Improving BitTorrent

Dimitri do B. DeFigueiredo and S. Felix Wu
August 10, 2006

Abstract

We propose two new greedy algorithms to be used by software clients
running the BitTorrent peer to peer protocol: a new peer selection al-
gorithm and a new piece selection algorithm. We provide experimental
results showing that the proposed algorithms are better than the ones cur-
rently in use. When used together in our experiments, the algorithms de-
creased the expected download time by ??% on average when compared to
an identical client running the standard Rarest First and Choke/Random
Unchoke algorithms.

1 Introduction

On of the most important characteristic of peer-to-peer networks is that they
can provide on-demand resource allocation. Thus, minimizing the cost of the in-
frastructure required to do online content distribution and enabling more people
to become content publishers.

The BitTorrent peer-to-peer protocol has established itself as one of the
most popular peer-to-peer file sharing systems on the Internet today[cite]. This
popularity has spurred a surge of activity characterizing the system’s potential
for online content distribution [4, 1, 5]. In this work, we use the findings obtained
to design an improved BitTorrent client.

The behavior of a peer running the BitTorrent peer-to-peer protocol is mostly
determined by two algorithms: a peer selection algorithm and a piece selection
algorithm. The peer selection algorithm determines who the local peer will
cooperate with; i.e., who it will download from and upload to. The piece selec-
tion algorithm determines which pieces of the file being downloaded should be
obtained from which peer as the download progresses.

The current version (version 4) of the BitTorrent “mainline” client and most
others use Choke/Random Unchoke as their peer selection algorithm and Rarest
First as their piece selection algorithm[source code]. Go on to describe the
algorithms...

Set out paper outline.

2 The peer selection algorithm

One the reasons for the success of BitTorrent is its incentive structure that
penalizes free riding and promotes cooperation. Central to this, is each peer’s
willingness to upload. Peers are interested in downloading but may not have
the intent to upload, degrading overall system performance. In this scenario,
we see each peers upload bandwidth as a scarce resource. In fact, we assume
that each peer wants to maximize its download bandwidth given its own upload
bandwidth.

The local peer needs to decide what upload rates to give to each of the
P other peers it is connected to. The current BitTorrent implementation will
typically be connected to 40-80 peers [4], but only upload to 4 of them at any
particular time. It is claimed that uploading simultaneously to a larger number
of peers will have a detrimental effect on TCP congestion control and decrease
the total uploading rate [2]. We are unaware of any results that substantiate
such claim; therefore, we placed no such restrictions on the number of peers our
client can connect to. In fact, we go one step further, adaptively throttling each
individual peer connection to different uploading rates. The current implemen-
tation of the mainline BitTorrent client only establishes an overall bound for
all peers and does not throttle peers individually. Other clients, establish fixed
upper bounds per peer but not adapt.

2.1 The Model

We assume that the local client is playing a game in a series of rounds, each
round lasting for about 10 seconds. The local client’s job is to download the
file as quickly as possible. In each round, we have available a total upload
bandwidth of U bps and we give each peer a u; fraction of this bandwidth.

Clearly,
P
Sus
i=1

We use an inequality (instead of an equality) here to guarantee that we
can only increase our gains by having more bandwidth available, as we can
always fall back to a solution that does not use all the available bandwidth. Let
us also assume that the local peer is given a set of P (groups of) probability
density functions p;(d;,u;), one for each peer. For a given u, the function
pi(d,u) represents the probability that peer ¢ will reciprocate an upload rate
of w with the download rate d. Furthermore, we assume that each p; stems
from independent events, so that the download rate received from peer i is only
dependent on peer 7 and the upload rate u; given to it, but not on the upload
rate given to any other peer.

If we assume that each round is independent of the next then getting the
maximum outcome in one round will not affect how much we get in the next.
Moreover, our upload rate is a perishable good, i.e. we cannot save upload
rate for later use. Given these two assumptions, we can use a greedy strategy

to obtain the optimal overall strategy over many rounds. We simply need to
maximize the pay-off function for each round.

