A Survey of Clustering with Instance Level
Constraints 2

lan Davidson (davidson@cs.ucdavis.edu)
University of California - Davis

and

Sugato Basu (sugato@google.com)
Google Research

Clustering with constraints is an important recent develept in the clustering literature. The addition of con-
straints allows users to incorporate domain expertisetmalustering process by explicitly specifying what are
desirable properties in a clustering solution. This isipatarly useful for applications in domains where consid-
erable domain expertise already exists. In this first extersurvey of the field, we discuss the uses, benefits and
importantly the problems associated with using constsaile cover approaches that make use of constraints
for partitional and hierarchical algorithms to both enfotbe constraints or to learn a distance function from the
constraints.

Categories and Subject Descriptors: |.FP&ftern Recognition]: Clustering—Algorithms
General Terms: Data mining, clustering

Additional Key Words and Phrases: Data mining, clustergggni-supervised learning, constraints

1. INTRODUCTION AND MOTIVATION

Semi-supervised learning is a recent innovation in datangirmachine learning and pat-
tern recognition that is at the intersection of supervised ansupervised learning. The
field has received much attention since using both unlabgde¢d and some human su-
pervision has many benefits, including allowing applicasito fields where human anno-
tating of each instance (such as labeling instances) isnsipge This new field can be

broadly broken into two areas: a) the addition of unlabelathdo supervised classifier
learning and b) the addition of some supervision into chiste The former already has
several excellent survey papers [Seeger 2000; Zhu 2006héve served to quickly bring

researchers up to speed in the area. However, though theoheshling supervision to

clustering has been very popular in the data mining fieldt(paper awards in the area

1This work was presented as a tutorial at the IEEE ICDM Comfeze2005 and ACM KDD Conference 2006.
The slides of those tutorials are available at www.consgé@iclustering.org
2Many of the algorithms presented in this paper are availfisldownload at www.constrained-clustering.org
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were won for KDD 2004 [Basu et al. 2004], SDM 2005 [Davidsod &avi 2005a] and

IEEE 2005 [Gondek and Hofmann 2004]) no survey papers ekistthermore, relevant
work on the topic is published in venues that may not be readidbg mining researchers.
The purpose of this survey paper is to span the relevant sldsfof the area of clustering
with supervision in the form of constraints and give a cobegiresentation of important
algorithms and results. We hope this survey will prepareaeshers to explore the field
and practitioners to use existing algorithms.

Clustering is ubiquitously used in data mining as a methodiséovering novel and
actionable subsets within a set of data. Given a set of¥iatlae typical aim of partitional
clustering is to form &-block set partitionly of the data. The process of clustering
is important since, being completely unsupervised, itvedlahe addition of structure to
previously unstructured items such as free-form text doents For example, [Cohn et al.
2003] discuss a problem faced by Yahoo!, namely that onevisngvery large corpora
of text documents/papers/articles and asked to createfaldaronomy so that similar
documents are closer in the taxonomy. Once the taxonomyriseft, the documents
can be efficiently browsed and accessed. Unconstrainetbchgis ideal for this initial
situation, since in this case little domain expertise existbegin with. However, as data
mining progresses into more demanding areas, the chancedifdi actionable patterns
consistent with background knowledge and expectatiomigdd. For example, [Wagstaff
et al. 2001a] show that clustering GPS trace data from aubdesowithk-means so as to
find lanes produces clusters quite different from the regfi@longated clusters (see Figure
12). They instead make use of background knowledge thatasighanes are four meters
in width, and any two cars more than four meters apart in trection perpendicular to the
road direction must be in different lanes/clusters. In Wy, they are placingonstraints
on certain properties of the final clustering.

Clustering with constraints allows the incorporation otkground domain expertise
with work so far incorporating knowledge in the form of inst® level constraints. The
two types of constraints introduced by Wagstaff [Wagstaiffl &ardie 2000] are must-
link denoted byc_(x,y) and cannot-link denoted by (x,y), meaning that two instance
x andy must be in the same cluster or cannot be in the same clusfeFately. Must-
link and cannot-link constraints, though apparently sipp@hare interesting properties.
Must-link constraints are an example of an equivalencé¢iogl@and hence are symmetrical,
reflexive and transitive; this means that(x,y) andc_(y,z) = c_(x,z) such thatx,y,z
form a connected component, i.e., each is connected to liee @t an explicit or implied
must-link constraint. Formally:

Observation 1 Must-link Constraintsare Transitive. Let CG and CG be connected com-
ponents (completely connected subgraphs by must-linkredmts), and let x and y be the
instances in CCand CG respectively. Thendx,y),x € CG,y € CC; = c_(a,b),Va,b:
aeCG,beCG;.

Similarly connected components of must-link constraiatsgive rise to entailed cannot-
link constraints.

Observation 2 Cannot-link Constraints Can Be Entailed. Let CG and CG be con-
nected components (completely connected subgraphs bylimkusbnstraints), and let
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x and y be the instances in C@nd CG respectively. Thengx,y),x € CG,y € CCj =
c.(a,b),va,b:ac CG,beCCG;.

Though apparently simple, must-link and cannot-link caaists are powerful. In suf-
ficient numbers they can shatter the training)$etnd specify any set partition &. Fur-
thermore, these two constraints can specify interestigiapproperties [Davidson and
Ravi 2005a] [Davidson and Ravi 2007]. If we wish two clustierfiave their points sep-
arated byd or greater distance then this is equivalent to clusterintp @iconjunction of
must-links between all instances that aleserthand distance together. Similarly, if we
wish the cluster diameters to be at masthen this is equivalent to placing a conjunction
of cannot-link constraints between all instances gre&i@n ¢ distance apart. Finally, if
we wish each point in a cluster to have a neighbor withdistance then this can be rep-
resented using a disjunction of ML constraints. Detailssimme geometric constraints are
shown in Figure 1.

e Delta constraints

For every point x, must-link
all points y such that
D(x,y) < & i.e. conjunction
of ML constraints

v

* Epsilon constraints

For every point x, must link to

at least one point y such that

D(x,y) <= g, i.e. disjunction of
® ML constraints

Fig. 1. Delta and Epsilon Constraints

We begin this survey by describing, at a high level, how aaiists can be used in
clustering in Section 2. In Section 3 we describe severatessful applications and how
constraints were generated in specific domains. The neiibeeS&ection 4, summarizes
reported benefits and problems associated with using @ntstr We believe this is par-
ticularly important, since the problems associated witingigonstraints are not be well
discussed in the literature. We next give an outline of dpealgorithms that make use
of instance level constraints. In Section 5, we discussralgos for partitional (non-
hierarchical) clustering that attempt to satisfy all or mosnstraints, with the latter al-
lowing for ignoring noisy or poorly specified constraintslgarithms for initializing and
generating constraints are outlined in Section 6, whiledn@hical clustering that attempt
to learn a distance matrix from the constraints or satisnthall are discussed in Sec-
tion 7. Next, Section 8 discusses the general problem ofiegra distancéunction(not
a instance-wise distance matrix) from all the constraimi #hen its subsequent use in

ACM Transactions on Knowledge Discovery from Data, Vol. va.I¥, z 2007.



4 . lan Davidson and Sugato Basu

clustering. Section 9 discusses the dual objective prolofelearning a distance function
while allowing constraints to be ignored.
Throughout this paper we use the notation described inmedt.

2. USES OF CONSTRAINTS

The typical supervised learning situations involves hgwnlabel associated with each
instance. The semi-supervised learning situation is whnyn @ small subset of instances
have labels. If the available labeled data represent altglevant categories, then semi-
supervised classification algorithms can be readily useddta categorization. For details
see the various algorithm surveys [Seeger 2000; Zhu 2006jveder in many domains,
knowledge of the relevant categories is incomplete andwiser constraints are often a
more readily available form of supervision than labels irtaia clustering tasks. Examples
of such domains are given in Section 3. Moreover, in an ictera learning setting, a
user who is not a domain expert can sometimes provide fe&dhate form of must-
link and cannot-link constraints [Cohn et al. 2003; Davitusbal. 2007] more easily than
class labels, since providing constraints does not redo@aiser to have significant prior
knowledge about the categories in the data set or even forcategories to exist.

Constraints have typically been used in clustering algoré in two ways. They can
be used to modify the cluster assignment stage of the clafjerithm so as to enforce
satisfaction of the constraints as much as possible. Adtargly, the distance function of
the clustering algorithm can also be trained from the casts either before or during
the actual clustering. In all of these cases, constraintsatso be used in the initialization
phase, where the initial clusters are formed such that fimnlgtd instances are in the same
clusters and cannot-linked instances are in differentelgs Based on this categorization,
existing methods for constrained clustering can be puttintogeneral approaches that we
call constraint-basednddistance-basethethods.

2.1 Constraint-based methods

In constraint-based approaches, the clustering algoiiiseti is modified so that the avail-
able constraints are used to bias the search for an appt@phestering of the data. The
pairwise constraints specify whether two instances shbeléh the same cluster (must-
link) or in different clusters (cannot-link).

There have typically been two types of constraint-basedcgmhes: (1) ones with
strict enforcement, which find the best feasible clusteregpecting all the given con-
straints [Wagstaff et al. 2001b; Davidson and Ravi 2005bdl &) ones with partial en-
forcement, which find the best clustering while maximallgpecting constraints [Basu
et al. 2004; Segal et al. 2003; Davidson and Ravi 2005a; Lak 8005]. Figure 3 shows
an example of a clustering which respects all the given caimés in Figure 2. Details
of these algorithms are outlined in section 5 for partiticagorithms and section 7 for
hierarchical algorithms.

Constraint-based clustering has been done using severalitpies:

—modifying the clustering objective function so that itindes a term (penalty) for satis-
fying specified constraints [Demiriz et al. 1999; Davidsoud &avi 2005a].

