
Authentic Third-party Data Publication

Prem Devanbu, Michael Gertz, Chip Martel Stuart G. Stubblebine∗

Department of Computer Science CertCo
University of California 55 Broad Street – Suite 22

Davis, California CA 95616 USA New York, NY 10004
{devanbu|gertz|martel}@cs.ucdavis.edu stubblebine@cs.columbia.edu

Abstract

Integrity critical databases, such as financial information, which are used in high-value decisions,
are frequently published over the internet. Publishers of such data must satisfy the integrity,
authenticity, and non-repudiation requirements of end clients. Providing this protection over public
data networks is an expensive proposition. This is, in part, due to the difficulty of building and
running secure systems. In practice, large systems can not be verified to be secure and are frequently
penetrated. The negative consequences of a system intrusion at the publisher can be severe. The
problem is further complicated by data and server replication to satisfy availability and scalability
requirements.

To our knowledge this work is the first of its kind to give general approaches for reduce the
trust required of the publisher of large, infrequently updated databases. To do this, we separate
the roles of owner and publisher. With a few digital signatures on the part of the owner and no
trust required of the publisher, we give techniques based on Merkle hash trees, that publishers can
use to provide authenticity and non-repudiation of the answer to a database query. This is done
without requiring a key to be held in an on-line system, thereby reducing the impact due to the
likely system penetration. By reducing the trust required of the publisher, our solution is a step
towards the publication of large databases in a scalable manner.

1 Introduction

Consider a financial markets database, used by businesses to make high-value decisions. Examples
include financial data about a range of investment vehicles such as stocks, bonds and mortgage-backed
securities. These databases might be resold to “financial portals”, which republish the information over
insecure public networks. This data will be queried at high rates, for example by client investment
tools. We focus our attention on data which changes infrequently1. We assume extremely high
Query/Update ratios, with millions of queries executed daily. The data needs to be delivered promptly,
reliably and accurately. One approach to this problem is to digitally sign the results to a query. Here,
σK−1

O
() represents the signature using the private signature key, K−1

O .

1. Client −→ Owner : Query,Nonce
2. Owner −→Client: Data, Timestamp, σK−1

O
(Data, T imestamp,Nonce)

The client may thus be assured of the correctness of the answer, since it is in response to the query,
the data is adequately recent, and it is signed by the owner (and thus satisfies the non-repudiation
requirements). However, there are several issues here: first the owner may not be willing or able to
provide a reliable, efficient, database service to query over this data at the scale and the rates required
by the clients and republishers of the information. Second, even if the owner is willing and able to
∗This paper is under continuous revision; rather than forwarding a copy, please get the latest from

http://seclab.cs.ucdavis.edu/~devanbu/authdbpub.pdf
1Examples of relatively static information include financial earnings reports, market history such as individual trades,

offers and bids, intra- and inter- day highs and volume, and sometimes financial ratings.

provide a service, the owner needs to maintain a high-level of physical and computer security required
to defend against attacks. This has be done to protect the signing key, which must be resident in the
database server at all times to sign outgoing data. However, in practice, most large software systems
have vulnerabilities. Some these can be “patched”, (albeit usually only partially) with a great deal of
skill, effort, time and expense. Using cryptographic techniques like threshold cryptography or using
hardware devices to protect the private key help but do not solve the systems vulnerability problem
and are generally too expensive to implement in our application domain.

A more scalable approach to this problem is to use trusted third-party publishers of the data, in
conjunction with a key management mechanism which allows certification of the signing keys of the
publishers to speak for the author of the data. The database (or updates), DB, is provided securely
to the publishers.
Owner −→ Publishers Pi, i = 1 . . . n : DB,Timestamp, σK−1

O
(DB,T imestamp)

This is followed by the clients accessing the publishers in a query response style similar to the previous
protocol description, with publishers signing answers using K−1

Pi
, i = 1 . . . n.

Presumably, the market for the useful data in DB will motivate other publishers to provide this service,
unburdening owner of the need to do so. The owner simply needs to sign the data once and distribute
it to the publishers. As the demand increases, more such publishers will emerge, thus making this
approach inherently more scalable. However, this approach also suffers from the problem and expense
of maintaining a secure system accessible from the internet. Furthermore, the client might worry that
a publisher engages in deception. The client has to find a publisher that she can trust, such as a
trusted brand-name belonging to a large corporation. The client would also have to trust the key-
management infra-structure that allowed the keys of the publishers to be certified. In addition, she
would have to believe that her publisher was both competent and careful with site administration and
physical access to the database. Particularly, she might well worry that the private signing-key of the
publisher would have to be resident at the database server, and is therefore vulnerable to attack. To
get a client to trust him to provide really valuable data, the publisher would have to adopt careful and
stringent administrative policies, which be more expensive for him (and thus also for the client). The
abovementioned need for trusted publishers would increase the reliance on brand-names, which would
also limit the tendency of market competition to reduce costs. Tygar lists this as important open
problem in e-commerce. He asks [18]: “How can we protect re-sold or re-distributed information...?”.
We present an approach to this problem.
Our Approach We propose an approach to certifying responses to queries, by which a completely
untrusted publisher can provide a verification object VO to a client, along with the answer to the
query; this VO is generated by the publisher, and provides an independent means of verifying that
the answer to the query is correct. The verification object is based on a small number of summary
signatures (Σ’s) that are distributed periodically to the clients by the data owner. The summary
signatures are bottom-up hashes computed recursively over B-tree type indexes for the entire set of
tuples in each relation of the owner’s database, signed with K−1

O . Answers to queries are various
combinations of subsets of these relations. Given a query, the publisher computes the answer. To show
that an answer is correct the publisher constructs a VO using the same B-tree structures that were
used by owner to compute the summary signatures. This VO validates an answer set by providing
an unforgeable2 “proof” which links the answer to the appropriate Σ, which was already signed by
owner. Our approach has several features:

1. With the exception of the security at the client host, a client needs only trust the key of the
owner; in addition, owner only needs to distribute Σ during update cycles. Hence, the private
signing key need not be resident in a “online” machine, and can be better protected; e.g., it can
be ensconced in a hardware token that is used only to sign hash digests during updates.

2Our techniques are founded on cryptographic assumptions regarding the security of hash functions and public-key
cryptosystems.

2

2. clients need not trust the publishers, nor their keys.

3. For all the techniques we describe, the VO is always linear in the size of the answer to a query.

4. The VO guarantees that the answer is exact, without any superfluous or missing tuples.

5. If the publisher evaluates queries using the same data structures used by owner to compute Σ,
publisher’s overhead to compute VO is relatively minor.

An incorrect answer and VO will almost always be rejected by the client; it is infeasible for publisher
to forge a correct VO for a wrong answer.