The payoff function for a single round is simply the sum of the download
rates d; obtained from each peer 7 in that round:

Thus, the expected return in a round is given by:

P

Zdil = ZE[di]

and we need to maximize this expression subject to the constraint on w;
given above and 0 < u; < 1. Notice that under this model each peer is com-
pletely characterized by the download rates it is expected to provide for each
u;. In other words, peers are described by the function d;(u;) = E [d;|u;] which
provides the expected download rate provided as a function of the upload rate
received. Because of the inequality used in our constraint, the expected pay-off
is a non-decreasing function of the owverall available upload rate.

The above maximization problem can be solved for many different forms of
E [d;|u;]. We will look at the following special cases that provide insight into
the solutions:

E[0]=E

o F[d;|u;] are step functions in u;.

E [d;|u;] are linear in u; to do (boring) insight into ideal number of
peers.

E [d;|u;] are concave non-decreasing in u;.still to do

e F[d;|u;] are convex non-decreasing in u;.still to do

We know nothing about the probabilities p;(d;, u;) and therefore E [d;|u;]has
the following form...I wish!

A non-decreasing expectation in u; means that it is not possible to get a lower
download rate by uploading more.

2.2 A Selfish Upload Ratio Algorithm

Current behavior of bittorrent clients can be modeled by considering the ex-
pected download rate function d;(u;) = E [d;|u;] as a step function of amplitude
d; with the step centered at 4;. The standard implementation of the peer se-
lection algorithm ranks each remote peer according to the download rate they
have provided in the last round. The local peer continues its upload to the
three fastest peers. More precisely, to the three peers that provided it with the
highest download rates. Unless it has just recently (been unchoked and) started

to receive pieces from the local peer, the fourth fastest peer will stop receiving
any available bandwidth and a new randomly selected peer will be unchoked
and start to download from the local peer.

Clearly, if the local peer is always one of the three fastest uploaders to each
of its remote peers it will continue to receive service from them. The local peer
can estimate the overall download rate received from each of its remote peers
by timing the have messages that are received after the remote peer completes
the download of a piece. Dividing this value by 3 we obtain an upper bound on
the download rate provided by the third fastest peer of that remote client. We
will use this upper bound as an estimate of u;. We propose that the local peer
should rank its remote peers at each round and greedily upload to the peers that
provide it with the best dNZ/ u; ratios, throttling each connection individually. In
this way, the local client can minimize how much upload bandwidth it gives to
each of its remote peers and at the same time maximize how much download
rate it gets. One natural consequence of using this algorithm is that the local
peer will always ask for pieces from seeds (to which it does not upload).

In this model, choosing who to upload to at each round is equivalent to
solving the knapsack problem. The total upload bandwidth available is the
maximum allowable weight. The value of each item is the download rate we
are getting from the corresponding peer and the weight of each item is the
corresponding upload rate we should provide. Note that the greedy strategy
of simply picking the peers with the highest download to upload ratio is a 2-
approximation to this problem [cite] (and optimal for the fractional knapsack).

There is a lot more to write, but this has always been the main
idea. There maybe a better strategy using restless bandits with
switching costs, I need to look more into that.

3 The piece selection algorithm

To do: Show that luck by itself is a very good code generator

Results in [4] suggest that the Rarest First piece selection algorithm is suffi-
cient for the good operation of BitTorrent as it ensures that each peer is always
interested in all other peer. Or as [4] put it: “We say that there is ideal entropy
when each leecher is always interested in any other leecher.”. This is desirable
because it implies that the upload rate and not piece availability is the main
criterion used by peers to choose who they cooperate with. The results in [4]
found that a client using Rarest First, was almost all the time interested in over
80% of all other peers in 75% of the torrents studied. Despite these results we
feel that there is room for improvement in the piece selection algorithm for three
reasons:

1. Rarest First was found to be very effective when used in combination with
BitTorrent’s current peer selection strategies. In particular, the current
random unchoke strategy may provide for a very good randomization of
the available pieces by itself.

