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Abstract

Current P2P systems employ tit-for-tat strategies, where
peers only upload when they are simultaneously download-
ing, to avoid free riding. We derive optimal tit-for-tat strate-
gies and obtain theoretical bounds on the performance of
any P2P network employing such strategies. These are fun-
damental limitations that stem from peers unwillingness to
cooperate without getting something in return. We show
that the number of cooperating peers in a tit-for-tat strategy
can, at best, grow linearly in time, as opposed to exponen-
tially for a fully cooperative strategy. However, tit-for-tat
strategies are fairer than a fully cooperative strategy. Our
results show that there exists a seed capacity threshold for
tit-for-tat strategies. Increasing seed capacity beyond this
threshold brings significantly reduced marginal gains.

1. Introduction

Peer-to-peer file sharing networks hold great promise
as content distribution systems because of their ability to
provide on-demand resource allocation. For example, P2P
networks seem ideally suited to enable the online distri-
bution of DVD quality movies at a fraction of the cost
of a client/server downloading model. Smart cooperation
among peers in a P2P file sharing network may enable
the distribution of content to a large audience without the
need to statically provision a large and expensive cyber-
infrastructure ahead of time.

In our view, the cooperative nature of P2P networks is
so important that among many possible characterizations of
P2P networks within distributed systems, we choose indi-
vidual peer behavior as our defining characteristic. In this
context, distributed systems range from fully cooperative
systems that employ a globally agreed upon pre-established
strategy to completely noncooperative systems which, as we
will show, represent the common client/server model. Most
P2P networks fall somewhere in the middle of this range

depending on their peer’s selfish behavior.
There are many obstacles that P2P networks need to

overcome to become the content distribution system of
choice. One such obstacle is the free riding problem. Free
riding peers use resources but do not contribute and, there-
fore, can hurt the network’s overall service capacity. Many
current P2P systems, notably BitTorrent [2], attempt to ad-
dress the free riding problem by employing variations of
tit-for-tat strategies [1]. However, the use of these strate-
gies brings limitations to the performance of peer-to-peer
networks as content distribution systems. These limitations
have not received much attention in the literature.

In this paper, we provide an intuitive understanding of
the limitations of P2P networks as content distribution sys-
tems when using tit-for-tat strategies. We obtain bounds
on system performance and analyze a few optimal static
peer strategies (and their corresponding outcomes) from
two points of view:

• A global (macro) view providing overall system char-
acteristics.

• An individual (micro) view providing the perspective
of a single peer and what it is willing to do as it inter-
acts with others in the network.

In short, we determine how each peer’s unwillingness to
contribute in tit-for-tat strategies limits the performance of
P2P file sharing networks.

Our results also show that there exists a seed capacity
threshold for tit-for-tat strategies. Increasing seed capacity
beyond this threshold brings significantly reduced marginal
gains.

The rest of the paper is organized as follows. After in-
troducing the analysis framework, we describe the various
cooperation models and then discuss the limitations of tit-
for-tat strategies. Next, we investigate how increasing the
seed capacity improves the expected download time. Fi-
nally, we discuss the literature on related models.
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2. The Analysis Framework

To compare different scenarios, we use a very simple
topological model where the only constraints are peer up-
load and download bandwidth. In this model there are no
bottlenecks in the network core, all constraints are found at
the edges. Peer i has a maximum uplink capacity of Ui bps
and a maximum downlink capacity of Di bps. We focus
on uplink capacity because this enables us to clearly deal
with selfish behavior, separating it from other concerns. In
fact, we model an optimal infinite capacity network by only
constraining each peer’s upload bandwidth. In this case, the
uplink capacity does not represent a physical network limi-
tation but the peer’s willingness to cooperate.

In this paper we always consider the worst case scenario
of an instant flash crowd, where all N peers request a file of
size Z bytes from the seed at time t = 0. The file is split into
M pieces. We analyze P2P networks in four dimensions
using the following measures:

• Scalability: Number of peers, N

• Publishing workload: Seed workload W and required
upload capacity C

• Efficiency: Expected download time, E[t]

• Fairness: Normalized absolute peer workload imbal-
ance, IAbs

A few remarks are appropriate here. We use the number of
peers in the network and the seed workload/capacity as de-
sign parameters. The seed capacity is its uplink throughput
capacity. The workload represents how many bytes of data
it has to transfer to make sure all peers can obtain the con-
tent. A peer’s download time is the time elapsed between
when a peer joins the network to when it completes the de-
sired download. Thus, the expected download time is of
great interest to each peer (or the corresponding user) when
it joins the network.

