ponents (completely connected subgraphs by must-link constraints), and let x and y be the
instances in CCi and CCj respectively. Then c=(x,y),x∈CCi ,y∈CCj ⇒ c=(a,b),∀a,b :
a∈CCi ,b∈CCj .

Similarly connected components of must-link constraints can give rise to entailed cannot-
link constraints.

Observation 2 Cannot-link Constraints Can Be Entailed. Let CCi and CCj be con-
nected components (completely connected subgraphs by must-link constraints), and let
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x and y be the instances in CCi and CCj respectively. Then c6=(x,y),x ∈CCi ,y∈CCj ⇒
c6=(a,b),∀a,b : a∈CCi ,b∈CCj .

Though apparently simple, must-link and cannot-link constraints are powerful. In suf-
ficient numbers they can shatter the training setX and specify any set partition ofX. Fur-
thermore, these two constraints can specify interesting spatial properties [Davidson and
Ravi 2005a] [Davidson and Ravi 2007]. If we wish two clustersto have their points sep-
arated byδ or greater distance then this is equivalent to clustering with a conjunction of
must-links between all instances that arecloser thanδ distance together. Similarly, if we
wish the cluster diameters to be at mostα then this is equivalent to placing a conjunction
of cannot-link constraints between all instances greater thanα distance apart. Finally, if
we wish each point in a cluster to have a neighbor withinε distance then this can be rep-
resented using a disjunction of ML constraints. Details forsome geometric constraints are
shown in Figure 1.

Fig. 1. Delta and Epsilon Constraints

We begin this survey by describing, at a high level, how constraints can be used in
clustering in Section 2. In Section 3 we describe several successful applications and how
constraints were generated in specific domains. The next section, Section 4, summarizes
reported benefits and problems associated with using constraints. We believe this is par-
ticularly important, since the problems associated with using constraints are not be well
discussed in the literature. We next give an outline of specific algorithms that make use
of instance level constraints. In Section 5, we discuss algorithms for partitional (non-
hierarchical) clustering that attempt to satisfy all or most constraints, with the latter al-
lowing for ignoring noisy or poorly specified constraints. Algorithms for initializing and
generating constraints are outlined in Section 6, while hierarchical clustering that attempt
to learn a distance matrix from the constraints or satisfy them all are discussed in Sec-
tion 7. Next, Section 8 discusses the general problem of learning a distancefunction(not
a instance-wise distance matrix) from all the constraints and then its subsequent use in
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clustering. Section 9 discusses the dual objective problemof learning a distance function
while allowing constraints to be ignored.

Throughout this paper we use the notation described in section 11.

2. USES OF CONSTRAINTS

The typical supervised learning situations involves having a label associated with each
instance. The semi-supervised learning situation is when only a small subset of instances
have labels. If the available labeled data represent all therelevant categories, then semi-
supervised classification algorithms can be readily used for data categorization. For details
see the various algorithm surveys [Seeger 2000; Zhu 2005]. However in many domains,
knowledge of the relevant categories is incomplete and pairwise constraints are often a
more readily available form of supervision than labels in certain clustering tasks. Examples
of such domains are given in Section 3. Moreover, in an interactive learning setting, a
user who is not a domain expert can sometimes provide feedback in the form of must-
link and cannot-link constraints [Cohn et al. 2003; Davidson et al. 2007] more easily than
class labels, since providing constraints does not requirethe user to have significant prior
knowledge about the categories in the data set or even for such categories to exist.

Constraints have typically been used in clustering algorithms in two ways. They can
be used to modify the cluster assignment stage of the clusteralgorithm so as to enforce
satisfaction of the constraints as much as possible. Alternatively, the distance function of
the clustering algorithm can also be trained from the constraints either before or during
the actual clustering. In all of these cases, constraints can also be used in the initialization
phase, where the initial clusters are formed such that must-linked instances are in the same
clusters and cannot-linked instances are in different clusters. Based on this categorization,
existing methods for constrained clustering can be put intotwo general approaches that we
call constraint-basedanddistance-basedmethods.

2.1 Constraint-based methods

In constraint-based approaches, the clustering algorithmitself is modified so that the avail-
able constraints are used to bias the search for an appropriate clustering of the data. The
pairwise constraints specify whether two instances shouldbe in the same cluster (must-
link) or in different clusters (cannot-link).

There have typically been two types of constraint-based approaches: (1) ones with
strict enforcement, which find the best feasible clusteringrespecting all the given con-
straints [Wagstaff et al. 2001b; Davidson and Ravi 2005b], and (2) ones with partial en-
forcement, which find the best clustering while maximally respecting constraints [Basu
et al. 2004; Segal et al. 2003; Davidson and Ravi 2005a; Law etal. 2005]. Figure 3 shows
an example of a clustering which respects all the given constraints in Figure 2. Details
of these algorithms are outlined in section 5 for partitional algorithms and section 7 for
hierarchical algorithms.

Constraint-based clustering has been done using several techniques:

—modifying the clustering objective function so that it includes a term (penalty) for satis-
fying specified constraints [Demiriz et al. 1999; Davidson and Ravi 2005a].

—clustering using side-information from conditional distributions in an auxiliary space [Sinkko-
nen and Kaski 2000]
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—enforcing all constraints to be satisfied during the assignment step in the clustering pro-
cess [Wagstaff et al. 2001b]

—initializing clusters and inferring clustering constraints based on neighborhoods derived
from labeled examples [Basu et al. 2002].

Fig. 2. Input instances and constraints Fig. 3. A Clustering That Satisfies All Constraints

2.2 Distance-based methods

In distance-based approaches, an existing clustering algorithm that uses a distance measure
is employed. However, rather than use the Euclidean distance metric, the distance measure
is first trained to “satisfy” the given constraints. In this context, satisfying the constraints
means that must-linked (similar) instances are close together and cannot-linked (different)
instances are far apart in the learnt distance space. Several distance measures have been
used for distance-based constrained clustering:

—string-edit distance trained using EM [Bilenko and Mooney2003],

—Jensen-Shannon divergence trained using gradient descent [Cohn et al. 2003],

—Euclidean distance modified by a shortest-path algorithm [Klein et al. 2002] and

—Mahalanobis distances trained using convex optimization[Bar-Hillel et al. 2003; Xing
et al. 2003]

Several clustering algorithms using trained distance measures have been employed for
constrained clustering, including single-link [Bilenko and Mooney 2003] and complete-
link [Klein et al. 2002] agglomerative clustering, EM [Cohnet al. 2003; Bar-Hillel et al.
2003], and KMeans [Bar-Hillel et al. 2003; Xing et al. 2003].Recent techniques in
distance-metric learning for clustering include learninga margin-based clustering distor-
tion measure using boosting [Hertz et al. 2004], and learning a distance metric transfor-
mation that is globally linear but locally non-linear [Chang and Yeung 2004]. Figure 5
shows a simple example of learning a distance function from the constraints given in Fig-
ure 4 and then clustering. Notice that in Figure 5 the input data space has been stretched
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in the horizontal dimension and compressed in the vertical dimension, to draw the must-
linked instances closer and put the cannot-linked instances farther apart. Section 8 outlines
methods of learning distance functions from constraints.

Fig. 4. Input instances and Constraints Fig. 5. A Learnt distance space respective of the con-
straints.

There have been some algorithms that try to both enforce constraints and learn distance
functions from constraints — details of these algorithms will be presented in section 9.

3. EXAMPLE APPLICATIONS OF USING CONSTRAINTS

This section outlines some real-world examples where constraints are used in clustering.
For each we discuss how the constraints are generated and howthey improved the resultant
clusterings.

3.1 Image data

Figures 6 shows a dataset where the task is to cluster faces from the CMU Faces Database.
The method used here is the one which is most popular in the literature for generating
constraints — set the number of clusters to the number of classes in the dataset, and then
generate constraints from the labels: if two instances havethe same class label, then add
a must-link between them, and if two instances have different class labels, then add a
cannot-link between them. In this case, the goal is to cluster face images according to
their orientation, as shown in Figure 6. So, the two images which are selected in Figure 7
have a cannot-link between them, even though they are of the same person, since they have
different facial orientation (one is in the class “UP” and the other in the class “SIDE”).

Another image dataset where constraints are used for clustering is shown in Figure 8.
Here the task is to cluster pixels in an image into segments with the goal of performing
object identification for Aibo robot navigation [Davidson and Ravi 2005a]. In this case,
more complex cluster-level/spatial constraints are used (e.g.,ε andδ constraints described
in Figure 1 [Davidson and Ravi 2005a]) to aid in creating clusters that are well seperated
and hence useful for the purpose of creating a path for robot navigation.
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Fig. 6. CMU Faces Dataset

Fig. 7. Cannot-link constraint between different face orientation

3.2 Video data

Video data is an example where constraints can be generated readily from the domain,
especially from spatio-temporal aspects of video sequences [Yan et al. 2004]. In tempo-
rally successive frames of video, one can add must-links between groups of pixels that
represent the same object, when the task is to perform objectrecognition by segmenta-
tion and clustering. It is also possible to add cannot-link constraints between two different
image segments of the same video snapshot, since they have a low chance of belonging
to the same object after segmentation is performed. An example taken from [Yan et al.
2004] is shown in Figure 9. In fact, in this domain, there is such a plethora of constraints
that active learning techniques are used to select the most useful constraints [Yan et al.
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Fig. 8. Spatial clusters for use in Aibo robot navigation. The three pictures indicate (a) the original image, (b)
clusters found by unconstrainedk-means, (c) improved clusters using cluster-level spatialconstraints

2004]. An interesting question in this context is what happens if too many constraints are
created and used in the constrained clustering algorithm — does this make the problem
over-constrained? Section 4 discusses this and related questions regarding the practical
issues and difficulties of using constraints in clustering.