—clustering using side-information from conditional dilstitions in an auxiliary space [Sinkko-
nen and Kaski 2000]
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—enforcing all constraints to be satisfied during the assignt step in the clustering pro-
cess [Wagstaff et al. 2001b]

—initializing clusters and inferring clustering constrts based on neighborhoods derived
from labeled examples [Basu et al. 2002].

e

tendann  Cannotlink

Must-lnk

Fig. 2. Inputinstances and constraints Fig. 3. A Clustering That Satisfies All Constraints

2.2 Distance-based methods

In distance-based approaches, an existing clusteringitigothat uses a distance measure
is employed. However, rather than use the Euclidean distaratric, the distance measure
is first trained to “satisfy” the given constraints. In thisntext, satisfying the constraints
means that must-linked (similar) instances are close hayetnd cannot-linked (different)
instances are far apart in the learnt distance space. 3elistance measures have been
used for distance-based constrained clustering:

—string-edit distance trained using EM [Bilenko and Mooi2€93],
—Jensen-Shannon divergence trained using gradient dq&mm et al. 2003],
—Euclidean distance modified by a shortest-path algoritilaif et al. 2002] and

—Mahalanobis distances trained using convex optimizd@am-Hillel et al. 2003; Xing
etal. 2003]

Several clustering algorithms using trained distance omegshave been employed for
constrained clustering, including single-link [BilenkadcaMooney 2003] and complete-
link [Klein et al. 2002] agglomerative clustering, EM [Cobhal. 2003; Bar-Hillel et al.
2003], and KMeans [Bar-Hillel et al. 2003; Xing et al. 2003Recent techniques in
distance-metric learning for clustering include learnmgnargin-based clustering distor-
tion measure using boosting [Hertz et al. 2004], and legraimistance metric transfor-
mation that is globally linear but locally non-linear [Cltpand Yeung 2004]. Figure 5
shows a simple example of learning a distance function fleerconstraints given in Fig-
ure 4 and then clustering. Notice that in Figure 5 the inptid d@ace has been stretched
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in the horizontal dimension and compressed in the vertizakdsion, to draw the must-
linked instances closer and put the cannot-linked ins&farther apart. Section 8 outlines
methods of learning distance functions from constraints.

AP e

Fig. 4. Inputinstances and Constraints Fig. 5. A Learnt distance space respective of the con-

straints.

There have been some algorithms that try to both enforceti@nts and learn distance
functions from constraints — details of these algorithmi lpé presented in section 9.

3. EXAMPLE APPLICATIONS OF USING CONSTRAINTS

This section outlines some real-world examples where cains$ are used in clustering.
For each we discuss how the constraints are generated anithépwnproved the resultant
clusterings.

3.1 Image data

Figures 6 shows a dataset where the task is to cluster famaditiie CMU Faces Database.
The method used here is the one which is most popular in thefitre for generating
constraints — set the number of clusters to the number ofetas the dataset, and then
generate constraints from the labels: if two instances tia@eame class label, then add
a must-link between them, and if two instances have diffectass labels, then add a
cannot-link between them. In this case, the goal is to diusiee images according to
their orientation, as shown in Figure 6. So, the two imagegkvare selected in Figure 7
have a cannot-link between them, even though they are ofithe person, since they have
different facial orientation (one is in the class “UP” ane thther in the class “SIDE").

Another image dataset where constraints are used for dlugtis shown in Figure 8.
Here the task is to cluster pixels in an image into segmernts thie goal of performing
object identification for Aibo robot navigation [Davidsond&Ravi 2005a]. In this case,
more complex cluster-level/spatial constraints are usagl € andd constraints described
in Figure 1 [Davidson and Ravi 2005a]) to aid in creating ®usthat are well seperated
and hence useful for the purpose of creating a path for rodagation.
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Fig. 7. Cannot-link constraint between different face tagion

3.2 Video data

Video data is an example where constraints can be generaaglilyr from the domain,

especially from spatio-temporal aspects of video sequefan et al. 2004]. In tempo-
rally successive frames of video, one can add must-linkevdxen groups of pixels that
represent the same object, when the task is to perform olgeognition by segmenta-
tion and clustering. It is also possible to add cannot-liokstraints between two different
image segments of the same video snapshot, since they hawechénce of belonging
to the same object after segmentation is performed. An elamgen from [Yan et al.

2004] is shown in Figure 9. In fact, in this domain, there istsa plethora of constraints
that active learning techniques are used to select the nse$tiluconstraints [Yan et al.
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Fig. 8. Spatial clusters for use in Aibo robot navigation.eThree pictures indicate (a) the original image, (b)
clusters found by unconstrainéemeans, (c) improved clusters using cluster-level spataktraints

2004]. An interesting question in this context is what haypiétoo many constraints are
created and used in the constrained clustering algorithmoes dhis make the problem
over-constrained? Section 4 discusses this and relatestiong regarding the practical
issues and difficulties of using constraints in clustering.

3.3 Biological data

In gene clustering based on micro-array data, genes aresepied using their expression
profile in different experiments and clustered using ddferalgorithms, e.g., hierarchical
clustering [Eisen et al. 1998]. An example is shown in Figl®e In this case, must-link
constraints can be generated between genes using co-eccemata from the Database
of Interacting Proteins, which contains information abwhich genes (and corresponding
proteins) co-occur in cellular processes [Xenarios et@D12. These constraints can then
be used to improve the clustering process [Segal et al. 2003]

3.4 Textdata

In content-management tasks (routinely performed by canesdike Google, Interwoven
or Verity), the goal is to automatically categorize largecamts (often in the order of
millions) of text documents into groups or clusters. In ttase, constraints can be obtained
from multiple auxiliary sources, e.g., the co-occurrentéxm documents in a directory
can be used to infer a must-link constraint between the deotsn two documents in
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Fig. 9. Different kinds of pairwise constraints: (a) Temglaronstraints from single tracking sequence of a person
(b) Temporal constraints of different regions extractethatsame time (c) Constraints provided by comparing
faces (d) Constraints provided by user feedback.

Genes

Gene
expressions

Red == low
expression w.r.t
baseline

Green == high
expression w.r.t
baseline

Gene clusters

Experiments

Fig. 10. Clustering of gene microarray data

different categories of the Open Directory Profesierarchy can be considered as cannot-
linked, etc. Using these constraints from the auxilianadadurces, one can customize the
clustering output for the particular task, e.g., make a doent hierarchy that is close to
the input directory structure in which the documents aregda

Swww.dmoz.org
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3.5 Web data

Constrained clustering is quite useful in post processesgch results, as performed by
companies like Vivisimd. Here, the goal is to automatically cluster the results of ignb
ous search-engine queries like “jaguar” into clusters ofL&hat refer to concepts like
“Jaguar cars”, “Jaguar animal” or “Jaguar Mac OS” (as shawhigure 11). In this case,
constraints can be mined from query sessions in web logs -canayet valuable infor-
mation regarding which websites are visited together, ahyaing co-occurrence of url's
within the same user session. Clustering using this awyilata can help in biasing the
search result clustering towards the preferences of the use

9628218 Ciustered search on jaguat - Micrasolt Intemnet Explorer

| Be B Vew Favater Ik Hob | = |
(@& @ B @ G @& 3B S ¢ &= |
Back Foves Swop  Rebiésh  Homs | Seach Favoiter Medis Hittop | Mal  Print  El Discuss
'Agximwjmmmmmc /searchTtosh sourcessiileh 7| Rsn | Links »|
| DashBar ~ IErm sesich words here | ,Osemn | Price Comparison | Yelow Pages wnmagm | Mgt

compary | products | solitions | customers | demos | press

4 . s -
Query: jaguar —— SO e 5o

NEW search for images at Clusty.com

Clustered Results | Top 178 results of at least 20,256,139 retrieved for the query jaguar (Details) =
i Jnguar17s)
Jaguar cars L » Jaguar Carsca1) 1. hitpcifheon [AQUEE COMY raw window] [trame] [praviend [ourter]
S W jagUAT.COm 6% 1, WEN 1 1
& » Clubzs)
©» Parts e 2 - TI—'E source for all Jaguar information jrewwindow fame] (eache]

Jag uar animal T Ponthera oncaite) uar.jaguar car jaguar enthusiast adverts discussion forums jag-

@ Classic 14 lovers jaglovers elub, xkr,xk xj-s e-1ype s-type x-type stype xtyps Donate NOW and
suppun Jag \uwrs on the \nlsmeﬂ Serving ...

z ® » Animal (11 i g lovers. org "
Macintosh 0S5 X o Atarl Jaguar e a
(Jaguar) ©» Mark Webber ) 3. Jaguar UK - R 1S for RECING frew windew] frams) foacha] fpraview [clustars]

® » Teamisi winning C-TYPE — the first car ever tn have disc brakes - Jaguars racing technology
» Maya s has been bred into the bloodline of every Jaguar, pariculary the very special range of
>
_I_l road cars that biear
&l | u Irfemet 7

Hset] [ 8 S ORGSO B o || Srane | Evse [EVvim.. | |[EESTEE TR 35 A

Fig. 11. Clustering of web search results

3.6 Audio data

In certain audio analysis tasks, complete class labels rmaynknown but constraints can
be obtained directly from the domain. This occurs in the ernof clustering for speaker
identification in a conversation [Bar-Hillel et al. 2003] i often not possible to know
the number of speakers upfrontin a dataset, but it is eastetect if two speakers are sim-
ilar or different. In such a case, constrained clusteriragrisore natural analysis framework
than classification-based algorithms.

3.7 GPSdata

Constrained clustering of GPS data is used for lane-findisghown in Figure 12 [Wagstaff
et al. 2001b]. Data instances are represented by the (Ggjitm of a car on the road as
recorded from GPS traces; itis also known when a car chaages) but not which lane it

4Awww.vivisimo.com
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changes to. Figure 13 shows an example such a GPS trace velobranstance represents
a car and multiple instances can refer to the same car atatitf@oints in time.

Lane-level
navigation {(e.g.,
advance notification
for taking exits)

Lane-keeping
suggestions (e.g.,
lane departure
warning)

Fig. 12. Uses of GPS trace information.

In this domain, true clusters are very elongated and hotatlynaligned with the lane
central lines. Constraints in this case include must-liokstraints inferred from trace-
contiguity (that is, must-links between the same cars démiht positions in the trace)
and cannot-link constraints inferred from cars that areertban 4 meters apart in a di-
rection perpendicular to the car travel. The later is usadesthe maximum width of a
lane is 4 meters, hence cars more than this distance aparbmirsdifferent lanes. These
constraints have been shown to be very useful for findingtetasn the data [Wagstaff
et al. 2001b], which are useful for different tasks like ldeeel navigation (e.g., advance
notification for taking exits) and lane-keeping suggesti@ng., lane departure warnings).

Fig. 13. Clusters found in GPS data for lane finding withoumggonstraints.

