
DADO: A Novel Programming Model for
Distributed, Heterogenous, Late-Bound QoS

Implementations

Eric A. Wohlstadter and Premkumar T. Devanbu

Software Systems Research Laboratory
Department of Computer Science
University of California at Davis

Davis, CA 95616, U.S.A.
{devanbu,wohlstad}@cs.ucdavis.edu

Abstract. Quality of service implementations, such as security and re-
liability, are notoriously difficult for software engineers. They have frag-
mented, cross-cutting implementations, with elements required in appli-
cation components on both client and server sides. Heterogeniety and
distribution make things even more difficult. To cap it all, precise re-
quirements, specially for security, are often deployment-specific. DADO
is a new programming model, with roots in aspect-oriented programming,
that aims to improve matters. The goal of DADO is to provide a CORBA-
like programming model to the developers of distributed, heterogenous
QoS features. DADO comprises a modeling language, a deployment lan-
guage, code generators, and a run-time environment. DADO allows QoS
features to be modeled at the IDL level. Communication between QoS el-
ements is explicitly modeled, as is the interaction between QoS elements
and applications (viz., advice). Model-driven code-generation handles the
mundane details of marshaling, despatch, and heterogeniety. DADO has
a separate deployment language that allows QoS services to be deployed
against applications. The DADO run-time also has several interesting
features: clients can dynamically respond to QoS features at the server
by deploying matching client-side service elements at run-time. DADO
supports various interception mechanisms, such as proxies, interceptors,
and code transformation, and all mechanisms are inter-operable. DADO
currently works on TAO and JacORB, and supports QoS implementa-
tions in both Java and C++.

1 Introduction

Consider a distributed medical application, wherein clients obtain prescriptions
from doctors. The attendant security policy requires that a client must obtain
a credential from a credential server (as in Kerberos; this eliminates the need
for the client to reveal his password to anyone but the credential server, and
also does not require the doctors/clients to reveal the security policy to the
authentication server) and present this credential to authenticate themselves to

R. Meersman and Z. Tari (Eds.): OTM Workshops 2003, LNCS 2889, pp. 926–933, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595.276 841.889] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

DADO: A Novel Programming Model 927

a doctor. To use the doctor, the clients must first register themselves with a
doctor for a period of time (this is to prevent clients from seeking duplicate
prescriptions from multiple doctors). While registered with a doctor, a client
may not use other doctors. The client can then obtain prescriptions.

Such a policy presents serious challenges for developers using middleware
such as CORBA. The policy requires modifications to both client-side (to ob-
tain credentials) and server-side (to validate credentials/registration, and also
register clients), and requires an extra bit of data (the credential) to be sent
across. Existing options for implementing such a service are unattractive. Mod-
ifying the interface, and weaving the policy code into the application tightly
binds the security policy into the application and tangles application code, vi-
tiates separation of concerns, precludes the reuse of the policy code elsewhere,
and complicates (likely) future modifications to the security policy. Reflective
implementations ([1,2,9] do allow separation of concerns, and a componentiz-
able, reusable implementation; however, the use of reflection reduces the utillity
of static type-checking, and usually requires hand-written marshaling, demar-
shaling and dispatching code.

DADO provides a different approach to programming security and other
QoS features: the design philosophy is to bring to service developers the same
convenient programming model that CORBA brings to developers of distributed
heterogeneous software.

2 DADO

The Dado programming model comprises languages, tools, and run-time en-
hancements.

Languages. There are two langauges: the DADO interface description lan-
guage, or DAIDL, is used to describe the interface between the service el-
ements and the application components. The interfaces of client-side and
server-side service elements are modeled separately. DAIDL models QoS
methods, called advice, that interact with application methods. The com-
munications between client- and server-side is also explicitly modeled, as re-
quests. The second language, DADO deployment language, or DDL, is based
on Aspectj [7] pointcuts; this language specifies precisely how a QoS feature
interacts with an underlying application. For example, we can specify which
methods are intercepted by the security QoS advice, and (if need be) which
arguments of these methods are to be captured and sent to the security
policy implementation.

Tools. Dado has two sets of tools, for development time and deployment time.
At development time, code generators produce stubs and skeletons from the
DAIDL descriptions These provide multi-lingual type environments (cur-
rently, for C++ and Java) that allow service developers to write client-
side and server-side QoS code in a type safe manner. Marhalling and de-
marshalling code for QoS data exchange are also generated. The deployment
time tools match the QoS DAIDLS against the application IDLs, and based

928 E.A. Wohlstadter and P.T. Devanbu

on the DDL specifications, generate despatch tables that control the invoca-
tion of DAIDL advice.

Run-Time Libraries. DADO run-time libraries handle despatch of advice,
and of requests. The run-time also handles the dynamic matching (on the
client-side) of client QoS features to QoS features deployed at the server.

Figure 1 (reproduced from [15]) describes the typical software process workflow
when using DADO to develop and deploy QoS features. The caption on the fig-
ure explains the process. We emphasize here that DADO aspires to the CORBA
“hourglass” philosophy: a simple, flexible, powerful programming model that can
be implemented in a variety of different ways. In particular, DADO allows QoS
features to be implemented in a variety of programming languages (currently, we
support Java and C++), and allows QoS elements to be inserted (instrumented)
into the application code in a variety of different ways. Certainly, in a heteroge-
neous environment, different implementation and instrumentation technologies
can co-exist.