Measure of Fairness Peer i’s imbalance is the difference
in bytes between how much data the peer has downloaded di

to how much it has uploaded ui. Clearly, peers like positive
imbalances and avoid negative ones. To calculate normal-
ized imbalances, the normalization is done with respect to
how much content has been distributed, i.e. the total amount
downloaded by all peers. Thus,

IAbs ,
∑

i |di − ui|∑
i di

We do not consider the seed (i.e. the original publisher of
the file) when performing the summations. Unlike the peers

who want to download the content, the seed wants to dis-
tribute it. Excluding the seed from the summation leads to a
metric that is more descriptive of peer behavior. We also as-
sume peers will not download what they already have; i.e.,
all downloaded content is new to the peer downloading it.

Using an alternative measure without the moduli would
allow for two unfair transactions to cancel out. Similarly,
using a maximum instead of a sum in the numerator or nor-
malizing with respect to each peer instead of the whole sys-
tem allows for unfair interactions to go undetected by the
measure. We can also use a root-mean-square measure here,
but we decided to stick to the absolute value measure for
ease of interpretation.

The normalized imbalance is zero (cooperative) if all
peers upload as much as they download, 1 (“completely
noncooperative”) if nobody but the seed uploads anything
and 2 (“exploitative”) if some peer is exploited and uploads
to all others. More precisely, as the number of peers tends
to infinity the normalized imbalance tends to zero in a per-
fectly fair network and to 2 in a perfectly unfair one. Values
above 1 imply that at least one peer, who is not the seed,
is altruistic/exploited and uploads more than it downloads.
Furthermore, if no peer uploads more than it downloads
then IAbs measures what fraction of the file the peers did
not reciprocate. Thus, if each client finishes its download
and leaves the network after having uploaded on average
only 30% of the file we have IAbs = 0.7 . By this measure,
being altruistic and uploading more than one downloads is
not good and implies that the system is unfair. In this case,
IAbs can be greater than 1. For example, if we have a total
of N = 6 peers (excluding the seed) and peer 1 uploads the
whole file to the other 5 peers who free ride. Then,

IAbs =
|1− 5|+ 5× |1− 0|

6
= 1.5

Again, the initial seed is not considered in these calcula-
tions. IAbs can be computed for BitTorrent from the logs of
the tracker if clients report their activity truthfully [3].

3. The Client/Server Model

In the client/server model, a server serving a file of size
Z bytes has to do W = ZN work to serve N peers. The
workload increases linearly with the number of peers. If
the server has upload capacity of C bytes/s then the earliest
the first peer can finish getting the file is Z

C seconds after
the start, the second peer can only finish after another Z

C
seconds. Changing the order in which pieces are given to
either peer can delay the time it takes for the first peer to
finish, but it cannot shorten the total or average download
time for both peers. It is easy to see by induction that the
same is true for any number of peers.

2



t = 5∆ t = 7∆t = 4∆

t = 0 t = ∆ t = 2∆

t = 6∆
pieces = seed = peer =

t = 3∆

Key:

+ + + +

+ + + +

Figure 1. A Fully Cooperative strategy for N = 16 peers and M = 5 pieces. The figure shows what each peer has at the
beginning of each time step. The arrows show the peer the seed is serving in the current time step. At the same time, peers upload
to their “mirror images” across the dotted lines. Once all peers have a piece it is no longer shown (e.g. the square, ¤, disappears at
t = 5). All peers complete the download in 8 time steps.

For an instant flash crowd of N peers, requesting the file
at time t = 0, the expected download time is:

E [t] =
1
N

(
Z

C
+

2Z

C
+ ... +

NZ

C

)
=

Z

2C
(N + 1)

In other words, the expected download time also in-
creases linearly with the number of peers and is inversely
proportional to the server capacity C. The client/server
model is completely uncooperative as none of the clients
contribute anything:

IAbs =
∑

i |di − ui|∑
i di

=
∑

i |di − 0|∑
i di

= 1

4. A Fully Cooperative Strategy

Let us now perform the same analysis for a fully coop-
erative (FC) strategy proposed by [7]. The strategy is es-
tablished ahead of time so that all peers know exactly what
to do when the file becomes available. This simple strategy
can be applied when N = 2k peers (including the seed),
with all peers and the seed having equal upload capacity
C = Ui. The file of size Z bytes is split into M ≥ k pieces
of equal size which are uploaded to each peer in a pipeline
as described below. Each peer can upload a piece as soon
as it is completely downloaded. Because all pieces are of
equal size we proceed as in discrete time steps of length
∆ = Z

MC . In each time step the seed gives out a new piece
until the last new piece is given out. From that point on until

all peers finish their downloads, the seed repeatedly uploads
the last piece.

