
Gaining Intuition through a Peer-to-Peer Comparison Framework

Dimitri do B. DeFigueiredo, Balaji Venkatachalam and S. Felix Wu

Department of Computer Science – UCDavis

Abstract

We propose an analysis framework for peer-to-peer (P2P)
networks and use it to compare a few optimal content dis-
tribution strategies. We propose new strategies and obtain
bounds on the performance of any P2P network depend-
ing on individual peer behavior. The analysis provides in-
sights on how P2P networks perform when dealing with
flash crowds.

1 Introduction
Is BitTorrent [1] better than Gnutella [3]? How do we com-
pare different peer-to-peer (P2P) filesharing networks? In
this paper we propose an analysis framework for P2P net-
works and use it to compare a few optimal content distribu-
tion strategies. Among the many possible characterizations
of P2P networks within distributed systems, we choose in-
dividual peer behavior as our defining characteristic. In
this context, distributed systems range from fully cooper-
ative systems that employ an overall centralized strategy to
completely noncooperative systems which, as we will show,
represent the common client/server model. Most P2P net-
works fall somewhere in the middle of this range depending
on their selfish behavior.

To provide an intuitive understanding of our framework
we analyze a few idealized static peer strategies and their
corresponding outcomes. We consider the outcomes from
two points of view:
• A global (macro) view providing overall system char-

acteristics.
• An individual (micro) view providing the perspective

of a single peer and what it is willing to do as it inter-
acts with others in the network.

Here we focus on content distribution through filesharing
networks, but the reasoning holds for any service network.
In that case, quality of service, rather than bandwidth, is the
limiting factor.

2 The Framework
We use a very simple topological model where the con-
straints are peer upload and download bandwidth. In this
model there are no bottlenecks in the network core, all con-
straints are found at the edges. Peer i has a maximum uplink
capacity of Ui bps and a maximum downlink capacity of Di

bps. We focus on uplink capacity because this enables us to
clearly deal with selfish behavior, separating it from other
concerns.

The proposed framework analyzes P2P networks in four
dimensions: scalability, publishing workload, efficiency
and fairness. We choose to quantify these respectively by
the following measures:
• Number of peers, N
• Seed workload W and required upload capacity C
• Expected download time, E[t]
• Normalized absolute imbalance, IAbs

A few remarks are appropriate here. We use the number
of peers in the network and the seed workload/capacity as
design parameters. The seed capacity is its uplink through-
put capacity. The workload represents how many MBytes
of data it has to transfer to make sure all peers can obtain
the content. A peer’s download time is the time elapsed be-
tween when a peer joins the network to when it completes
the desired download. Thus, the expected download time
is of great interest to each peer (or the corresponding user)
when it joins the network. Peer i’s imbalance is the differ-
ence in bytes between how much data the peer has down-
loaded di to how much it has uploaded ui. Clearly, peers
like positive imbalances and avoid negative ones. To calcu-
late normalized imbalances, the normalization is done with
respect to how much content has been distributed, i.e. the
total amount downloaded by all peers1. Thus,

IAbs ,
∑

i |di − ui|∑
i di

We do not consider the seed (i.e. the original publisher of
the file) when performing the summations. Unlike the peers
who want to download the content, the seed wants to dis-
tribute it. Excluding the seed from the summation leads to a
metric that is more descriptive of peer behavior. We also as-
sume peers will not download what they already have; i.e.,
all downloaded content is new to the peer downloading it.
The normalized imbalance is zero (cooperative) if all peers
upload as much as they download, 1 (“completely nonco-
operative”) if nobody but the seed uploads anything and 2
(“exploitative”) if some peer is exploited and uploads to all
others. More precisely, as the number of peers tends to in-
finity the normalized imbalance tends to zero in a perfectly
fair network and to 2 in a perfectly unfair one. Values above
1 imply that at least one peer, who is not the seed, is altruis-
tic/exploited and uploads more than it downloads. Further-
more, if no peer uploads more than it downloads then IAbs

1We can also use a root-mean-square measure here. We decided to
stick to the absolute value measure for ease of interpretation.

