DADO: Enhancing Middleware to Support Crosscutting Features in Distributed,
Heterogeneous Systems

Eric Wohlstadter, Stoney Jackson and Premkumar Devanbu
Center for Software Systems Research,
Department of Computer Science,
University of California, Davis, CA 95616
{wohlstad,jacksoni,devanb@cs.ucdavis.edu

Abstract policy in the next section which provides an illustration). The
scattered implementation of such features makes them difficult
Some “non-’ or “extra-functional” features, such as relia- to develop, understand and maintain. To worsen matters, the re-
bility, security, and tracing, defy modularization mechanismsjuirements of such features are oftate bound locality depen-
in programming languages. This makes such features hadknt, discovered late, and change often—security policies again
to design, implement, and maintain. Implementing such fedeing a prime example. Programmers are thus confronted with
tures within a single platform, using a single language, is hardhe difficult challenge of making a scattered set of changes to a
enough. With distributed, heterogeneo@H) systems, these broad set of modules, often late in the game.

features induce complex implementations which cross-cut differ- pistriputed Heterogeneousystems (abbreviate®H) are
ent languages, OSs, and hardware platforms, while still ”eedingecoming part of the IT infra-structure in many organiza-
to share data and events. Worsg still, the precise req_uiremer’ﬁans: many needed software functions are provided by sys-
for such features are often locality-dependent and discovergd s assembled from pieces running on different platforms and
late (e.g., security policies). The DAB@pproach helps pro- hogrammed in different languages. Distribution arises from
gram cross-cutting features by improviigft middleware. A nressyres such as globalization and mobility. Heterogeneity
DADO servicecomprises pairs oadapletswhich are explicitly grises from considerations such as performance, legacy sys-
modeled in IDL. Adaplets may be implemented in any languaggms, weight, size, vendor specialization, and energy consump-
compatible with the target application, and attached to Stub§on cross-cutting features M systems present special chal-
and skeletons of application objects in a variety of ways. DADQynges. Feature implementations are scattered across different
supports flexible and type-checked interactions (using ge_nera’q%q.| uages, operating systems and hardware platforms. Feature
stubs and skeletons) between adaplets and between objects ?rﬂﬁglementation elements in one platform need to correctly ex-
adaplets. Adaplets can be attached at run-time to an applicgnange information with existing application code, and with
tion object. We describe the approach and illustrate its use fag,cy ‘elements on other platforms. Any cross-platform (remote)
several cross-cutting features, including performance monitofxeractions between feature implementation elements may neg-
ing, caching, and security. We also discuss software engineeringe|y impact application performance. In a WAN context, the
process, as well as run-time performance implications. presence of different, incompatible featuresgy(different se-
curity policies) may even cause the application to fail. In addi-
tion, the operator of a service may wish to change security poli-
cies at run-time. Some platforms may be too resource-limited
This paper is concerned with an approach to supporting ther performance-constrained to support some types of software
development of late-bound, cross-cutting features in distributegl/olution techniquese(g., reflection). In some cases, source
heterogeneous systems. code may not be available for modification, so binary editing
Cross-cutting featureare those whose implementations stubtechniques (or middleware-based wrapping) might have to be
bornly resist confinement within the bounds of modules. Feaised. However, since feature implementations may cross-cut
tures such as logging, transactions, security and fault-toleranpk&tforms, all these different techniques of software evolution
typically have implementations that straddle module boundariehould be allowed to co-exist, and inter-operate. Finally, since
even within the most sensible decompositions of systems. Thisoss-cutting feature implementations might be widely applica-
issue has been discussed widely in the literature (See for exahie, we would like to reuse them (in either source or binary form,
ple, [36, 17, 23, 9] among others; we present a sample securag applicable) by changing the way they are “bound” to applica-

1 — - _ tion implementations.
DADO: Distributed Adaplets for Distributed Objects. We also note that a

“dado” is a carpenter’s tool for making cuts across the grain. In this paper, we describe DADO, an approach to develop-

1. Introduction

time interval. Fig 1 (right side) schematically indicates the new
high-level architecture. A authentication server has been added

to validate users, and a registration server to register client-
e @ service provider relationships.
This policy requires changes évery componerand toevery
@ interactionbetween components. The client now has to authen-

7 A 3 ticate itself to the authentication server, which provides an iden-

‘g . :i \(\‘ tity token. This token must now be added to all client-service
=1 === o requests. All members of each group of services must now coor-
Authentication Register dinate among themselves to make sure that a client with a partic-

Figure 1. A distributed health-care system, with many serviceular identity does not interact with more than one specific mem-

providers, without left) and with ¢ight) security. The right one en- ber of a group. Since malicious clients may try to induce race

forces this security policy: the client must first get get an authenticatiooonditions among members of a group, they must synchronize

token (1) from an authentication server, and then present this token aftl“commit” to serving a client.

his request (2) to a service-provider, who then checks with the registra- The changes are clearly “cross-cutting”. Programs running

tion server (3) (to preventmgltiple fra.\udullent requests) before servicing, different platforms, and in different languages might need

the request (4). Such a pollcy_requlres implementations that Cross'%anging. Since some platforms may have performance or bat-

system and language boundaries. tery limitations, (e.g., PDASs or laptops), or be remotely located,
different evolution strategies should be allowed, and allowed to
inter-operate. Changes to different elements must be made con-

ing features in distributed systems that require code changes Sistently, to ensure correct interaction. Changes must be prop-

a heterogeneous setting, to both client- and server-side of a esly deployed in the different elements, otherwise versioning er-

mote interaction. The paper begins with a motivating exampleors may result. Since the function on the server side for doctors,

in Section 2. We then survey the surrounding area in Section Bharmacists and insurers is similar, it would be desirable to re-

Section 4 presents our research goals in more detail. Sectioae the same policy implementati@ven if their IDL interfaces

5 describes the current status of our experimental implemease differenf should the platforms be compatible.

tation of DADO (including the run-time, code-generation and Next, we survey current approaches@{ evolution, con-

deployment tools), which is based on the OMG CORBA stansidering how they address programming challenges such as this

dard. Section 6 presents some sample applications of DADOne.