2. In 25% of the torrents studied Rarest First was not effective in keeping
the local peer interested in all other peers and Legout et al. identified
a first blocks problem that our previous research suggests can be aggra-
vated if peers are using a non-exploitable bitwise tit-for-tat strategy[6]. In
such cases, it is desirable to channel new pieces available from the source
through the highest capacity peers as quickly as possible. Therefore, some
non-random bias in piece selection may be desirable.

3. In the other 75% (in fact for this there was a smaller fraction of 70%) of
the torrents studied by Legout et al., it is not clear whether the 80% of
the peers that were interested in the local client were precisely the ones
that could give it the highest upload rate. It is not clear whether each
client is able to maintain the peers that provide it with the highest upload
rate always interested, or whether such peers were precisely the ones that
became uninterested.

We restrict our client so that it downloads each piece from only a single peer.
This enables us to assign blame and avoid being tricked by clients that do not
actually have the pieces they advertise. The piece selection algorithm is crucial
at the beginning of the download when a peer needs to get pieces that enable
it to upload to others. We now describe our model of the piece selection prob-
lem and a new piece selection algorithm. TODO: Optimistic simultaneous
download exception.

3.1 The MDP model

We model the piece selection problem as a Markov Decision Process (MDP).
Assume that the local peer downloads pieces at a constant rate (e.g., 1 piece
every 5 seconds) and normalize the download rate received to 1, so that at
each new unit of time it gets a new piece. Pretend to be the local peer for
a minute. For each peer i who is currently uploading to us, we keep track of
the pieces we have that the remote peer i does not have. These pieces form a
queue Q;. We add a piece to this queue every time we download a piece that
peer i does not have. Thus, we can add a maximum of one piece per unit time
to each queue. Remote peers remove pieces from their respective queues every
time they obtain a piece that they did not have but we did. We pay a penalty
any time a queue is empty. More precisely, we pay a penalty per unit time for
each queue that is empty and each queue @Q; has its own penalty rate C;. This
penalty rate is proportional to the download rate currently obtained from that
peer. We discount future penalties at a rate 6 < 1. We neglect that the local
peer may establish connections to different peers throughout its download and
fix the total number of peers that the local client main connect with to P. The
length of each queue, i.e. the number of elements in each queue @; at each time
t, is denoted by 1;(¢) or simply ;.

The “real world” problem of deciding which piece to download from other
peers is modeled as choosing in which queue to place the piece obtained in the

last unit of time'. For now, we will assume that each piece we obtain can be
put in any of the queues. Thus, in our model, at each new timestep the local
peer has to decide on which queue @; to put the piece obtained in the last unit
of time and in so doing the local peer wishes to minimize the chance that any
of the queues will become empty. In fact, it wants to minimize the expected
overall cost:

P
ZE[cost of Q]

i=1

where the expected cost of queue Q); is given by:

o0
Ecost of Q;] = / C;6' Prob(Q; is empty at time = t) dt
0

Clearly, the probability that @; is empty at time ¢ depends on when we
put extra pieces in this queue. Therefore, the local peer needs to choose a
policy to minimize its overall incurred costs. This policy is precisely the piece
selection algorithm we wish to determine. The algorithm proposed here is a
simple extension of the policy proposed by Whittle to address the restless bandits
problem [7]; which, in turn, was an extension of the policy proposed by Gittins
for the multiarmed bandit problem [3]. Gittins showed that this policy is optimal
for the multiarmed bandit problem [3]. Gittins’ policy is very simple. After
calculating an index for each project, each queue in our case, we make a greedy
choice and simply pick the queue with the highest index at each time interval.
The nature of the Gittins index is such that it incorporates in its value the
trade-off in future gains and makes the greedy strategy based on it optimal.