1

measures what fraction of the file the peers did not recipro-
cate. Thus, if each client finishes its download and leaves
the network after having uploaded on average only 30% of
the file we have IAbs = 0.7 . By this measure, being altru-
istic and uploading more than one downloads is not good
and implies that the system is unfair. In this case, IAbs can
be greater than 1. For example, if we have a total of N = 6
peers (excluding the seed) and peer 1 uploads the whole file
to the other 5 peers who free ride. Then,

IAbs =
|1− 5|+ 5× |1− 0|

6
= 1.5

Again, the initial seed is not considered in these calcula-
tions. IAbs can be computed for BitTorrent from the logs of
the tracker if clients report their activity truthfully [2].

3 The Client/Server Model
In the client/server model, a server serving a file of size
Z MB has to do W = ZN work to serve N peers. The
workload increases linearly with the number of peers. If
the server has upload capacity of C MB/s then the earliest
the first peer can finish getting the file is Z

C seconds after
the start, the second peer can only finish after another Z

C
seconds. Changing the order in which pieces are given to
either peer can delay the time it takes for the first peer to
finish, but it cannot shorten the total or average download
time for both peers. It is easy to see by induction that the
same is true for any number of peers.

In this paper we always consider the worst case scenario
of an instant flash crowd, where all N peers request the file
at time t = 0. So, the expected download time is:

E [t] =
1
N

(
Z

C
+

2Z

C
+ ... +

NZ

C

)
=

Z

2C
(N + 1)

In other words, the expected download time also in-
creases linearly with the number of peers and is inversely
proportional to the server capacity C. The client/server
model is completely uncooperative as none of the clients
contribute anything:

IAbs =
∑

i |di − ui|∑
i di

=
∑

i |di − 0|∑
i di

= 1

4 A Fully Cooperative Strategy
Let us now perform the same analysis for a fully coopera-
tive (FC) strategy proposed by [4]. The strategy is estab-
lished ahead of time so that all peers know exactly what to
do when the file becomes available. This simple strategy
can be applied when N = 2k peers (including the seed),
with all peers and the seed having equal upload capacity C.
The file of size Z MB is split into M pieces of equal size
which are uploaded to each peer in a pipeline as described
below. Each peer can upload a piece as soon as it is com-
pletely downloaded. Because all pieces are of equal size we
proceed as in discrete time steps of length ∆ = Z

MC . In

each time step the seed gives out a new piece until the last
new piece is given out. From that point on until all peers
finish their downloads, the seed repeatedly uploads the last
piece.

The strategy is described using Figure 1, where a file
with M = 5 pieces, denoted by ¤,×,4,© and ♦, is dis-
tributed among N = 16 peers (including the seed). Pieces
are distributed to peers as if each peer were the vertex of
a 4-dimensional hypercube and four symmetric reflections
were made successively. It should be clear that this strategy
can be generalized for any N = 2k. It has a number of nice
features2:

• All peers finish the download simultaneously.

• Each peer only needs to connect to a small number
(log N) of others.

• The download capacity required of each peer is the
same as the upload capacity; i.e., the strategy can be
used when the download capacity is larger than or the
same as the upload capacity of each peer.

The strategy is also very efficient. A peer cannot upload
until it receives at least one piece. During each of the initial
k = log2 N steps every peer that has at least one piece
continuously uploads to other peers. Therefore, the upload
capacity of the network is used as much as possible. In each
time step after the initial k, all peers but one completely use
their upload capacity and one additional piece is completed,
i.e. all peers have a copy of it. The last two pieces are
completed simultaneously. This implies that all peers finish
their downloads at time step3 k+M−1. Thus, the expected
download time is given by:

E [t] = ∆(k + M − 1) = Z
CM (log2 N + M − 1)

= Z
C

(
M−1

M + log2 N
M

)

In other words, for a fixed M the expected download time
increases logarithmically with the number of peers.

The seed gives out a copy of each piece and then repeats
the last piece for the very same k + M − 1 steps. Thus, it
gives out a total of:

W =
Z

M
(k + M − 1) = Z

(
log2 N

M
+

M − 1
M

)
bytes.