4. BENEFITS AND PROBLEMS OF USING CONSTRAINTS

In this section we sketch and reference the well discusseefi® of using constraints and
spend more time discussing the less discussed problems.
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4.1 Benefits

There are two main reported benefits in the literature togusionstraints: a) Improved
accuracy at predicting extrinsic labels for all instancdsew generating constraints from
a few labeled data and b) Creating clusters with desirabbengdric properties. We now
discuss these two benefits.

Given a large set of unlabeled daXa= {x;...x,} and a small set of labeled data
L = {(Xut+1,Yut1) - - - (Xutl, Yustl) } it is common to randomly with replacement choose two
instances fronL. If the two instances’ labels agree (disagree), then gémeraust-link
(cannot-link) constraint between them. A typical methodnefasuring the performance of
a clustering algorithm is its accuracy on predicting exigriabels not given to it, in this
case the labels fof. This typically requires that the clustering algorithm lse k* where
k* is the number of different extrinsic labels. Measures suglthe Rand index [Rand
1971], normalized mutual information [Basu et al. 2004] ared the highest proportion of
instances with the same label in a cluster weighted by als&te are common measures.
The seminal work by Wagstaff and Cardie [Wagstaff and Ca2@i@0] which generated
constraints from a small set of the labeled data illustrataw/incingly that constraints im-
proved clustering accuracy. For the UCI Soybean, Pos anchiMom, data sets as little
as 40 constraints produced accuracy increases over 6%, h8%Q%6 respectively with
more constraints producing even better improvements. W&fgmnd collaborators experi-
ments reported thaverageaccuracy improvement over many constraint sets that wé shal
see masks interesting results. A well established relsitignthat as the number of con-
straints increases the accuracy increases has been shtamsiegly by many researchers
[Wagstaff et al. 2001a; Klein et al. 2002; Xing et al. 2003sBat al. 2004; Bar-Hillel
et al. 2005; Wagstaff 2002; Lu and Leen 2005; Davidson and Zad5a].

Observation 3 Constraints | mprove Average Case Accuracy. The performance of pre-
dicting an extrinsic label when averaged over many manyewifft constraint sets will
typically increase over not using any constraints.

Unusually, for the Tic-Tac-Toe dataset, for no amount ofstmints produced an in-
crease in cluster accuracy beyond a few percentage pdipt®dicting the extrinsic labels.
A plausible explanation given by the authors is that ugirgk* is not appropriate.

Xing and collaborators [Xing et al. 2003] show that when féag a distance function
for nine UCI data sets, even a small amount of constrainténaprove performance. Their
results also show that combining metric learning and cairgtsatisfaction (for just ML
constraints) provides better performance than just legrai distance metric. In all nine
data sets (which did not contain Tic-Tac-Toe) learning atlise metric from even a small
number of constraints produced improved accuracy.

A lesser discussed benefit is the ability to use constraintsdate clusters of desirable
shape. For example, Wagstaff et al. [Wagstaff et al. 200Lestiate that clustering GPS
trace data from automobiles using teneans algorithm produces clusters which are quite
different from the elongated clusters (representing Iatiext one would expect. However,
when clustering with cannot-link constraints between radtances greater than four me-
ters apart in the direction perpendicular to the road theltieg clusters have the desired
shape. The use of instance level constraints as geometrgtramts is further discussed
in [Davidson and Ravi 2005a; 2007]. A key insight of that wizlthat geometric proper-
ties can be represented by combinations of many instaneédewstraints. As Figure 1
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shows, a minimum separation constraint that any two ingtsirctwo clusters be at least
distance apart can be represented as a conjunction of Mltraamts between all instances
less than or equal B distance apart. Similarly, if a point must haveeariose-by neighbor
is equivalent to a disjunction of ML constraints. Furtherlwalong these lines will allow
specifying user-preferences in a more intuitive way thateance level constraints.

4.2 Problems

Though there have been much reported success with usingaiois and clustering, there
are two major limitations that are typically not discussethie literature. Hence we devote
more space discussing them in detalil.

4.2.1 Feasibility. The introduction of constraints into clustering changeschuster-
ing problem to beFind the best clustering that satisfies all constrainttowever, if the
constraints are poorly specified they may directly or inclise contradict each other in
such a way thamo assignment of instances to clusters satisfies all consiinés. For ex-
ample, there are clearly no clusterings for the constraititéx; , x2), CL(x, x2) regardless
of the value ok. Similarly for k = 2 and the constraintSL(x, X2), CL(%,X3), CL(X,X3)
there exists no feasible clustering. Formally for non-hiehical clustering théeasibility
problem is defined as:

Definition 1 (Feasibility Problem [Davidson and Ravi 2005a]) Given a data set X, collec-
tion of constraints C, a lower bound Kand an upper bound Kon the number of clusters,
does there exist a partition of X into k blocks such thatkk < K, and all the constraints
in C are satisfied?

The complexity results for constraints in various comhimatare in Tables | and Il
As we can see using CL constraints makes the feasibibil@plpm intractable and hence
clustering with constraints intractable. This is so sinfcénding a single clustering that
satisfies all constraints is difficult by necessity so williimg the best clustering that satis-
fies all constraints. The remainder of this section discufsasibility for non-hierarchical
clustering. The feasibility problem for hierarchical dieisng is discussed in section 7.

Observation 4 Knowing a Feasible Solution Exists, Does Not Help Us Find It. It should
be noted that the implications of these complexity resuhas even if there is a feasible
solution itdoes not mean it will be easy to find.

Both Wagstalff [Wagstaff 2002] and Davidson and Ravi [Dawidand Ravi 2007] show
that even with clustering witk = k* (hence guaranteeing a feasible solution) simple algo-
rithms such as COR-means (see section 5) will not converge due to the feasibitoblem
being intractable. Examples showing this phenomenon digure 4.2.1 and indicate that
adding CL constraints can quickly over-constraint thetelting under constraints problem
so that satisfying all constraints is difficult [DavidsordaRavi 2006].

4.2.2 Not All Constraint Sets are Useful.lhe assumption made by constrained clus-
tering algorithms is that the constraints are hints that heide the algorithm to the desired
partition. On this premise the more information (constig)igiven the greater the agree-
ment between the output partition and the desired partiimuld be. This has been shown
to be the casen averagdsee Table III).
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Constraint Conjunction | CNF version | DNF version | Choice Set
Must-Link P NP-complete P P
Cannot-Link | NP-Complete | NP-complete | NP-Complete P
Table I. Complexity of Feasibility Problem for Instancevieé Constraints

Constraint Complexity
8-constraint P
g-constraint P
Must-Link andd P
Must-Link ande NP-complete
dande P
Cannot-Link and | NP-complete
any other constrain{

Table Il.  Complexity of Feasibility Problems for Clusteedel and Combinations of Constraints
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Fig. 14. Graph of the proportion of times from 500 independeals the algorithm in Figure 17 converges
(y-axis) for various numbers of randomly chosen CL only ¢mists (x-axis).

Despite observation 3, Davidson, Wagstaff and Basu [Davigg al. 2006] show that
even if the constraints are noise-free and generated frergrtbund truth, then it is possi-
ble forindividual constraint sets tdecreaseclustering accuracy. This appears to disagree
with experimental results produced by others. This is soesihe experimental method-
ology adopted by others involveseraging the constrained clustering algorithm perfor-
mance over many constraint sets. The resultant learningesware produced by repeating
this process for different constraint set sizes, and thie@ypesult is that, on average, when
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Table Ill. Average performance (Rand Index) of four constd clustering algorithms, for 1000 trials with 25
randomly selected constraints. The best result for eadbrittign/data set combination is in bold. These results
confirm observation 3

Algorithm
CKM PKM MKM MPKM
Data None Const.| None Const.| None Const.| None Const.
Glass 69.0 69.4 43.4 68.8 395 56.6 395 67.8
lonosphere| 58.6 58.7 58.8 58.9 58.9 58.9 | 58.9 58.9
Iris 84.7 87.8 84.3 88.3 88.0 93.6 88.0 91.8
Wine 70.2 70.9 71.7 72.0 93.3 91.3 93.3 90.6

more constraints are provided, clustering accuracy irsgefWagstaff et al. 2001a; Klein
et al. 2002; Xing et al. 2003; Basu et al. 2004; Bar-Hillel et2805; Wagstaff 2002; Lu
and Leen 2005; Davidson and Ravi 2005a].

Observation 5 Individual Constraint Sets Can Have Adverse Effects. Some constraint
sets generated from the same ground truth set of labels tilawaluate the clusters may
decrease the accuracy at predicting those very labels.

Davidson, Wagstaff and Basu explore four different conséa clustering algorithms
on several standard clustering data sets. The four algosittepresent two major types of
constrained clustering techniques that attempt to satisfst or all constraints (see section
5) or learn a distance metric (see section 8). The four alyms used are described below:

—COP-KMeans (CKM) performs hard constraint satisfactagstaff et al. 2001a].

—PC-KMeans (PKM) performs soft constraint satisfactioarfpits some constraints to
be violated) [Basu et al. 2004].

—M-KMeans (MKM) performs metric learning from constrainibeit does not require that
the constraints be satisfied [Basu et al. 2004].

—MPC-KMeans (MPKM) is a hybrid approach, performing botft sonstraint satisfac-
tion and metric learning [Basu et al. 2004].

Table Il shows the results (averaged over 1000 constrais) $or each algorithm for
both unconstrained and constrained performance whengedwiith 25 randomly selected
constraints. We evaluated these algorithms on four UCI sketts [Blake and Merz 1998]:
Glass (= 214), lonospheren(= 351), Iris (h = 150), and Winerf = 178). Clustering
performance was measured in terms of the Rand Index [Rar].1A3 expected [Wagstaff
etal. 2001a; Xing et al. 2003; Basu et al. 2004], the averagstecained clustering accuracy
was typically greater than the average unconstrained acgurhe exceptionis MKM and
MPKM'’s performance on the Wine data set.

However, looking into each of these 1000 constraint setseretisat in Table IV that
the fraction of these 1000 trials that sufferadirop in clustering accuracywhen using
constraints is not insignificant. Since each trial involvibd same initialization of the
centroids for both the unconstrained and constraint erpets performance differences
are due to the use of constraints. These negative results fequently for many data
sets and algorithms and naturally motivate the questionhatyproperties occur in useful
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Table IV. Fraction of 1000 randomly selected 25-constragts that caused a drop in accuracy, compared to an
unconstrained run with the same centroid initialization.
Algorithm
Data CKM | PKM | MKM MPKM
Glass 28% 1% 11% 0%
lonosphere| 26% | 77% 0% 77%
Iris 29% 19% 36% 36%
Wine 38% 34% 87% 74%

constraint sets. Davidson, Wagstaff and Basu in their wag&uds two metrics that can be
used to identify useful constraint sets that improve chirsgeaccuracy.