We offer solutions for authenticity in a specific context. We do not directly address the orthogonal
issue of access control policies [9], which might restrict queries and updates, nor issues of confiden-
tiality and privacy. Our techniques are restricted to relational databases. In addition, we handle only
some relational queries. Our techniques do involve the construction of some complex data structures,
although the cost of this can be amortized over more efficient query processing. Some of the approach-
es are similar to view materialization, which can enable data warehouses to provide efficient query
processing.

The outline of this paper is as follows. In Section 2, we begin with a discussion of the problem space,
as we have framed it, and briefly set the context for the preliminary results presented in this paper,
and open issues that still remain. Next, after a brief background on relational databases, we describe
the essence of our extension of the work of Naor & Nissim [13] to secure third-party data publication.
In Section 4, we give our basic approach. In Section 7, we give our conclusions.

2 The Design Space

To begin with, we clarify the problem setting outlined above, and map out the potential design space
of solutions. Our general setting can be described thus:

1. The owner populates the relations in the database, does some pre-computation on the database
to construct data structures that support query-processing (such as B-trees), and computes
summary signatures (i.e., Σs) of these data structures, signed with K−1

O

2. The owner distributes these Σs to clients and the database to the publishers.

3. A client sends a query to a publisher. The publisher computes the answer q, and a verification
object VO and sends both back to client.

4. The client verifies the correctness and completeness of q by recomputing Σ using q, VO and KO.

Given the general problem of publishing data securely using third parties, different approaches are
possible, which lead to different computing and storage costs for the clients, the publishers, and the
owners. One extreme approach, for example, would be for the owner to simply deliver the entire
database to all the clients and let them do their own query processing. This approach entails huge
data transmission costs and requires a great deal of storage and processing by the clients. The other
extreme is for the owner to pre-compute and sign a whole range of possible queries. The publishers
would simply cache the queries along with the applicable signatures from the owner, and return the
signatures with the answers to the queries. From the client’s perspective, this approach is attractive:
each pre-computed answer comes with a constant-length verification object (a signature) directly from
the owner. However, this approach is not practical in general: there are just simply too many possible
queries.

3

Our goal is a compromise design: one that does not require pre-computation of arbitrary query answers,
nor shipment of the entire database to clients. Given a particular database, the client can choose
from a potentially infinite set of queries (although constrained by the query patterns implemented
in the applications at the client sites). We adopt the position that requires a certain amount of
effort from all parties: the owner, the publisher, and the client. In all our suggested techniques, the
owner has to do work O(n logd−1 n) time and space in the size n of the database (where d is a
small constant denoting roughly the number of operations, such as selections and projections, in the
query). In particular, simple Θ selections over a particular attribute of a single relation only require
O(n) work of the owner. However, this work is mostly towards the construction of index structures,
which is amortized over repeated, efficient query processing. These index structures can either be
transmitted to the publishers, or (exactly and precisely) recomputed by them. Our query processing
algorithms are similar in performance to those of standard databases. The construction of the VO’s are
a small constant overhead over the standard query processing algorithms. Finally, and perhaps most
importantly, the size of the VO grows linearly with the size of the answer set, and poly-logarithmically
with the size of the database. The verification step itself takes time linear in the size of the VO.

This view suggests that there may be many other perspectives on this problem of secure third-party
data publication. Differing assumptions on the levels of storage and computational effort expected of
owners, publishers and clients may lead to different viable solutions to this problem. We believe that
(in addition to the techniques presented below) many useful “operating points” await discovery.

3 Preliminaries

In this section we will discuss the basic notions, definitions and concepts necessary for the approach
presented in this paper. In Section 3.1 we will present the basic notions underlying relational databases
and queries formulated in relational algebra. In Section 3.2 we will discuss the computation and usage
Merkle Hash Trees.

3.1 Relational Databases

The data model underlying our approach is the relational data model (see, e.g., [5, 17]). That is,
we assume that the data owner and the publisher manage the data using a relational database man-
agement system (DBMS). The basic structure underlying the relational data model is the relation.
A relation schema R〈A1, A2, . . . , An〉 consists of a relation name R and an ordered set of attribute
names 〈A1, A2, . . . , An〉, also denoted by schema(R). Each attribute Ai is defined on a domain Di.
An extension of a relation schema with arity n (also called relation, for short) is a finite subset of the
Cartesian product D1 × . . . ×Dn. The extension of a relation schema R is denoted by r. The value
of a tuple t ∈ r for an attribute Ai is denoted by t.Ai. We assume that with each relation schema
R a set pk(R) ⊆ {A1, . . . , An} is associated which designates the primary key. The number of tuples
in a relation r is called the cardinality of the relation, denoted by | r |. A database schema S is a
collection of relation schemas R = {R1, . . . , Rm}. For a database schema S, the extension of the
relation schemas at a particular point in time is called a database instance (or database).

Queries against a database are formulated in SQL [12, 6]. Such queries are typically translated by
the DBMS query processing engine into expressions of the relational algebra for the purpose of query
optimization and execution. In this paper we are mainly concerned with providing verification objects
for query results where the queries are formulated as expressions of relational algebra. Those queries
are either simple, containing at most one basic operator, or complex, containing a composition of
basic operators. The basic operators of the relational algebra are as follows (with R, S being relation
schemas):
• Selection (σ): σP (r) := {t | t ∈ r and P (t)} where r is a relation (name), P is a condition of the

4

form Ai Θ c with Ai ∈ schema(R), c ∈ Di, and Θ ∈ {=, 6=, <,>,≤,≥}.

• Projection (π): πAk,... ,Al(r) := {t.Ak, . . . , t.Al | t ∈ r}.

• Cartesian Product (×): r × s := {tq | t ∈ r and q ∈ s}.

• Union Operator (∪): r ∪ s := {t | t ∈ s or t ∈ s}. R and S must be union compatible.

• Set Difference Operator (−): r− s := {t | t ∈ r and t 6∈ s}. R and S must be union compatible.

Additional operators of the relational algebra, which are typically used in complex queries, are natural
join or equi-join 1, condition join or theta-join 1C (with C being a condition on join attributes), and
set-intersection ∩. All these operators can be derived from the above five basic operators.

3.2 Merkle Hash Trees

We describe the computation of a Merkle Hash Tree [11] for a given relation r with relation schema
R = 〈A1, . . . , An〉. For this, assume that A = 〈Ai, . . . , Ak〉 is a list of attributes from schema(R).
The Merkle Hash Tree computed is denoted by MHT (r,A).

1. First, compute the tuple hash ht for each tuple t ∈ r thus:

ht(t) = h(h(t.A1) || . . . || h(t.An))

The tuple hash (by the collision resistance of the hash function) functions as a “nearly unique”
tuple identifier (for a hash-length of 128 bits, probability of collisions approaches 2−128).