The strategy is described using Figure 1, where a file
with M = 5 pieces, denoted by ¤,×,4,© and ♦, is dis-
tributed among N = 16 peers (including the seed). Pieces
are distributed to peers as if each peer were the vertex of
a 4-dimensional hypercube and four symmetric reflections
were made successively. It should be clear that this strategy
can be generalized for any N = 2k. It has a number of nice
features1:

• All peers finish the download simultaneously.

• Each peer only needs to connect to a small number
(log2 N ) of others.

• The download capacity required of each peer is the
same as the upload capacity; i.e., the strategy can be
used when the download capacity is larger than or the
same as the upload capacity of each peer.

The strategy is also very efficient. A peer cannot upload un-
til it receives at least one piece. During each of the initial
k = log2 N steps every peer that has a piece continuously
uploads to other peers. Therefore, the upload capacity of the
network is used as much as possible. In each time step after
the initial k, all peers but one (the seed’s mirror image) com-
pletely use their upload capacity and one additional piece is

1Note that there are immediate extensions of this strategy to when the
seed capacity is a power of two times the capacity of the other peers and
when there are a total of 2k peers not including the seed.
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completed, i.e. all peers have a copy of it. The last two
pieces are completed simultaneously. This implies that all
peers finish their downloads at time step2 k +M − 1. Thus,
the expected download time is given by:

E [t] = ∆(k + M − 1) = Z
CM (log2 N + M − 1)

= Z
C

(
M−1

M + log2 N
M

)

In other words, for a fixed M the expected download
time increases logarithmically with the number of peers.

The seed gives out a copy of each piece and then repeats
the last piece for the very same k + M − 1 steps. Thus, it
gives out a total of:

W =
Z

M
(k + M − 1) = Z

(
log2 N

M
+

M − 1
M

)
bytes.

Again, the increase in workload is logarithmic with an
increase in the number of peers for a fixed M.

We can also calculate the normalized absolute imbalance
(see appendix):

IAbs =
N − 2

(N − 1)M
+

M − 1
(N − 1)M

+
2 log N

(N − 1)M
− (log N)2

(N − 1)M

Notice that we cannot directly apply this strategy if
M ≤ log2 N . However, an immediate extension is to ap-
ply the strategy to a group of 2M peers and then have peers
recursively become seeds for other groups. For example, if
N = 1024 and M = 3, we apply the strategy to a group
of 8 peers and in 5 time steps we would have 8 = 23 seeds.
After another 5 time steps we would have a total of 23 × 23

seeds, and so on. For a fixed M , the resulting strategy still
leads to an exponential growth in the number of cooperat-
ing peers and a respective logarithmic increase in the total
expected download time as N increases.

In this section we included the seed in the number of
peers N for ease of exposition. We will make the necessary
change of variables when comparing this result with other
strategies.

5. Tit-for-Tat Strategies

For a fixed number of peers, the fully cooperative strat-
egy realizes large gains over the client/server model in terms
of the expected download time and the seed workload, but
it requires some peers to be altruistic and upload more than
they download. Using the client/server and FC strategies as
our benchmarks, we now examine two non-exploitable co-
operative strategies in which peers only upload if they are
simultaneously downloading. We will see that the slightly

2If M = 1 the seed always serves the same piece and we are done in k
timesteps.

less cooperative behavior from the peers does limit the net-
work’s ability to scale, but we still achieve very advan-
tageous results. We will consider two types of tit-for-tat
strategies:

• Direct Reciprocity: Peer A uploads to peer B only if
peer B is simultaneously uploading to peer A

• Indirect Reciprocity: Peer A uploads to peer B only
if some peer uploads to peer A. This is more flexible
and enables peers to form cycles, e.g. peer A uploads
to peer B who uploads to C who uploads to A.