Section 7 presents some micro-benchmarks evaluating the per-

formance impact of DADO. In section 8 we describe closely3- Current Approaches

related projects. Finally we conclude with an overall view of the There are a variety of approaches to dealing with cross-

work, the current limitations, and our future plans. cutting features. Our survey here is limited by space to be rep-
resentative rather than exhaustive; no judgment of omitted or
included work is implied. A more complete survey can be found
For expository reasons, we review the example used in an [43].
earlier position paper [44]. Consider2H medical applica- Several language-based techniqudtave been proposed.
tion (Fig. 1), with a set of clients making use of three group£lassical syntactic program transforms [2] were perhaps among
of servers (shown as groups of circles with indicative labelsthe earliest to provide the capability of broad changes to pro-
clinics, pharmacies, and insurers. The servers in a group cowdams. Reflection [28] provided means of introducing cross-
be running on different platforms (each doctor’s office mightutting changes at run-time in languages such as Smalltalk.
use a different type of computer), but each provides the san@mpile-time [6, 37] reflection in C++ and Java has been de-
service (e.g., through the same CORBA IDL interface). The&eloped and extended to load-time in Java using byte code edit-
components in this architecture communicate uditig mid- ing [7]. Mixin-layers [33] also provide a way of adding fea-
dleware. In Fig. 1 (left), the original services are shown. Theures to methods in several different classes simultaneously. Im-
multiple arrows suggest drug fraud, with an unauthorized implicit Context [41] is a method for separating extraneous embed-
postor client contacting multiple doctors and getting many preded knowledge (EEK) (or cross-cutting knowledge) from the de-
scriptions for the same drug, possibly getting each prescriptisgign of a program, and re-weaving it back in later. Monads and
dispensed many times, by different pharmacies, and then issuimpnad transformers [19] have been used in lazy, pure functional
multiple fraudulent insurance claims. languages to capture cross-cutting features such as states and
Consider injecting aecuritypolicy into this system, consist- side-effects. They work by encapsulating the basic notion of a
ing of two critical elements. First, each client must be authentieomputation and then allowing fundamental evaluation mech-
cated by an authentication serverd., by a password scheme). anisms such as value propagation to be overridden. Recently,
Next each client must dealith only oneserver from each cate- approaches such as HyperJ [36], Aspectj [17], and Aspectual
gory. Thus, each client must use just one doatacéptfor sec- Components [20] provide differing approaches to implement-
ond opinions!!), one pharmacy, and one insurer within a giveing cross-cutting features in Java. A detailed comparison (but

2. An Example

see [15] for a comparison of compositional. aspectual views need to occur at a separate location that the client trusts. So the
of program evolution mechanisms) of these differing approacheaithentication exchange must be custom-programmed using an
is beyond the scope of this paper; suffice to say we are intespproach similar to interceptors. Programming here can be thus
ested in aDH setting, thus transcending language boundariesometimes as hard as programming interceptor-based services.
While details vary, most of these languages provide two features: Recently, Duclos, Estublier, and Marat [13] have proposed
a hookor pattern, for describing where to insert cross-cuttinghe model of &cComponent Virtual Machinevhich captures im-
changes, and then a way to program the changes themselvgsrtant events in a component’s lifecycle. These events can be
Since our approach uses the “hook” mechanism from Aspectiewed agoinpoints An enhanced container implementation al-
we discuss it in more detail here. lows extra Advice to bind to specific pointcut patterns over these
Aspect] provides a pattern mechanism, caflethtcutsfor joinpoints. This approach allows much easier implementation
capturing groups of events, callgnpointsthat may occur dur- of custom services on the container side. We discuss this work
ing a program’s operation (such as method calls/receptions, can-more detail later irf 8; we merely note here that our work
structor calls, field accesses, and exception events). The patteiosuses more on heterogeneous systems rather than container-
matching mechanism includes regular expression matchingased systems. Section 8 also surveys several other closely re-
with wild-carding over fragments of method names, functionated works, that are easier to relate to ours after DADO details
signatures, and types etc. Extra code, callédicecan be asso- have been presented.
ciated with point-cuts, and is inserted by the AspectJ compiler
into the join-points. Advice can inspect and modify data that. DADO Overview
are available at join-point events.. method-call arguments
and return values), and can create new data dynamically thatAS illustrated in Section 2, late-bound, cross-cutting func-
is only shared with other advice. Our work uses these ideas f§Pns Such as security require extra functional elements (which in
modelingcross-cutting changes to distributed systems at the IDPADO we calladaplet§ to be located together with (potentially
level. However, the distribution, heterogeneity, and versioningistributed) application software components. A client-server

problems that arise in our context, require new and diffeirant Pair of adaplets would constitute a distributed DADO service.
plementations We begin with a discussion of the main goals of our project.