2. Next, compute the Merkle hash tree for relation r. For this, assume that r is sorted by the values
of A so that for two distinct tuples ti−1, ti ∈ r, ti−1.A ≤ ti.A.

Leaf-nodes : h0(i) = ht(ti) , i = 1 . . . | r |, 0 otherwise

hj(i) = h(hj−1(2i− 1) || hj−1(2i)) for i = 1 . . .
⌈

(
| r |
2j

)
⌉
, j = 1 . . . dlog2(| r |)e

We note that there is only one hash value at the level dlog2(| r |)e, and this is the “root hash” of the
Merkle tree. In the sequel, we denote the two values hj−1(2i− 1) and hj−1(2i)) used to compute hj(i)
as hash siblings; hj(i) is their parent. This construction is illustrated in Figure 1. h34 is the parent
of h3 and h4; h3 and and h4 are hash siblings. We note that this construction easily generalizes to a
higher branching factor K > 2, such as in a B+-tree; however, for our presentation here, we primarily
use binary trees. Indeed, our approach works best if the owner and the publisher build an MHT
around index structures that are used in query evaluation. In this case, constructing a VO is a very
minor overhead over the query evaluation process itself.

Note that (by the cryptographic assumption of a collision-resistant hash function) if the correct value
of the parent is known to the client, the publisher cannot forge the value of the hash siblings. Our
entire approach flows from the signed, correct value of the root of a Merkle tree, just as in the work
of Naor & Nissim [13].

Definition 1 (Hash Path) Let h0(i) be a leaf node in MHT (r,A) corresponding to a tuple ti ∈ r.
The nodes necessary to compute the hash path up to the root hash is denoted as path(ti). Such a hash
path always has the length dlog2(| r |)e and comprises 2 ∗ dlog2(| r |)e − 1 nodes where exactly two
nodes are leaf nodes. Of these, only dlog2(| r |)e + 1 need be provided to recompute the value at the
root. Hash paths can also be provided for non-leaf nodes.

5

h12=h(h1 || h2)

h* =h(h12 || h34)

h34=h(h3 || h4)

h1 h2 h3 h4

Figure 1: Computation of a Merkle hash tree

The dlog2(| r |)e+1 nodes in path(ti) constitute the VO showing that ti is actually in the relation rooted
by the hash value at the root node; the owner’s signature on the root node certifies its authenticity.
Indeed any interior node within the hash tree can be authenticated by giving a path to the root.

Definition 2 (Boundaries) For a given non-empty contiguous sequence q = 〈ti, . . . , tj〉 of leaf nodes
in a Merkle Hash Tree MHT (r,A), there are two special leaf nodes LUB(q) and GLB(q) that describe
the lowest upper and greatest lower bound values, respectively, of q and are defined as follows:

(1) GLB(q) := {t | t ∈ r ∧ t.A < ti.A ∧ (¬∃s ∈ r : s.A > t.A ∧ s.A < ti.A)}
(2) LUB(q) := {t | t ∈ r ∧ t.A > tj .A ∧ (¬∃s ∈ r : s.A < t.A ∧ s.A > tj .A)}

We assume that both GLB(q) and LUB(q) are singletons. This can easily be accomplished by adding
pk(R) to the list A of attributes by which the leaves in MHT (r,A) are ordered.

Definition 3 (Lowest Common Ancestor) For a given non-empty contiguous sequence q = 〈ti, . . . , tj〉
of leaf nodes in a Merkle Hash Tree MHT (r,A), the lowest common ancestor LCA(q) for q in
MHT (r,A) is defined as the root of the minimal subtree in MHT (r,A) that has all tuples in q as leaf
nodes.

This situation is illustrated in Figure 2. Given LCA(q), one can show a hash path path(LCA(q)) to
the authenticated root hash value. After this is done, (shorter) hash paths from each tuple to LCA(q)
can provide evidence of membership of q in the entire tree. This is also useful to build a VO showing
that two nodes occur consecutively in the tree.

Definition 4 (Proximity Subtree) Consider a consecutive pair of tuples (leaf nodes) s, t in MHT (r,A),
and their lowest common ancestor, LCA(〈s, t〉). This node, along with the two paths showing that s
(respectively, t) is the rightmost (leftmost) element in the left (right) subtree of LCA(〈s, t〉) constitute
the “proximity subtree” of s and t, denoted by ptree(s, t).

Proximity subtrees are used in boundary cases, with GLBs and LUBs i.e., to show a “near-miss”
tuple that occurs just outside the answer set lies next to the extremal tuple in the answer set. In this
case, it is important to note that by construction, we just need to reveal the relevant attribute value
in the “near-miss” to show that it is indeed a near miss; with just the hash of the other attributes,
the tuple hash, and the rest of the proximity tree can be exhibited.

We finally define important properties of the answer set q returned by publisher. For this, we assume
that owner can use a database system to process queries from the client in the same fashion as done
by the publisher

Definition 5 Assume a query Q issued by a client. Let qpub and qowner denote the query result
computed at the data publisher and data owner site, respectively.

6

Proximity
Subtree

Proximity
Subtree

q

GLB(q)

LCA(q)

Path "l"

LUB(q)

Figure 2: A Merkle tree, with a contiguous subrange q, with a least common ancestor LCA(q), and
upper and lower bounds. Note verifiable hash path “l” from LCA(q) to the root, and the proximity
subtrees (thick lines) for the “near miss” tuples for LUB(q) and GLB(q) which show that q is complete.

qpub is said to be a inclusive answer to Q iff ∀t : t ∈ qpub ⇒ t ∈ qowner holds.

qpub is said to be a complete answer to Q iff ∀t : t ∈ qowner ⇒ t ∈ qpub holds.

4 Base level Relational Queries

In this section we outline the computation of VO for answers to queries. We illustrate the basic idea
behind our approach for selection and projection queries in Section 4.1 and 4.2, respectively. Slightly
more complex types of queries (join queries) and set operators are discussed in Sections 4.3 and 4.4.

4.1 Selections

Assume a selection query of the form σAiΘc(r), c ∈ Di which determines a result set q ⊆ r. Fur-
thermore, assume that the Merkle Hash Tree MHT (r,Ai) has been constructed. For each possible
comparison predicate Θ ∈ {=, 6=, <,>}, we show how the publisher can construct the VO, with which
the client can verify the inclusiveness and completeness of the query answer q. Again, we emphasize
that in all the following cases, if the Merkle hash tree is constructed by owner and publisher over the
same index structures used for querying, the overhead for constructing the VO is minor. We first
consider the cases for the comparison predicate Θ ≡ =.