For our particular problem, the Gittins index for queue @Q; is given by the
difference in expected cost of @Q; under two circumstances:

e When only one piece is immediately added to the queue.

e When no more pieces are added to the queue.

It should be clear that this policy maximizes at each step the expected gain
that can be obtained by adding a piece to one of the queues. Unfortunately, we
cannot show that this strategy is optimal for the restless bandit problem. But
it is asymptotically optimal, see [7].

Let us first calculate the expected cost of (); assuming that:

e (; has initial length /;(0),
e pieces are removed according to a Poisson points process of rate \;; and,

e no more pieces are added to the queue.

I This introduces some delay issues that we will address later.

Under these assumptions, the probability that Q; is empty at time ¢ is the same
as the probability that at least /;(0) pieces are removed from Q; by time ¢.

Elcost of Q;] = / C;6' Prob(at least 1;(0) pieces are removed from Q; by time t) dt
0

= / C;6'[1 — Prob(less than I; pieces are removed by time t)] dt
0

li—1
= / Ciot |1 — Z Prob(j pieces are removed by time t)| dt
0
7=0

li—1

:/ Ciétdt—/ c(sfze*““
0 0

The last equality follows from the properties of a Poisson points process of

rate A, for which the probability that there are exactly & points in a time interval

of length t, is given by e~ (’\;7‘1)]9 Evaluating the first integral and changing

the order of the finite sum with the second integral we obtain:
et Inéd li 71 o]]
Elcost of Q;] = C; {] Z te=Nittd dt
We have that § < 1 so Ind is negative and we can write:

Ci l _1 —(Xi—Ind)t
Elcost of Q;] = sl I dt

Making a change of variables in the integral for 7 = (A\; — Ind)¢ we obtain:

Elcost of Q;] = {— Oi} - C; Z)\J ;/mefTTde
‘ Iné gt (=Y o

Now, recall that for 7 € N:

/ e Tridr =T(j+1) =j!
0

Therefore, we have.

l;i—1

C; M 4!
FElcost of Q;] = — - C; S 4
[Qi Ind JX::O 4! (()\i_lnd)j+1>

_ C; C; l,z—:l (A)j G C; (ﬁ)h -1

“Iné (n—Inod) <\ A\ —Ing " Ind (A —Ind) (A A)71

Finally, simplifying the expression above we obtain:

Ci(x\"
Bleost of Qi) = —.5 <)\—1r16)

The Gittins index for @Q); can then be calculated as the difference in expected
cost for different queue lengths (here we omit the ¢ indices):

C A I+1
v(i) = E[cost of Q|length is I]—FE|cost of Q |length is I+1] = — (————
A\A—Ind
Notice that all parameters, including the discount factor J, are specific to
the queue in question. In fact, it may be desirable to have a different discount
factor for each queue (i.e. peer) depending on the peer’s reliability.

3.2 Applying the MDP solution

To obtain the above strategy of greedly putting a piece in the queue @; that has
the highest index we used a somewhat simplified model of the piece selection
problem. We now consider how we adapt the strategy obtained to address all
the nuances of the piece selection problem.

In the simplified model used above, we assumed that each piece could only
be put in one queue at the time. This models the real world situation in which a
downloaded piece is only of interest to one other peer at a time. This situation
is more likely the exception rather than the rule in a real-world setting. To
change this to a more general setting where a piece can satisfying many peers
simultaneously, we assign indexes to pieces rather than to queues. This is done
simply by summing the index of the queues to which a piece will be added once
downloaded. For example, if peers 1, 2 and 5 do not have piece A. Then, the
index of piece A will be given by: v(A) = v(1) + v(2) + v(5). In this way, we
can establish an ordering of pieces that tells us which pieces are more desirable.
Again, we choose the piece with the highest index.