These restrictions do not apply to the seed who uploads at
will, as always. The above restrictions imply that once a
peer has all the pieces it stops cooperating. We assume for
now that all peers and the seed have the same upload capac-
ity.

Tit-for-tat strategies are quite fair. The peer behavior en-
sures that all such strategies have an imbalance IAbs that
is bounded by how much work the seed does. Assuming all
peers employ the tit-for-tat strategy each peer must (directly
or indirectly) receive its first piece from the seed to be able
to participate. This implies that the seed must give out at
least N pieces of the file. Similarly, for any strategy the seed
must always give out at least one complete copy of the file
(M pieces). Therefore, the workload W = max(N,M)
pieces or W = Z

M max(N, M) bytes. Also, no peer will
ever contribute more than it downloads and the terms inside
the moduli in the expression for IAbs are always positive.
Therefore the imbalance is given by:

IAbs =
∑

i |di − ui|∑
i di

=
∑

i di −
∑

i ui∑
i di

=
W

NZ

It follows that if M ≥ N the best possible imbalance
for tit-for-tat strategies matches the best possible (smallest)
imbalance for any strategy and is given by IAbs = 1

N .
Because peers only cooperate after they get their first

piece, in tit-for-tat strategies the number of cooperating
peers only grows linearly with each time step as opposed
to exponentially for the fully cooperative strategy. We will
explore this in the next section.

A very efficient indirect reciprocity (IR) strategy can
be obtained simply by forming a line where each piece is
passed on to the next peer, just like the old fire brigade
passed buckets to put out a fire. There are no restrictions
on the number of peers. We proceed, as in the FC strategy,
in time steps of length ∆ = Z

MC . Figure 2(a) illustrates the
strategy for N = M = 5 peers. It should be clear that in the
IR strategy of Figure 2(a) the peers also end the download
in a sequence of steps. The first peer receives a constant
download stream from the seed from t = 0 and finishes at
time t = Z

C , the second finishes at t = Z
C + ∆ = Z

C + Z
MC
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and so on. Thus, the expected download time for the IR
strategy is given by:

E [t] =
1
N

N−1∑

i=0

(
Z

C
+ i

Z

MC

)
=

Z

C
+

Z

C

(N − 1)
2M

t = 0
1 2 3 4 5

t = ∆+

t = 8∆+

t = 2∆+

t = 3∆+

t = 6∆+

t = 7∆+

t = 9∆+

t = 4∆+

peer:

+t = 5∆

t = 0
1 2 3 4 5

t = ∆+

t = 8∆+

t = 2∆+

t = 3∆+

t = 6∆+

t = 7∆+

t = 9∆+

t = 4∆+

pieces =

(a) (b)

peer:

+t = 5∆

4−5

3−5

2−5
3−4

1−5
2−4

1−2

1−3

1−4
2−3

Figure 2. Two Tit-for-Tat Strategies using: (a) indirect
reciprocity and (b) direct reciprocity. Peers in white have
finished the download and no longer cooperate. Bold pieces
have just been received from the seed in the previous time
step. The numbers on the top-left corner of (b) show which
peers are swapping pieces in the current time step. The left-
most peer cooperates with the available rightmost peer as in
a reflection across the middle.

Figure 2(b) shows a similar strategy that uses direct reci-
procity (DR) only. It requires that the file be broken up into

pieces such that M = N . From Figure 2, we can see that
peers using the DR strategy finish one time step after their
corresponding peers using the IR strategy, except for the last
peer. It follows that the expected download time for this DR
strategy is:

E [t] =
1

N

"
−∆ +

NX
i=1

„
Z

C
+ i

Z

MC

«#

=
Z

C

„
3

2
+

1

2M
− 1

M2

«

where the −∆ term to the left of the sum is included be-
cause the last two peers finish simultaneously. It is very
straight forward to calculate the workload W and the imbal-
ance IAbs for both strategies. These results are presented in
Table 1 where we set δ = 1

2M − 1
M2 .