(I) If Ai = pk(R) and q 6= {}, then the VO is just path(t) where t = q is the only tuple that satisfies
the selection condition. In this case, the size of the VO is O(log2 | r |). (II) If Ai = pk(R) and
q = {}, then we have to show that no tuple exists that satisfies the selection. For this, we have to
provide paths of the two tuples that would “surround” the non-existing tuple. The two tuples are
determined by GLB(q′) and LUB(q′) with q′ = c. Determining path(GLB(q′)) and path(LUB(q′))
requires searching the two associated tuples in the leaf nodes of MHT (r,Ai). The proximity subtree
ptree(GLB(q′), LUB(q′)) provides required evidence that the answer set is empty. The size of the VO
again is O(log2 | r |).
(III) Ai is not a primary key and q 6= {}. The result is a set of tuples which build a contiguous
sequence of leaf nodes in MHT (r,Ai). In order to provide a VO for q, the following approach is taken.
First, identify l := LCA(q ∪ GLB(q) ∪ LUB(q)) in MHT (r,Ai), and show a verifiable path from l
to the root. Next, identify proximity subtrees showing that GLB(q) (LUB(q)) occur consecutively to

7

the smallest (largest) element of q. Now, the entire sub-tree from the elements of the set q to l can
be constructed, using the hash values of the tuples in q. This verifies that the entire set occurs in the
leaf nodes of the tree. To construct this subtree and to verify the root hash on the LCA(q) of this
subtree, the length of the VO is O(| q | ∗ log2(| r |)). The proximity subtrees establish that no tuples
are left out.

(IV) If Ai is not a primary key and q = {}, we can apply the same approach as for (II).

With these fundamental techniques, proving that the answers to selections over a relation r are inclusive
and complete is simple. First, using normal query evaluation, the answer set q is determined. Since
we only consider simple relational queries here, the answer set q is a contiguous subset of r based
on MHT (r,Ai). We also retrieve two additional tuples, GLB(q) (respectively, LUB(q)) which is
immediately smaller (larger) than the smallest (largest) tuple in r with regard to the answer set q
(using the ordering based on Ai). It should be noted that if the answer set is empty, these two will
occur consecutively in the Merkle tree. The cost of this readily seen to be O(| q | ∗ log2(| r |).
For Θ ≡6=, we can make the following observation: The answer set to a query of the pattern σAi 6=c(r)
determines at most two contiguous sets of leaf nodes in MHT (r,Ai). For each of these sets, we have
to follow an approach similar to (III) shown above.

For Θ ∈ {<,>}, the scenario is as follows. The answer set to a query of the pattern σAi<c(r) or
σAi>c(r) determines at most one contiguous sets of leaf nodes in MHT (r,Ai). For this set, we have
to follow an approach similar to (III) discussed above. If q is empty, we just have to give the VO for
the tuple t = {t | t ∈ r ∧ t.A = min{s.A | s ∈ r}} (analogous for Θ ≡>). Cases for Θ ∈ {≤,≥} can be
handled in a very similar fashion by just shifting the boundaries.

4.2 Projections

For queries of the pattern πA(R),A ⊂ schema(R), the projection operator eliminates some attributes
of the tuples in the relation r, and then eliminates duplicates from the set of shortened tuples, yielding
the final answer q. There may be many different possible projections on a relation R. If client wishes
to choose among these dynamically, it may be best to let the client perform the projection. The client
will then also have to eliminate duplicates because these are not automatically eliminated in SQL,
unlike the relational algebra. So in this case, the client is provided with the whole relation r (or some
subset thereof after intermediate selections etc) and the VO for r before the projection; so the VO will
be linear in size | r |, rather than the smaller size | q | of the final result. Note also that the projection
may actually mask some attributes that the client is not allowed to see; if so, with just the hash of
those attributes in each tuple, the client can compute the tuple hash, and the VO for r will still work.

Consider the case where a particular projection πA(r) (which is used often) projects onto attributes
and where the values for the projected attributes are poorly distributed i.e., many tuples have the
same values for the attribute(s) A. In this case, duplicate elimination will remove numerous tuples,
leaving behind a small final answer q. Just given the pre-projection tuple set, the client would have
to do all this work. Now, suppose we have a Merkle tree MHT (r,A), i.e., we assume that the sets of
retained attribute values can be mapped to single values (which corresponds to building equivalence
classes) with an applicable total order. In this case, we can provide a VO for the projection step that
is linear in the size of the projected result q.

Each tuple t in the result set q potentially results from a set of tuples S(t) ⊆ r. Each tuple in S(t)
has identical values for the projected attribute(s) A. We need to establish that the set q is inclusive
(i.e., each t is indeed in the projection) and complete (i.e., no tuple that should be there is missing).
This is accomplished as follows.

1. To show that t ∈ q, we find any witness tuple y ∈ S(t) ⊆ r, with the same attribute value for
A, and show the hash path from this tuple to the Merkle Root. This establishes that the tuple

8

t belongs to the result set q. However, the witness tuple is preferably chosen as a “boundary”
value, as we describe next.

2. We must show that there are no tuples missing, say between t and t′, (t, t′ ∈ q). To do this, it
is enough to show that the sets S(t), S(t′) are both in r and occur immediately next to each
other in the sorted order. This is done by showing hash paths which prove that two “boundary”
tuples y ∈ S(t) and x ∈ S(t′) occur next to each other in the Merkle tree MHT (r,A) for r.

We observe that both the above bits of evidence are provided by displaying at most 2 | q | hash paths,
each of length dlog2 re. This meets our constraint that the size of the authentication evidence be
bounded by O(| q | log2 | r |).
But how can we assume that a Merkle tree would exist on precisely the intermediate result just prior
to the projection? This can be accomplished by so-called multi-dimensional range trees, which are
discussed in section 5.

4.3 Joins

Joins between two or more relations are the most common type of operators in relational algebra used
to formulate complex queries. This holds in particular for equi-joins where relations are combined
based on primary key – foreign key dependencies. There are many alternative realizations for Merkle
Tree structures that can be used to provide VOs for query results computed from joins. In this paper
we focus on pairwise joins of the pattern R 1C S where C is a condition on join attributes of the
pattern ARΘAS , AR ∈ schema(R), AS ∈ schema(S),Θ ∈ {=, <,>}. We assume that the data types
underlying AS and AR are compatible with respect to Θ. For Θ being the equality predicate, we
obtain the so-called equi-join.