3.3 Biological data

In gene clustering based on micro-array data, genes are represented using their expression
profile in different experiments and clustered using different algorithms, e.g., hierarchical
clustering [Eisen et al. 1998]. An example is shown in Figure10. In this case, must-link
constraints can be generated between genes using co-occurrence data from the Database
of Interacting Proteins, which contains information aboutwhich genes (and corresponding
proteins) co-occur in cellular processes [Xenarios et al. 2001]. These constraints can then
be used to improve the clustering process [Segal et al. 2003].

3.4 Text data

In content-management tasks (routinely performed by companies like Google, Interwoven
or Verity), the goal is to automatically categorize large amounts (often in the order of
millions) of text documents into groups or clusters. In thiscase, constraints can be obtained
from multiple auxiliary sources, e.g., the co-occurrence of two documents in a directory
can be used to infer a must-link constraint between the documents, two documents in
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Fig. 9. Different kinds of pairwise constraints: (a) Temporal constraints from single tracking sequence of a person
(b) Temporal constraints of different regions extracted atthe same time (c) Constraints provided by comparing
faces (d) Constraints provided by user feedback.

Fig. 10. Clustering of gene microarray data

different categories of the Open Directory Project3 hierarchy can be considered as cannot-
linked, etc. Using these constraints from the auxiliary data sources, one can customize the
clustering output for the particular task, e.g., make a document hierarchy that is close to
the input directory structure in which the documents are placed.

3www.dmoz.org
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3.5 Web data

Constrained clustering is quite useful in post processing search results, as performed by
companies like Vivisimo.4 Here, the goal is to automatically cluster the results of ambigu-
ous search-engine queries like “jaguar” into clusters of URLs that refer to concepts like
“Jaguar cars”, “Jaguar animal” or “Jaguar Mac OS” (as shown in Figure 11). In this case,
constraints can be mined from query sessions in web logs – onecan get valuable infor-
mation regarding which websites are visited together, by analyzing co-occurrence of url’s
within the same user session. Clustering using this auxiliary data can help in biasing the
search result clustering towards the preferences of the user.

Fig. 11. Clustering of web search results

3.6 Audio data

In certain audio analysis tasks, complete class labels may be unknown but constraints can
be obtained directly from the domain. This occurs in the context of clustering for speaker
identification in a conversation [Bar-Hillel et al. 2003] — it is often not possible to know
the number of speakers upfront in a dataset, but it is easier to detect if two speakers are sim-
ilar or different. In such a case, constrained clustering isa more natural analysis framework
than classification-based algorithms.

3.7 GPS data

Constrained clustering of GPS data is used for lane-finding,as shown in Figure 12 [Wagstaff
et al. 2001b]. Data instances are represented by the (x,y) location of a car on the road as
recorded from GPS traces; it is also known when a car changes lanes, but not which lane it

4www.vivisimo.com
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changes to. Figure 13 shows an example such a GPS trace where each instance represents
a car and multiple instances can refer to the same car at different points in time.

Fig. 12. Uses of GPS trace information.

In this domain, true clusters are very elongated and horizontally aligned with the lane
central lines. Constraints in this case include must-link constraints inferred from trace-
contiguity (that is, must-links between the same cars at different positions in the trace)
and cannot-link constraints inferred from cars that are more than 4 meters apart in a di-
rection perpendicular to the car travel. The later is used since the maximum width of a
lane is 4 meters, hence cars more than this distance apart must be in different lanes. These
constraints have been shown to be very useful for finding clusters in the data [Wagstaff
et al. 2001b], which are useful for different tasks like lane-level navigation (e.g., advance
notification for taking exits) and lane-keeping suggestions (e.g., lane departure warnings).

Fig. 13. Clusters found in GPS data for lane finding without using constraints.

4. BENEFITS AND PROBLEMS OF USING CONSTRAINTS

In this section we sketch and reference the well discussed benefits of using constraints and
spend more time discussing the less discussed problems.

ACM Transactions on Knowledge Discovery from Data, Vol. w, No. x, z 2007.
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4.1 Benefits

There are two main reported benefits in the literature to using constraints: a) Improved
accuracy at predicting extrinsic labels for all instances when generating constraints from
a few labeled data and b) Creating clusters with desirable geometric properties. We now
discuss these two benefits.

Given a large set of unlabeled dataX = {x1 . . .xu} and a small set of labeled data
L = {(xu+1,yu+1) . . . (xu+l ,yu+l )} it is common to randomly with replacement choose two
instances fromL. If the two instances’ labels agree (disagree), then generate a must-link
(cannot-link) constraint between them. A typical method ofmeasuring the performance of
a clustering algorithm is its accuracy on predicting extrinsic labels not given to it, in this
case the labels forX. This typically requires that the clustering algorithm usek = k∗ where
k∗ is the number of different extrinsic labels. Measures such as the Rand index [Rand
1971], normalized mutual information [Basu et al. 2004] andjust the highest proportion of
instances with the same label in a cluster weighted by cluster size are common measures.
The seminal work by Wagstaff and Cardie [Wagstaff and Cardie2000] which generated
constraints from a small set of the labeled data illustratedconvincingly that constraints im-
proved clustering accuracy. For the UCI Soybean, Pos and Mushroom, data sets as little
as 40 constraints produced accuracy increases over 6%, 10% and 20% respectively with
more constraints producing even better improvements. Wagstaff and collaborators experi-
ments reported theaverageaccuracy improvement over many constraint sets that we shall
see masks interesting results. A well established relationship that as the number of con-
straints increases the accuracy increases has been shown extensively by many researchers
[Wagstaff et al. 2001a; Klein et al. 2002; Xing et al. 2003; Basu et al. 2004; Bar-Hillel
et al. 2005; Wagstaff 2002; Lu and Leen 2005; Davidson and Ravi 2005a].

Observation 3 Constraints Improve Average Case Accuracy. The performance of pre-
dicting an extrinsic label when averaged over many many different constraint sets will
typically increase over not using any constraints.

Unusually, for the Tic-Tac-Toe dataset, for no amount of constraints produced an in-
crease in cluster accuracy beyond a few percentage points, at predicting the extrinsic labels.
A plausible explanation given by the authors is that usingk = k∗ is not appropriate.

Xing and collaborators [Xing et al. 2003] show that when learning a distance function
for nine UCI data sets, even a small amount of constraints canimprove performance. Their
results also show that combining metric learning and constraint satisfaction (for just ML
constraints) provides better performance than just learning a distance metric. In all nine
data sets (which did not contain Tic-Tac-Toe) learning a distance metric from even a small
number of constraints produced improved accuracy.

A lesser discussed benefit is the ability to use constraints to create clusters of desirable
shape. For example, Wagstaff et al. [Wagstaff et al. 2001a] illustrate that clustering GPS
trace data from automobiles using thek-means algorithm produces clusters which are quite
different from the elongated clusters (representing lanes) that one would expect. However,
when clustering with cannot-link constraints between all instances greater than four me-
ters apart in the direction perpendicular to the road the resulting clusters have the desired
shape. The use of instance level constraints as geometric constraints is further discussed
in [Davidson and Ravi 2005a; 2007]. A key insight of that workis that geometric proper-
ties can be represented by combinations of many instance level constraints. As Figure 1
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shows, a minimum separation constraint that any two instances in two clusters be at leastδ
distance apart can be represented as a conjunction of ML constraints between all instances
less than or equal toδ distance apart. Similarly, if a point must have anε close-by neighbor
is equivalent to a disjunction of ML constraints. Further work along these lines will allow
specifying user-preferences in a more intuitive way than instance level constraints.

4.2 Problems

Though there have been much reported success with using constraints and clustering, there
are two major limitations that are typically not discussed in the literature. Hence we devote
more space discussing them in detail.

4.2.1 Feasibility. The introduction of constraints into clustering changes the cluster-
ing problem to be:Find the best clustering that satisfies all constraints.However, if the
constraints are poorly specified they may directly or indirectly contradict each other in
such a way thatno assignment of instances to clusters satisfies all constraints. For ex-
ample, there are clearly no clusterings for the constraintsML(x1,x2), CL(x1,x2) regardless
of the value ofk. Similarly for k = 2 and the constraintsCL(x1,x2), CL(x2,x3), CL(x1,x3)
there exists no feasible clustering. Formally for non-hierarchical clustering thefeasibility
problem is defined as:

Definition 1 (Feasibility Problem [Davidson and Ravi 2005a]) Given a data set X, collec-
tion of constraints C, a lower bound Kℓ and an upper bound Ku on the number of clusters,
does there exist a partition of X into k blocks such that Kℓ ≤ k≤ Ku and all the constraints
in C are satisfied?

The complexity results for constraints in various combination are in Tables I and II.
As we can see using CL constraints makes the feasibibility problem intractable and hence
clustering with constraints intractable. This is so since if finding a single clustering that
satisfies all constraints is difficult by necessity so will finding the best clustering that satis-
fies all constraints. The remainder of this section discusses feasibility for non-hierarchical
clustering. The feasibility problem for hierarchical clustering is discussed in section 7.

Observation 4 Knowing a Feasible Solution Exists, Does Not Help Us Find It. It should
be noted that the implications of these complexity result isthat even if there is a feasible
solution itdoes not mean it will be easy to find.

Both Wagstaff [Wagstaff 2002] and Davidson and Ravi [Davidson and Ravi 2007] show
that even with clustering withk = k∗ (hence guaranteeing a feasible solution) simple algo-
rithms such as COP-k-means (see section 5) will not converge due to the feasibility problem
being intractable. Examples showing this phenomenon are inFigure 4.2.1 and indicate that
adding CL constraints can quickly over-constraint the clustering under constraints problem
so that satisfying all constraints is difficult [Davidson and Ravi 2006].

4.2.2 Not All Constraint Sets are Useful.The assumption made by constrained clus-
tering algorithms is that the constraints are hints that help guide the algorithm to the desired
partition. On this premise the more information (constraints) given the greater the agree-
ment between the output partition and the desired partitionshould be. This has been shown
to be the caseon average(see Table III).