Middleware-basedipproaches are certainly relevant. Som Then we describe the features of DADO that address these chal-

works exploit language-based reflection in the middleware [22?”965'
and other approaches use s'pecially gonstrgpted reflectife; pesiderata
ORBs [18, 8, 16]. Communication reflection reifies the chan-
nels between client and server to address adaptation on a pgeterogeneity and CommunicationAdaplets may need to ex-
message level [5]. SOM [10] was an early approach to sughange information and co-ordinate with each other, and/or with
port reflection directly in the middleware. Interceptors [42, 24}he application components. While this is strongly analogous
and filters [32] provide a way of inserting extra functionalityto AspectJ, adaplets must communicate and co-ordinate in a
into everymethod that originates or arrives at a request brokegistributed heterogeneoumntext. The adaptation mechanisms
middleware-specific APIs provide means for interceptor code tgource/binary transformation, runtime wrapping) may depend
reflect upon the details of the intercepted invocations. Whilen the platform; even so, heterogeneous adaplets should co-exist
these reflective methods are suitable for implementing crosgnd inter-operate correctly.
cutting services [4], (and for some very idiosyncratic, and highiy8inding and DeploymentIt would be desirable to suppdste
dynamic services may be the only way to do it) the use of theinding and flexible deploymentf DADO services. Consider
low-level reflection APIs, along with the need for frequent use ofhat container standards such as J2EE allow independent con-
type-casting makes programming difficult and error-prone; thusiner developers to develop services that are customized for spe-
it would be preferable to use more statically checkable metleific applications at deployment time. Likewise, we would like
ods when possible. Proxies and wrappers [14, 34] are anotherallow vendors to build services consisting of DADO services,
approach. However, they are typically tailored for a specific agndependently of application builders, and then allow deploy-
plication object interface; so thus, it would not be possible tanent experts to combine services and applications to suit their
reuse a wrapper to implement the same security policy on sucieeds.
entirely different components as doctors and insurers. Dynamic Service RecognitiorSeveral adaplets, supporting dif-
Container model§9, 38] address this problem through codeferent features, may be associated with an application compo-
generation. They provide a fixed set of services (depending dent; clients and servers must deploy matching sets of adaplets.
the container vendor) to application components. Via configun a dynamic, widely distributed context, clients may become
ration files and code-generation, services selected from a giveware only at run-time of the adaplets associated with a server
set can be added to any component. However, some servigdsiect. Thus adaplets may be need to be acquired and deployed
cannot be completely located within the container. Consideat runtime.
that a client may not be willing to reveal his password to jusFlexible Communication and Co-ordination The interaction
any old application container, and so the initial step of autherbetween a matched pair of client and server adaplets may not be
tication (password based or public-key signature based) migkimple and monolithic. Under different circumstances, the client

adaplet may require and request different functions (with differllustrated in Section 6. This process begins with a description
ent parameters) that are supported by a server adaplet (just aaf a cross-cutting DADGerviceas in an enhanced IDL (known
distributed object can support several distinct methods). Likeas DAIDL, for DADO IDL). A service is a collection of DADO
wise, the server adaplet may request different post-processiadaplet interfacedescriptions, which consist of several meth-
functions on the client side. A client adaplet can refer to it'ods, just like a CORBA IDL interface. These interfaces are then
server “mate” via the reserved namthdt " (and vice versa). compiled using DAIDL compilers for different targetimplemen-
However, for efficiency, it would be better to have only a singldation languages (currently we support C++ and Java), produc-
invocation event through the middleware (e.g., a single CORBMg marshaling routines and typing environments. The imple-
synchronous call). mentation then proceeds by service programmers just as with

4.2 DADO Features conventional middleware.

, . . The deployment specialist binds an implemented service to
Modeling, Type-Checking, and Mar§hall|ng DADO employs' a given application by specifying bindings using an AspectJ
an enhanced IDL and code-generation to support the foIIowmgike pointcut language. The deployment specialist will need

e Explicit IDL-level modeling of adaplets and their interac-to understand both the application and the service, and select
tion with application components. the bindings based on the specific installation. Currently, these
bindings must be specified ahead of time and pre-compiled; one
can then choose from different pre-compiled bindings (each of
which bind a service to a set of application objects in a par-
o safer interaction (via static type-checking) between adagicular way) dynamically. Duclos, Estublier and Marat's DS-
lets, with automated generation of marshaling code. CVM [13] also includes similar roles, but their implementation

. o . . strategy is different, utilizing a sophisticated container architec-
Point-cut based BindingDADO separates services (which de—ture (we come back to this later, ir8).

scribe the interfaces supported by adaplets) from a deployment

desc_ription: which s_pecifies the preci_se_deployment contex_t Off?' DADO implementation

service (using a pointcut language similar to AspectJ). This al-

lows a deployment expert to tune the connection between DADO We now present more details on the DADO features outlined
services and different application components. The binding lain the above section. The current DADO experimental imple-
guage is agnostic with respect to the implementation; DADO adnentation is based on the OMG CORBA standard. It includes
aplets could be incorporated into the existing application usingDL language extensions for services, DADO IDL (DAIDL)
static transformations (binary or source) or dynamic wrapping;ompilers for C++ and Java, run-time software extensions for
depending on available tools, performance issues, etc. two different ORBs (JacORB and the TAO ORB), and tool sup-
Multiple Contextual Invocations DADO allows adaplets on port for the deployment of serviceisg, for dynamically insert-
the client and server side to communicate via messages. Hoing DADO services into existing CORBA applications).

ever, rather than inducing additional middleware invocations) .

multiple messages are piggy-backed within the single pr&-1 IDLs, Type-checking, and Marshalling

existing application invocation. DADO adopts the philosophy (as does DS-CVM [13]) that
Transparent Late binding DADO clients transparently (with- |p[-level models provide an excellent software engineering
out additional programming) discover the services associat@ﬁethodobgy for distributed systems; in addition to promoting
with a server, and depléydditional adaplets as needed. better conceptualization of the design, one can construct tools

4.3 Process implications of DADO to generate useful “plumbing” code and typing environments
Currently, the process of buildifgH systems using middle- for sta_tlc type-checking. DADO ID_L introduces the nptlon of
ware such as CORBA includes modeling the high-level desigﬂ servicethat refers to a cross-cutting feature. A service com-

using IDL. IDL specs are then implemented by developers, ises client and/or servadaplets Eachadapletsupports sev-
g P P Y P t€ral methods, which may be of 2 different kindsdvicemeth-

they COTS vendors, or application builders, on different pla i o _
forms and perhaps in different languages. When implementati@fiS: identified in DAIDL by thedvicekeyword, may be bound,

is complete, the users of the distributed system can run ORBs ¥} Pointcut patterns (like AspectJ advice, as explained later, in
a network as suited to the application and organizational need®SCtion .3) to application objects. Advice methods basically
and deploy the constituent application objects, along with a rovide additional functionality that is ruavery timecertain
COTS software and ORB-provided services (naming, lifecycl ethods defined in an IDL interface are invoked. Advice can
events etc.), ' be on the client or the server-side.