4.3 Problem Work Arounds

4.3.1 Identifying Easy To Satisfy Sets of Constrair®sior to 2006, little attention was
given to understanding when clustering under constrawtilems became over-constrained
and what constitutes a useful set of constraints. Wagatéfstaff 2002] and Davidson &
Ravi [Davidson and Ravi 2005a] had earlier published shamsttion type effects when
running algorithms that attempt to satisfy all constra{ints COPk-means). For increas-
ing numbers of randomly generated constraints from labdkta the problem quickly
becomes over-constrained even with many random restatteadlgorithms (see Figure
4.2.1). In earlier work [Davidson and Ravi 2006] the ovenstwaining phenomenon due
to clustering under CL constraints was shown to be analotmgsaph coloring and that
COPk-means is effectively a greedy coloring algorithm.

Observation 6 Constrained Clustering and Graph Coloring.
Clustering to Satisfy CL constraints involves solving thepd coloring problem.

This result allows many results in graph coloring to be aggilie to clustering to sat-
isfy all constraints. For example, Brooks'’s theorem stétes coloring is easy (tractable)
when the number of color&k {n our situation) is greater than the maximum degree of the
graph. This is precisely the situation that occurs when G@Reans always converges in
experimental results[Davidson and Ravi 2006].

Observation 7 Brooks's Result For Constrained Clustering.
If k > (Most CL Constraints On One Instanden there will always be a feasible clus-
tering.

Furthermore, though observation 4 states that in genedihfina feasible solution is
difficult when constraint sets meet these sufficient coadgiwe can always generate fea-
sible solutions in polynomial time. For example, rathemtlsampling instance at random
to generate constraints, to ensure Brooks's condition reaf@that one instance is not part
of more thark CL constraints. The issue of how to generate easy consteists further
discussed in [Davidson and Ravi 2006].

4.3.2 ldentifying Useful Sets of ConstraintBavidson, Wagstaff and Basu created two
measures for a constraint sétformativenessndcoherenceo identify useful constraint
sets.
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Fig. 15. Top: lllustrative examples of (a) informative ctramts for COPk-means and (b) incoherent constraints,
for a Euclidean metric. ML constraints are solid lines; Clnswaints contain an ‘X’. Bottom: Three cases of
computing coherence by projected overlap of constrairaedb.

Informativenessrefers to the amount of information in the constraint set tha algo-
rithm cannot determine on its own. For example, in Figureal Bop-left), an algorithm
such as CORk-means would be biased towards grouping nearby instangesher and
separating distant instances, but the specified constredritradict this bias. The infor-
mativeness is estimated by using the constraints as a hultbst set and measuring the
algorithm’s ability to predict them. Given a set of congtitaiC and an algorithn¥, we
generate the best (lowest objective function) partitynby running.4 on the data set
withoutany constraints. The fraction of constraintgrhat are unsatisfied by is then
calculated:

I5(C) = % Lgc unsafc, P_q):| (1)

Coherencemeasures the amount of agreement within the constraintssilges, with
respect to a given distance metrib); Figure 15(b) (top-right) shows two constraints (ML
and CL) that are very close and parallel but this is a conttauti since a ML (CL) con-
straints indicate that the distance between the instammsw@arounding instances should
be small (far). The amount of agreement is measured by theiahod overlap between
constraints when represented as vectors as shown in Figufteottom). The authors re-
sults [Davidson et al. 2006] shows that highly informatived a&oherent constraint sets
almost always increased a wide variety of constrained etirgj algorithm’s accuracy at
predicting the labels the constraints were generated fremeasured by the Rand index
[Rand 1971].

5. PARTITIONAL CLUSTERING ALGORITHMS

The very first algorithms that made use of constraints weratians of the populak-
means iterative algorithm that attempt to find a set partitbthe data instances. Recall
that the purpose of thkemeans algorithm is to find the set partition that (locallyipim
mizes the vector quantization error (also known as the distg shown in equation 2. As
mentioned earlier, we use the notation in section 11.

k
VQE =  VQE )
2%
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Input: A data seiX = {x;...Xx} to clusterk: the number of clusters to find.
Output: A partition of X, My = {Tq UTK} into k clusters that is a local optima of the VQE (equation 2).

(1) Randomly generate cluster centrojds ... ., lk.
(2) loop until convergencelo
(@)for i=1to |X| do
(a.1) Assignx; to the nearest, in terms of distance to centroids, cluster.
(b) Recalculate centroids, . . .,k according to equation 5.
(3) Return with success.

Fig. 16. Clustering Using-means

VQE, = = 5 D(u;.x)? 3)
2 X €TTj

Thek-means algorithm is an iterative algorithm which in evepsattempts to further
minimize the distortion. Given a set of cluster centroidi& &lgorithm assigns instances
to the cluster with the@earestcentroid which of course minimizes the distortion. This is
Step 1 of the algorithm. We derive Step 2 which recalculatesctuster centroids so as
to minimize the distortion in the uni-variate (one dimemsit) setting for clarity. This is
achieved by taking the first order derivative of the error{&tipn 3) with respect to the
jt" centroid and setting it to zero and solving. A solution to thsulting equation gives
us thek-means centroid update rule as shown in Equation 5. The 1vaiitate solution to
equation will contain partial derivatives which can be éfiated if modeling assumptions
such as column independence from each other area are made.

d(VQE)

W= > x/Im (5)
X €TTj

Recall thatr is the set of instances closest to the centroid ofjtheluster. These two
steps are used in the stand&rtheans algorithm shown in Figure 16.

5.1 COP-k-Means

The COPk-means algorithm shown in Figure 17 can be seen to be two paation of the
k-means algorithm that incorporates conjunctions of cairsts. Firstly, the transitive clo-
sure over the must-linked instances is computed with thelteest connected components
being replaced by a super-instance whose co-ordinatehiaraverage of the connected
component’s and whose weight is equal to the number of ins&within it (lines 1 and
2). Secondly, rather than performing a nearest centroigjaseent (step 2a.1) in Figure
16), a nearedeasible centroid assignment is performed (lines 4a.1). When perifog
the nearest feasible centroid assignment step it is impoitaemember that the previous
set partition iorgottenand the new partition built upcrementally. Therefore, the first
instance assigned to a cluster aaver violate any constraints, even if it is involved in
many. Similarly if there is only one constraimt,(x,y), if x is assigned first thepis as-
signed to its closest feasible centroid and the assignnfenisonot revisted. In this way,
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Input: X: A set of data instances to clust€k,: set of pairwise must-link constraintS.: set of pairwise cannot-
link constraintsk: the number of clusters to find. Initially, the weight of eaoktance is 1.

Output: A partition of X, My = {m U} into k clusters that is a local optima of the VQE (equation 2). ahd al
constraints irC = C_ UC,. are satisfied.

(1) Compute the transitive closure of the €etto obtain the connected componef;,...,CG .
(2) For eachi, 1<i <r, replace all the data instances @G by a single instance with weigh€C|; the
instance’s coordinates are obtained by averaging the owies of the instances ©G.
(3) Randomly generate cluster centrojds .. ., k.
(4) loop until convergencelo
(@)for i=1to |X| do
(a.1) Assignx; to the nearest (in terms of distance to centroféskiblecluster.
(a.2) If assignment of; to any cluster always violates a constraint, then exit wailufe.
(b) Recalculate centroids, . .., i taking into account the weight of the instanceinsing equation
5
(5) Return with success.

Fig. 17. Clustering under Constraints Using C&heans

we can view this algorithm as greedily trying to attempt dansting a feasible clustering
with no backtracking of previous instance assignments.

Natural variations of trying to satisfy all constraints arm@) attempting to satisfy as
many constraints as possible while ignoring noisy or inappate constraints and b) hav-
ing degrees of belief/importance associated with eachtins Both can be viewed as
frameworks that allow trading of satisfying lesser impattaonstraints. We now discuss
the distance based formulation of this framework and latpradabilistic framework in
section 9. Both algorithms have been shown to be useful atiilgg noisy constraints but
if all constraints are useful they should perform similadyCOPk-means.

5.2 Algorithms With Distance Penalties

The COPk-means algorithm (see section 5.1) can improve the accuapyedicting an
extrinsic label and also shape clusters into desirablegotiowever, when constraints are
generated from labeled data there is the possibility obdisel noise and hence generating
a cannot-link or must-link constraint between two instatb&at should not be. Similarly, if
constraints are generated by domain experts, some cartstraay be ill-specified or even
contradictory. The algorithms in this subsection attempghore noisy or inappropriate
constraints by allowing constraints to be left unsatisfiathlith a penalty. This involves
a trade-off between finding the best clustering and satigfgis many constraints as possi-
ble. To achieved this, the penalty of ignoring a constrainstie in the same units as the
measure for how good the clustering of the data is. The CV@Egrained vector quanti-
zation error) algorithm discussed in this section useadist as the fundamental unit and
the PKM (Pairwise-constrainddMeans) algorithm discussed later uses probability.

5.2.1 CVQE. The core idea behind the CVQE algorithm is to penalize cairdtwio-
lations using distance. If a must-link constraint is vieththen the penalty is the distance
between the two centroids of the clusters containing theibstances that should be to-
gether. If a cannot-link constraint is violated then thegignis the distance between the
cluster centroid the two instances are assigned to andhdest@ the nearest cluster cen-
troid. These two penalty types give rise to a new objectivefion which is termed the
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Constrained Vector Quantization Error (CVQE) shown in diure6.

D(kj,%)? + (6)

T

CVQE =

m

X

D(k;, “g(Xa))z

X €T, (X, Xa) €C=,0(X ) #0(Xa)

D(Hj, M(gt)))?
X €T, (X %) €C,0(% ) =0(Xa)

NIk NP NP

These penalties were found by experimentation to be usetlbthers [Pelleg and Baras
2007] (see next section) have improved upon these.

The first step of the constrainéemeans algorithm must minimize the new constrained
vector quantization error. This is achieved by assignistances so as to minimize the new
error term. For instances that are not part of constraihts,itvolves as before in regular
k-means, performing a nearest cluster centroid calculatiBor pairs of instances in a
constraint, for each possible combination of cluster assignts, theCVQE s calculated
and the instances are assigned to the clusters that migimateases th€VQE This
new assignment step is shown in equation 7 and requires dt@(ik%) calculations per
assignment.