ACM Transactions on Knowledge Discovery from Data, Vol. w, No. x, z 2007.



14 · Ian Davidson and Sugato Basu

Constraint Conjunction CNF version DNF version Choice Set
Must-Link P NP-complete P P

Cannot-Link NP-Complete NP-complete NP-Complete P

Table I. Complexity of Feasibility Problem for Instance-Level Constraints

Constraint Complexity
δ-constraint P
ε-constraint P

Must-Link andδ P
Must-Link andε NP-complete

δ andε P
Cannot-Link and NP-complete

any other constraint

Table II. Complexity of Feasibility Problems for Cluster-Level and Combinations of Constraints
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Fig. 14. Graph of the proportion of times from 500 independent trials the algorithm in Figure 17 converges
(y-axis) for various numbers of randomly chosen CL only constraints (x-axis).

Despite observation 3, Davidson, Wagstaff and Basu [Davidson et al. 2006] show that
even if the constraints are noise-free and generated from the ground truth, then it is possi-
ble for individual constraint sets todecreaseclustering accuracy. This appears to disagree
with experimental results produced by others. This is so since the experimental method-
ology adopted by others involvesaveraging the constrained clustering algorithm perfor-
mance over many constraint sets. The resultant learning curves are produced by repeating
this process for different constraint set sizes, and the typical result is that, on average, when
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Table III. Average performance (Rand Index) of four constrained clustering algorithms, for 1000 trials with 25
randomly selected constraints. The best result for each algorithm/data set combination is in bold. These results
confirm observation 3

.
Algorithm

CKM PKM MKM MPKM
Data None Const. None Const. None Const. None Const.
Glass 69.0 69.4 43.4 68.8 39.5 56.6 39.5 67.8

Ionosphere 58.6 58.7 58.8 58.9 58.9 58.9 58.9 58.9
Iris 84.7 87.8 84.3 88.3 88.0 93.6 88.0 91.8

Wine 70.2 70.9 71.7 72.0 93.3 91.3 93.3 90.6

more constraints are provided, clustering accuracy increases [Wagstaff et al. 2001a; Klein
et al. 2002; Xing et al. 2003; Basu et al. 2004; Bar-Hillel et al. 2005; Wagstaff 2002; Lu
and Leen 2005; Davidson and Ravi 2005a].

Observation 5 Individual Constraint Sets Can Have Adverse Effects. Some constraint
sets generated from the same ground truth set of labels that will evaluate the clusters may
decrease the accuracy at predicting those very labels.

Davidson, Wagstaff and Basu explore four different constrained clustering algorithms
on several standard clustering data sets. The four algorithms represent two major types of
constrained clustering techniques that attempt to satisfymost or all constraints (see section
5) or learn a distance metric (see section 8). The four algorithms used are described below:

—COP-KMeans (CKM) performs hard constraint satisfaction [Wagstaff et al. 2001a].

—PC-KMeans (PKM) performs soft constraint satisfaction (permits some constraints to
be violated) [Basu et al. 2004].

—M-KMeans (MKM) performs metric learning from constraints, but does not require that
the constraints be satisfied [Basu et al. 2004].

—MPC-KMeans (MPKM) is a hybrid approach, performing both soft constraint satisfac-
tion and metric learning [Basu et al. 2004].

Table III shows the results (averaged over 1000 constraint sets) for each algorithm for
both unconstrained and constrained performance when provided with 25 randomly selected
constraints. We evaluated these algorithms on four UCI datasets [Blake and Merz 1998]:
Glass (n = 214), Ionosphere (n = 351), Iris (n = 150), and Wine (n = 178). Clustering
performance was measured in terms of the Rand Index [Rand 1971]. As expected [Wagstaff
et al. 2001a; Xing et al. 2003; Basu et al. 2004], the average constrained clustering accuracy
was typically greater than the average unconstrained accuracy. The exception is MKM and
MPKM’s performance on the Wine data set.

However, looking into each of these 1000 constraint sets we see that in Table IV that
the fraction of these 1000 trials that suffereda drop in clustering accuracywhen using
constraints is not insignificant. Since each trial involvedthe same initialization of the
centroids for both the unconstrained and constraint experiments performance differences
are due to the use of constraints. These negative results occur frequently for many data
sets and algorithms and naturally motivate the question of what properties occur in useful
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Table IV. Fraction of 1000 randomly selected 25-constraintsets that caused a drop in accuracy, compared to an
unconstrained run with the same centroid initialization.

Algorithm
Data CKM PKM MKM MPKM
Glass 28% 1% 11% 0%

Ionosphere 26% 77% 0% 77%
Iris 29% 19% 36% 36%

Wine 38% 34% 87% 74%

constraint sets. Davidson, Wagstaff and Basu in their work discuss two metrics that can be
used to identify useful constraint sets that improve clustering accuracy.

4.3 Problem Work Arounds

4.3.1 Identifying Easy To Satisfy Sets of Constraints.Prior to 2006, little attention was
given to understanding when clustering under constraint problems became over-constrained
and what constitutes a useful set of constraints. Wagstaff [Wagstaff 2002] and Davidson &
Ravi [Davidson and Ravi 2005a] had earlier published sharp transition type effects when
running algorithms that attempt to satisfy all constraints(i.e. COP-k-means). For increas-
ing numbers of randomly generated constraints from labeleddata the problem quickly
becomes over-constrained even with many random restarts ofthe algorithms (see Figure
4.2.1). In earlier work [Davidson and Ravi 2006] the over-constraining phenomenon due
to clustering under CL constraints was shown to be analogousto graph coloring and that
COP-k-means is effectively a greedy coloring algorithm.

Observation 6 Constrained Clustering and Graph Coloring.
Clustering to Satisfy CL constraints involves solving the graph coloring problem.

This result allows many results in graph coloring to be applicable to clustering to sat-
isfy all constraints. For example, Brooks’s theorem statesthat coloring is easy (tractable)
when the number of colors (k in our situation) is greater than the maximum degree of the
graph. This is precisely the situation that occurs when COP-k-means always converges in
experimental results[Davidson and Ravi 2006].

Observation 7 Brooks’s Result For Constrained Clustering.
If k > (Most CL Constraints On One Instance) then there will always be a feasible clus-
tering.

Furthermore, though observation 4 states that in general finding a feasible solution is
difficult when constraint sets meet these sufficient conditions we can always generate fea-
sible solutions in polynomial time. For example, rather than sampling instance at random
to generate constraints, to ensure Brooks’s condition makesure that one instance is not part
of more thank CL constraints. The issue of how to generate easy constraintsets is further
discussed in [Davidson and Ravi 2006].

4.3.2 Identifying Useful Sets of Constraints.Davidson, Wagstaff and Basu created two
measures for a constraint set:informativenessandcoherenceto identify useful constraint
sets.
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Fig. 15. Top: Illustrative examples of (a) informative constraints for COP-k-means and (b) incoherent constraints,
for a Euclidean metric. ML constraints are solid lines; CL constraints contain an ‘X’. Bottom: Three cases of
computing coherence by projected overlap of constraintsa andb.

Informativenessrefers to the amount of information in the constraint set that the algo-
rithm cannot determine on its own. For example, in Figure 15(a) (top-left), an algorithm
such as COP-k-means would be biased towards grouping nearby instances together and
separating distant instances, but the specified constraints contradict this bias. The infor-
mativeness is estimated by using the constraints as a hold-out/test set and measuring the
algorithm’s ability to predict them. Given a set of constraintsC and an algorithmA , we
generate the best (lowest objective function) partitionPA by runningA on the data set
withoutany constraints. The fraction of constraints inC that are unsatisfied byPA is then
calculated:

IA(C) =
1
|C|

[

∑
c∈C

unsat(c,PA)

]

(1)

Coherencemeasures the amount of agreement within the constraints themselves, with
respect to a given distance metric (D). Figure 15(b) (top-right) shows two constraints (ML
and CL) that are very close and parallel but this is a contradiction since a ML (CL) con-
straints indicate that the distance between the instances and surrounding instances should
be small (far). The amount of agreement is measured by the amount of overlap between
constraints when represented as vectors as shown in Figure 15 (bottom). The authors re-
sults [Davidson et al. 2006] shows that highly informative and coherent constraint sets
almost always increased a wide variety of constrained clustering algorithm’s accuracy at
predicting the labels the constraints were generated from as measured by the Rand index
[Rand 1971].

5. PARTITIONAL CLUSTERING ALGORITHMS

The very first algorithms that made use of constraints were variations of the populark-
means iterative algorithm that attempt to find a set partition of the data instances. Recall
that the purpose of thek-means algorithm is to find the set partition that (locally) mini-
mizes the vector quantization error (also known as the distortion) shown in equation 2. As
mentioned earlier, we use the notation in section 11.

VQE =
k

∑
j=1

VQEj (2)
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Input: A data setX = {x1 . . .xn} to cluster,k: the number of clusters to find.
Output: A partition of X,Πk = {π1∪πk} into k clusters that is a local optima of the VQE (equation 2).

(1) Randomly generate cluster centroidsµ1, . . . ,µk.
(2) loop until convergencedo

. (a) for i = 1 to |X| do

. (a.1) Assignxi to the nearest, in terms of distance to centroids, cluster.

. (b) Recalculate centroidsµ1, . . . ,µk according to equation 5.
(3) Return with success.