DADO brings three new roles into this process (see Figure !N addition to advice methods, DAIDL services can also in-
2): aservice architegtservice programmerand aservice de- Ccluderequesimethods (identified in DAIDL by thesquestkey-

ployment specialistThis service architect can desiga ser- Word). These are a form of queued asynchronous methods (see
vice that implements a cross-cutting feature, such as the ongection 5.4 on RMCI) that may be invoked by any adaplet meth-

2In Java, with a suitablelassloader , adaplets could be even dynami- 3This suggests another role, perhapoparator, who selects services based
cally downloaded over the internet. on operating conditions.

¢ Ability to implement adaplets in different languages, while
supporting:

¢ DAIDL

Specs

v
'
'
i 9
! =
! >
i /2
' \]
] ! ==
' ' 5
i | Interface Srervice
; i 2 Architect
i L Repositon
' R e
! H < "
i |
1 Header \ ‘
' Files Application H .
.~ Object \ Adaplet |
' '\ 7 Skeletons & ' Skeletons & Adaplet
1 W stubs H Stups Implementations
H 1
H |
1 \\V‘iv '
' i
' i
i i
' Il
' 1
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
L

o~
¥ -
@ﬁL—» oL | —»

Specs

Application
Architect

Files

Srervice
D= gl ¢ ¢¢ Programmer
Application s frsssssfess g \/J
Programmer .
Linker

Linker 2
Deployment Specs
(Static & Dynamic
Pointcuts)
Objects Objects o

4
Srervice
| Adaplets || Adaplets ” Adaplets | Deployment

\
\
\
bjects
=%
T e |
A | “a

- K -3 Deployment
.- ., - Tools

¢ Specialist

Figure 2. DADO Development ProcesEhe left hand side (within the dotted lines) indicates the conventional CORBA process.

On the right, the DADO service development begins (1) with modeling the interfaces to DADO adaplets using DAIDL,; from this
the DAIDL compiler generates (2) plumbing code, and typing contexts for adaplet implementations. The programmer writes (3)
the adaplet implementations and links to get (4) the adaplets. Now, the deployment specialist produces (5) deployment specs, and
these are used by deployment tools to install (6) the adaplets at the proper application object locations. Deployment can occur at
compile time, link time, or run-time, depending on the instrumentation technology used (only run-time insertion is illustated in the
figure).

ods. Advice and request are explained in more detail in Sechitect service programmerand aservice deployer When a
tion 5.2. service architect decides that some additional behavior on the
DAIDL compilers can currently generate heterogeneous tyglient or server of a distributed application is desirable, she can
ing environmentsife., C++ header files, or Java imports), asadd an advice operation to the interface of an adaplet. Advice
well as stub and skeleton routines; adaplets can currently loperations can be specified to be client-side or server-side ad-
implemented in either C++ or Java (but must be written in theice. The service deployer can then add the behavior specified
same language as the application ofjedive also note that ad- by the advice interface to a specific application object by writ-
vice adaplet methods have direct typed access to any argumerg an appropriate pointcut. The service programmer has the
in the application invocation; the actual bindings are specifiedbligation to implement each advice.
in the pointcut. Programming within the context of typed stubs
and skeletons, and leveraging generated marshaling and ot(}
“plumbing” code offers a d|§t|nct software engineering a_dvanlr vocations. However, in some cases, additional information
tage over the current practice of “type-less” programming o

! . . : “may be need to be sent along from the client to the server side
late-bound services that use untyped string data in an mvocat'gﬁaplet (or vice versa). For example, in section 6.1 we present
context object for data exchange. :

a service where a client side adaplet can request that a match-
5.2 Advice and Request ing server adaplet calculate server processing time for specific

The separation of advice and request operations in the adaﬁp\{ocanons, and then communicate this information back to the

. . . .~ 'client adaplet. This additional information conveyed between
interfaces represents two levels of adaptation required to implg-.

. - . client and server adaplets is contextual. It must be associated
ment cross-cutting distributed heterogeneous services. In this

section we detail the relationship of advice and requests to tr\{\é'th some original CORBA invocation. Likewise, the timing be-

development and runtime execution of standard CORBA comh-awc.)r by the Server ac_JIapIet mus_t oceur b_efore and after the pro-

cessing of the invocation for which the client adaplet requested

ponents and to each other. tatistics. This type of adaptation is handled by the RMCI mech-
We recall (from Section 4.3) that DADO introduces severa? ! yp P y

X . . anism described below, in Section 5.4.
new service-related roles into the software processraice ar-

Some services can be implemented simply by executing ad-
fe on the client- or server-side, along with application method