Again, the increase in workload is logarithmic with an
increase in the number of peers for a fixed M.

We can also calculate the normalized absolute imbalance
(see appendix):

IAbs =
N − 2

(N − 1)M
+

M − 1
(N − 1)M

+
2 log N

(N − 1)M
− (log N)2

(N − 1)M
2Note that there are immediate extensions of this strategy to when the

seed capacity is a power of two times the capacity of the other peers and
when there are a total of 2k peers not including the seed.

3If M = 1 the seed always serves the same piece and we are done in
k timesteps.

2

t = 5∆ t = 7∆t = 4∆

t = 0 t = ∆ t = 2∆

t = 6∆
pieces = seed = peer =

t = 3∆

Key:

+ + + +

+ + + +

Figure 1: A Fully Cooperative strategy for N = 16 peers and M = 5 pieces. The figure shows what each peer has at the beginning
of each time step. The arrows show the peer the seed is serving in the current timestep. At the same time, peers upload to their
“mirror images” across the dotted lines. Once all peers have a piece it is no longer shown (e.g. the square, ¤, disappears at t = 5).
All peers complete the download in 8 timesteps.

In this section we included the seed in the number of
peers N for ease of exposition. We will make the neces-
sary change of variables when comparing this result with
other strategies.

5 Tit-for-Tat Strategies
For a fixed number of peers, the fully cooperative strategy
realizes large gains over the client/server model in terms of
the expected download time and the seed workload, but it
requires some peers to be altruistic and upload more than
they download. We now examine two non-exploitable co-
operative strategies in which peers only upload if they are
simultaneously downloading. We will see that despite the
slightly less cooperative behavior from the peers we still
achieve very advantageous results. We will consider two
types of tit-for-tat strategies:

• Direct Reciprocity: Peer A uploads to peer B iff peer
B is simultaneously uploading to peer A

• Indirect Reciprocity: Peer A uploads to peer B iff
some peer uploads to peer A. This is more flexible and
enables peers to form cycles, e.g. peer A uploads to
peer B who uploads to C who uploads to A.

These restrictions do not apply to the seed who uploads at
will, as always. The above restrictions imply that once a
peer has all the pieces it stops cooperating. We assume that
all peers and the seed have the same upload capacity4.

Tit-for-tat strategies are quite fair. The peer behavior en-
sures that all such strategies have an imbalance IAbs that is

4There are immediate extensions of these strategies when the capac-
ity of the seed is a multiple of the capacity of the peers. We simply form
groups of peers and apply the same strategy in each group.

bounded by how much work the seed does. Assuming all
peers employ the tit-for-tat strategy each peer must receive
at least one piece from the seed to be able to participate.
Also, no peer will ever contribute more than it downloads
and the terms inside the moduli in the expression for IAbs

are always positive. Therefore the imbalance is given by:

IAbs =
∑

i |di − ui|∑
i di

=
∑

i di −
∑

i ui∑
i di

=
W

NZ

Note that the seed must always give out at least a com-
plete copy of the file, so W ≥ Z and it follows that the
best possible imbalance for tit-for-tat strategies matches the
best possible imbalance for any strategy and is given by
IAbs = 1

N .
The fact that in tit-for-tat strategies each peer must re-

ceive at least one piece from the seed to be able to par-
ticipate implies that the seed must upload to each one of
N peers. Also, because peers only cooperate after they get
their first piece, the number of peers cooperating only grows
linearly with each time step as compared to exponentially
for the fully cooperative strategy.

A very efficient indirect reciprocity (IR) strategy can be
obtained simply by forming a line where each piece is
passed on to the next peer, just like the old fire brigade
passed buckets to put out a fire. There are no restrictions
on the number of peers, but we require that the file is bro-
ken up into pieces such that M ≥ N . We proceed, as in
the FC strategy, in time steps of length ∆ = Z

MC = Z
NC .