Fig. 1. DADO Development Process. The left hand side (within the dotted lines) indi-
cates the conventional CORBA process. On the right, the DADO service development
begins (1) with modeling the interfaces to DADO adaplets using DAIDL; from this the
DAIDL compiler generates (2) plumbing code, and typing contexts for adaplet imple-
mentations. The programmer writes (3) the adaplet implementations and links to get
(4) the adaplets. Now, the development specialist prod uces (5) deployment specs, and
these are used by deployment tools to install (6) the adaplets at the proper application
object locations. Deployment can occur at compile time, link time, or run-time, de-
pending on the instrumentation technology used (only run-time insertion is illustated
in the figure).

DADO: A Novel Programming Model 929

3 Security Example

We now turn to the security policy example presented at the beginning of this
paper. The Dado interface description of this QoS feature is shown below. We
note that this description simply provides the interface; as in the case of CORBA
(and as described above in figure 1) this interface is processed by tools to pro-
vide stubs and skeletons; the skeletons then have to be implemented by service
programmers.

adaplet Wall {
server {
request authenticInfo(in Authentic::Token tok);
request register(in Authentic::Token tok,

in long duration);
advice void check()

raises(NotRegistered,NoAccess);
};
client {
advice contactAuthentic();

};
};

A QoS feature in DADO (specifically, DAIDL) is termed an adaplet. An
adaplet has two interfaces, one for the client side, and one for the server side. In
this case, the client-side adaplet interface comprises one advice method, which
intercepts the client-side of application methods that require security policy en-
actment. The implementation of the advice contactAuthentic in this case will get
the authentication token, and communicate it to the server side. The server-side
adaplet will have the logic to check this token, and also register the client with
a particular server implementation. These two operations (receiving and check-
ing the token, and registering a client) are modeled in the server side adaplet
interface as requests: authenticInfo does the former, and register the latter. Fi-
nally, the advice operation check will intercede on application methods requiring
security policy enactment.

4 Performance (Cacheing) Example

We present a cacheing example, whereby a client requests string-indexed val-
ues (e.g. stock quotes) from a server. These values are assumed to periodically
change, as the server receives updates from a notification (“push”) service. Here,
a client-side adaplet maintains a string-indexed cache of values. If a request can
be answered from the cache, the server is never contacted. To complicate matters
slightly, we also assume that the client side adaplet can request the server side
for a time-to-live (TTL) value. The server side adaplet maintains TTL values for
various string indices by intercepting updates and observing update frequency
for various string indices (e.g., the “NYSE:HAL” ticker symbol might be updated
more often when an oil-producing country is invaded).

930 E.A. Wohlstadter and P.T. Devanbu

adaplet Cache
{ client〈 A 〉 {

request void set TTL(in long ttl);
around A get(in string hashcode);

};
server {

request void ask for TTL();
before void update TTL();

};};

We start with an abstract interface to the client and server side adaplet
components necessary to carry out the caching service. The client-side includes
a request operation to receive TTL values that are “piggybacked”1. on server
responses. Additionally, an around advice is specified to short circuit client re-
quests for which cached data is available. The cache is keyed through the string
index. This index is obtained from the application that the cache is deployed on.
The type of data stored by the cache can be polymorphic and is bound though
the type parameter A.

On the server side there is also one request and one advice operation. The
request ask for TTL allows the client side adaplet to signal the server side that
it is planning to cache the data in the current invocation response. The before
advice update TTL should be triggered whenever application events occur on the
server side that invalidate cache data. This allows the server to heuristically
adjust its forecasted TTL values. The DDL specification to bind this service to
a specific application is shown below. Notice the instantiation of type parameter
A with float.

adaplet ClientSideStockCache : Cache
{

client: Cache 〈 float 〉 {
pointcut cachedOperation(in string x) :

call(float StockServer::getQuote(x));
around cachedOperation(x) :

get(in string x);
};

};

Now, the abstract interface must be specialized for deployment on both client
and server. Specialization is acheived through object-oriented inheritance. In
order to cache the result of the StockServer::getQuote operation the client side
cache type parameter A is instantiated as float. The pointcut cachedOperation
matches the invocation to StockServer::getQuote and captures the argument to
key the cache. Finally this pointcut is applied to the around advice that we want
to intercept these invocations.
1 The DADO runtime packages QoS related messages from client to server (or vice

versa) in the service context field in the IIOP RPC message

DADO: A Novel Programming Model 931

adaplet ServerSideStockCache : Cache
{

server{
pointcut timedOperation() :

call(void StockServer::setQuotes(in QuoteList));
before timedOperation(): update TTL();

};
};

The server side deployment consists of dispatching the update TTL advice for
operations where TTL calculation can be updated. The pointcut timedOperation
matches the operation StockServer::setQuotes and is applied so update TTL will
be dispatched before those invocations.