CVQE: Instance Assignment Rule

¥x ¢ C_UC,: argminiD(x;, 1j)?
¥(Xa, Xo) € C— : argmin ;D (Xa, 1) + D(Xo, j)* + —8(a, b) * D(k;, 14)? (7)
V(Xa,Xb) € C : @rgmin, jD(Xa, k)% + D (%o, ) + 8(a, b) * D(y, bngy))

The second step is to update the cluster centroids so as iminénthe constrained
vector quantization error. To achieve this we take the firdeoderivative of the error, set
to zero, and solve. Solving fqu, we get the update rule shown in equation 8.

CVQE: Centroid Update Rule

 Yxem X+ Y xa) e g0x) £a0xa) Pata) T 2 06.0@)C,.006)=g0) Mh(g(xa))]

Mj = ) (8)
M3+ Sxem. (3 xa)eCo,g0x) 200) 1T T sy, (4.50) €C.. 0% )#0(%a) 1

The intuitive interpretation of the centroid update ruldghat if a must-link constraint
is violated, the cluster centroid is moved towards the ottiester containing the other
instance. Similarly, the interpretation of the update fflalea cannot-link constraint viola-
tion is that cluster centroid containing both constrainestances should be moved to the
nearest cluster centroid so that one of the instances eslgngiets assigned to it, thereby
satisfying the constraint.
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5.3 LCVQE: An Extension to CVQE

Pelleg and Baras [Pelleg and Baras 2007] create a variafitinecassignment and up-
date rules for CVQE that they term LCVQE. Though there alfponiwas not derived to
minimize a particular objective function, it showed impealvperformance over LCVQE
on several standard data sets both in terms of accuracy arihme. The two main exten-
sions made by this algorithm over CVQE are: a) not computigrssiblek? assignments
but only a subset of reasonable assignments and b) Chamgimpghalty for a cannot-link
constraint to be the distance from the most outlying (witkpext to the cluster centroid)
instance in the CL constraint to the cluster centroid neétres

The assignment step shown in equation 9 and the centroideipda is shown in equa-
tion 10.

LVCQE: Instance Assignment Rule

¥x ¢ C_UC,: argminD(x;, j)?

V(Xa, Xp) € C= : @rgmini_g(x,), j=g(x)].li=j=g(xa)].li==g(x)
D(Xa, 1i)? + D (Xo, Hj)? + —8(a, b) + D(pj, pi)? 9)
V(Xa,Xp) € Cz : ArgMINi_g(xy), j=g(x,)],[D(¥a,0(Xa)) <D (X (%)) i=] =g(¥a)]

D(Xa, 1)+ D(Xo, 1j)? + 8(a, b) * D(W;, Kg(x,) )

This modified assignment rule has the same must-link peaalyVQE except that not
all k possible cluster assignments are checked. The three catidria checked are to
place instances andx;: a) in their closest clusters respectively, b) togethehmdluster
closest tox; and c) together in the cluster closestxo The cannot-link penalty is the
distance between the cluster centroid the instances aignadsto C.) and the centroid
nearest to the most outlying of the pair of points with regarthe distance tQ..

LVCQE: Centroid Update Rule

W= EXiET[j [Xi + 2 (% Xa)€C— .0(%)#£0(xa) Mg(xa) T 2(% Xa)€C,0(%)=0(%a),D(%)<D(Xa) Ug(xa)]
| =
W]+ Tsem,(s.s0eC- a(s)£as) 1T Tsep (s.50C, a(s) 29(s0 1

(10)

54 PKM

The PKM algorithm allows constraints to be violated durigstering, as does CVQE
but enforces a probabilistic penalty of constraint viaatvia use of a prior. The algo-
rithm uses a hidden Markov random field (HMRF) approach tcstroiet a prior such that
those clusterings (set partitions) with fewers constraiokations are more probable apri-
ori than those with many. PKM is a special case of the HMRF-EMgalgorithm, which
is described in detail in the Section 9 — PKM is an ablation MRF-KMeans, doing
constraint enforcement but not performing distance leayni
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6. INITIALIZING AND GENERATING CONSTRAINTS
6.1 Initialization with constraints

Good initial centroids are essential for the success oftfmral clustering algorithms such
as KMeans or EM [Basu et al. 2004]. Basu and collaboratorats® stage initialization
process (Neighborhood inference and Cluster selectioggetajood centroids from both
the constraints and the unlabeled data.

Neighborhood inference:The transitive closure of the must-link constraints is tat@
get connected components consisting of instances corthiggimust-links. Let there be
connected components, which are used to createighborhoods.

Cluster selection: TheA neighborhood sets produced in the first stage are useditd-init
ize the algorithm. I\ =k, the desired number of clustedscluster centers are initialized
with the centroids of all th& neighborhood sets. K < k, A clusters are initialized from the
neighborhoods, and the remainikg A clusters are initialized with instances obtained by
random perturbations of the overall global centroid, fefileg the methodology of Dhillon
etal. [Dhillon etal. 2001]. IA > k, a weighted variant of farthest-first traversal [Hochbaum
and Shmoys 1985] is applied to the centroids of Xheeighborhoods, where the weight
of each centroid is proportional to the size of the corresiirmymneighborhood. Weighted
farthest-first traversal selects neighborhoods that dagively far apart as well as large in
size, and the chosen neighborhoods are set asittittal cluster centroids.

Overall, this two-stage initialization procedure is ahbietéake into account both unla-
beled data and constraints to obtain cluster represeesatiat provide a good initial par-
titioning of the data set. The authors show that this initiaf procedure with constraints
and then running regular unconstrainedtheans produces as good cluster accuracies (at
predicting an extrinsic label) than COPmeans.

6.2 Active acquisition of constraints

In some domains the ability to choose which pairs of instaioegenerate constraints on
is available. That is, two instances can be nominated andraal®is asked what con-
straint exists between the two. This situation is partidulanportant when constraints
are obtained by querying a user or domain expert since gattinstraints on pairs of data
instances can be an expensive process. In order to get paipshstraints that are more
informative than randomly chosen constraints, [Basu é@04] proposed a 2-phase active
learning scheme for selecting pairwise constraints byrasflieries in an interactive user-
driven framework. The goal is to ask the minimal number ofrégseto get constraints,
which, when used to cluster the data will give a better canséd clustering of the data
than that obtained using randomly chosen constraints. ingegood initial centroids is
critical for the success of greedy algorithms such as KMeassthe motivation here is to
get as many instances as possible for each cluster (propattio the actual cluster size)
by asking pairwise queries, so that the algorithm is irited from a very good set of cen-
troids. The proposed active learning scheme of Basu andhmnihtors has two phases:
ExPLORE and GNSOLIDATE. We can view the first phase as finding the appropriate un-
derlying skeleton of the underlying clusters by finding app@i each of thék clusters. The
consolidate phase then tries to collect more instancesaitin eluster so that the centroid
estimate for each cluster better matches the true centfeicbaluster.

The ExPLORE phase explores the given data using farthest-first travffgehbaum
and Shmoys 1985] to gétpairwise disjoint non-null neighborhoods as fast as pdssib
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with each neighborhood belonging to a different clustehmunderlying clustering of the
data. Note that even if there is only one instance per neigittmal, this neighborhood
structure defines a correct skeleton of the underlying ehirsj. EXPLORE continues till
the algorithm runs out of queries kipairwise disjoint neighborhoods have been found. In
the latter case, active learning enters the consolidati@se.

If end of the EXPLORE phase is reached without running of out queries, then at leas
one instance has been obtained per cluster. The clustetskelbtained from ErPLORE
is used to initializek pairwise disjoint non-null neighborhooqslp}‘g:l. Then, given any
instancex not in any of the existing neighborhoods, at m@st- 1) queries are asked by
pairing x up with a member from each of the disjoint neighborhobigsto find out the
neighborhood to whickx belongs. This principle forms the second phase of the active
learning algorithm which is called thedBisOLIDATE phase. In this phase, the correct
cluster label ok are obtained by asking at md&t— 1) queries. The queries will be formed
by taking a instancg from each of the neighborhoods in turn and asking for thellabe
the pair(x,y) until a must-link is obtained. Either a must-link reply istaimed in(k — 1)
queries, or a cannot-link replies for tiile— 1) queries to thék — 1) neighborhoods. It is
then inferred that the instance is must-linked to the regineighborhood. The details
of ExPLOREand GONSOLIDATE are given in Figures 18 and 19.

Algorithm: EXPLORE
Input: Set of data instances X = {x;}]", access to an oracle that answers pairwise
queries, number of clusters k, total number of queries Q.
Output: A\ < k disjoint neighborhoods N = {Np};‘:1 corresponding to the true
clustering of X with at least one instance per neighborhood.
Method:
1. Initialize: set all neighborhoods N, to null
2. Pick the first instance x at random, add to Ny, A « 1
3. While queries are allowed and A < k
x «instance farthest from the instances in the existing neighborhoods N
if, while pairing = with a instance from each existing neighborhood and querying,
it is found that x is cannot-linked to all existing neighborhoods
A «— A+ 1, start a new neighborhood N, with z
else
add z to the neighborhood with which it is must-linked

Fig. 18. Explore algorithm

Active learning for constrained clustering has not beedistlias extensively as active
learning for classification, which is a long-studied prablevhere different principles of
guery selection have been studied, e.g., reduction of tr@orespace size [Freund et al.
1997], reduction of uncertainty in predicted label [LewiglaGale 1994], maximizing the
margin on training data [Abe and Mamitsuka 1998], findinghhigriance data instances by
density-weighted pool-based sampling [McCallum and Nid&®8], etc. In the clustering
setting, [Hofmann and Buhmann 1998] consider another moiattive learning — they
have incomplete pairwise similarities between instanaged, their active learning goal is
to select new data, using expected value of informatiomedéd from the existing data,
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Algorithm: CONSOLIDATE
Input: Set of data instances X = {x;}_,, access to an oracle that answers pairwise
queries, number of clusters k, total number of queries @), k disjoint neighborhoods
corresponding to true clustering of X with at least one instance per neighborhood.
Output: k disjoint neighborhoods corresponding to the true clustering of X with
higher number of instances per neighborhood.
Method:
1. Estimate centroids {us}%_, of each of the neighborhoods
2. While queries are allowed
2a. randomly pick a instance x not in the existing neighborhoods
2b. sort the indices h with increasing distances ||z — pp||?
2c. for h=1tok
query x with each of the neighborhoods in sorted order till a must-link is
obtained, add x to that neighborhood

Fig. 19. Consolidate algorithm

such that the risk of making wrong estimates about the trukedying clustering from the
existing incomplete data is minimized. [Klein et al. 200Bjcaconsider active learning in
constrained clustering, but instead of making instangetigueries they make cluster level
queries, i.e., they ask the user whether or not two whold@isshould be merged.