Fig. 16. Clustering Usingk-means

VQEj =
1
2 ∑

xi∈π j

D(µj ,xi)
2 (3)

Thek-means algorithm is an iterative algorithm which in every step attempts to further
minimize the distortion. Given a set of cluster centroids, the algorithm assigns instances
to the cluster with thenearestcentroid which of course minimizes the distortion. This is
Step 1 of the algorithm. We derive Step 2 which recalculates the cluster centroids so as
to minimize the distortion in the uni-variate (one dimensional) setting for clarity. This is
achieved by taking the first order derivative of the error (Equation 3) with respect to the
jth centroid and setting it to zero and solving. A solution to theresulting equation gives
us thek-means centroid update rule as shown in Equation 5. The multi-variate solution to
equation will contain partial derivatives which can be eliminated if modeling assumptions
such as column independence from each other area are made.

d(VQEj)

d(µj)
= ∑

xi∈π j

D(µj ,xi)
2 = 0 (4)

µj = ∑
xi∈π j

xi/|π j | (5)

Recall thatπ j is the set of instances closest to the centroid of thejth cluster. These two
steps are used in the standardk-means algorithm shown in Figure 16.

5.1 COP-k-Means

The COP-k-means algorithm shown in Figure 17 can be seen to be two part variation of the
k-means algorithm that incorporates conjunctions of constraints. Firstly, the transitive clo-
sure over the must-linked instances is computed with the resultant connected components
being replaced by a super-instance whose co-ordinates are the average of the connected
component’s and whose weight is equal to the number of instances within it (lines 1 and
2). Secondly, rather than performing a nearest centroid assignment (step 2a.1) in Figure
16), a nearestfeasiblecentroid assignment is performed (lines 4a.1). When performing
the nearest feasible centroid assignment step it is important to remember that the previous
set partition isforgottenand the new partition built upincrementally. Therefore, the first
instance assigned to a cluster cannever violate any constraints, even if it is involved in
many. Similarly if there is only one constraint,c6=(x,y), if x is assigned first theny is as-
signed to its closest feasible centroid and the assignment of x is not revisted. In this way,
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Input: X: A set of data instances to cluster,C=: set of pairwise must-link constraints,C6=: set of pairwise cannot-
link constraints,k: the number of clusters to find. Initially, the weight of eachinstance is 1.
Output: A partition of X,Πk = {π1∪πk} into k clusters that is a local optima of the VQE (equation 2). and all

constraints inC = C= ∪C6= are satisfied.

(1) Compute the transitive closure of the setC= to obtain the connected componentsCC1, . . . ,CCr .
(2) For eachi, 1≤ i ≤ r , replace all the data instances inCCi by a single instance with weight|CCi |; the

instance’s coordinates are obtained by averaging the coordinates of the instances inCCi .
(3) Randomly generate cluster centroidsµ1, . . . ,µk.
(4) loop until convergencedo

. (a) for i = 1 to |X| do

. (a.1) Assignxi to the nearest (in terms of distance to centroids)feasiblecluster.

. (a.2) If assignment ofxi to any cluster always violates a constraint, then exit with failure.

. (b) Recalculate centroidsµ1, . . . ,µk taking into account the weight of the instances inX using equation
5

(5) Return with success.

Fig. 17. Clustering under Constraints Using COP-k-means

we can view this algorithm as greedily trying to attempt constructing a feasible clustering
with nobacktracking of previous instance assignments.

Natural variations of trying to satisfy all constraints are: a) attempting to satisfy as
many constraints as possible while ignoring noisy or inappropriate constraints and b) hav-
ing degrees of belief/importance associated with each constraint. Both can be viewed as
frameworks that allow trading of satisfying lesser important constraints. We now discuss
the distance based formulation of this framework and later aprobabilistic framework in
section 9. Both algorithms have been shown to be useful at ignoring noisy constraints but
if all constraints are useful they should perform similarlyto COP-k-means.

5.2 Algorithms With Distance Penalties

The COP-k-means algorithm (see section 5.1) can improve the accuracyat predicting an
extrinsic label and also shape clusters into desirable forms. However, when constraints are
generated from labeled data there is the possibility of class label noise and hence generating
a cannot-link or must-link constraint between two instances that should not be. Similarly, if
constraints are generated by domain experts, some constraints may be ill-specified or even
contradictory. The algorithms in this subsection attempt to ignore noisy or inappropriate
constraints by allowing constraints to be left unsatisfied but with a penalty. This involves
a trade-off between finding the best clustering and satisfying as many constraints as possi-
ble. To achieved this, the penalty of ignoring a constraint must be in the same units as the
measure for how good the clustering of the data is. The CVQE (constrained vector quanti-
zation error) algorithm discussed in this section uses distance as the fundamental unit and
the PKM (Pairwise-constrainedk-Means) algorithm discussed later uses probability.

5.2.1 CVQE. The core idea behind the CVQE algorithm is to penalize constraint vio-
lations using distance. If a must-link constraint is violated then the penalty is the distance
between the two centroids of the clusters containing the twoinstances that should be to-
gether. If a cannot-link constraint is violated then the penalty is the distance between the
cluster centroid the two instances are assigned to and distance to the nearest cluster cen-
troid. These two penalty types give rise to a new objective function which is termed the
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Constrained Vector Quantization Error (CVQE) shown in equation 6.

CVQEj =
1
2 ∑

xi∈π j

D(µj ,xi)
2 + (6)

1
2 ∑

xi∈π j ,(xi ,xa)∈C=,g(xi) 6=g(xa)

D(µj ,µg(xa))
2

1
2 ∑

xi∈π j ,(xi ,xa)∈C6=,g(xi)=g(xa)

D(µj ,µh(g(xa)))
2

These penalties were found by experimentation to be useful and others [Pelleg and Baras
2007] (see next section) have improved upon these.

The first step of the constrainedk-means algorithm must minimize the new constrained
vector quantization error. This is achieved by assigning instances so as to minimize the new
error term. For instances that are not part of constraints, this involves as before in regular
k-means, performing a nearest cluster centroid calculation. For pairs of instances in a
constraint, for each possible combination of cluster assignments, theCVQE is calculated
and the instances are assigned to the clusters that minimally increases theCVQE. This
new assignment step is shown in equation 7 and requires at most O(k2) calculations per
assignment.

CVQE: Instance Assignment Rule

∀xi /∈C=∪C6= : argminjD(xi ,µj)
2

∀(xa,xb) ∈C= : argmini, jD(xa,µi)
2 +D(xb,µj)

2 +¬δ(a,b)∗D(µj ,µi)
2 (7)

∀(xa,xb) ∈C6= : argmini, jD(xa,µi)
2 +D(xb,µj)

2 + δ(a,b)∗D(µj,µh(µj ))
2

The second step is to update the cluster centroids so as to minimize the constrained
vector quantization error. To achieve this we take the first order derivative of the error, set
to zero, and solve. Solving forµj , we get the update rule shown in equation 8.

CVQE: Centroid Update Rule

µj =
∑xi∈π j

[xi + ∑(xi ,xa)∈C=,g(xi) 6=g(xa) µg(xa) + ∑(xi ,xa)∈C6=,g(xi)=g(xa) µh(g(xa))]

|µj |+ ∑xi∈µj ,(xi ,xa)∈C=,g(xi) 6=g(xa) 1+ ∑si∈π j ,(xi ,xa)∈C6=,g(xi) 6=g(xa) 1
(8)

The intuitive interpretation of the centroid update rule isthat if a must-link constraint
is violated, the cluster centroid is moved towards the othercluster containing the other
instance. Similarly, the interpretation of the update rulefor a cannot-link constraint viola-
tion is that cluster centroid containing both constrained instances should be moved to the
nearest cluster centroid so that one of the instances eventually gets assigned to it, thereby
satisfying the constraint.
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5.3 LCVQE: An Extension to CVQE

Pelleg and Baras [Pelleg and Baras 2007] create a variation of the assignment and up-
date rules for CVQE that they term LCVQE. Though there algorithm was not derived to
minimize a particular objective function, it showed improved performance over LCVQE
on several standard data sets both in terms of accuracy and run-time. The two main exten-
sions made by this algorithm over CVQE are: a) not computing all possiblek2 assignments
but only a subset of reasonable assignments and b) Changing the penalty for a cannot-link
constraint to be the distance from the most outlying (with respect to the cluster centroid)
instance in the CL constraint to the cluster centroid nearest it.

The assignment step shown in equation 9 and the centroid update rule is shown in equa-
tion 10.

LVCQE: Instance Assignment Rule

∀xi /∈C=∪C6= : argminjD(xi ,µj)
2

∀(xa,xb) ∈C= : argmin[i=g(xa), j=g(xb)],[i= j=g(xa)],[i= j=g(xb)]

D(xa,µi)
2 +D(xb,µj)

2 +¬δ(a,b)∗D(µj,µi)
2 (9)

∀(xa,xb) ∈C6= : argmin[i=g(xa), j=g(xb)],[D(xa,g(xa))<D(xb,g(xb)):i= j=g(xa)]

D(xa,µi)
2 +D(xb,µj)

2 + δ(a,b)∗D(µj,µg(xb))
2

This modified assignment rule has the same must-link penaltyas CVQE except that not
all k possible cluster assignments are checked. The three combinations checked are to
place instancesxi andx j : a) in their closest clusters respectively, b) together in the cluster
closest toxi and c) together in the cluster closest tox j . The cannot-link penalty is the
distance between the cluster centroid the instances are assigned to (C∗) and the centroid
nearest to the most outlying of the pair of points with regardto the distance toC∗.

LVCQE: Centroid Update Rule

µj =
∑xi∈π j

[xi + ∑(xi ,xa)∈C=,g(xi) 6=g(xa) µg(xa) + ∑(xi ,xa)∈C6=,g(xi)=g(xa),D(xi)<D(xa) µg(xa)]

|µj |+ ∑si∈µj ,(si ,sx)∈C=,g(si) 6=g(sx) 1+ ∑si∈µj ,(si ,sx)∈C6=,g(si) 6=g(sx) 1
(10)

5.4 PKM

The PKM algorithm allows constraints to be violated during clustering, as does CVQE
but enforces a probabilistic penalty of constraint violation via use of a prior. The algo-
rithm uses a hidden Markov random field (HMRF) approach to construct a prior such that
those clusterings (set partitions) with fewers constraintviolations are more probable apri-
ori than those with many. PKM is a special case of the HMRF-KMeans algorithm, which
is described in detail in the Section 9 — PKM is an ablation of HMRF-KMeans, doing
constraint enforcement but not performing distance learning.
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6. INITIALIZING AND GENERATING CONSTRAINTS

6.1 Initialization with constraints

Good initial centroids are essential for the success of partitional clustering algorithms such
as KMeans or EM [Basu et al. 2004]. Basu and collaborators usea two stage initialization
process (Neighborhood inference and Cluster selection) toget good centroids from both
the constraints and the unlabeled data.