5 Current Status

Currently, DADO works on both Linux and Windows. On both platforms, we
support both TAO and JacORB. DADO tooling can generate both C++ (Gnu
and Microsoft) and Java. Performance measurements indicate that the overhead
of our marshalling and dispatching machinery is reasonably modest. Details are
available in [15]. Several sample services have been implemented; including the
above two, we have also implemented a generic failover service. We have also
experimented with generic adaptations to prevent denial-of-service attacks, and
generic implementations of P2P architectural styles. Work in progress includes
development of a DADO-like approach for web services, as well as dynamic, co-
ordinated deployment of QoS services in complex, distributed, feature-rich and
feature-interacting settings.

6 Related Work

There is related work on handling cross-cutting adaptations in heterogenous
enviornments. We have already compared DADO with reflective ORBS [14,8,
3]. Interceptors [14,9], and filters [11] can intercept every method, but require
marshalling and dispatch to be hand-constructed without the benefit of static
typechecking. Proxies and wrappers [5,12] are specific to applications. Contain-
ers [10,13] generalize by exploiting code generation, but require new code gen-
erators for each new QoS approach. In addition, client-side QoS adaptations are
not supported.

Duclos, Estublier, and Marat [4] describe the component virtual machine,
(CVM). CVM provides a meta-object protocol for components that allows com-
ponent adaptation, specific as AspectJ-style pointcuts. DADO is similar in spirit,
but complements CVM by allowing component adaptations on both client and
server sides. CQoS [6] allows the construction of generic QoS components us-
ing generic QoS components, and application/platform dependent interceptors.
Cactus provides consistent coordination adaptation of distributed systems using

932 E.A. Wohlstadter and P.T. Devanbu

micro-protocols. DADO exploits on aspect-oriented model for adapting appli-
cations with QoS features. CQoS allows per-object QoS bindings, whereas the
current implementation of DADO only allows per-POA bindings.

7 Conclusion

DADO provides a convenient programming model for building QoS features
such as security, fault-tolerance and billing/usage tracking in a distributed, het-
erogenous, setting. DADO can conveniently handle split-context QoS features,
and supports piggy-backed messaging from client to server side and vice versa.
DADO supports a variety of different instrumentation techniques interoperably.
DADO comprises a modeling language, code generation tools, run-time enhance-
ments, and a deployment language. DADO is currently available for both Java
and C++ on JacORB and TAO, and works on both Linux and Windows. An
unsupported version is available at rickshaw.cs.ucdavis.edu

References

1. G. Blair and R. Campbell, editors. Reflective Middleware, 2000.
2. L. Capra, W. Emmerich, and C. Mascolo. Reflective middleware solutions for

context-aware applications. Lecture Notes in Computer Science, 2192: 126–??,
2001.

3. N. Coskun and R. Sessions. Class objects in som. IBM Personal Systems Developer,
Summer 1992.

4. F. Duclos, J. Estublier, and P. Morat. Describing and using non functional aspects
in component based applications. In International Conference on Aspect-Oriented
Software Development, 2002.

5. T. Fraser, L. Badger, and M. Feldman. Hardening COTS software with generic
software wrappers. In IEEE Symposium on Security and Privacy, pages 2–16, 1999.

6. J. He, M. A. Hiltunen, M. Rajagopalan, and R. D. Schlichting. Providing qos
customization in distributed object systems. In Middleware 2001 : IFIP/ACM
International Conference on Distributed Systems Platforms. Springer-Verlag Hei-
delberg, January 2001.

7. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An overview of AspectJ. Lecture Notes in Computer Science, 2072: 327–355, 2001.

8. F. Kon, M. Román, P. Liu, J. Mao, T. Yamane, L. C. Magalhães, and R. H. Camp-
bell. Monitoring, Security, and Dynamic Configuration with the dynamicTAO Re-
flective ORB. In Proceedings of the IFIP/ACM International Conference on Dis-
tributed Systems Platforms and Open Distributed Processing (Middleware’2000)

9. P. Narasimhan, L. Moser, and P. Mellior-Smith. Using interceptors to enhance
CORBA. IEEE Computer, July 1999.

10. E. Roman, S. Ambler, and T. Jewell. Mastering Enterprise JavaBeans. Wiley,
2001.

11. J. Siegel. CORBA 3 Fundamentals and Programming. Wiley Press, 2000.
12. T. S. Souder and S. Mancoridis. A tool for securely integrating legacy systems into

a distributed environment. In Working Conference on Reverse Engineering, pages
47–55, 1999.

DADO: A Novel Programming Model 933

13. A. Troelsen. C# and the .NET Platform. Apress, 2001.
14. N. Wang, K. Parameswaran, and D. Schmidt. The design and performance of

meta-programming mechanisms for object request broker middleware, 2000.
15. E. Wohlstadter, S. Jackson, and P. Devanbu. Dado: Enhancing middleware to

support crosscutting services. In Proceedings of the International Conference on
Software Engineering, Portland, USA, 2003. IEEE.

	Introduction
	DADO
	Security Example
	Performance (Cacheing) Example
	Current Status
	Related Work
	Conclusion