The service architect can include operations tagged with the
4This is primarily for performance reasons; if adaplets are in a different lan-

guage, it would be necessary to go through middleware to get from an appliclt:ale-queSt modifier keyword to provide an extra communication

tion object to an adaplet. With a “polyglot’ middleware like .NET's common Path between client find server adaplets that iS_ associated with
language runtime, this problem can be finessed to some extent. the current CORBA invocation. The body of client and server

advice can be programmed to add request messages by uspuojntcuts that are already compiled into IJR can be added or
the "that " reference which exposes the interface of request opemoved at runtime). Of course, future tool (and associated run-
erations available to a client adaplet by the server adaplet atiche) support could allow new point cuts to be created and in-
vice versa. In object-oriented languages the service programmnearted at run-time.
will derive adaplet implementations from a generated abstract In order to trigger adaplet behavior at runtime, application
base class which includes an appropriately typed member vagede must somehow be modified, or execution intercepted to
able namedthat ”. "that " is automatically bound to a gen- capture the right events. A wide range of binary and source-
erated stub that implements RMCI semantics for each requeside, static and dynamic instrumentation mechanisms have
operation. been reported [6, 37, 17, 30]. Middleware, also, can support
Advice and Request play different roles in adapting the dyhighly dynamic reflective mechanisms [3]; Duclos, Estublier
namic execution of a distributed application. Advice operationand Morat [13] have build a “component virtual machine” that
are used to add behavior at points in the program determined bifows great flexibility in instrumentation.
pointcut based deployment. Although the addition and removal In keeping with theD7{ philosophy,we allow heterogeneity
of advice can occur dynamically at runtime it is still based on rein the implementation of the triggering mechanishinus while
ferring to static elements in the IDL interface. Pointcuts create the pointcut specifies the “high-level design” of the binding, dif-
connection between client programs and client adaplets or serferent implementation strategies are possible. Currently, sev-
objects and server adaplets only. The connection between cliesttl instrumentation mechanisms are supported for translating
adaplets and server adaplets is made through request messag&BO pointcuts (in 1JR form) into actual trigger mechanisms.
and is completely dynamic. The request messages serve b@ir Java, we use Aspect] [17] to insert the necessary trigger code
to convey additional information and invoke behavior to procesgito generated stubs and skeletons (thus avoiding the need for
the information. application implementation source code. For C++, we make use
The exact mechanism by which the original client and servesf a range of mechanisms, including TAO’s smart proxies [42],
programs are modified can be platform-dependent; heterogeraeid the Portable Interceptor standard in CORBA; this approach
ity is allowed. Several options are possible, including sources also compatible with binary-only application components, and
code weaving, generating customized stub components, or maghkn work in any language, even one that does not support source-
ifying the middleware. The transmission format of request mesode or binary instrumentation mechanisms. However, both ap-
sages, however, is standardized because it must be understposaches require that adaplets be written in the same language
by the DADO runtime on heterogeneous hosts. Our experas the application objects. Removing this restriction is certainly
mental implementation relies on packing request messages irgossible, but would require adaplets to engage a large segment
theServiceContext ~ of a CORBA invocation. Th&ervice - of the middleware stack for cross-language interoperability with
Context is part of the CORBA protocol format for commu- application components. Naturally, client- and server-side adap-
nicating invocation specific information between ORBs. Natulets, even if using different languages, different instrumentation
rally, the generated request and advice typing environments areechanismsarefully inter-operable, and portableThe adaplet
standardized, using the usual OMG IDL language mappings. programmer remains agnostic with respect to the actual instru-
. mentation mechanism that is used to trigger the adaplet. An
5.3 Binding and Deployment adaplet can communicate with other adaplets (the matched one,

Once built, a service can be integrated with application8f any others that it has a handle to) using the DAIDL inter-
by specifying abinding which is done using a pointcut lan- face description. In our implementation, this is accomplished
guage. This process involves one platfamdependentool, through appropriate code generation; the generated code pumps
which matches the pointcuts against a known set of componef#@ta around by packaging it into the untysaivice contexbb-
interfaces, and produces a digested match-table in XML formdect (See [25], Chapter 21) APl in CORBA.
and a separate platfordependenimeans for actually ensuring
that the adaplets get triggered when the pointcuts get activate

The pointcut language extends the AspectJ pointcut language Remote multiple contextual invocation (RMCI) in DADO
to specify client or server side pointcuts, extending the Aspecglves service developers more ways of programming interac-
regular expression syntax for the declaration of generic or crostiens between client-side and server-side adaplets. Consider that
cutting behavior. Matching of pointcuts with invocations coulda client adaplet may require different types of actions to be taken
be done off-line or on-line. The current DADO tool (the point-at the server side. As a very simple example, a per-use payment
cuts pre-processor) matches pointcuts (against the IDLs of tiservice adaplet attached to a server object might accept e-cash
application objects) at compile-time. This tool identifies all thepayments, or a credit card. Another example is authentication.
IDL level events requiring adaplet intervention, and also the ink could be based on kerberos-style tokens, or on a simple pass-
formation in the events that should be made available to eagtord. We could include both options as possible parameters,
adaplet. The output of the preprocessor is a representationiofa single method signature, along with an extra flag to indi-
all the event/action matches as an AST (represented as XMldate the active choice; this leads to poorly modularized methods
We call this Intermediate Joinpoint Representation (IJR@t¢ with many arguments. Rather, we take the “distributed object”
Although this matching happens at compile-time, services withhilosophy of supporting different requests at a single server ob-

3.4 Remote Multiple Contextual Invocation

aplets might include both advice and request methods; the fig-

ure illustrates how the client side advice gets executed in turn.
a server Each client adaplet may enqueue multiple requests to be exe-

cuted by the server side adaplets. The requests are collected into
L/1

Client 1

T//z

N

12 {——T a queue that gets piggy-backed onto the regular middleware in-
1 =d

vocation and passed through to the server side. The RMCI des-
Foquet g9 7 S ignation thus arises frorivlultiple Remote requests contained
Queue m m i within the single InvocationContext The implementations of
4 __— 10 these requests (regardless of adaplet’s location) have full reflec-

o " v tive access to the current active invocation, via provided APIs.
Coptext Confext Of course, if the information needed by the adaplet is known
6 statically, there is no need to use reflection.
i 8 On the server side, the designated advice adaplet methods for

‘ each adaplet get executed, as are the enqueued requests. The

’ ORB ‘%7 >’ ORB ‘ server side adaplets may also enqueue requests to be executed
by the client side. This feature can be used to pass information
back to client-side adaplets; we illustrate with a performance