Neighborhood inference:The transitive closure of the must-link constraints is taken to
get connected components consisting of instances connected by must-links. Let there beλ
connected components, which are used to createλ neighborhoods.

Cluster selection:Theλ neighborhood sets produced in the first stage are used to initial-
ize the algorithm. Ifλ = k, the desired number of clusters,λ cluster centers are initialized
with the centroids of all theλ neighborhood sets. Ifλ < k, λ clusters are initialized from the
neighborhoods, and the remainingk−λ clusters are initialized with instances obtained by
random perturbations of the overall global centroid, following the methodology of Dhillon
et al. [Dhillon et al. 2001]. Ifλ > k, a weighted variant of farthest-first traversal [Hochbaum
and Shmoys 1985] is applied to the centroids of theλ neighborhoods, where the weight
of each centroid is proportional to the size of the corresponding neighborhood. Weighted
farthest-first traversal selects neighborhoods that are relatively far apart as well as large in
size, and the chosen neighborhoods are set as thek initial cluster centroids.

Overall, this two-stage initialization procedure is able to take into account both unla-
beled data and constraints to obtain cluster representatives that provide a good initial par-
titioning of the data set. The authors show that this initializing procedure with constraints
and then running regular unconstrainedk-means produces as good cluster accuracies (at
predicting an extrinsic label) than COP-k-means.

6.2 Active acquisition of constraints

In some domains the ability to choose which pairs of instances to generate constraints on
is available. That is, two instances can be nominated and an Oracle is asked what con-
straint exists between the two. This situation is particularly important when constraints
are obtained by querying a user or domain expert since getting constraints on pairs of data
instances can be an expensive process. In order to get pairwise constraints that are more
informative than randomly chosen constraints, [Basu et al.2004] proposed a 2-phase active
learning scheme for selecting pairwise constraints by asking queries in an interactive user-
driven framework. The goal is to ask the minimal number of queries to get constraints,
which, when used to cluster the data will give a better constrained clustering of the data
than that obtained using randomly chosen constraints. Getting good initial centroids is
critical for the success of greedy algorithms such as KMeans– so the motivation here is to
get as many instances as possible for each cluster (proportional to the actual cluster size)
by asking pairwise queries, so that the algorithm is initialized from a very good set of cen-
troids. The proposed active learning scheme of Basu and collaborators has two phases:
EXPLORE and CONSOLIDATE. We can view the first phase as finding the appropriate un-
derlying skeleton of the underlying clusters by finding a point in each of thek clusters. The
consolidate phase then tries to collect more instances for each cluster so that the centroid
estimate for each cluster better matches the true centroid of the cluster.

The EXPLORE phase explores the given data using farthest-first traversal [Hochbaum
and Shmoys 1985] to getk pairwise disjoint non-null neighborhoods as fast as possible,
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with each neighborhood belonging to a different cluster in the underlying clustering of the
data. Note that even if there is only one instance per neighborhood, this neighborhood
structure defines a correct skeleton of the underlying clustering. EXPLORE continues till
the algorithm runs out of queries ork pairwise disjoint neighborhoods have been found. In
the latter case, active learning enters the consolidation phase.

If end of the EXPLORE phase is reached without running of out queries, then at least
one instance has been obtained per cluster. The cluster skeleton obtained from EXPLORE

is used to initializek pairwise disjoint non-null neighborhoods{Np}
k
p=1. Then, given any

instancex not in any of the existing neighborhoods, at most(k−1) queries are asked by
pairing x up with a member from each of the disjoint neighborhoodsNp to find out the
neighborhood to whichx belongs. This principle forms the second phase of the active
learning algorithm which is called the CONSOLIDATE phase. In this phase, the correct
cluster label ofx are obtained by asking at most(k−1) queries. The queries will be formed
by taking a instancey from each of the neighborhoods in turn and asking for the label on
the pair(x,y) until a must-link is obtained. Either a must-link reply is obtained in(k−1)
queries, or a cannot-link replies for the(k−1) queries to the(k−1) neighborhoods. It is
then inferred that the instance is must-linked to the remaining neighborhood. The details
of EXPLORE and CONSOLIDATE are given in Figures 18 and 19.

Algorithm: Explore

Input: Set of data instances X = {xi}
n
i=1

, access to an oracle that answers pairwise

queries, number of clusters k, total number of queries Q.

Output: λ ≤ k disjoint neighborhoods N = {Np}
λ
p=1

corresponding to the true

clustering of X with at least one instance per neighborhood.

Method:

1. Initialize: set all neighborhoods Np to null

2. Pick the first instance x at random, add to N1, λ← 1

3. While queries are allowed and λ < k
x←instance farthest from the instances in the existing neighborhoods N
if, while pairing x with a instance from each existing neighborhood and querying,

it is found that x is cannot-linked to all existing neighborhoods

λ← λ + 1, start a new neighborhood Nλ with x
else

add x to the neighborhood with which it is must-linked

Fig. 18. Explore algorithm

Active learning for constrained clustering has not been studied as extensively as active
learning for classification, which is a long-studied problem where different principles of
query selection have been studied, e.g., reduction of the version space size [Freund et al.
1997], reduction of uncertainty in predicted label [Lewis and Gale 1994], maximizing the
margin on training data [Abe and Mamitsuka 1998], finding high variance data instances by
density-weighted pool-based sampling [McCallum and Nigam1998], etc. In the clustering
setting, [Hofmann and Buhmann 1998] consider another modelof active learning – they
have incomplete pairwise similarities between instances,and their active learning goal is
to select new data, using expected value of information estimated from the existing data,
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Algorithm: Consolidate

Input: Set of data instances X = {xi}
n
i=1

, access to an oracle that answers pairwise

queries, number of clusters k, total number of queries Q, k disjoint neighborhoods

corresponding to true clustering of X with at least one instance per neighborhood.

Output: k disjoint neighborhoods corresponding to the true clustering of X with

higher number of instances per neighborhood.

Method:

1. Estimate centroids {µh}
k
h=1

of each of the neighborhoods

2. While queries are allowed

2a. randomly pick a instance x not in the existing neighborhoods

2b. sort the indices h with increasing distances ‖x− µh‖
2

2c. for h = 1 to k
query x with each of the neighborhoods in sorted order till a must-link is

obtained, add x to that neighborhood

Fig. 19. Consolidate algorithm

such that the risk of making wrong estimates about the true underlying clustering from the
existing incomplete data is minimized. [Klein et al. 2002] also consider active learning in
constrained clustering, but instead of making instance-level queries they make cluster level
queries, i.e., they ask the user whether or not two whole clusters should be merged.

7. AGGLOMERATIVE HIERARCHICAL CLUSTERING ALGORITHMS

Hierarchical clustering algorithms are used extensively in many areas of science that wish
to capture the natural hierarchical structure in data such as the generation of phylogenetic
(evolutionary) trees. These algorithms differ from the algorithms in section 5 by allow-
ing the user to choose a particular clustering granularity.Furthermore, in many domains
clusters that naturally occur within other clusters are common. Consider a hierarchy of
text documents. The top level would of course be articles, the next divides the articles
into sports, business, politics, the next divides the sports cluster into baseball, basketball,
hockey etc.

Hierarchical clustering algorithms are typically deterministic and create adendrogram,
a tree structure containing ak-block set partition for each value ofk between 1 and|X|. The
popular agglomerative algorithms are easy to implement as they begin with each instance
in its own cluster and progressively join the closest clusters to reduce the number of clus-
ters by 1 untilk = 1. The basic agglomerative hierarchical clustering algorithm is shown in
Figure 20. Hierarchical clustering algorithms use a variety of distance measures between
clusters. Typically measures include: a) Centroid: the distance between cluster centroids,
b) Single-Linkage: the distance between the closest instances in the two clusters and c)
Complete-Linkage: the distance between the furthest instances in the two clusters. How-
ever, compared to non-hierarchical algorithms that typically have O(n) time complexity,
typical implementation of agglomerative hierarchical algorithms usesO(n2) time, though
due to their deterministic nature agglomerative algorithms are typically only run once.

In their paper Davidson and Ravi perform a complexity analysis of the feasibility prob-
lem for the hierarchical case. This problem issignificantlydifferent from the feasibility
problems considered in previous work [Davidson and Ravi 2005a] since the value ofk for
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Input: SetX = {x1, x2, . . . , xn} of instances, A distance function,D(πi ,π j ) between two groups of instances.

Output: Dendrogramk, for eachk, 1≤ k≤ n = |X|.

(1) πi = {xi}, 1≤ i ≤ n. Dendrogramn = {π1, π2, . . . , πn}.
(2) for k = n−1 down to 1 do

. (a) Let(a,b) = argmin(i, j){D(πi ,π j ) : 1≤ i < j ≤ k+1}.

. (b) Obtain Dendrogramk from Dendrogramk+1 by mergingπb into πa and then
deletingπb.
end for

Fig. 20. Standard Agglomerative Clustering Algorithm

hierarchical clustering is not given. Formally:

Definition 2 Feasibility problem for Hierarchical Clustering (FHC) Instance: A set X of

nodes, the (symmetric) distance D(x,y) ≥ 0 for each pair of nodes xi and xj in X and a
collection C of constraints.

Question: Can X be partitioned into subsets (clusters) so that all the constraints in C are
satisfied?