Given a query of the pattern R 1C S, a Merkle Hash Tree structure that supports the efficient
computation of a VO for the query result is based on the materialization (i.e., the physical storage) of
the Cartesian Product R× S. Note that such a structure has to be constructed before the publishers
accept any query from clients. The reason for choosing a materialization of the Cartesian Product
is that this structure supports all three types of joins mentioned above. This is due to the fact that
these joins can be formulated in terms of basic relational algebra operators, i.e., R 1ARΘAS S :=
σARΘAS (R× S). The important issue in constructing the Merkle Hash Tree for queries of the pattern
R 1C S is that first the Cartesian Product is determined and then the resulting tuples are sorted on
the difference between the values for AR and AS , assuming such an operation can be defined. We thus
obtain three “groups” of leaf nodes in the Merkle Tree: (1) nodes for which the difference t.AR− s.AS
for two tuples t ∈ R, s ∈ S is 0, thus supporting equi-joins, (2) nodes where the difference is positive,
thus supporting the predicate >, and (3) nodes where the difference is negative, thus supporting the
predicate Θ ≡<.

For each of the three cases above, assume a query result set q. Our burden again is provide inclusiveness
and completeness evidence for the query result.

1. For each tuple t ∈ q, we provide a hash path in the (sorted) Merkle tree for R× S showing that
tuple is in the relation.

2. To show that no tuples are missing, we show two pairs of boundary hash paths (within and
without) verifying the boundaries of the answer set.

If it is known that the querys will only result in equi-joins against the database, an optimized Merkle
Tree structure can be used. We will only sketch the basic concept for using this structure here. Instead
of a space-consuming materialization of the Cartesian Product R × S, we materialize the Full Outer
Join R A1@ S which pads tuples for which no matching tuples in the other relation exist with null

9

values (see, e.g., [5, 17]). The result tuples obtained by the full outer-join operator again can be
grouped into three classes: (1) those tuples ts, t ∈ R, s ∈ S, for which the join condition holds, (2)
tuples from r for which no matching tuples in s exist, and (3) tuples from s for which no matching
tuples in r exist. Constructing a VO for the result of query of the pattern R 1ARΘAS S then can be
done in the same fashion as outlined above.

4.4 Set Operations

All set operations involve two relations u and v. We may assume that u and v are intermediate results
of a query evaluation, and are subsets of some relations r and s respectively, and that r and s are each
sorted (possibly on different attributes) and have its own Merkle tree MHT (r,A) and MHT (s,A′),
the root of which is signed as usual. We consider the set operations union and set intersection.

Union In this case, the answer set is q = u ∪ v. Evidence that u ∪ v is inclusive and complete is
straightforward; it is sufficient to provide verification paths for each element of u ∪ v showing that
it belongs to one of the sets. Additionally a single pass over the union can show that no elements
of u or v are omitted. This can be done with a VO of size O(| q | log2(max{| r |, | s |}). If u and
v are presented as contiguous subsets of r and s, inclusiveness can be done even faster; all that is
necessary to check the union is the order in which the elements of u ∪ v occur in r and/or s, along
with the authenticating information for the sets u and v within r and s respectively. Given this order,
inclusiveness and completeness can be evidenced by a VO of linear size.

Intersection The approach for union, however, does not produce compact VOs for set intersection.
Suppose q = u ∩ v where u and v are as before. Inclusiveness is easy, with the VO providing O(| q |)
verification paths, as before, showing elements of q belong to both u and v; but completeness is harder.
User needs assurance that all elements of u or v that belong in q are present. One can pick the smaller
set (say u) and for each element in u − q, construct a VO show that it is /∈ v. In general, if u and
v are intermediate results not occurring contiguously in the same Merkle tree, such a VO is linear in
the size of the smaller set (say u). Consider for example a set of tuples 〈name, age, salary〉, where
one wishes to select tuples in a specific salary and age range. Assume then that u has been obtained
by performing a selection based on salary, and v based on age. u and v would be verified by VO’s
resulting from different Merkle hash trees: one sorted by salary, and one sorted by age. Computing
the intersection u∩v would result in a VO with size linear in | u |: this VO would provide inclusiveness
evidence (in u and v) for each element of u∩v, and shows completeness by showing that each remaining
element in (u − (u ∩ v)) is not in v. This again leaves us with the unsatisfactory situation of a VO
being linear in the size of a potentially much larger intermediate result (if | u |>>| u ∩ v |). A similar
problem occurs with set differences u− v.

We have not solved the general problem of constructing VO’s linear in the size of the result for
intersections and set differences. Indeed, the question remains as to whether (in general) linear-size
VOs can even be constructed for these objects. However, in the following section, we provide an
approach to constructing linear-size VOs for a specific type of intersection, range query. This is
accomplished using a data structure drawn from computational geometry called a multi-dimensional
range tree. This approach also work set differences over range querys on different attributes.

5 Multi-dimensional verification objects

In d-dimensional computational geometry, when one is dealing with sets of points in d-space, one could
ask a d-space range query. Consider a spatial interval (< x1

1, x
1
2 > . . . < xd1, x

d
2 >): this represents a

axis-aligned rectilinear solid in d-space. A query could ask for the points that occur within this solid.

10

Such problems are solved efficiently in computational geometry using so-called Range Trees (See [8],
Chapter 5). We draw an analogy between this problem and a database query of the form

σc11<A1<c21
(r)
⋂
. . .
⋂
σc1d<Ad<c

2
d
(r)

where {A1, . . . Ad} ⊆ schema(R) for a relation R. We use the multi-dimensional range tree (mdrt)
data structure to solve such queries and provide compact verification objects.

2313

4 12 13 23 45

45 12
v1

v2

5 91

23 13

A3

A1
A2

Figure 3: Excerpt of a 3-dimensional range tree, sorted by attributes A1, A2 and A3

Consider the example mdrt shown in Figure 3. Let us assume a relation schema R, with 3 attributes
A1, A2, A3 on which we want to perform combined selections, and provide VO’s for the final answer.
Consider the first, 3-dimensional mdrt (labeled A1). This is simply a tree which sorts the tuples
according to attribute A1. The numbers at the leaves denote unique primary keys for the tuples.
Each interior node in tree A1 is the ancestor of a set of tuples. Consider such an interior node v1,
which is the ancestor of tuples 12, 13, 23, and 45. An mdrt contains a link now from v1 to the root
of an associated tree A2, (which we can also denote as Tassoc(v1, A2)). This 2-dimensional mdrt A2
contains the same set of tuples 45, 11, 23, and 13; however, in this tree, they are sorted according to
attribute A2. Likewise each interior node vi in A1 is the ancestor to a set of tuples, and contains a
pointer to an associated 2-dimensional mdrt Tassoc(vi, A2) which sorts the tuples in the subtree below
vi by attribute A2. In general, each node vji of a {d− j+ 1}-dimensional mdrt contains a pointer to a
{d − j}-dimensional mdrt. The nodes of the final 1-dimensional tree, corresponding to attribute Ad,
do not have such pointers.