Figure 3. Remote Multiple Contextual Invocati@lient-server ap- mpgnitoring example where server-side time-stamps are passed
plication object interactions are mediated by “T” (transaction) and “S’back to the client via a request adaplet method

security adaplets. Gray semi-circles denote generated marshaling code.In essence, RMCI provides a form of dynamic per-invocation

Initial client invocation (1) is diverted by the interceptor in turn to each

adaplet (2,4) until finally arriving (6) at the ORB. Adaplets use mar-adaptatlon as in Lasange[39] while supporting type-checked in-

shaling code for their invocations (3,5). Each adaplet may enqueue sé@-racnons and modular design through IDL declaration.

eral one-way messages (for the server-side adaplets) which are piggy5 Transparent Late Service Binding

backed as a request queue through the normal middleware invocation Ina WAN environment such as the internet. where servers are
(7) over the WAN to the server side. The process occurs in reverse o '

the server side, with the requests in the queue being delivered to tFFéSC‘?V‘”ed at run-t|me, clients car_mot predict the _S(_Et_Of Services
corresponding adaplets. Likewise, server-side adaplets may enquélf@Vvided by (or required by) a particular server untilitis located.
messages to the client side adaplets which are piggy-backed on the $atic approaches that install new services based on only on type
vocation response. information cannot easily provide this kind of late binding.
When server objects are associated with a DADO service
(this can happen dynamically, from the command-line or at de-

o]) _ ployment time via configuration files) they are assigned an ex-
ject; we allow adaplets on either side to support several diffefgr | object reference that is used by the client side run-time to

ent requests. As another illustration of the use of requests, Cofistect the applicable serviGesEssentially, the references en-
sider a generic caching service, (implemented using DADO adg e information about the adaplets associated with this Sbject
aplets) which can for example be attached to a stock quotatigfhis information is used by the Dado interception logic on the
server(this example is discussed in more detail in Section &jientside to transparently engage the corresponding client-side
Cllgnt-3|de advice can cache values and return them '”Steadafﬁaplets. Our implementations use different triggering mecha-
going to the server for each request. However, the server M3yms depending on the platform, to achieve this. This process is
want to communicate a “time-out” interval back to the client, sqystrated in figure 4. When an application object registers itself
that it can adjust the time-out period for cached quotes based @y, a naming service, the reference encodes all active services
rr_1arket volatility. So it would be useful to .have a spemgl C"e”t'(Arrow 1). Subsequently, a retrieved reference (2) is intercepted
side request method that the server can invoke when it needsbt)g the DADO runtime, which decodes the applicable service
adjust the time-out value. identifiers from the reference. It then instructs the local factory
DADO adaplets support a special type of one-way, asyny create instances of the corresponding client-side adaplets, and
chronous “piggy-backed” message that are sent along with an ifgjects them into the execution path of invocations originating
vocation (from client to server) or a response (vice versa). Singgym the client. Our current implementation assumes that the
multiple services can be present simultaneously, the requests BEsible set of pointcuts used by servers are known statically.
queued on each client and packaged with the original invocatiqfifferent sets can be uniquely identified in the server reference.
for dispatch at a server side adaplet. This also works in reverggthe future we plan to address dynamic client-side detection of
for requests going from the server-side adaplet to the client-si%intcut configurations.
adaplet. The keywordréquest " in the DAIDL adaplet inter- If the service deployment at a server object changes dynam-
face can be used to designate operations as having RMCI §g|ly, it re-registers with the naming service to alert future

mantics.
In flgure 3 we show apphcatlon ObJeCtS using both a SeCU“tXb-e\é\t/e assume that these external object references uniquely identify a server

. . object.
and a transaction service. Note the presence of Correspond|n95Using CORBA this is possible with Tagged IOR Components. Other mid-
adaplets for each service on both the client and server side. Adleware such as SOAP could add information to a URL.

Request
Queue

client may also want the invocation arrival-time at the server and

4 BILL b1:BILL
\ Client Server the reply sending-time in order to compute the actual processing
5~ T T time. This scenario demands more cohesion between interact-
| S S ing client and server interceptors. This service requires three
Adaplet £ o critical elements: clients must be able to ask the server for tim-
gocton) | ing statistics forsome not all, invocations. Servers must return
data through a type-checked interface. Clients need some way
Interceptor . .- . . .
1 to modify existing software to add logic for requesting timing

f / statistics; different means should be allowable. Finally, client-
2 and server- adaptations should be coordinated; clients will not
e request timing statistics from servers unable to provide them.

TRADING
SERVICE

adaplet Timing {
client {
advice void timedOperation();
request timeResult(in long long received,
in long long sent);

Figure 4. Late-binding service adaptatior(4) Server object, with
Security and Transaction adaplets, namiet™of type “Bill " is reg-
istered with a Naming service. The identifiers "Transaction” and "Se-
curity” are tagged to the external object reference. When client looks
up object namedif1”, the returned object reference (2) is intercepted server {

by Dado component. Dado attempts (3) to find client-side adaplets for ~request timeRequest();
"Transaction” and "Authentication” from client-side factory. Factory

creates and binds transactions (T) and security (S) adaplets to client

application object.

crosscut TimeAll : Timing
client{
clients. If service deployment changes at a server while current before call(*) :

clients are still active, the server can throw a DADO-specific ex- void timedOperation();
ception upon their next invocation. This exception encapsulatgs’
information about the new server configuration. The client-side
DADO runtime then responds by transparently reconstructing DADO service developers first write the DAIDL interfaces
the set of client-side adaplets so that interactions may continuéabove the line) of the client and server adaplets, and implement
5.6 Adaplet Instance Considerations them_for target Ia_mguages (utilizing DAIDL tools and run-time
libraries). The client adaplet has two methods. Qinedop-

A service developer may need to control the granularity of aion is anadvice method that can be bound to an applica-
how server objects and clients are affected by adaple_ts. This Mgyn method. The othetimeResult is arequest method that is
be necessary to conserve resources, by not creating t00 Maped by the server-side adaplet to report back the timing results.
adapletinstances, or for associating state in adaplets with partignjs timeResultequest message can be included with the orig-
ular application object instances. Currently, we provide a mecljya| response by the server and will be dispatched to the client
anism for associating adaplets on a one-per-ORB basisd sjge adaplet before the client application receives the response.
singleton) or on a one-per-POMasis. We plan to add sup- The implementation afmedoperaton ~ can dynamically decide
port for per-object adaplets in the future; currently, per-objeGyhether to invokenattimeRequest ~ or not; we note again that
adaplet instantiation is only possible by placing objects in sepgye special variablenat , denoting the (other) matched adaplet
rate POAS. is implicitly made available to both client/server adaplets.