The complexity results (Table V) for this problem are quite different than the non-
hierarchical case since it is more relaxed in that bounds onk are not given. However,
we see that another issue is raised: namely that of dead-ends. Dead-ends can be explained
by the following case: If we are given a feasible clustering with kmax clusters and even
if we know there is another clustering withkmin clusters then algorithms that simply join
the two closest clusters may yield a feasible but “dead-end”solution withk clusters where
kmax < k < kmin. Figure 21 gives an example of a situation leading to a dead-end for six
points. The closest cluster join strategy will joinE with D and thenDE with F but there
are no further joins possible due to constraints causing thealgorithm to terminate fork= 4.
But there exists other clusterings withk = 3 such as{C,BE,ADF}. Therefore, traditional
nearest joins algorithms may create dendrograms that are incomplete. How to overcome
dead-ends is an important open question.

Fig. 21. Example of CL constraints (lines) that lead to dead-end. Note the instance positions in figure reflect
distances between points, for example pointsD andE are the closest.
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Constraint Unspecifiedk Unspecifiedk - Dead-ends?
Must-Link P No

Cannot-Link P Yes
δ-constraint P No
ε-constraint P No

Must-Link andδ P No
Must-Link andε P No

δ andε P No
Must-Link, Cannot-Link, NP-complete Yes

δ andε

Table V. Results for Feasibility Problems for Unspecifiedk (hierarchical clustering). Compare with Tables I and
II.

Davidson and Ravi explore changing agglomerative hierarchical clustering algorithms to
satisfyall instance-level and cluster-level constraints as discussed in the next sub-section.
However, hierarchical clustering has a long history of using spatial constraints to find spe-
cific types of clusters and avoid others [Yang et al. 2001; Zaiane et al. 2000] the instance
level constraints we describe can specify a variety of spatial constraints (i.e. Figure 1)
but also constraints on pairs of instances, features etc. Instance-level constraints have also
been used to learn a distancematrix for agglomerative clustering [Klein et al. 2002] (dis-
cussed in a later sub-section); but the agglomerative algorithms are themselves not altered
to satisfy the constraints.

7.1 Agglomerative Algorithms To Satisfy All ML and CL Constraints

The change to the basic agglomerative algorithm (Figure 20)to satisfy all ML and CL
constraints is shown in Figure 22. The algorithm starts off by computing the transitive
closure and rather than starting withn clusters (one for each instance) there are|X1|+ r
clusters where|X1| is the number of instances not involved in a ML constraint andr the
number of connected components. Joins are then performed sothat the closest two clusters
whose join does not result in a constraint violation are merged. Since the feasibility results
in Table V show that when using most combinations of constraints this algorithm will
always find a feasible solution, the same table shows that such an algorithm may not always
generate a full dendrogram. That is, there may be another series of joins (beyond the closest
feasible combination) that will give a more complete/full dendrogram.

7.1.1 Using aγ Constraint To Improve Run-time Using the Triangle Inequality. David-
son and Ravi also introduce a new constraint, theγ constraint and illustrate how the triangle
inequality can be used to further improve the run-time performance of agglomerative hi-
erarchical clustering using a centroid distance function.They show though no worst-case
improvement occurs, empirically the constraint does improve performance and provide
a probabilistic expected performance improvement using the Markov inequality. There
exists other work involving the triangle inequality for non-hierarchical clustering [Elkan
2003] as well as for hierarchical clustering [Nanni 2005] but neither make use of con-
straints.

Theγ constraint allows specifying how geometrically well separated the clusters should
be and is related to theδ constraint in Figure 1.
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ConstrainedAgglomerative(X,C= ,C6=) returns Dendrogrami , i = kmin ... kmax such that each level in the den-
drogram satisfies all constraints.

Notes: In Step 5 below, the term “mergeable clusters” is used to denote a pair of clusters whose merger does not
violate any of the given CL constraints. The value oft at the end of the loop in Step 5 gives the value ofkmin.

(1) Construct the transitive closure of the constraints inC= (see [Davidson and Ravi 2005a] for an algorithm)
resulting inr connected componentsM1, M2, . . ., Mr .

(2) If two instances{xi ,xj} are both a CL and ML constraint then output “No Solution” and stop.
(3) LetX1 = X− (

Sr
i=1 Mi). Let kmax = r + |X1|.

(4) Construct an initial feasible clustering withkmax clusters consisting of ther clustersM1, . . ., Mr and a
singleton cluster for each instance inX1. Sett = kmax.

(5) while (there exists a pair of mergeable clusters)do
. (a) Select a pair of clustersπl andπm according to the specified distance criterion.
. (b) Mergeπl into πm and removeπl . (The result isDendrogramt−1.)
. (c) t = t−1.
endwhile

Fig. 22. Agglomerative Clustering with ML and CL Constraints

IntelligentDistance(γ, Π = {π1, . . . ,πk})
returns D(xi ,xj ) ∀i, j.

(1) for i = 2 to n−1 Dx1,xi = D(π1,πi ) endloop
(2) for i = 2 to n−1

for j = i +1 to n−1 ˆDxi ,x j = |Dx1,xi −Dx1,x j |

if ˆDxi ,x j > γ thenDxi ,x j = γ+1 ; do not join elseDxi ,x j = D(xi ,xj )
endloop

endloop
(3) returnDxi ,x j , ∀i, j.

Fig. 23. Function for Calculating Distances Using theγ Constraint and the Triangle Inequality.

Definition 3 (Theγ Constraint For Hierarchical Clustering) Two clusters whose geometric
centroids are separated by a distance greater thanγ cannot be joined.

Recall that the triangle inequality for three instancesa,b,c refers to the expression
|D(a,b)−D(b,c)| ≤D(a,c)≤D(a,b)+D(c,b) whereD is the Euclidean distance function
or any other metric function. We can improve the efficiency ofthe hierarchical clustering
algorithm by making use of the lower bound in the triangle inequality and theγ constraint.
Let a,b,c now be cluster centroids and we wish to determine the closesttwo centroids to
join. If we have already computedD(a,b) andD(a,c) and the value|D(a,b)−D(a,c)|
exceedsγ, then we need not compute the distance betweenb andc as the lower bound on
D(b,c) already exceedsγ and henceb andc cannot be joined. Formally the function to
calculate distances using geometric reasoning at a particular dendrogram level is shown
in Figure 23. Central to the approach is that the distance between a central instance (a)
(in this case the first) and every other instance is calculated. Therefore, when bounding
the distance between two instances (b,c) we effectively calculate a triangle with two edges
with know lengths incident ona and thereby lower bound the distance betweenb andc.
How to select the best central instance and the use of multiple central instances remains
future important research though some progress is being made [Nanni 2005].

If the triangle inequality bound exceedsγ, then we save makingd floating-point power
calculations since the data instances are ind dimensional space. We have no reason to be-
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lieve that there will be at least one situation where the triangle inequality saves computation
in all problem instances; hence in the worst case, there is no performance improvement.
But in practice it is expected to occur and Davidson and Ravi derive an expected case
improvement bound using the Markov inequality.

Observation 8 Expected Case Improvement Using γ Constraint. Theγ constraint states
that two clusters whose centroids are more thanγ distance apart should not be joined
together. For an data set of size n, the number of distance calculations to complete a full
dendrogram will be O(n2). If γ = cρ whereρ is the average distance between any two

instances in the data set then the expected number of calculations will be O(n2− n2

2c).

To illustrate this in example, consider the 150 instance IRIS data set (n=150) where
the average distance (with attribute value ranges all beingnormalized to between 0 and
1) between two instances is 0.6; that is,ρ = 0.6. If we state that we do not wish to join
clusters whose centroids are separated by a distance greater than 3.0, thenγ = 3.0 = 5ρ.
By not using theγ constraint the total number of computations is 22201. But byusing
the γ constraint on average (over all data sets whose average pairwise point distance is
0.6) the number of computations that are saved is at least1

2c hence the saving is about
10%. Davidson and Ravi then go onto show that theγ constraint can be used to improve
efficiency of the basic agglomerative clustering algorithmfor many data sets and the actual
performance improvement typically exceeds the bound giventhe Markov inequality is a
weak bound.

7.2 Changing the Distance Matrix

The work on Klein and collaborators [Klein et al. 2002] explores the problem of changing
the distance matrix to reflect the constraints. In this workc=(a,b)(c6=(a,b)) indicates that
only instancesa andb should be made closer together (further apart). Later in section 8)
we shall discuss work that learns a distancemetricso as to change the distance betweena
andb and instances surrounding these two instances.

Learning a distance matrix is a multi-step pre-processing algorithm that produces a dis-
tance matrix (D′) that can be used with any hierarchical clustering algorithm. The al-
gorithm is shown in Figure 24. The first two steps create a new distance matrix using
the Euclidean distance between the points and in step three make all must-linked instances
have a distance of 0. However, this change ruins the triangleinequality and hence the resul-
tant distance matrix does not represent a metric. Step four corrects this by performing the
shortest path calculations but this step takesO(n3) time. Finally, the last step (which can
invalidate the triangle inequality) is to make the cannot-linked instances far apart. Klein
and collaborators argue that due to the entailment propertyof CL constraints (see 2) that
the triangle inequality is effectively maintained. Consider a four instance data set (x1,x2,x3

andx4), two constraintsc=(x1,x2) andc6=(x1,x4) and the distance matrix:

D =









0 3 6 1
3 0 3 2
6 3 0 5
1 2 5 0









After step three the modified distance matrix looks like:
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CreateDistanceMatrix
input : A set of must-linkC= and cannot-linkC6= constraints, a set of data instancesX
output A modified distance matrixD′(xi ,xj ) ∀i, j.

(1) Calculate the Euclidean distance between all instancesand store in matrixDi, j = D j,i = D(xi ,xj )∀i, j
(2) Initialized modified distance matrixD′ with D
(3) ∀c=(xi ,xj ) ∈C= : D′i, j = D′j,i = 0

(4) ∀xi ,xj D′i, j = D′j,i = ShortestPath(i, j) usingD′

(5) ∀c6=(xi ,xj ) ∈C6= : D′i, j = D′j,i = max(D)+1

Fig. 24. Algorithm for Creating a New Distance Matrix for Agglomerative Algorithms.