The DR strategy requires that we partition the file so that
there are as many pieces as there are peers. Unfortunately,
for small files and large numbers of peers this many not be
possible. Therefore we consider an immediate extension of
this strategy to the case where N = kM and k ∈ N. The
extended DR strategy separates the peers into cooperating
groups of M peers and sequentially applies the DR strategy
for M = N to each group. Once the seed has done its work
for one group, it immediately moves on to the next. We
call this sequential grouping. Each group has M peers so
that there are k = N/M groups. Assume that the expected
download time (measured from when the seed starts serving
the group) for peers within the group is EG. The seed is
done serving a group after TG seconds. Using sequential
grouping the total expected download time for the extended
DR strategy is given by:

E[t] =
1
k

k−1∑

i=0

(EG + iTG) = EG +
TG

2
(k − 1)

Substituting the appropriate values of k, TG and EG for
the DR strategy we obtain:

E[t] =
Z

C

(
3
2

+
1

2M
− 1

M2

)
+

Z

C

(N −M)
2M

Notice that the seed workload for the extended DR strat-
egy is still minimal among tit-for-tat strategies W = kZ =
NZ/M . The total absolute imbalance is just the average
imbalance for all groups. Thus, IAbs = 1

M .
The same grouping idea can be used to extend the DR

strategy to the case where M > N , more precisely M =
kN where k ∈ N. We simply put all pieces in a pipeline
and have the seed cycle k times through the N peers un-
til it serves all M pieces of the file. The peers also repeat
their actions k times. This pipelined DR strategy also has
minimal workload.
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1 2 3 4 5 6
t = 0

1 2 3 4 5

t = ∆+

t = 2∆+

t = 3∆+

t = 4∆+

t = 5∆+

t = 8∆+

t = 7∆+

t = 6∆+

peer:

1−2

1−3
S−2−4

pieces = pieces =

(b)(a)

1−3−4−5
S−2−5

1−2
3−4

3−4−5
S−4

Figure 3. (a) Fast IR Strategy that can be used when
there are no download constraints. Some peers re-
ceive more than one piece in a single time step. (b)
Parallel Grouping for M = N = 6 and s = 2.

6. Limitations of Tit-for-tat Strategies

The reason for considering these two non-exploitable
strategies is their optimality. In the IR strategy, every par-
ticipating peer except for the last one uploads as much as
possible, as soon as possible, for as long as possible for any
tit-for-tat strategy. Thus, for an infinite N this is the fastest
possible tit-for-tat strategy3. This is also the fastest possi-
ble strategy for finite N if we have download constraints
Di = Ui = U = C. If we have download constraints,

3In other words, for a sufficiently large l, the average download time of
the first l peers is no greater than that of any other strategy.

the pigeonhole principle can be iteratively applied to show
that the last peer cannot upload without violating the down-
load constraints. However, if we do not have download con-
straints and N is finite there are faster strategies. Figure 3(a)
shows a counterexample.

In any strategy, the seed must give out at least one com-
plete copy of the file. This is exactly the workload of the
DR strategy. Thus, the DR strategy for N = M matches the
smallest seed workload of any strategy. Similarly, it should
be clear from the discussion in the beginning of section 5
that the DR strategy matches the best (smallest) imbalance
of any strategy.

Table 1 presents our exact results. Please take a while to
examine it. In the table, the similarities between the results
for the IR strategy and the client/server model are striking!
For these two strategies, both W and E[t] differ only by
the inclusion of the parameter M . The table also shows
that it is always beneficial to increase M , it leads to smaller
workloads and faster download times for all strategies.

Peers in tit-for-tat strategies can only cooperate with at
most M − 1 other peers before finishing the download be-
cause after a peer receives one piece and is able to coop-
erate, there are only M − 1 other pieces the peer wants to
download. This bound on the number of cooperating peers
means that tit-for-tat strategies cannot scale as well as fully
cooperative strategies. Furthermore, the parameter M de-
termines exactly what gain in upload capacity the IR strat-
egy will have over the client/server model once as many
peers as possible are cooperating. This can be quite signif-
icant. For example, a typical use of BitTorrent to download
a 1GB movie file with the standard piece size of 256KB im-
plies M = 4096 pieces. However, for even larger N the FC
strategy is the clear winner.

It is interesting to note that, neglecting the first piece re-
ceived by each peer in the DR strategy, in both strategies
the peers get the pieces in the same order that the seed gives
them out. This would be useful for streaming applications.

We can extend these strategies to a scenario where peers
have different upload capacities by establishing cooperating
groups. To do so, we let a peer select a different cooperating
group per kbps of upload rate it has. For example, if 5 peers
have 75kbps of upload bandwidth and another 100 peers
only have 50 kbps. We can form two cooperating groups,
one including all peers and uploading at 50 kbps and an-
other formed only by the high speed peers, that upload be-
tween themselves at an extra 25 kbps.