When that.timeRequest is invoked by the client side ad-

6. Examples vice a request message is added to the original invocation and

We now present some sample applications of DADO. Aldispatched to the server side adaplet before the server object re-
of these examples have been implemented with a Java cliesgives the original invocation. The server adaplet can respond
on JacORB and a server on TAO. For space reasons only tteatimeRequest by taking two timing measurements to deter-
DAIDL interface descriptions are presented. mine the actual execution time for that application method invo-
6.1 Round-Trip Performance catiqn; it can then report. the result back to the client{ using the

that.timeResult client-side request. We note thiie imple-

Consider a simple performance monitor in a particular clienfyentation of the advice is responsible for invoking the request
software. One can easily write coded.,using interceptors, see there is thus no explicit modeling of this detail at the IDL level.
[24], or [25], Chap. 21) to attach to the client that will recordror jnstance, consider a client that would like to time one out
the time each invocation leaves and response arrives. But thaevery ten invocations. This logic could be programmed into

"The Portable Object Adapter is a container abstraction available in CORBHle.timedOpera.tion adVice by an adaplet programmer. _|t WOUld_
for associating policies (such as thread policies) with a number of server objectse inappropriate to introduce this type of implementation detalil

at the IDL level. Thus the service programmer decides whetached, the accessor operation, uses a string “unique key” ar-

request Messages are triggered; however, the IDL model doggiment to determine the returned data. This fits our scenerio

allowrequest messages to be marshalled and triggered in a hetthere clients access stock quote prices based on stock market

erogeneous, yet type-checked manner. symbols but may require a different interface for other applica-
To deployTiming adaplets for a given application object, tions. Consider a simpletockQuotes server with operations

the server-side would make the service available by registesetQ andgetQ . We could apply the adapletivice hooks to in-

ing a servemiming adaplet component with the servers’ objecttroduce caching using the following deployment file ,

adapter. When clients become aware of those server objects, the

DADO run-time will automatically deploy client adaplets basedFrosscut StockCache : Cactie

on the clients deployment preferences (seectbwdcut decla- client {

ration above). In this deployment the client would like all invo- 5r0und cali(float StockQuotes::getQ(key)) :

cations to be intercepted liynedoperation as indicated by the any.type readcache(in string key);

wildcard. The server side doesn't need to specify any additional };

pointcut instructions, as the operationeRequest is invoked ~ Severl

. . before call(void StockQuotes::setQ(key,in float)) :
by the client-side adapIEt- void trackWrites(in string key);

6.2 Client-Side Cache

Systems are often built without performance optimizationé?
such as caching in mind. However, it would be nice to lever-

e e b or B, Q2% Thekeyargumentsseve o math pasameters i e aplca
' tfon operations with parameters for use by the advice.

feature whereby clients can cache data associated with a partic-
ular server. Consider a stock-quote server, which provides a6:3 Security Policy

cessor and mutator methods. The accessor methods are calIetNOW consider our security policy example (Section 2). Here
by clients, and mutators would be called by a data provider to y policy P ' '

“soump” data into the quote server. We would like to cache th&€ Vers must restrict access to some operations, based both on
pump : S clients’ identity, and their previous history of use. Clients must
returned quote value at the client side. When the server returBE3 reqistered with a particular server for some duration. After
data it associates a time-to-live (TTL) value with the data, fo[> reg b '

use by the client. An invocation will be serviced using cache is time has expired, clients can register with another server.

. . . his prevents clients from contacting and obtaining the same
data from the client (without contacting the server) as long as_
) : S services fraudulently from multiple servers. Clients authenticate
the TTL has not expired. The server will adjust its TTL value
L . . themselves using a cryptographic token. It is the clients respon-
heuristically depending on the frequency of calls (from its datas‘ibilit t0 obtain amAuthentic: Tok which is a crvotoaraphic
provider) to its mutator method. y uthentic:: Token yptograp

object representing the verification of the clients identity. The

adaplet Cache { implementation of theontactAuthentic advice in the client
server { adaplet is responsible for this; this advice can be bound to appli-
request requestTTL); cation methods that must be mediated by this security policy.
advice void trackWrite(in string key); . L . - . .
¥ Since the authentication token is specific to this service, we
client { must include server-side request operations in the adaplet to
advice any _type readcache(in string key); transmit this information to the server side. The server adaplet

request putTTL(in long ttl);