Figure 2(a) illustrates the strategy for N = M = 5 peers.
Figure 2(b) shows a similar strategy that uses direct reci-
procity (DR) only. It should be clear that in the IR strategy,
Figure 2(a), the peers also end the download in a sequence
of steps. The first peer receives a constant download stream
from the seed from t = 0 and finishes at time t = Z

C , the

3

second finishes at t = Z
C + Z

NC and so on. Thus, the average
download time for the IR strategy is given by:

E [t] =
1
N

N−1∑

i=0

(
Z

C
+ i

Z

NC

)
=

Z

C
+

Z

2C

N − 1
N

Similarly, for the direct reciprocity strategy we have:

E [t] =
1
N

[
− Z

NC
+

N∑

i=1

(
Z

C
+ i

Z

NC

)]

=
Z

C
+

Z

2C

N − 1
N

+
Z

C

N − 1
N2

Where the negative term to the left of the sum is included
because the last two peers finish simultaneously. It is very
straight forward to calculate the workload W and the imbal-
ance IAbs for both strategies. These results are presented in
the next section.

The reason for considering these two non-exploitable
strategies in particular is their optimality. In the IR strat-
egy, every participating peer uploads as much as possible,
as soon as possible, for as long as possible for any tit-for-tat
strategy. Thus, this strategy matches the smallest possible
expected download time of any tit-for-tat strategy. In any
strategy, the seed must give out at least one complete copy
of the file. This is exactly the workload of the DR strategy.
Thus, the DR strategy matches the smallest seed workload
of any strategy. Similarly, it should be clear from the dis-
cussion above that the Direct Reciprocity strategy matches
the best (smallest) imbalance of any strategy.

It is interesting to note that (neglecting the first piece re-
ceived by each peer in the DR strategy) in both strategies
the peers get the pieces in the same order that the seed gives
them out, which would be interesting for streaming appli-
cations.

6 Discussion
Table 1 presents our exact results. For comparison with the
client/server model the seed is excluded and does not count
as one of the peers. This requires us to make a change of
variables to the results obtained for the fully cooperative
strategy to align it with the others.

To simplify the comparison, we eliminate M by assum-
ing a fixed piece size of 1 unit (i.e. 1MB) in the FC strategy,
this implies that M = Z. The client/server model is quite
effective when the number of clients is small. Thus, we
are mostly interested in analyzing peer-to-peer systems as a
content distribution platform that can cope with large num-
bers of peers in flash crowds. Note also that use of BitTor-
rent to download a 1GB file with the old piece size of 1MB
implies M = 1000 pieces. Thus, we assume M and N to be
large and make the approximations: log2(N +1) ≈ log2 N ,
N−1

N ≈ 1 and M−1
M ≈ 1. With these approximations we ob-

tain the results in Table 2. Please take a while to examine
it.

Interestingly, the expected download time for the DR and

IR strategies is independent of the number of peers for large
N . This needs to be taken with a grain of salt and is a con-
sequence of having to choose a large M for these strate-
gies to work. In the DR and IR strategies we required that5
M ≥ N . If we choose M = N for the FC strategy the
expected download time actually decreases as N increases
tending to the limit Z

C (which is the expected time for just 1
peer).

t = 0
1 2 3 4 5

t = ∆+

t = 8∆+

t = 2∆+

t = 3∆+

t = 6∆+

t = 7∆+

t = 9∆+

t = 4∆+

peer:

+t = 5∆

t = 0
1 2 3 4 5

t = ∆+

t = 8∆+

t = 2∆+

t = 3∆+

t = 6∆+

t = 7∆+

t = 9∆+

t = 4∆+

pieces =

(a) (b)

peer:

+t = 5∆

4−5

3−5

2−5
3−4

1−5
2−4

1−2

1−3

1−4
2−3

Figure 2: Two Tit-for-Tat Strategies using: (a) indirect reci-
procity and (b) direct reciprocity. Peers in white have finished the
download and no longer cooperate. Bold pieces have just been
received from the seed in the previous time step. The numbers on
the top-left corner of (b) show which peers are swapping pieces
in the current time step.

5We can also pipeline the DR strategy if M = kN for k ∈ N.