7. AGGLOMERATIVE HIERARCHICAL CLUSTERING ALGORITHMS

Hierarchical clustering algorithms are used extensivelsgnany areas of science that wish
to capture the natural hierarchical structure in data ssdia generation of phylogenetic
(evolutionary) trees. These algorithms differ from theagithms in section 5 by allow-
ing the user to choose a particular clustering granulafiythermore, in many domains
clusters that naturally occur within other clusters are nwm. Consider a hierarchy of
text documents. The top level would of course be articles,néxt divides the articles
into sports, business, politics, the next divides the spdrtster into baseball, basketball,
hockey etc.

Hierarchical clustering algorithms are typically detenmtic and create dendrogram,
a tree structure containingblock set partition for each value kbetween 1 antX|. The
popular agglomerative algorithms are easy to implementi@g lbegin with each instance
in its own cluster and progressively join the closest clisste reduce the number of clus-
ters by 1 untik = 1. The basic agglomerative hierarchical clustering atbariis shown in
Figure 20. Hierarchical clustering algorithms use a varadtdistance measures between
clusters. Typically measures include: a) Centroid: théatlise between cluster centroids,
b) Single-Linkage: the distance between the closest instaim the two clusters and c)
Complete-Linkage: the distance between the furthestries&in the two clusters. How-
ever, compared to non-hierarchical algorithms that tylpidaave O(n) time complexity,
typical implementation of agglomerative hierarchicalaithms use€(n?) time, though
due to their deterministic nature agglomerative algoritare typically only run once.

In their paper Davidson and Ravi perform a complexity arialgéthe feasibility prob-
lem for the hierarchical case. This problemsignificantlydifferent from the feasibility
problems considered in previous work [Davidson and RavB&()8ince the value df for
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Input:  SetX = {x1, X2, ..., X} of instances, A distance functiob(TT, 17} ) between two groups of instances.
Output: Dendrogram, for eachk, 1 <k < n=|X].

(1) m={x},1<i<n. Dendrogram= {1y, Te, ..., Th}.
(2) for k=n—1 downto 1 do
(a) Let(a,b) = argmin; ;) {D(T, 1) : 1<i<j<k+1}.
(b) Obtain Dendrogragfrom Dendrogram, ; by mergingr, into 1, and then
deletingTy,.
end for

Fig. 20. Standard Agglomerative Clustering Algorithm

hierarchical clustering is not given. Formally:

Definition 2 Feasibility problem for Hierarchical Clustering (FHC) Instance: A set X of

nodes, the (symmetric) distancéx)y) > 0 for each pair of nodesjand x in X and a
collection C of constraints.

Question: Can X be partitioned into subsets (clusters) so that all tiestraints in C are
satisfied?

The complexity results (Table V) for this problem are quitéfedent than the non-
hierarchical case since it is more relaxed in that bound& are not given. However,
we see that another issue is raised: namely that of dead-Bedsl-ends can be explained
by the following case: If we are given a feasible clusterinthvknax clusters and even
if we know there is another clustering willy,i, clusters then algorithms that simply join
the two closest clusters may yield a feasible but “dead-sotiition withk clusters where
kmax < K < kmin. Figure 21 gives an example of a situation leading to a dealdf@ six
points. The closest cluster join strategy will jdihwith D and therDE with F but there
are no further joins possible due to constraints causinglt@rithm to terminate fok = 4.
But there exists other clusterings with= 3 such agC,BE, ADF}. Therefore, traditional
nearest joins algorithms may create dendrograms that acemplete. How to overcome
dead-ends is an important open question.

E
D A

B C

Fig. 21. Example of CL constraints (lines) that lead to dead- Note the instance positions in figure reflect
distances between points, for example poDtandE are the closest.
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Constraint Unspecifiedk | Unspecifiedk - Dead-ends?
Must-Link P No
Cannot-Link P Yes
d-constraint P No
g-constraint P No
Must-Link andd P No
Must-Link ande P No
dande P No
Must-Link, Cannot-Link, | NP-complete Yes

dande

Table V. Results for Feasibility Problems for Unspecifiethierarchical clustering). Compare with Tables | and
1.

Davidson and Ravi explore changing agglomerative hiefeatblustering algorithms to
satisfyall instance-level and cluster-level constraints as disclgsthe next sub-section.
However, hierarchical clustering has a long history of gsipatial constraints to find spe-
cific types of clusters and avoid others [Yang et al. 2001a#aiet al. 2000] the instance
level constraints we describe can specify a variety of apatnstraints (i.e. Figure 1)
but also constraints on pairs of instances, features estarioe-level constraints have also
been used to learn a distanmatrix for agglomerative clustering [Klein et al. 2002] (dis-
cussed in a later sub-section); but the agglomerative itlhgos are themselves not altered
to satisfy the constraints.

7.1 Agglomerative Algorithms To Satisfy All ML and CL Constraints

The change to the basic agglomerative algorithm (Figuret@®atisfy all ML and CL
constraints is shown in Figure 22. The algorithm starts gfitbmputing the transitive
closure and rather than starting withclusters (one for each instance) there [a¢&| + r
clusters wheréX1| is the number of instances not involved in a ML constraint aiite
number of connected components. Joins are then perforntbdsie closest two clusters
whose join does not result in a constraint violation are radrgince the feasibility results
in Table V show that when using most combinations of constsaihis algorithm will
always find a feasible solution, the same table shows thatawelgorithm may not always
generate a full dendrogram. That s, there may be anothiessafrjoins (beyond the closest
feasible combination) that will give a more complete/fudhdirogram.

7.1.1 Using ayConstraint To Improve Run-time Using the Triangle InegyalDavid-
son and Ravi also introduce a new constraintytbenstraint and illustrate how the triangle
inequality can be used to further improve the run-time penance of agglomerative hi-
erarchical clustering using a centroid distance functibmey show though no worst-case
improvement occurs, empirically the constraint does imprperformance and provide
a probabilistic expected performance improvement usikgMtarkov inequality. There
exists other work involving the triangle inequality for nbirerarchical clustering [Elkan
2003] as well as for hierarchical clustering [Nanni 20051 beither make use of con-
straints.

They constraint allows specifying how geometrically well segtad the clusters should
be and is related to th&constraint in Figure 1.
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ConstrainedAgglomerative(X_,C.) returns Dendrogram, i = Kmin ... kmax Such that each level in the den-
drogram satisfies all constraints.

Notes: In Step 5 below, the term “mergeable clusters” is used to @eaair of clusters whose merger does not
violate any of the given CL constraints. The valud af the end of the loop in Step 5 gives the valudgf.

(1) Construct the transitive closure of the constraint€in(see [Davidson and Ravi 2005a] for an algorithm)
resulting inr connected componenié;, My, ..., M;.

(2) Iftwo instancegx;,x;} are both a CL and ML constraint then output “No Solution” atwps

(3) LetXy=X—(U_1Mi). Letkmax=r+|Xq].

(4) Construct an initial feasible clustering wikty,ax clusters consisting of the clustersM;, ..., M; and a
singleton cluster for each instanceXn. Sett = kmax.

(5) while (there exists a pair of mergeable clustetk)
. (a) Select a pair of clusterg andTy, according to the specified distance criterion.
. (b) Mergerty into T, and removey. (The result iDendrogram._1.)
. (ot =t-1.
endwhile

Fig. 22. Agglomerative Clustering with ML and CL Constraint

IntelligentDistance(y, M = {m,...,Tk})
returns D(x;,xj) Vi, j.

(1) fori=2to n—1 Dy, x =D(m,) endloop
(2) fori=2ton-1
for j=i+1ton—1 Dy x = |Dy,x — Dy
if Dx:,xj > ytheani,xj =vy+1; donotjoin eIseDX‘.}xj =D(x,xj)
endloop
endloop

(3) retunDy x;, Vi, j.
Fig. 23" Function for Calculating Distances Using th@onstraint and the Triangle Inequality.

Definition 3 (They Constraint For Hierarchical Clustering) Two clusters wieageometric
centroids are separated by a distance greater th@annot be joined.

Recall that the triangle inequality for three instanegb, c refers to the expression
|D(a,b)—D(b,c)| <D(a,c) <D(a,b)+D(c,b) whereD is the Euclidean distance function
or any other metric function. We can improve the efficiencyra hierarchical clustering
algorithm by making use of the lower bound in the triangleguality and they constraint.
Let a,b,c now be cluster centroids and we wish to determine the cldg@stentroids to
join. If we have already computdd(a,b) andD(a,c) and the valueD(a,b) — D(a,c)]
exceedy, then we need not compute the distance betweandc as the lower bound on
D(b,c) already exceedgand hencé andc cannot be joined. Formally the function to
calculate distances using geometric reasoning at a pktidendrogram level is shown
in Figure 23. Central to the approach is that the distancerdrt a central instance)(
(in this case the first) and every other instance is calcdlatherefore, when bounding
the distance between two instanckx] we effectively calculate a triangle with two edges
with know lengths incident oa and thereby lower bound the distance betwbemdc.
How to select the best central instance and the use of miltiphtral instances remains
future important research though some progress is being fitNehni 2005].

If the triangle inequality bound exceedsthen we save making floating-point power
calculations since the data instances ang dimensional space. We have no reason to be-
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lieve that there will be at least one situation where thegla inequality saves computation
in all problem instanceshence in the worst case, there is no performance improvemen
But in practice it is expected to occur and Davidson and Ravivd an expected case
improvement bound using the Markov inequality.

Observation 8 Expected Case | mprovement Using y Constraint. They constraint states
that two clusters whose centroids are more thadistance apart should not be joined
together. For an data set of size n, the number of distanceutations to complete a full
dendrogram will be @?). If y= cp wherep is the average distance between any two

instances in the data set then the expected number of ctitmsawill be Qn? — g—i).