We made another two important simplifications in our model. We assumed
that each piece obtained could be put in any queue. In some sense, that is
analogous to assuming that peers can provide us with any piece we desire. In
reality, each time we have to decide which piece to download we can only pick
from a subset of all the pieces available. This is the subset of pieces that we do
not have that the peer we are downloading from has. Thus, sometimes the most
desirable piece may not be available. We will simply use a greedy strategy and
pick the most desirable piece that is available to us at any instant in time. It is
easy to construct counter examples that show that this strategy is not optimal;

however, because of the dependencies between successive pieces it is not clear
how to go about finding such optimal strategy. In the case when the queue
lengths do not change or change very little after each piece is selected we can
use a bipartite matching algorithm between pieces and available download spots
to find the optimal download schedule.

The other simplifying assumption is that pieces are obtained at a constant
rate. In fact, we download pieces from different peers each of which provide
us with a different upload rate. We have to decide which piece to download
from each peer a few seconds before the piece is actually obtained. The time
it takes for a piece to be downloaded depends on the upload rate the remote
peer is willing to provide us. The key idea that enables us to circumvent this
problem is that we can extrapolate the current download rate obtained from
each remote peer and estimate the finishing time for each piece we are currently
downloading. Thus, we are able to ask to download the most desirable pieces
according to their download finishing time. For example, assume that the two
most desirable pieces are currently A and B respectively. We can download
them from peers 1 (fast) or 2 (slow) which provide us with the rates of 1 piece
every b seconds and 1 piece every 10 seconds respectively. Peer 1 is currently
busy uploading another piece and will be done in 3 seconds but we have to
decide which piece to download from peer 2 now. If we delay downloading piece
A until peer 1 is ready we will be able to obtain the piece in 8 seconds. On the
other hand, if we ask for it now it will only be completely downloaded after 10
seconds, whereas piece B will be done in 8 seconds. Clearly, we are assuming
that the download rates do not change significantly; but, that being the case, it
should be clear that we want to select pieces such that the most desirable piece
obtains the earliest download finishing time.

One final modification: we should have criterion 3(keep others that i
am interested in (but who do not yet upload) interested in me.) kick in when
the queues are too long.

Notice that the above piece selection algorithm takes into account the down-
load rates obtained from peers and decides not only which piece to download,
but also who to download it from. Also, if all queues are identical and pieces are
obtained from all peers with the same delay then the algorithm reduces to an
implementation of Rarest First where only peers that upload to the local peer
“get to vote”.

4 Experimental Results

describe the side-by-side testing we wish to do here:

e write the client
e deploy two clients side by side on the same torrents

e repeat experiments to average out random fluctuations.

5 Conclusion

concluding remarks.

References

[1] A. R. Bharambe, C. Herley and V. N. Padmanabhan, “Analyzing and Im-
proving BitTorrent Performance”, Technical Report MSR-TR-2005-03, Mi-
crosoft Research, USA, Feb 2005him if.

[2] BitTorrent Protocol Specifications. http://bittorrent.org/protocol.html (as
of 10-Jul-2006)

[3] J. C. Gittins, Multi-armed Bandit Allocation Indices, John Wiley, 1989.

[4] A. Legout, G. Urvoy-Keller and P. Michiardi, “Rarest First and Choke Al-
gorithms Are Enough”, Technical Report (inria-00001111, version 2 - 1 June
2006), INRIA, Sophia Antipolis, June 2006.

[5] N. Liogkas, R. Nelson, E. Kohler and L. Zhang, “Exploiting BitTorrent For
Fun (But Not Profit)”, 5th International Workshop on Peer-to-Peer Systems,
IPTPS, Santa Barbara, USA, 2006.

[6] Our own p2p-“framework” paper (not this one).

[7] P. Whittle, “Restless Bandits: Activity Allocation in a Changing World”,
In J. Gani, editor, vol. 25A of Journal of Applied Probability, pp. 287-298.
Applied Probability Trust, 1988.

10