Given a 2-space range query σx1
1≤A1≤x1

2
(r) ∩ σx2

1≤A2≤x2
2

(r)

the structure is used as follows. First, the tuple set q ⊆ r with values for attribute A1 in the range
< x1

1, x
1
2 > is identified using tree A1. For simplicity, let us assume (we relax this assumption later)

that the tuples in q form the leaves of a balanced tree with root LCA(q). With | r |= n, this range
can be found in roughly time O(log2 n), the time it takes to find the two end-points of the interval in
the first tree. We now follow the link over the associated tree for attribute A2; this tree sorts just the
tuple set q according to attribute A2. So we can find the subset of q satisfying x2

1 ≤ A2 ≤ x2
2 also in

O(log2 n) time. This gives the intuition behind the efficient processing of conjunctive range queries
using mdrts. We now relax the assumption that the result of the first selection q includes just the
leaves of a balanced tree.

Let us call the leaves of the subtree rooted at node v the canonical subset of v, denoted as P (v). If v
is a leaf, P (v) = v. In [8] (pp 103-107) it is shown that any subset of leaves which lies in a range can
be expressed as a disjoint union of O(log2 n) canonical subsets for the given range query. The roots

11

of these can be found in O(log2 n) time in the process of finding the bounding paths for the interval.
Given a range < x, x′ >, we search for them in the tree until we find node vsplit where the paths split.
Now we search x (x′) in the left (right) subtree. At every point in the search for x where the path
goes left, the right subtree belongs to the range; the search for x′ goes just the opposite way. The
result is a quick identification of roots of the canonical subtrees that precisely cover the leaves whose
values are in the interval (see Figure 4).

Vsplit

X X’

CCRs

Figure 4: Finding the canonical covering roots

We call these the covering canonical roots (CCRs). Consider, for example, a 2-dimensional range query
over attributes A1 and A2. First, the CCRs in tree A1 for the given range in attribute A1 are found;
there are O(logn) of these. Then for each of the CCRs, we go to the associated trees for attribute
A2, and find the CCRs in that tree for the given range over A2. This results in O(log2 n) CCRs in
tree A2. The union of all the leaves under these CCRs in A2 constitute the answer. In general, it is
shown [8] that d-dimensional range queries can be computed in time O(logd−1 n). Range trees require
O(n logd−1 n) storage space, and can be constructed in time O(n logd−1 n).

We now show how to produce VO of size O(logd−1 n) for an intersection query of the form:

σc11<A1<c21
(r)
⋂
. . .
⋂
σc1d<Ad<c

2
d
(r)

using mdrts. First, we construct a Merkle hash tree over a d-dimensional mdrt. Assume that the
associated tree for a node i (for the next attribute) in a range tree is given by A(i), and the hash of a
node i given by h(i).

Base Case For the base (1-dimensional) mdrts, we build the Merkle hash tree as before.

Induction Given the root hashes for the {l− 1}-dimensional mdrts, we begin with the leaves (height
j = 0) of the l-dimensional mdrt, and compute the tuple hashes, in the usual way. For a node i
at height j > 0, we compute the hash value thus. First, we append the hashes of all the children
of i (say i1, i2) together, and also the hash of root of the associated l − 1-dimensional range tree,
and then hash the result.

h(i) = h(h(i1) || h(i2) || h(A(i)))

This construction can be completed in timeO(n logd−1 n), and can be overlapped with the construction
of the range tree itself.

Now consider the construction of a VO for a d-way intersecting range selection query. The VO
essentially follows the search algorithm. In any given tree, a range query corresponding to an interval
results in a set of CCRs. The VOs for this group of O(log n) CCRs is presented by providing a
verification path for the node Vsplit to the root, and verifiable paths (length O(1)) from each CCR to

12

the path to Vsplit. In addition, it can readily be seen that by construction of the path from the CCR’s
to Vsplit, the canonical subtrees of the CCR’s form a contiguous non-overlapping over of the answer
set. We also provide proximity trees for the LUB and GLB of the interval and the smallest and largest
contained intervals; finally, we must show that each of the k, k =| q | selected tuples belongs under
a CCR. The total size of this VO is O(log n + k log n), or O(k log n). This process needs to repeat,
showing verification paths for all the O(logd n) CCR’s found in the process of evaluating the d-way
intersecting range selection query, which gives us a VO size of O(kd log n+ logd n), which would show
that the k tuples belong to the answer, and that the O(logd n) CCRs together cover the intervals
prescribed by the query. In situations where the results of each selection may be large, and the final
intersection is small, this approach gives us attractively small VOs.

6 Pragmatic Issues and Related Work

We now examine some pragmatic considerations in using our approach, as well as related work.

6.1 Canonical Join-Select-Project queries

A typical SQL “select . . . from . . . where . . . ” can be thought of one or more joins, followed by
a (combined) selection, followed by a projection. We describe how an mdrt can be used for both
efficient evaluation and construction of compact VOs for such queries. Specifically, consider a query
that involves the join of two relations R and S, followed by a series of selections and a final projection.
Let’s assume a Theta-join over attribute A1 (A1 occurring in both relations), followed by selections
on attributes A2 and A3, and a final projection on several attributes, jointly represented by A4 (as
discussed in Section 4.2).

Sorted over

Sorted over
selelection Attribute A

Sorted over selection
Attribute A

2

Projection attribute A4

3

Sorted over join attribute A1

Figure 5: Excerpt of a 3-dimensional range tree, sorted by attributes A1, A2 and A3

We begin this construction (see Figure 5) with the first range tree constructed over the join attribute
A1, as explained in Section 4.3. Then follow the trees sorted by A2 and A3, and finally on the projected
attributes. Given a query, the evaluation plan (and the construction of the VO) follows this set of
range trees as described above, leading to both efficient evaluation of all the steps, and a VO linear in
the size of the final result.

6.2 Query flexibility

For efficient verification of query answering, we make use of different trees over sorted tuple sets.
Without such trees, our approach cannot provide small verification objects. This points to a limita-

13

tion of our approach—only queries for which Merkle trees have been pre-computed can be evaluated
with compact verification objects. Our approach cannot support arbitrary interactive querying with
compact verification objects. Arbitrary interactive querying, however, is quite rare in the presence of
fixed applications at client sites.

In practice, however, data-intensive applications make use of a fixed set of queries. Indeed, via mech-
anisms such as embedded SQL (see, e.g., [17]) database queries are compiled into applications. These
queries can still make use of parameters entered by a user and which are typically used in selection
conditions. Our approach is compatible with such applications. Essentially, client applications commit
a priori the queries they wish to execute; the owner and the publisher then pre-compute the required
Merkle hash trees to produce short verification objects.

So while our approach cannot provide compact verification objects in the context of arbitrary in-
teractive database querying, it is quite compatible with the widely-used practice of embedding pre-
determined (and parameterizable) queries within data-intensive applications.