7. Seed Capacity

The results in Table 1 can be misleading and appear to
suggest that a linear increase in seed capacity C would
cause a similarly linear decrease in E[t] for all strategies.
This is not true. The results for all the cooperative strate-
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Measure Fully Cooperative Indirect Extended Direct Client/Server

W Z + Z log2(N+1)−1
M Z + Z N−1

M Z + Z N−M
M Z + Z(N − 1)

E [t] Z
C + Z

C
log2(N+1)−1

M
Z
C + Z

C
N−1
2M

(
3
2 + δ

)
Z
C + Z

C
N−M
2M

Z
C + Z

C
N−1

2

IAbs
N−1
NM + M−1

NM + 2 log2(N+1)
NM − (log2(N+1))2

NM
1
N + 1

M − 1
NM

1
M 1

Table 1. Exact Workload, Expected Download Time and Normalized Imbalance for different Strategies

gies in Table 1 assume that each peer’s upload capacity is
the same as the seed’s, i.e. C = Ui = U ∀i. In fact, a
linear increase in capacity, that is not matched by a simi-
lar increase in peer capacity U in the FC strategy, can only
cause a logarithmic decrease in E[t] (see parallel grouping
below). On the other hand, the client/server model always
has the desired reciprocal relationship between C and E[t].
This leads us to consider what gains can be obtained by in-
creasing the seed capacity in tit-for-tat strategies.

We now extend these strategies to when the seed capacity
is a multiple of the peer capacity; i.e., C = sU and s ∈ N.
In other words, the seed can upload s pieces per time step
as opposed to a peer who can upload only one piece. This
is equivalent to either increasing the bandwidth or replicat-
ing the seed. We will assume that the seed splits its total
upload capacity into s different “pipes” where each individ-
ual pipe will have the same capacity as a peer. It is easy to
see that this strategy is not optimal for E[t] by considering
the client/server model with only two clients. If instead of
equally spliting its upload capacity between the two clients
a server uploads at full capacity to each one, in turn, the
client’s expected download time decreases. However, the
decrease for P2P networks is not so significant because the
file is split into pieces and peers cooperate among them-
selves. The first peer’s first piece can be downloaded in
∆/s seconds from a seed with s times the upload capacity
of a peer; but even if we establish this as a lower bound on
the time it takes to upload the first piece to all peers, we
can see that this lower bound implies that this strategy can
decrease the total expected download time by at most ∆.

Consider the case where N À M . Again, we split the
seed’s capacity into s different “pipes” where each individ-
ual pipe will have the same capacity as a peer. We can then
employ the tit-for-tat strategies just described using each
pipe as a seed that has the same upload capacity as a peer.
This will make s distinct groups of cooperating peers work
in parallel. We call it parallel grouping. Using this exten-
sion with the IR strategy, we can serve s groups of M peers
in the same time it takes to serve just one group of M peers
with a low capacity seed. Therefore, the ratio of expected

completion times is given by:

E[t|high capacity]
E[t| low capacity]

=
N + (2M − 1)
sN + (2M − 1)

For N À M , increasing the seed capacity by a factor of s
decreases the total expected download time by a factor of s.

We can easily apply parallel grouping as long as s ≥
N/M . In this case, each group will have at least M peers
and exactly M pieces. However, if we continue to increase
the value of the seed capacity C, parallel grouping cannot
maintain a corresponding linear decrease in the expected
total download time.

For large values of s, there are more pieces of the file
than there are peers in each cooperating group, i.e., M >
N
s . We can use this, coupled with the large seed capacity, to

further decrease the expected download time. In fact, for co-
operating groups of G = N

s peers each, where the number
of pieces is a multiple of the number of cooperating peers
in the group, we can get very close to the optimal (fastest)
tit-for-tat strategy with the strategy illustrated in Figure 3(b)
for M = 6 pieces, N = 6 peers and s = 2. In Figure 3(b),
there are 2 groups of cooperating peers. The seed is able to
give different pieces to each group because there are twice
as many pieces as there are peers in each group. This, in
turn, enables the groups to cooperate to finish the download.
In Figure 3(b), the seed only gives out a single copy of the
file to the two groups and then stops. This is the minimum
workload. The strategy presented in Figure 3(b) is optimal
for the minimal workload. However, if the seed continues
to work and carefully chooses who to serve until all peers
finished their downloads we then obtain the fastest tit-for-tat
strategy given the parameters N , M and s.