D′ =









0 0 6 1
0 0 3 2
6 3 0 5
1 2 5 0









After step four the modified distance matrix looks like:

D′ =









0 0 3 1
0 0 3 1
3 3 0 5
1 1 5 0









After step five the modified distance matrix looks like:

D′ =









0 0 3 6
0 0 3 1
3 3 0 5
6 1 5 0









A valid criticism of this approach is that step five ruins the triangle inequality that step
four fixes up. However, the authors argue that the inequalityis effectively enforced as the
following example indicates. Clearly the distanceD(x1,x4) violates the triangle inequality
since it is larger than|D(x1,x3)+D(x3,x4) | indicating that eitherD(x1,x3) or D(x3,x4) is
too large. Now consider at the first iteration the hierarchical algorithm will join x1 andx2,
but it will not join this new cluster tox4 since it is too far away but insteadx3 and hence
indirectly we have madeD(x1,x3) smaller.

8. LEARNING DISTANCE FUNCTION ALGORITHMS

In this section, we will discuss two popular approaches of using constraints for distance
metric learning in constrained clustering. While both forms cast the problem of learning
a distance metric from constraints as an optimization problem, the former uses a linear
algebra formulation while the later a probabilistic formulation.
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8.1 Generalized Mahanabolis Distance Learning

[Xing et al. 2003] proposed a formulation for learning a parametrized Mahanabolis metric
from ML and CL constraints by exploiting the formd(x1,x2) =

√

(x1−x2)TA(x1−x2)
where the matrixA represents the distance matrix. A matrixA = I whereI is the identify
matrix leads to the Euclidean matrix. The authors proposed the following semi-definite
program (SDP) for the problem:

min
A

∑
(xi ,xj )∈ML

||xi−x j ||
2
A = min

A
∑

(xi ,xj )∈ML

(xi−x j)
TA(xi−x j) (11)

s.t., ∑
(xi ,xj )∈CL

||xi−x j ||A ≥ 1,A� 0

where||xi−x j ||A = (xi−x j)
TA(xi−x j)

Minimizing Equation 11 produces a matrixA (which represents the distance metric as a
transformation on the original space) such that the must-link instances are brought closer
together, while ensuring that the cannot-link instances are kept apart and the underlying
metric still satisfies the triangle inequality by ensuring that A is positive semi definite.
Equation 11 can be minimized by minimizing the alternate formulation shown in equation
12 since the logarithm of second term will be minimized when it is greater than 1 as
required in equation 11.

min
A

∑
(xi ,xj )∈ML

||xi−x j ||
2
A− log ∑

(xi ,xj )∈CL

||xi−x j ||A (12)

where||xi−x j ||A = (xi−x j)
TA(xi−x j)

If A is restricted to being a diagonal matrix this term has the benefit of being easily
differentiable and convex, hence, Newton-Raphson can be used to find the global opti-
mum. This is effectively learning a generalized Mahanabolis distance where the entryai,i

stretches (ai,i > 1) or compresses (ai,i < 1) theith dimension. IfA= I whereI is the identify
matrix then the learnt distance matrix is the Euclidean distance.

However, Newton-Raphson cannot be used ifA is not restricted to being diagonal. In-
stead [Xing et al. 2003] proposed an equivalent formulationof Equation 11 shown in equa-
tion 13.

max
A

g(A) = ∑
(xi ,xj )∈CL

||xi ,x j ||A (13)

s.t., f (A) = ∑
(xi ,xj )∈ML

||xi ,x j ||
2
AA≤ 1→C1 (14)

A � 0→C2

[Xing et al. 2003] optimized Equation 13 using an alternate maximization algorithm,
that had 2 steps: (1) gradient ascent – to optimize the objective; (2) iterated projection
algorithm – to satisfy the inequality constraints. [Bie et al. 2003] used a variant of Lin-
ear Discriminant Analysis (LDA) to find the a Mahanabolis metric from constraints more
efficiently than using an SDP.
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8.2 Kernel Distance Functions Using AdaBoost

[Hertz et al. 2004] proposed a method for distance metric learning by using boosting in
the product space of the input data spaceX. They posed the constrained metric learning
problem as learning a function that took as input the instances in the product spaceX×
X, and output binary labels corresponding to must-link (1) and cannot-link constraints
(0). They used boosting on the product space to learn this function, where boosting is
a standard machine learning tool that combines the strengthof an ensemble of “weak”
learners (with low prediction accuracy) to create a “strong” learner (with high prediction
accuracy) [Freund and Schapire 1996]. The overall flow of theDistBoostalgorithm of
[Hertz et al. 2004] is outlined in Figure 25. In the first step,a constrained weighted EM
algorithm is run on the data set and constraints, to fit a Gaussian Mixture Model (GMM)
over weighted unlabeled data and the given constraints. Thekey difference of constrained
EM from ordinary EM is the E-step, which sums the assignment probabilities only over
assignments that comply with the constraints. The output ofthe GMM is treated as a
“weak” learner and is used to learn a “weak” distance function, where the distanceh(x1,x2)
between two instancesx1 andx2 is computed from their MAP assignment in the GMM as
follows:

h(x1,x2) = max
i

p(y1 = i|Θ) ·max
i

p(y2 = i|Θ)

TheDistBoostalgorithm computes the weights of the “weak” distance functions using
Boosting, and updates the weights on pairs of instances, which are translated to weights
on individual data instances. This is again passed back to the input of the GMM-EM
algorithm, and the process is repeated for multiple steps.

9. SATISFYING CONSTRAINTS AND LEARNING DISTANCE FUNCTION ALGORITHMS

As mentioned in Section 2, there have been some algorithms that try to both enforce con-
straints and learn distance functions from constraints forpartitional clustering algorithms.
In this section we will outline an example of such algorithm,which uses the framework of
a generative probabilistic model, the Hidden Markov RandomField (HMRF) [Basu et al.
2004].

9.1 HMRF Model

The Hidden Markov Random Field (HMRF) is a probabilistic generative model for semi-
supervised constrained clustering, consisting of the following components: (1) anobserv-
able setX = (x1, . . . ,xn) of random variables, corresponding to the given data instances
X; (2) anunobservable(hidden) setY = (y1, . . . ,yn) of random variables, corresponding
to cluster assignments of instances inX, yi ∈ (1, . . . ,K); (3) an unobservable(hidden)
set of generative model parametersΘ, which consists of distortion measure parameters
A (typically a matrix or vector of weights) and cluster representativesM = (µ1, . . . ,µK):
Θ = {A,M}; (4) anobservableset of constraint variablesC = (c12,c13, . . . ,cn−1,n). Each
ci j is a tertiary variable taking on a value from the set(−1,0,1), whereci j = 1 indicates
that(xi ,x j) ∈CML, ci j = −1 indicates that(xi ,x j) ∈CCL, andci j = 0 corresponds to pairs
(xi ,x j) that are not constrained. The constraints are accompanied by associated violation
costsW, wherewi j represents the cost of violating the constraint between instancesxi and
x j if such a constraint exists. Fig. 26 shows a simple example ofan HMRF having five
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Fig. 25. DistBoost algorithm

Hidden MRF

Observed data

Cannot−link

x3

x2x1

x5

y2 = 1

y4 = 1
y5 = 3

y3 = 2

x4

Must-link (c14 = 1)

Must-link (c12 = 1)

y1 = 1

(c23 =−1)

Fig. 26. A Hidden Markov Random Field

data instances partitioned into three clusters, while maximally respecting three pairwise
constraints.

The joint probability ofX, Y, andΘ, givenC, in the described HMRF model can be
factorized as follows:

P(X,Y,Θ|C) = P(Θ|C) P(Y|Θ,C) P(X|Y,Θ,C) (15)

The graphical plate model [Buntine 1994] of the dependence between the random vari-
ables in the HMRF is shown in Figure 27. The prior probabilityof Θ is assumed to be
independent ofC. The probability of observing the label configurationY depends on the
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Fig. 27. Graphical plate model of variable dependence

constraintsC and current generative model parametersΘ. Observed data instances cor-
responding to variablesX are generated using the model parametersΘ based on cluster
labelsY, independent of the constraintsC. The variablesX are assumed to be mutually
independent: eachxi is generated individually from a conditional probability distribution
P(xi |yi ,Θ).

[Basu et al. 2004] show that the joint probability on the HMRFis equivalent to maxi-
mizing:

P(X,Y,Θ|C) = P(Θ)

(

1
Z

exp
(

− ∑
ci j∈C

v(i, j)
)

)( n

∏
i=1

p(xi |yi ,Θ)

)

(16)

They chose the following Gibbs potential for P(Y|Θ,C):

P(Y|Θ,C) =
1
Z

exp(−∑
i, j

v(i, j)), (17)

where each constraint potential functionv(i, j) has the following form inspired by the
generalized Potts model [Kleinberg and Tardos 1999]:

v(i, j) =







wi j fML(i, j) if ci j = 1 andyi 6= y j

wi j fCL(i, j) if ci j =−1 andyi = y j

0 otherwise
(18)

The joint probability formulation in Eq.(16) provides a general framework for incorpo-
rating various similarity functions in clustering by choosing a particular form ofp(xi |yi ,Θ),
the probability density that generates thei-th instancexi from clusteryi . [Basu et al. 2004]
restrict their attention to probability densities from theexponential family, where the con-
ditional density for observed data can be represented as follows:

p(xi |yi ,Θ) =
1

ZΘ
exp

(

−D(xi ,µyi )
)

, (19)

whereD(xi ,µyi ) is the Bregman divergence betweenxi andµyi , corresponding to the ex-
ponential densityp, andZΘ is the normalizer [Banerjee et al. 2005]. Different clustering
models fall into this exponential form:

—If xi and µyi are vectors in Euclidean space, andD is the square of theL2 distance
parametrized by a positive semi-definite weight matrixA, D(xi ,µyi ) = ‖xi−µyi‖

2
A, then

the cluster conditional probability is ad-dimensional multivariate normal density with
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covariance matrixA−1: p(xi |yi ,Θ) = 1
(2π)d/2|A|−1/2 exp(− 1

2(‖xi−µyi‖
2
A) [Kearns et al.