To illustrate this in example, consider the 150 instanceSIRata setr=150) where
the average distance (with attribute value ranges all beorghalized to between 0 and
1) between two instances is 0.6; thatgs= 0.6. If we state that we do not wish to join
clusters whose centroids are separated by a distance igtieate3.0, thery = 3.0 = 5p.
By not using they constraint the total number of computations is 22201. Butibing
the y constraint on average (over all data sets whose averag&ipaipoint distance is
0.6) the number of computations that are saved is at Iéabtence the saving is about
10%. Davidson and Ravi then go onto show thatytlwenstraint can be used to improve
efficiency of the basic agglomerative clustering algoriflemmany data sets and the actual
performance improvement typically exceeds the bound gilierMarkov inequality is a
weak bound.

7.2 Changing the Distance Matrix

The work on Klein and collaborators [Klein et al. 2002] exgl®the problem of changing
the distance matrix to reflect the constraints. In this warka, b)(c.(a,b)) indicates that
only instances andb should be made closer together (further apart). Later itice®)
we shall discuss work that learns a distanugtricso as to change the distance betwaen
andb and instances surrounding these two instances.

Learning a distance matrix is a multi-step pre-processiggrahm that produces a dis-
tance matrix D’) that can be used with any hierarchical clustering algorithThe al-
gorithm is shown in Figure 24. The first two steps create a nistanice matrix using
the Euclidean distance between the points and in step thake adl must-linked instances
have a distance of 0. However, this change ruins the triangtguality and hence the resul-
tant distance matrix does not represent a metric. Step fowects this by performing the
shortest path calculations but this step ta@¢s?) time. Finally, the last step (which can
invalidate the triangle inequality) is to make the canniokéd instances far apart. Klein
and collaborators argue that due to the entailment proérGL constraints (see 2) that
the triangle inequality is effectively maintained. Coresid four instance data set (X2, X3
andxg), two constraintg_ (xg,xz) andc.(x1,Xs) and the distance matrix:

0

3
D=1¢
1

NWOW
o wo
O UIT NP

After step three the modified distance matrix looks like:
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CreateDistanceMatrix
input: A set of must-linkC— and cannot-linkC. constraints, a set of data instaneés
output A modified distance matri®’ (x;, ;) Vi, j.

(1) Calculate the Euclidean distance between all instaagdsstore in matriD; ; = D = D(x;, X} )Vi, j
(2) Initialized modified distance matriR’ with D

(3) Veo(x.,xj)€C.:D{j=Dj; =0

(4) %% Djj =Dj; = ShortestPatfi, j) usingD’

(5) Vci(%,Xj) €Cy.:Djj=Dj;=maxD)+1

Fig. 24. Algorithm for Creating a New Distance Matrix for Alggnerative Algorithms.

D' =

m o oo
N WO o
X oTowo
(@6 S

After step four the modified distance matrix looks like:

After step five the modified distance matrix looks like:

0036
, o031
D=13305

6150

A valid criticism of this approach is that step five ruins thiarngle inequality that step
four fixes up. However, the authors argue that the inequiligffectively enforced as the
following example indicates. Clearly the distari2éx;, x4) violates the triangle inequality
since it is larger thanD(x1,x3) + D(x3,X4) | indicating that eitheD(x1,x3) or D(x3,X4) is
too large. Now consider at the first iteration the hierarahagorithm will joinx; andxa,
but it will not join this new cluster txy since it is too far away but instead and hence
indirectly we have madB(xz,x3) smaller.

8. LEARNING DISTANCE FUNCTION ALGORITHMS

In this section, we will discuss two popular approaches afigisonstraints for distance
metric learning in constrained clustering. While both feroast the problem of learning
a distance metric from constraints as an optimization gnoblthe former uses a linear
algebra formulation while the later a probabilistic forratibn.
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8.1 Generalized Mahanabolis Distance Learning

[Xing et al. 2003] proposed a formulation for learning a paedrized Mahanabolis metric
from ML and CL constraints by exploiting the forah(xz,xp) = \/(xl—xz)TA(xl—xz)
where the matriXA represents the distance matrix. A mattix= | wherel is the identify
matrix leads to the Euclidean matrix. The authors propokeddllowing semi-definite
program (SDP) for the problem:

min Y x-xlla =min Y (x—x) AKX —x) (11)

(X, Xj)eML A (%i,Xj)eML
st., Z [[% —Xj[]la > 1,LA>0
(xi,Xj)eCL

whereg|x — Xj||a = (X — X)) TA(X — ;)

Minimizing Equation 11 produces a matix(which represents the distance metric as a
transformation on the original space) such that the mustitistances are brought closer
together, while ensuring that the cannot-link instanceskapt apart and the underlying
metric still satisfies the triangle inequality by ensurif@ttA is positive semi definite.
Equation 11 can be minimized by minimizing the alternaterfalation shown in equation
12 since the logarithm of second term will be minimized whersigreater than 1 as
required in equation 11.

min Y [x-xlla=log 3 [x—xlla (12)
(xi,xj)eML (xi,xj)eCL

where|x —xj[|la = (X —x})TA(X —X;)

If Ais restricted to being a diagonal matrix this term has theelienf being easily
differentiable and convex, hence, Newton-Raphson can éd tesfind the global opti-
mum. This is effectively learning a generalized Mahanabdistance where the entay;
stretchesd j > 1) or compressesy; < 1) theit" dimension. IfA=| wherel is the identify
matrix then the learnt distance matrix is the Euclidearadise.

However, Newton-Raphson cannot be useél i§ not restricted to being diagonal. In-
stead [Xing et al. 2003] proposed an equivalent formulatiEquation 11 shown in equa-
tion 13.

maxg(A) = > [Ixxilla (13)
(%,%j)eCL

st.,f(A) = ; 1%, X[[RA<1—C (14)
(%,%j)EML
A-0—-0C

[Xing et al. 2003] optimized Equation 13 using an alternateximization algorithm,
that had 2 steps: (1) gradient ascent — to optimize the dbged®) iterated projection
algorithm — to satisfy the inequality constraints. [Bie &t2003] used a variant of Lin-
ear Discriminant Analysis (LDA) to find the a Mahanabolis rieefrom constraints more
efficiently than using an SDP.
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8.2 Kernel Distance Functions Using AdaBoost

[Hertz et al. 2004] proposed a method for distance metrimieg by using boosting in
the product space of the input data spceThey posed the constrained metric learning
problem as learning a function that took as input the instane the product spacé x

X, and output binary labels corresponding to must-link (19 @annot-link constraints
(0). They used boosting on the product space to learn thistifum where boosting is
a standard machine learning tool that combines the strepfgém ensemble of “weak”
learners (with low prediction accuracy) to create a “strolegrner (with high prediction
accuracy) [Freund and Schapire 1996]. The overall flow of DigBoostalgorithm of
[Hertz et al. 2004] is outlined in Figure 25. In the first step;onstrained weighted EM
algorithm is run on the data set and constraints, to fit a Gamddixture Model (GMM)
over weighted unlabeled data and the given constraintsk&pelifference of constrained
EM from ordinary EM is the E-step, which sums the assignmeobabilities only over
assignments that comply with the constraints. The outpuhefGMM is treated as a
“weak” learner and is used to learn a “weak” distance fungtwhere the distandgxs, x2)
between two instanceg andx; is computed from their MAP assignment in the GMM as
follows:

h(x1,x2) = miaxp(yl =i|9)- miaxp(yz =i|O)

The DistBoostalgorithm computes the weights of the “weak” distance fioms using
Boosting, and updates the weights on pairs of instanceshndre translated to weights
on individual data instances. This is again passed backeanut of the GMM-EM
algorithm, and the process is repeated for multiple steps.

9. SATISFYING CONSTRAINTS AND LEARNING DISTANCE FUNCTION ALGORITHMS

As mentioned in Section 2, there have been some algorithat¢rihto both enforce con-
straints and learn distance functions from constraint@éstitional clustering algorithms.
In this section we will outline an example of such algoritiwjch uses the framework of
a generative probabilistic model, the Hidden Markov Randtetd (HMRF) [Basu et al.

2004].

9.1 HMRF Model

The Hidden Markov Random Field (HMRF) is a probabilistic geative model for semi-
supervised constrained clustering, consisting of thefalhg components: (1) anbserv-
ablesetX = (xi,...,X)) of random variables, corresponding to the given data imstsin
X; (2) anunobservabléhidden) setY = (y1,...,yn) of random variables, corresponding
to cluster assignments of instancesXny; € (1,...,K); (3) anunobservablghidden)
set of generative model paramet&s which consists of distortion measure parameters
A (typically a matrix or vector of weights) and cluster repetativesM = (U, ...,k ):

© = {A,M}; (4) anobservableset of constraint variableS = (c12,€13,...,Cn-1n). Each
cij is a tertiary variable taking on a value from the setl,0,1), wherecj; = 1 indicates
that (xi,X;) € CuL, ¢ij = —1 indicates thafx;, ;) € CcL, andc;; = 0 corresponds to pairs
(xi,X;) that are not constrained. The constraints are accompagiaddwociated violation
costsW, wherew;j represents the cost of violating the constraint betwednamtes; and

Xj if such a constraint exists. Fig. 26 shows a simple exampEndfiIMRF having five
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Fort=1,...,T
Input: weighted (1) Learn constrained (2) Generate “weak”
data-points + eq. GMM distance function
constraints

o o

fxy, 3, ) = 02

o
. © (A Mmm)=07 )

(3-4) Compute “weak”
distance function

@ weight a,
-
®e
o
O g0
(7) Translate weights on
pairs to weights on g (5-6) Update weights
data points Opn on pairs of points

T
Final distance function: D(xt_,xj) = thla tht (xi,xj)

Fig. 25. DistBoost algorithm

Hidden MRF

Must-link €5 = 1)

", Cannot-link
\/ (Ca=-1)

A Mustlink (¢4 = 1) 3

\ Y5 =3 N
0} ()

Ya=1

Observed data

Fig. 26. A Hidden Markov Random Field

data instances partitioned into three clusters, while maky respecting three pairwise
constraints.

The joint probability ofX, Y, and®, givenC, in the described HMRF model can be
factorized as follows:

P(X,Y,0[C) = P(8|C) P(Y|©,C) P(X|Y,0,C) (15)
The graphical plate model [Buntine 1994] of the dependeeteden the random vari-

ables in the HMRF is shown in Figure 27. The prior probabitify® is assumed to be
independent o€. The probability of observing the label configuratigrdepends on the
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©)
5%

Fig. 27. Graphical plate model of variable dependence

constraintsC and current generative model paramet®rs Observed data instances cor-
responding to variableX are generated using the model parame@&itsased on cluster
labelsY, independent of the constrair@s The variables< are assumed to be mutually
independent: eack is generated individually from a conditional probabilitistlibution
P(Xlyi, ©).