4

Measure Client/Server Fully Cooperative Indirect Direct

W NZ Z
(

log2(N+1)
M + M−1

M

) (
2− 1

N

)
Z Z

E [t] Z
C + Z

2C (N − 1) Z
C

(
log2(N+1)

M + M−1
M

)
Z
C + Z

2C
N−1

N
Z
C + Z

2C
N−1

N + Z
C

N−1
N2

IAbs 1 N−1
NM + M−1

NM + 2 log2(N+1)
NM − (log2(N+1))2

NM
2
N − 1

N2
1
N

Table 1: Exact Workload, Expected Download Time and Normalized Imbalance for different Strategies

Measure Client/Server Fully Cooperative Indirect Direct
W NZ Z + log N 2Z Z

E [t] Z
C + (N−1)

2
Z
C

Z
C + log N

C
Z
C + 1

2
Z
C

Z
C + (1+ 2

N)
2

Z
C

IAbs 1 1
Z + 1

N + 2 log N
NZ − (log N)2

NZ
2
N

1
N

Table 2: Summary of Results

We believe a content publisher would choose which peer-
to-peer content distribution systems to use based on 3 axes:
number of peers, workload and expected download time.
From this point-of-view, fairness is important only as much
as it allows for better overall service. It should be clear that
the client/server model is very inefficient both in terms of
workload and download time (when compared to the other
strategies) as the number of peers increases. It requires
more work and it takes longer to upload/download files.
We can calculate what the gains in workload and capacity
from using a cooperative strategy are. We define these gains
as the ratio of the workload W and the capacity C needed
to serve the same number of peers with the same expected
download time in comparison to the client/server model.

Because of the optimality of the fully cooperative strat-
egy, it should be clear that the expected download time for
any cooperative content distribution system cannot do bet-
ter than increase logarithmically with the number of peers
N .

One interesting difference between the FC and the non-
exploitable tit-for-tat (IR and DR) strategies is that FC al-
lows for the number of cooperating peers to increase expo-
nentially with time; whereas, the non-exploitable strategies
only allow for a linear increase. This limitation stems from
the fact that in the non-exploitable strategies the seed must
give out at least one piece to each peer before it can cooper-
ate with others. In practical terms, this may limit how fast
tit-for-tat strategies scale to handle large flash crowds when
file size is small. In the very idealized scenario considered
this is the only significant loss we have from adopting non-
exploitable strategies rather than the fully cooperative one.
Further investigation is necessary to determine the extent
to which this may be mirrored in the real world. However,
the gains of non-exploitable strategies over the client/server
model are still very significant.

Although it may be tempting to compare the expected
download times of the IR and DR strategies, such com-
parison would only be appropriate if the strategies had the

same workload. The static scenarios considered are unable
to show any significant difference between direct and indi-
rect reciprocity with both achieving close to optimal perfor-
mance. We conjecture that a more realistic setting where
there is significant peer turn over may be able to differenti-
ate between the two.

The seed capacity was inversely proportional to the ex-
pected download time for all the strategies considered. It
appears that a linear increase in capacity can be effectively
used to produce a corresponding linear decrease in expected
download time. We can relax the assumptions made on peer
upload capacity by establishing extended strategies where a
peer selects different cooperating groups per kbps of upload
rate it has. For example, if 5 peers have 75kbps of upload
bandwidth and another 100 peers only have 50 kbps. We
can form two cooperating groups, one including all peers
and uploading at 50 kbps and another formed only by the
high speed peers, that upload between themselves at an ex-
tra 25 kbps6. However, we made very strong assumptions
about how much each peer can upload compared to the seed.
Thus, this question requires further investigation.

Acknowledgments
The authors would like to thank Earl Barr for many insight-
ful conversations.

References
[1] B. Cohen, “Incentives build robustness in BitTorrent”. In

Workshop on Economics of Peer-to-Peer Systems, Berkeley,
CA, USA, June 2003. http://bittorrent.org

[2] BitTorrent Protocol Specs. http://bittorrent.org/protocol.html

[3] http://www.the-gdf.org

[4] X. Yang and G. de Veciana. “Service Capacity of Peer to Peer
Networks” In INFOCOM, 2004.

6Note that the seed can force cooperation between peers by determin-
ing where peers should get their next pieces from.