1997];

—If xi andµyi are probability distributions, andD is KL-divergence (D(xi ,µyi )= ∑d
m=1 xim log xim

µyi m
),

then the cluster conditional probability is a multinomial distribution [Dhillon and Guan
2003].

The relation in Eq.(19) holds even ifD is not a Bregman divergence but a directional
distance measure such as cosine distance. Then, ifxi andµyi are vectors of unit length and

D is one minus the dot-product of the vectors
(

D(xi ,µyi ) = 1− ∑d
m=1 ximµyi m

‖xi‖‖µyi‖

)

, then the cluster

conditional probability is a von-Mises Fisher (vMF) distribution with unit concentration
parameter [Banerjee et al. 2005], which is the spherical analog of a Gaussian.

Putting Eqn. (19) into Eqn. (16) and taking logarithms givesthe following cluster objec-
tive function, minimizing which is equivalent to maximizing the joint probability over the
HMRF in Eqn. (16):

Jobj = ∑
xi∈X

D(xi ,µyi )+ ∑
ci j∈C

v(i, j)− logP(Θ)+ logZ+nlogZΘ (20)

[Basu et al. 2004] used Rayleigh priors for P(Θ), and the ignored the normalizer terms.
An optimal clustering is obtained by minimizingJobj over the hidden variablesY and pa-
rametersΘ, which are comprised of cluster centroidsM and distortion measure parameters
A (note that given the cluster assignmentsY, the meansM = {µi}

K
i=1 are uniquely deter-

mined).

9.2 EM algorithm

As discussed in Section 9.1, [Basu et al. 2004] minimizeJobj using a K-Means-type itera-
tive algorithm HMRF-KMEANS. The outline of the algorithm is presented in Figure 28.
The basic idea of HMRF-KMEANS is as follows: the constraints are used to obtain a good
initialization of the clustering. Then in the E-step, giventhe current cluster representatives,
every data instance is re-assigned to the cluster that minimizes its contribution toJobj. The
E-step of HMRF-KMEANS uses an Iterated Conditional Modes (ICM) approach, which
is a greedy strategy to sequentially update the cluster assignment of each instance, keeping
the assignments for the other instances fixed. In the M-step,the cluster representatives
M = (µ1, . . . ,µK) are re-estimated from the cluster assignments to minimizeJobj for the
current assignment. The clustering distortion measure,D, is subsequently updated in the
M-step to reduce the objective function by modifying the parameters of the distortion mea-
sure.

Note that this corresponds to the generalized EM algorithm [Neal and Hinton 1998;
Dempster et al. 1977], where the objective function is reduced but not necessarily mini-
mized in the M-step. Effectively, the E-step minimizesJobj over cluster assignmentsY, the
M-step (A) minimizesJobj over cluster representativesM, and the M-step (B) reducesJobj

over the parameters of the distortion measureD. The E-step and the M-step are repeated
till a specified convergence criterion is reached. [Basu et al. 2004] show that HMRF-
KM EANS converges to a local optimum ofJobj.
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Algorithm: HMRF-KMeans

Input: Set of data points X = {xi}
n
i=1, number of clusters K,

set of must-link constraints CML = {(xi, xj)},
set of cannot-link constraints CCL = {(xi, xj)},
distortion measures {Dh}

K
h=1, constraint violation costs W .

Output: Disjoint K-partitioning {Xh}
K
h=1 of X such that

objective function Jobj in Eqn.(9) is (locally) minimized.
Method:

1. Initialize the K clusters centroids {µ
(0)
h }

K
h=1, set t← 0

2. Repeat until convergence

2a. E-step: Given {µ
(t)
h }

K
h=1, re-assign cluster labels

{y
(t+1)
i }ni=1 on the points {xi}

n
i=1 to minimize Jobj.

2b. M-step(A): Given cluster labels {y
(t+1)
i }ni=1, re-calculate

cluster centroids {µ
(t+1)
h }Kh=1 to minimize Jobj.

2c. M-step(B): Re-estimate distortion measures {Dh}
K
h=1 to reduce Jobj.

2d. t ← t+1

Fig. 28. HMRF-KMEANSalgorithm

9.3 Improvements to HMRF-KMEANS

There have been multiple improvements to the initial HMRF-based probabilistic generative
constrained clustering framework. [Lange et al. 2005] incorporated prior knowledge from
both labels on the input data instances as well as constraints into their clustering model.
They inferred the constraint potentials in the HMRF model from a Maximum Entropy
solution ofP(Y) under constraints encoded in the label and constraint set, and replaced the
ICM-based greedy assignment scheme in the E-step of HMRF-KMEANS by mean-field
approximation. [Lu and Leen 2005] proposed probabilistic EM-style assignments instead
of winner-take-all KMeans-type assignments, and used Gibbs sampling in the E-step of
their constrained EM algorithm.

10. CONCLUSIONS AND OTHER WORK

Clustering with constraints is a rapidly developing area ofresearch. We have covered in
detail in this tutorial a sample of the typical approaches used by researchers and contrasted
these approaches with other published work. The approachesdiscussed in detail have the
advantage of having accompanying freely available source code. More advanced research
in the field will shortly appear as an edited book [Basu et al. 2008].
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11. NOTATION AND SYMBOLS

Sets of Numbers
N the set of natural numbers,N = {1,2, . . .}
R the set of reals
[n] compact notation for{1, . . . ,n}
x∈ [a,b] intervala≤ x≤ b
x∈ (a,b] intervala < x≤ b
x∈ (a,b) intervala < x < b
|C| cardinality of a setC (for finite sets, the number of elements)

Data
X the input domain
d (used ifX is a vector space) dimension ofX
k∗ number of underlying classes in the labeled data
k number of clusters (can be different fromk∗)
l ,u number of labeled, unlabeled training instances
n total number of instances,n = l +u.
i, j indices, often running over[n] or [k]
xi input data instancexi ∈ X
y j output cluster labely j ∈ [K]
X a sample of input data instances,X = (x1, . . . ,xn) andX = {Xl ∪Xu}
Y output cluster labels,Y = (y1, . . . ,yn) andY = {Yl ∪Yu}
Πk k block clustering (set partition) onX: {π1,π2 . . .πk}
µ1 . . .µk thek centroids of thek blocks forming the set partition onX
D(x,y) distance between instancesx andy
Xl labeled part ofX, Xl = (x1, . . . ,xl )
Yl part ofY where labels are specified,Yl = (y1, . . . ,yl )
Xu unlabeled part ofX, Xu = (xl+1, . . . ,xl+u)
Yu part ofY where labels are not specified,Yu = (yl+1, . . . ,yl+u)
C set of constraints
W weights on constraints
C= conjunction of must-link constraints
C6= conjunction of cannot-link constraints
c=(i, j) must-link constraint betweenxi andx j

c6=(i, j) cannot-link constraint betweenxi andx j

w=(i, j) weight on must-link constraintc=(i, j)
w6=(i, j) weight on cannot-link constraintc6=(i, j)
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Kernels
H feature space induced by a kernel
Φ feature map,Φ : X →H
K kernel matrix or Gram matrix,Ki j = k(xi ,x j)

Vectors, Matrices and Norms
1 vector with all entries equal to one
I identity matrix
A⊤ transposed matrix (or vector)
A−1 inverse matrix (in some cases, pseudo-inverse)
tr (A) trace of a matrix
det(A) determinant of a matrix
〈x,x′〉 dot product betweenx andx′

‖·‖ 2-norm,‖x‖ :=
√

〈x,x〉

‖·‖p p-norm ,‖x‖p :=
(

∑N
i=1 |xi |

p
)1/p

, N ∈ N∪{∞}
‖·‖∞ ∞-norm ,‖x‖∞ := supN

i=1 |xi |, N ∈N∪{∞}

Functions
ln logarithm to basee
log2 logarithm to base 2
f a function, often fromX or [n] to R, R

M or [M]
g(xi) a function that returns the closest cluster index to instancexi

h(µi) a function that returns the closest cluster index to clustercentroidµi

F a family of functions
Lp(X ) function spaces, 1≤ p≤ ∞

Probability
P{·} probability of a logical formula
P(C) probability of a set (event)C
p(x) density evaluated atx∈ X
E [·] expectation of a random variable
Var [·] variance of a random variable
N (µ,σ2) normal distribution with meanµ and varianceσ2
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Graphs
g graphg = (V,E) with nodesV and edgesE
G set of graphs
W weighted adjacency matrix of a graph (W i j 6= 0⇔ (i, j) ∈ E)
D (diagonal) degree matrix of a graph,Dii = ∑ j Wi j

L normalized graph Laplacian,L = D−1/2WD−1/2

L un-normalized graph Laplacian,L = D−W
Miscellaneous

IA characteristic (or indicator) function on a setA
i.e., IA(x) = 1 if x∈ A and 0 otherwise

δi j Kroneckerδ (δi j = 1 if i = j,0 otherwise)
δx Dirac δ, satisfying

R

δx(y) f (y)dy= f (x)
O(g(n)) a function f (n) is said to beO(g(n)) if there exist constantsC > 0 and

n0 ∈N such that| f (n)| ≤Cg(n) for all n≥ n0

o(g(n)) a functionf (n) is said to beo(g(n)) if there exist constantsc> 0 andn0∈N

such that| f (n)| ≥ cg(n) for all n≥ n0

rhs/lhs shorthand for “right/left hand side”
the end of a proof
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