Due to space considerations we will only present this
strategy for the special case where s = N . In other words,
the seed capacity is the same as that of all peers put to-
gether, C = NU . This represents an M fold increase in
seed capacity over case where s = N/M . However, despite
the huge increase in capacity, we now show that the opti-
mal tit-for-tat strategy only provides a small decrease in the
expected download time.

The optimal strategy for s = N is very simple. In the
first time step, the seed simply uploads different pieces to
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all the peers simultaneously. After each peer receives its
first piece it joins a large uploading cycle that includes all
N peers. There, in each time step, it uploads the last piece
it received. During each time step peers simultaneously re-
ceive a piece from the seed. Because each peer is receiving
two pieces per time step (except for the first piece) all peers
finish the download in 1 +

⌈
M−1

2

⌉
time steps and we have

that the expected download time is:

Es=N [t] = ∆
(

1 +
⌈

M − 1
2

⌉)

If we compare this number with the expected download
time when s = N/M , we obtain:

Es=N [t]
Es= N

M
[t]

=
∆

(
2
2 +

⌈
M−1

2

⌉)

∆3M−1
2

≈ M + 1
3M − 1

>
1
3

The above result shows that, unlike what happens in the
client/server model, in a tit-for-tat strategy there are de-
creasing gains as one increases the seed upload capacity.
This occurs because once the seed capacity s reaches the ra-
tio N/M , the optimal P2P strategy starts to transition into a
client/server model and the seed takes more and more of the
workload that was being provided by the cooperating peers.
Thus, we suggest the following rule-of-thumb to determine
the optimal seed capacity for P2P systems employing tit-
for-tat strategies: C∗ = N

M U .

8. Related Work

The work of Yang and de Veciana [7] is likely the clos-
est to this one. That work analyzes the service capacity of
P2P networks under transient and steady-state regimes. The
deterministic model used in this work is very similar to the
simpler (non-branching) detereministic model used by Yang
and de Veciana for transient regimes. However, Yang and
de Veciana go on to consider a more complicated branching
model that focuses on other characteristics of real P2P net-
works, such as peer churn. In their transient analysis, each
peer decides whether to leave the system (with probability
ζ) or to continue to upload (with probability 1 − ζ) after
completing the download. Our work focuses on tit-for-tat
strategies, where peer behavior is not so altruistic, and the
limitations these strategies bring.

Qiu and Srikant [6] analyze BitTorrent like systems with
a very interesting fluid model. Although they do consider
peer strategy in detail, their analysis focuses on steady-state
performance and the existence of Nash equilibrium strate-
gies.

The very general queueing network model of Ge et al.
[4] can be applied to a variety of P2P networks and can
used as a means for comparison. They focus on present-
ing a framework that unifies three different charactersitic of

P2P networks: infrastructure maintenance, query handling
and system throughput. However, their definition of “free-
loaders” is not strong enough to give a precise characteriza-
tion of the effects peer behavior on performance.

9. Conclusion

We believe a content publisher chooses which peer-to-
peer content distribution systems to use based on 3 parame-
ters: number of peers, publishing workload and expected
download time. From this point-of-view, fairness is im-
portant only as much as it allows for better overall service.
The client/server model is very inefficient both in terms of
workload and download time (when compared to the other
cooperative strategies), especially as the number of peers
increases. It requires more work and it takes longer to up-
load/download files.

Because of the optimality of the fully cooperative strat-
egy, it should be clear that, for a fixed number of pieces M ,
the expected download time for any cooperative content dis-
tribution system cannot do better than increase logarithmi-
cally with the number of peers N . The parameter M is very
important for tit-for-tat strategy. It determines the overall
capacity of the system by establishing how many peers can
simultaneously cooperate.

In the ideal topological model considered, there is no sig-
nificant difference between the IR and DR strategies. How-
ever, the connectivity requirements for each are different.
The DR strategy requires that each peer connect to another
M−1 peers, whereas in the IR strategy each peer only con-
nects to two others (in all tit-for-tat strategies the seed must
connect with all peers). We conjecture that other topolog-
ical models will show differences in performance between
the two strategies.