6.3 Conventions

It is important to note that all interested parties: the owner, the publisher and the client, share a
consistent schema for the databases being published. In addition there needs to be secure binding
between the schema, the queries and the query evaluation process over the constructed Merkle trees.
A convention to include this information within the hash trees needs to be established. All parties
also need to agree on the data structures used for the VO. It is also important that the publisher
and the client agree upon the format in which the VO together with the query result is encoded and
transmitted. Tagged data streams such as XML provide an attractive option.

6.4 Recent Query Evaluations

Verifiers must verify that query evaluation is due to an “adequately recent” snapshot of the database
and not an old version. We assume the technique of recent-secure authentication for solving this
problem. Risk takers (e.g. organizations relying on the accuracy of the data) specify freshness policies
on how fresh the database must be. The digital signatures over the database include a timestamp
of the last update as well as other versioning information. Based on assumptions concerning trusted
synchronization paths and synchronization bounds , clients interpret the timestamps and verify the
database is adequately recent with respect to their freshness policies.

6.5 Related Work

The use of Merkle hash trees for authentication of data is not new. This work is most closely related
to the work of Naor & Nissim [13] for revocation. Haber and Stronetta [7] use similar techniques
for timestamping. Similar schemes [16] have also been used for micropayments. All these schemes
(including ours) share a common theme of leveraging the trust provided by a few digital signatures
from a trusted party over multiple hashes, hash paths or hash trees, with the goal of protecting
the integrity of the content, with efficient verification, since hashes are more efficient than digital
signatures. However, the use of such trees for authentic data publication is new.

There is quite bit of related work in the general area of database security, particularly on access control,
statistical querying etc [4, 10]. Anderson [2] discusses an approach to third-party publication of data
in files, but without querying over the contents. Again, to our knowledge, this particular problem of
authentic database publication has remained unexamined.

Finally, our approach can be viewed as providing “proof-carrying” [14] answers to database queries.

14

7 Conclusion

We have explored the problem of authentic third party data publication. In particular, we have
developed several techniques that allow untrusted third parties to provide evidence of inclusive and
complete query evaluation to clients without using public-key signatures. In addition, the evidence
provided is linear in the size of the query answers, and can be checked in linear time. Our techniques do
involve the construction of complex data structures, but the cost of this construction is amortized over
more efficient query evaluation, as well as the production of compact verification objects. Such pre-
computation of views and indexing structures are not uncommon in data warehousing applications [15].

Our techniques suggest the use of a single hash function. In particularly high-integrity applications
where tolerance of failure is very low, one can use multiple one-way hash functions to construct each
Merkle tree. Clients requiring higher levels of integrity may check more than one hash computation.

However, our techniques are restricted currently to the relational model. Our techniques do not allow
interactive querying, but can be used with embedded queries in applications. We cannot currently
construct linear-size VOs general SQL queries, such as ones including arbitrary intersections; we also
leave open the (lower-bound) question as to whether such VOs are possible. We believe, however, that
our techniques are a start on an important problem area, and subsequent work will perhaps remove
some of these limitations.

References

[1] N.M. Amato and M.C. Loui. Checking linked data structures. In Proceedings of the 24th Annual
International Symposium on Fault-Tolerant Computing (FTCS), 1994.

[2] R. J. Anderson. The Eternity Service. In Proceedings of Pragocrypt, 1996.

[3] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Noar. Checking the inclusiveness of
memories. Algorithmica, 12(2/3):225–244, 1994. Originally appeared in FOCS 91.

[4] S. Castano, M. Fugini, G. Martella, P. Samarati Database Security Addison-Wesley, 1995

[5] C.J. Date. An Introduction to Database Systems (7th Ed), Addison-Wesley, 1999.

[6] C.J. Date and H. Darwen. A Guide to the SQL Standard (4th Ed), Addison Wesley, 1997.

[7] S. Haber and W. S. Stornetta. How to timestamp a digital document J. of Cryptology, 3(2), 1991.

[8] M. D. Berg , M. V. Kreveld, M. Overmars and O. Schwarzkopf. Computational Geometry.
Springer-Verlag, New York.

[9] S. Jajodia, P. Samarati, V. S. Subramanian, E. Bertino, A Unified Framework for Enforcing
Multiple Access Control Policies Proceedings ACM SIGMOD, 1997.

[10] T. Lunt, (Ed.) Research Directions in Database Security Springer-Verlag, 1992

[11] R.C. Merkle. A certified digital signature. In Advances in Cryptology–Crypto ’89, 1989.

[12] J. Melton, A.R. Simon. Understanding the New SQL. Morgan Kaufmann, 1993.

[13] M. Naor, K. Nissim. Certificate Revocation and Certificate Update. Proceedings, 7th USENIX
Security Symposium. 1998.

[14] G. Necula. Proof-carrying code. In Proceedings of POPL 97. ACM SIGPLAN, 1997.

15

[15] W.H. Inmon. Building the Data Warehouse John Wiley & Sons, 1996.

[16] S. Charanjit and M. Yung. Paytree: Amortized Signature for flexible micropayments Second
Usenix Workshop on Electronic Commerce Proceedings, 1996

[17] A. Silberschatz, H. Korth, S. Sudarshan: Database System Concepts, McGraw-Hill, 1997.

[18] J. D. Tygar Open Problems In Electronic Commerce Proceedings ACM SIGMOD PODS, 1999.

16

Appendicitis

We assume that the client knows Rh the correct root hash value for the Merkle tree associated with
our relation/attribute. We also assume that the client has a program (including the hash function h)
which will correctly check the VO and the answer. We now show that as long as an adversary cannot
forge values which cause collisions in h (more precision on this below), the client will never verify an
incorrect answer.

For now, we include here only the proof that simple selections are unforgeable. This proof is an
induction on the height of the Merkle tree corresponding to that selection The full proof shows that
checks for all other operators are also unforgeable; then we need another induction on the nesting
depth of the operators in the query. This proof is also only for binary trees, but is easily extended to
multiway trees such as B-trees.