[Basu et al. 2004] show that the joint probability on the HMRFequivalent to maxi-
mizing:

Pix.v.00) = P@) (o= 3 wi.i) ) ([peme)) a9

cjeC i

|
They chose the following Gibbs potential fof\RO,C):

P(Y|©,C) = %exp(—Zv(i,j)L (17)
1)

where each constraint potential functiefi, j) has the following form inspired by the
generalized Potts model [Kleinberg and Tardos 1999]:

wij fmc (i, ) if cij = 1 andy; #y;
v(i,j) = ¢ WjfcL(i,]) if cj =—1andy; =y; (18)
0 otherwise
The joint probability formulation in Eq.(16) provides a geal framework for incorpo-
rating various similarity functions in clustering by chawga particular form op(xi|yi, ©),
the probability density that generates thb instanceg from clustery;. [Basu et al. 2004]

restrict their attention to probability densities from #seponential family, where the con-
ditional density for observed data can be represented sl

p(xilyi,©) = % exp(—D(xi, by,)), (19)

whereD(x;, 1y ) is the Bregman divergence betweerandpy,, corresponding to the ex-
ponential densityp, andZg is the normalizer [Banerjee et al. 2005]. Different clustgr
models fall into this exponential form:

—If x andpy, are vectors in Euclidean space, abdis the square of thé, distance
parametrized by a positive semi-definite weight ma&ipD (x;, ly, ) = ||Xi — Ly, Hi, then
the cluster conditional probability is d&dimensional multivariate normal density with
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covariance matribA 1 p(x|y;,®) = W exp(—3 (/% —py |3) [Kearns et al.
1997];
—If x; andyy, are probability distributions, aridlis KL-divergenceD(x, iy, ) = 39,_; Ximlog ﬁ‘yﬂ ,
im
then the cluster conditional probability is a multinomiatdbution [Dhillon and Guan
2003].

The relation in Eg.(19) holds even[ is not a Bregman divergence but a directional
distance measure such as cosine distance. Thergiifdpy, are vectors of unit length and

d .
D is one minus the dot-product of the vect¢Byx;, by, ) = 1— W) then the cluster
| Vi

conditional probability is a von-Mises Fisher (vMF) distntion with unit concentration
parameter [Banerjee et al. 2005], which is the sphericdbgnaf a Gaussian.

Putting Eqgn. (19) into Eqn. (16) and taking logarithms githesfollowing cluster objec-
tive function, minimizing which is equivalent to maximizgjnthe joint probability over the
HMRF in Egn. (16):

Jobj = EXD(X"“M)JF > V(i.j) —log(©) +logZ + nlogZe (20)
X € cjeC
[Basu et al. 2004] used Rayleigh priors fqf@, and the ignored the normalizer terms.
An optimal clustering is obtained by minimizingy; over the hidden variableé and pa-
rameter$, which are comprised of cluster centroidsand distortion measure parameters
A (note that given the cluster assignmeYitshe meand/ = {p;}iKzl are uniquely deter-
mined).

9.2 EM algorithm

As discussed in Section 9.1, [Basu et al. 2004] miningizgusing a K-Means-type itera-
tive algorithm HMRF-KMeEANS. The outline of the algorithm is presented in Figure 28.
The basic idea of HMRF-KMANS is as follows: the constraints are used to obtain a good
initialization of the clustering. Then in the E-step, gitle current cluster representatives,
every data instance is re-assigned to the cluster that rinesits contribution tdjp,;. The
E-step of HMRF-KM:EANS uses an Iterated Conditional Modes (ICM) approach, which
is a greedy strategy to sequentially update the clustegmssnt of each instance, keeping
the assignments for the other instances fixed. In the M-stepcluster representatives
M = (ug,..., k) are re-estimated from the cluster assignments to minintigefor the
current assignment. The clustering distortion meaddraés subsequently updated in the
M-step to reduce the objective function by modifying thegmaeters of the distortion mea-
sure.

Note that this corresponds to the generalized EM algorithima] and Hinton 1998;
Dempster et al. 1977], where the objective function is redulsut not necessarily mini-
mized in the M-step. Effectively, the E-step minimizig; over cluster assignments the
M-step (A) minimizesf, over cluster representativés, and the M-step (B) reducefsy;
over the parameters of the distortion meadbreThe E-step and the M-step are repeated
till a specified convergence criterion is reached. [Basul.e2@04] show that HMRF-
KMEANS converges to a local optimum gy,
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Algorithm: HMRF-KMEANS
Input: Set of data points X = {x;},, number of clusters K,
set of must-link constraints Carr, = {(24,x;)},
set of cannot-link constraints Cor, = {(4,2;)},
distortion measures {Dj, }X_ || constraint violation costs W.
Output: Disjoint K-partitioning {X;} | of X such that
objective function Job; in Eqn.(9) is (locally) minimized.
Method:
1. Initialize the K clusters centroids { /1,5”0)},11{:1. set t «— 0
2. Repeat until convergence
2a. E-step: Given {Nﬁf)}zﬁ(:r re-assign cluster labels
{ygﬂrl)}f’:l on the points {z;}/~; to minimize Jop;.
2b. M-step(A): Given cluster labels {y§L+l>}[;L:], re-calculate
cluster centroids {u{ "V }£_, to minimize Job,.
2c. M-step(B): Re-estimate distortion measures {Dj,}X_; to reduce Jop;.
2d. t«— t+1

Fig. 28. HMRF-KMeANsalgorithm

9.3 Improvements to HMRF-KMEANS

There have been multiple improvements to the initial HMRiSdal probabilistic generative
constrained clustering framework. [Lange et al. 2005] ipooated prior knowledge from
both labels on the input data instances as well as congtriaittt their clustering model.
They inferred the constraint potentials in the HMRF modelrira Maximum Entropy
solution ofP(Y) under constraints encoded in the label and constraintiseéteplaced the
ICM-based greedy assignment scheme in the E-step of HMRF=AN4 by mean-field
approximation. [Lu and Leen 2005] proposed probabilistit-gyle assignments instead
of winner-take-all KMeans-type assignments, and used $dalonpling in the E-step of
their constrained EM algorithm.

10. CONCLUSIONS AND OTHER WORK

Clustering with constraints is a rapidly developing areaesfearch. We have covered in

detail in this tutorial a sample of the typical approachexiusy researchers and contrasted
these approaches with other published work. The approatibeisssed in detail have the

advantage of having accompanying freely available sousde cMore advanced research
in the field will shortly appear as an edited book [Basu et @08g].
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11. NOTATION AND SYMBOLS
Sets of Numbers

N the set of natural numbe®y,= {1,2,...}

R the set of reals

[n] compact notation fof1,...,n}

X € [a,b] intervala<x<b

X € (a,b] intervala<x<b

X€ (a,b) intervala<x<b

IC| cardinality of a se€ (for finite sets, the number of elements)
Data

X the input domain

d (used ifX is a vector space) dimension &f

k* number of underlying classes in the labeled data
k number of clusters (can be different frddh

l,u number of labeled, unlabeled training instances

n total number of instancens,= | + u.

i,j indices, often running ovén| or K]

Xi input data instance € X

Yj output cluster labgy; € [K]

X a sample of input data instancés= (x1,...,X,) andX = {X U Xy}
Y output cluster label&/ = (y1,...,yn) andY = {Y U Yy}

Mg k block clustering (set partition) oX: {my, ... Tk}

M1... Mk thek centroids of thék blocks forming the set partition ax

D(x,y) distance between instanceandy

X labeled part o, X; = (x1,...,X)

Yi part ofY where labels are specified,= (y1,...,¥1)
Xu unlabeled part oK, Xy = (Xi+1,.--,X+u)

Yu part ofY where labels are not specified,= (Yi+1,---,Yi+u)
C set of constraints

W weights on constraints

(O conjunction of must-link constraints

C. conjunction of cannot-link constraints

c—(i,j) must-link constraint between andx;

c.(i,]) cannot-link constraint betweeq andx;

w(i, j) weight on must-link constraird_(i, j)

w (i, J) weight on cannot-link constraimt (i, j)
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Kernels

H
®
K
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feature space induced by a kernel
feature mapp : X — H
kernel matrix or Gram matrixgi; = k(xi,X;)

Vectors, Matrices and Norms

1 vector with all entries equal to one
I identity matrix
AT transposed matrix (or vector)
Al inverse matrix (in some cases, pseudo-inverse)
tr (A) trace of a matrix
det(A) determinant of a matrix
(%, x') dot product betweer andx’
[ 2-norm, [[x][ := v/ (x,X)
Il pnom x| 1= (5141%[P) 7P, N € NU o}
1l eo-norm, X, := SURLy [xi[, N € NU {eo}
Functions
In logarithm to base
log, logarithm to base 2
f a function, often fromx or [n] to R, RM or [M]
() a function that returns the closest cluster index to instanc
h(p) a function that returns the closest cluster index to clustatroidy
F a family of functions
Lp(X) function spaces, ¥ p< o
Probability
P{-} probability of a logical formula
P(C) probability of a set (event}
p(x) density evaluated ate X
E[] expectation of a random variable
Var [] variance of a random variable
A(4,0%)  normal distribution with meap and variance?

ACM Transactions on Knowledge Discovery from Data, Vol. va.I¥, z 2007.



38 . lan Davidson and Sugato Basu

Graphs
g graphg = (V, E) with nodesv and edge&
G set of graphs
w weighted adjacency matrix of a graplV(; # 0« (i, j) € E)
D (diagonal) degree matrix of a grafD; = 3 ;W;
L normalized graph Laplaciat, = D~Y/2WD~1/2
L un-normalized graph Laplaciah=D — W
Miscellaneous

Ia characteristic (or indicator) function on a et
i.e.,la(x) =1if xe Aand O otherwise

&jj Kroneckerd (&j = 1if i = j,0 otherwise)

Ox Dirac 9, satisfying/ d(y) f (y)dy= f(X)

O(g(n)) a function f(n) is said to beO(g(n)) if there exist constant€ > 0 and
no € N such thatf(n)| <Cg(n) forall n> ng

o(g(n)) afunctionf (n) is said to be(g(n)) if there exist constants> 0 andng € N
such that f (n)| > cg(n) for all n > ng

rhs/lhs shorthand for “right/left hand side”

] the end of a proof
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