We also observe that, for systems employing tit-for-tat
strategies to deal with flash crowds, there is an efficiency
threshold that when crossed reduces the marginal gains ob-
tained by increasing the seed capacity.
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Appendix

Calculating the Imbalance for the FC Strategy

In the FC strategy, peers start uploading as soon as they
get their first piece and all peers finish the download simul-
taneously. The seed uploads to the first peer in the first time
step. In the second time step, the seed and the first peer up-
load to two other peers (along a different line of symmetry).
Including the seed as a peer, 4 peers recieve a piece at the
end of the second time step. Similarly, 8 peers recieve their
first piece at the end of the third time step and so on. All
N = 2k peers will recieve their first piece at the end of k
steps.

The FC strategy lasts for a total of k +M −1 time steps.
Let us split the analysis into the first k time steps when some
peers are idle and the remaining M − 1 steps when all the
peers are uploading. In the kth step the last N/2 peers re-
cieve their first piece; thus, they upload 0 pieces in the first
k steps. In the (k − 1)th step, N/4 peers receive their first
piece. These N/4 peers upload one piece in the next time
step. Similarly, N/8 peers upload 2 pieces in the first k
steps and so on.

After the first k time steps, all the peers have a piece and
will upload in each of the remaining M − 1 steps. How-
ever the peers which are “mirror images” of the seed do not
upload when they are downloading from the seed. For each
of these peers this occurs once in every log N steps. Defin-
ing B = M − 1, such that B is the “basal” workload of
all peers, the above argument can be summarised by saying
that during the entire download:

• N
2 − 1 peers upload 0 + B pieces

• N
4 − 1 peers upload 1 + B pieces

• N
8 − 1 peers upload 2 + B pieces

• N
2i − 1 peers upload (i− 1) + B pieces

The reason we subtracted one peer from each of the above
sets is that these are “the mirror image peers” and they up-
load

(
B

log N

)
less than their respective groups. For example,

the mirror image peer for the second group above uploads

1 + B −
(

B
log N

)
pieces. Note that, as required, the seed

workload is not counted here.
All peers download the complete file of M pieces.

Therefore,

IAbs =

P
i |di − ui|P

i di
=

N−1X
i=1

|M − ui|

N−1X
i=1

M

=
1

(N − 1)M

N−1X
i=1

|M−ui|

Where the seed is excluded from the summations. Ex-
panding the last sum we obtain:
»„

N

2
−1

«
|M−B|+

„
N

4
−1

«
|M−(B+1)|+

„
N

8
−1

«
|M−(B+2)|+

... +

„
N

N
−1

«
|M − (B+log N−1)|

–
+ β

=

»
N

2
|M−B|+ N

4
|M−B−1|+ N

8
|M−B−2|+ ...

+
N

N
|M −B − (log N−1)|

–
− α + β

where:

α =

kX
i=1

|M − (i− 1 + B)| = 1 +
(k − 2)(k − 1)

2

β =

kX
i=1

˛̨
˛̨M −

„
i− 1 + B − B

log N

«˛̨
˛̨ = M−1+

1

2

`
3k − k2´

and the last equality for β holds when log N ≤ 1+
√

M .
Therefore,

IAbs =
1

(N − 1)M

[
N

2
×1 +

N

4
|1− 1|+ N

8
|1− 2|+

... +
N

N
|1− (log N − 1)|

]
+

β − α

(N − 1)M

=
1

(N − 1)M

[
N

2
+

(
N

8
(1) +

N

16
(2) +

N

32
(3)

... +
N

N
(log N − 2)

)]
+

β − α

(N − 1)M

We recall that:

1
2

+
2
4

+
3
8

+
4
16

+ ... +
log N

N
= 2− 2 + log N

N

Finally, using this result and simplifying we obtain:

IAbs =
N − 2

(N − 1)M
+

M − 1

(N − 1)M
+

2 log N

(N − 1)M
− (log N)2

(N − 1)M
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The four terms above can be interpreted as follows. The
first term stems from the fact that each peer receives a piece
before it begins to upload and stops uploading immediately
once it has all pieces. Therefore, each peer receives at least
one more piece than it uploads among the M pieces of the
file. The second term comes from the fact that once all peers
have a piece, at each step, one in N − 1 peers does not
upload. Finally, the last terms are due to the unreciprocated
work that is done before all peers have a piece.
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