Before giving the proof we need some preliminaries. Let the correct answer S to a selection query
on relation r be the tuples tj ≤ tj+1 . . . ≤ tr. If tj isn’t the smallest tuple in r we also return tj−1,
and if tr isn’t the largest tuple in r we return tr+1, which are the largest and smallest tuples not in
S. We call this larger set Sb (S plus the boundary tuples). We assume that the tree also may have
two special tuples which are smaller than anything in r and larger than anything in r (in case the
smallest tuple is a right child or the largest a left child). In addition to Sb, the client is provided with
the hash values of some internal nodes in the Merkle tree. Specifically, the answer can be computed
by the publisher as follows by initially calling the function Answer with R, the root of the tree. We
show below the definition of Answer:

Answer(v):

• If all leaves in the subtree rooted at v are in Sb, then return the single tuple if v is a leaf,
otherwise the values of all the leaves as a pair [leaves in left subtree], [leaves in right subtree];

• If no leaf in the subtree rooted at v is in Sb, then return the hash value of v in the Merkle tree;

• If some but not all leaves in the subtree rooted at v are in Sb, then return the pair [Answer(left-
child(v))], [Answer(right-child(v))];

Note that this construction algorithm for the answer implies a simple checking mechanism: compute
the hash value for the left child ul of the root using the string in the leftmost group of [], then compute
the right child value vr, finally compute Rh using these two values. To check validity the client will
also compute a status variable for the current subtree rooted at v. This status can be:

• empty: no tuples under v were returned;

• right-terminated (RT): a tuple too large to be in S is under v;

• right-full (RF): valid, but not right terminated;

• left-full (LF) and left-terminated (LT) are defined similarly;

• invalid: the tuples under v are known to be an invalid answer.

We compute the status as follows: a leaf is both left-full and right-full if it is in S; left-terminated and
right-full if too small; and left-full and right-terminated if too large.

In general for a node v, if either child is invalid, v will also be invalid. If both children are valid the
following table shows how to get the parent’s status. L stands for LT or LF and R for RT or RF. If
an L or R appears as a child and parent it has the same status both times.

17

left right parent

empty empty invalid
empty LF,R invalid
empty LT,R LT, R

non-empty LT,R invalid
LT,RF LF,R LT,R
LF,RF LF,RF LF,RF
L,RT empty L,RT
L,RT non-empty invalid.

This is not an exact security argument. We are not considering the security parameters.

Attack Model We assume that the owner has constructed a Merkle hash tree of a relation r over
the selection attribute A, and the client knows the correct root hash value Rh.

We assume that publisher is the adversary, has access to the relation r, and can construct the same
Merkle hash tree; we also assume that the hash function chosen by owner cannot be feasibly forged.
Specifically, we make the following assumption about the adversary. For any selection query there is
a correct answer which the client is supposed to receive, and a correct verification computation. In
the course of the correct verification computation the client first hashes each tuple given, and then
creates a sequence of triples xj , yj , zj where zj = h(xj , yj) is the result of the jth application of the
hash function. We assume that the adversary cannot do any of the following:

1. Concoct a tuple t such that t is not in r and h(t) = h(tj) for tj in r,

2. Concoct an answer such that in the course of the protocol client would compute zj = h(aj , bj)
and aj 6= xj or bj 6= yj (intuitively this would mean the adversary has found an alternate pair
of values which hash to the same answer), and

3. Concoct an answer such that in the course of the protocol client would compute h(aj , bj) = h(tj)
for tj in r (we don’t need this if the client knows the height of the tree).

Lemma 6 Under the above cryptographic assumptions, when client executes the verification protocol
on an Answer ADV provided by publisher, if client computes the correct root hash value Rh and the
root status is valid, ADV is in fact a correct answer and the status of the root is correct.

Basis We show this by induction. Consider a Merkle hash tree of height 1; this must be a root with
just two leaves t1, t2. Since the root hash Rh is known, by definition, the final step of an accepting
protocol must be to compute h(vl, vr) = Rh where vl = h(t1) and vr = h(t2) are the correct hash
values of the left and right subtrees. By our security assumption the only way the protocol could get
vl, vr is either by being given them directly or by being given a correct value of t1 or t2 and hashing
them. The protocol cannot be given both vl and vr directly since this would mean Sb is empty which
the client knows is impossible. Thus the only way ADV might be accepted is if it provides two tuples
or one tuple and a value.

Case 1 The answer ADV is two tuples t1 and t2 which are children of the root (if r has only one tuple
the other tuple will be the dummy tuple for maximum/minimum attribute value, if r is empty both
tuples will be dummy).Thus t1 and t2 are both claimed to be in Sb. The client will always be able to
look at the tuples to see which are actually part of the correct answer and which are boundary tuples.
The user than computes vl = h(t1), vr = h(t2), and finally V = h(vl, vr). By our assumption this is
the only hash computation that can occur while processing ADV which can have Rh as its answer.
Furthermore, no hash computation other than those listed above can have v1 or v2 as its results. Thus

18

V = Rh if and only if t1 and t2 are the correct tuple values and no other values are provided. The
protocol also has a completeness proof. For example, if t1 is in S and t2 is too large to be in r, since
the client knows that t2 is t1’s right sibling, t1 must be the largest tuple in S. In this case the root
status would be left-full, right-terminated.

Case 2 The adversary could also get the correct root value computed by providing one tuple value
(say t1), and the hash value of the other tuple (in essence claiming that Sb = {t1}). However, this
means the protocol would see the right subtree as empty, so the root is only valid if the left subtree
is right terminated. This would only be the case if t1 is too large to be in S, and since the algorithm
has the correct value of t1 it will know if this is the case.

The setting where ADV is [vl], [t2] is analogous.

Step We now assume that the lemma holds for any tree of height less than i, namely that when we
apply our protocol to a non-empty tree of height less than i, we get the correct root value and valid
status if and only if we are given a correct answer (tuples and hash values) for that tree.

Now consider a Merkle hash tree of height i rooted at R of height i ≥ 2, with two immediate subtrees
rooted at ul and ur with hash values vl and vr. ADV must be of the form:
[Al], [Ar]
where Al and Ar are answer strings which our Answer protocol can parse. If the Answer doesn’t have
this high level form it will be immediately rejected since a correct answer cannot be empty (it always
has the boundary tuples).

As the final step of an accepting protocol we must compute Rh = h(vl, vr). By our assumption, the
only way the protocol when run on ADV can yield Rh as its final value is if the protocol evaluates Al
to vl and Ar to vr and ends with a valid status for both nodes.

The trees rooted at ul and ur are of height i−1. Furthermore, the protocol treats non-empty subtrees
exactly as it does the entire tree. Thus by the induction hypothesis, if Al is non-empty, and produces
the correct hash value and a valid status, then it must include the correct tuples and end with the
correct status for ul (and similarly for ur).

If Al, Ar are both non-empty, evaluate to the correct hash values, and have a valid status, they are
the correct trees and thus must fit together in a valid way (e.g. we will never have them both be right
terminated). However, if one of the trees is empty we cannot apply our induction hypothesis to it
(since this only works for non-empty trees). So suppose that ul is empty and we have simply been
given Al = vl as part of ADV (this is easy for the adversary since vl is known). In order for the root
to get a valid status, the status of ur must be left-terminated (we don’t care if its right-terminated or
full, either is OK). However, if ur is left-terminated and correct, we know that ul should be empty,
and we are again correct to conclude that the root status is valid. The case where ur is empty is
analogous.

Thus in all cases we can extend the correctness of our protocol to a tree of height i and the lemma
follows.

19