5

Appendix
Calculating the Imbalance for the FC Strategy

In the FC strategy, peers start uploading as soon as they
get their first piece and all peers finish the download simul-
taneously. The seed uploads to the first peer in the first time
step. In the second time step, the seed and the first peer up-
load to two other peers (along a different line of symmetry).
Including the seed as a peer, 4 peers recieve a piece at the
end of the second time step. Similarly, 8 peers recieve their
first piece at the end of the third time step and so on. All
N = 2k peers will recieve their first piece at the end of k
steps.

The FC strategy lasts for a total of k + M − 1 time steps.
Let us split the analysis into the first k time steps when some
peers are idle and the remaining M − 1 steps when all the
peers are uploading. In the kth step the last N/2 peers re-
cieve their first piece; thus, they upload 0 pieces in the first
k steps. In the (k − 1)th step, N/4 peers receive their first
piece. These N/4 peers upload one piece in the next time
step. Similarly, N/8 peers upload 2 pieces in the first k
steps and so on.

After the first k time steps, all the peers have a piece and
will upload in each of the remaining M − 1 steps. How-
ever the peers which are “mirror images” of the seed do not
upload when they are downloading from the seed. For each
of these peers this occurs once in every log N steps. Defin-
ing B = M − 1, such that B is the “basal” workload of
all peers, the above argument can be summarised by saying
that during the entire download:
• N

2 − 1 peers upload 0 + B pieces

• N
4 − 1 peers upload 1 + B pieces

• N
8 − 1 peers upload 2 + B pieces

• N
2i − 1 peers upload (i− 1) + B pieces

The reason we subtracted one peer from each of the above
sets is that these are “the mirror image peers” and they up-
load

(
B

log N

)
less than their respective groups. For example,

the mirror image peer for the second group above uploads
1 + B −

(
B

log N

)
pieces. Note that, as required, the seed

workload is not counted here.
All peers download the complete file of M pieces. There-

fore,

IAbs =
∑

i |di − ui|∑
i di

=

N−1∑

i=1

|M − ui|

N−1∑

i=1

M

=
1

(N − 1)M

N−1∑

i=1

|M−ui|

Where the seed is excluded from the summations. Ex-
panding the last sum we obtain:
[(

N

2
−1

)
|M−B|+

(
N

4
−1

)
|M−(B+1)|+

(
N

8
−1

)
|M−(B+2)|+

... +
(

N

N
−1

)
|M − (B+log N−1)|

]
+ β

=
[
N

2
|M−B|+ N

4
|M−B−1|+ N

8
|M−B−2|+ ...

+
N

N
|M −B − (log N−1)|

]
− α + β

where:

α =
k∑

i=1

|M − (i− 1 + B)| = 1 +
(k − 2)(k − 1)

2

β =
k∑

i=1

∣∣∣∣M −
(

i− 1 + B − B

log N

)∣∣∣∣ = M−1+
1
2

(
3k − k2

)

and the last equality for β holds when log N ≤ 1+
√

M .
Therefore,

IAbs =
1

(N − 1)M

[
N

2
×1 +

N

4
|1− 1|+ N

8
|1− 2|+

... +
N

N
|1− (log N − 1)|

]
+

β − α

(N − 1)M

=
1

(N − 1)M

[
N

2
+

(
N

8
(1) +

N

16
(2) +

N

32
(3)

... +
N

N
(log N − 2)

)]
+

β − α

(N − 1)M

We recall that:

1
2

+
2
4

+
3
8

+
4
16

+ ... +
log N

N
= 2− 2 + log N

N

Finally, using this result and simplifying we obtain:

IAbs =
N − 2

(N − 1)M
+

M − 1
(N − 1)M

+
2 log N

(N − 1)M
− (log N)2

(N − 1)M

The four terms above can be interpreted as follows. The
first term stems from the fact that each peer receives a piece
before it begins to upload and stops uploading immediately
once it has all pieces. Therefore, each peer receives at least
one more piece than it uploads among the M pieces of the
file. The second term comes from the fact that once all peers
have a piece, at each step, one in N − 1 peers does not
upload. Finally, the last terms are due to the unreciprocated
work that is done before all peers have a piece.

6