1 has two request operations available for receiving the authenti-

cation information. The first time a client contacts a server, she
must register (commit) to that server for a specified time inter-
The DAIDL interface for the Cache adaplet specifies twoval. Therequest operationregister is for use by first time
operationstrackwrite andrequestTTL . The client-side cache clients and includes a parameter for the duration of registration.
adaplet issuesequestTTL along with accessor operations for The implementation of this registration will validate the authen-
which it has no cached data. The server adaplet sends back tloation token and check with a centralized reservation server
TTL value associated with the invocation, back along with thénot shown here) to make sure that the client isn't fraudulently
data response; it does this by issuingua TL request to the registered with a different service provider.
client. The server adaplet estimates the TTL values heuristi- For subsequent application object invocations within the reg-
cally by timing the mutator operations that it receives from itgstered duration, the client uses the secengest operation
stock quote providers. Theackwrite is theadvice that is authenticinfo , to transmit the authentication token. Now, ev-
triggered to calculate TTL based on mutate operation frequenasty server operation that needs to be mediated by this security
The client-side advicesadcache performs the caching opera- policy must trigger the policy enforcement mechanism, to check
tion. The keyworchny type givesreadcache access to the re- that the client is authentic, registered and still within the regis-
turn value, as a generic CORB#Ay, of the operations on which tration interval. The server operations that need to be restricted
it is deployed. This design requires that the operation to behould be mapped to theall server adaplet operatiatheck

with a deployment description(see below). An implementatiodacORB 1.4 on JDK 1.4. The server machine was an 800 Mhz
of this advice can implement the policy. Intel Pentium Laptop with 512MB main memory running Mi-
crosoft Windows 2000. Server software used TAO 1.2 com-

adaplet Wall - { piled in C++ Visual Studio. Client-side advice is invoked us-

server . g . .
request{ authenticinfo(in Authentic::Token tok); ing modified stubs; a portable interceptor dispatches requests on
request register(in Authentic::Token tok, the server side. The DAIDL interface to the adaplet used for

in long duration); performance measurement is shown below. The actual IDL in-
terface that is bound to is not important, since we are actually

: just measuring the additional overhead of the adaplet run-time
client { infrastructure; in this case, we use a simple interface with a sin-

advice void check()
raises(NotRegistered,NoAccess);

. advice contactAuthentic(); gle, synchronous method that takes a string and doesn’t return
¥ ' anything (not shown here).
adaplet Test {
client {

The check implementation (in some host programming lan- advice void grabArg(in string arg);
guage) will contact a registration server (IDL not shown) to en-
sure that a client can be served. If not, (if authentication token, . o {
or registration is invalid) the operation should raise tl@c- request putArg(in string arg);
cess exceptiof. However, if this client is not registered with }:
any of the servers in the group, or if the required registration
interval with the current server has passeack can throw a
Not Registered exception. This gives the implementation of crosscut Tesf
contactAuthentic a chance to catch this exception and retry client{
the operation by sending along a request for a new registration Pefore callt" *=*@r): ,
. . . . void grabArg(in string arg);
interval (which will succeed as long as the client hasn’t fraud- .
ulently registered elsewhere). Catching exceptions and retrying
operations is made possible by structuring adeic®indorigi-

)) ¢ X s As can be seen above, there is one client-side advice and one
nal invocations in a fashion similiar to the Decorator pattern. garver side request. The client-side advice is bound to every
The server side adviceheck , and the cllenF-5|de advice , meathod call (with a single argument of typeing) on every
contactAuthentic , can be bound to any operation that must bgyyiect by the pointcut. In our implementation, the client-side
policy-mediated. Implementations can choose to cache seCiyice simply captures the string argument from the invocation
rity information as appropriate. However, we note that once thg,q cais the server side request, passing along the string argu-
server has implemented and deployeddieek advice correctly mant The server side advice receives the string argument, and
it does not have to trust the client-side advice at all; also, if thgjm 5|y just passes control to the server application object. So the
authentication service uses public-key authentication, the clienfyerhead we are measuring (beyond the normal CORBA invo-
side advice does not have to leak any authentication secrets (€ Qion overhead) includes the additional cost of 1) intercepting
private key) outside the client’s machine. _ ~the invocation on the client-side, 2) dispatching the client-side
All examples above have been implemented with the clientigyyice 3) executing the client-side request stub, 4) marshaling
Java, and the server in C++. Further details of our current impq aqditional data transmitted by the request intcStrsice -
pleme_ntatiqn are described in the following section. Full sourcg oy object , 5) transmitting the additional data over the
code is available ofttp:/irickshaw.cs.ucdavis.edu wire 6) unmarshaling the data on the server side 7) dispatching
and executing the request implementation on the server side. All
measurements given above are for round-trip delays for a simple
The data presented is in the style of micro-benchmarks: wavocation that sends a “hello world” string. The data is aver-
measure the incremental effect of the actual additional marshalged over 1000 invocations, and is given in milliseconds.

7. Performance Study

ing work induced by the new “plumbing” code (generated by [Experiment | 100 Base-T | Wireless ||
DADO compilers), as well as other DADO runtime machinery [1. Vanilla CORBA 0.65 3.49
for dispatching adapletivice andrequest . For this reason, we 2. with 1 advice,
use dummydvice andrequest methods that don’t do any com- 1 request 1 4.17
putation, so that we can focus primarily on the actual overhead | 3. with 10 advice,
of the DADO runtime machinery. No request 0.68 3.65

The measurements were taken for a single client server pair.| 4- with 10 advice,
The client machine was a 1.80 GHz Intel Pentium with 1GB | 10 request _ 152 7.45
main memory running Linux 7.1. The client middleware was | 2 Vanilla CORBA with

equivalent raw

8These are implemented as a run-ti@@®RBA::SystemException s be- data Payload for 1.38 7.27

cause they occur inside of the original target operation. 10 requests

The first row is the plain unloaded CORBA call, as a basedistributed objects in the face of limited or unreliable compu-
line for comparison. The second row is a CORBA call with ondation and network resources. QuO introduces the notion of a
adaplet advice, and one additional request. In the third row, wisystem condition”, which is a user-definable measure of the
show the effect of “artificially” forcing a dummy advice (that system, such as load, network delay etc. System conditions can
doesn't transmit any requests) to execute 10 times. The fourttansition between “operating region”s which are monitored by
row shows the effect of executing the advice shown on the settie run-time environments. The novelty in QuO is that adap-
ond row 10 times, thus forcing 10 request messages. The critidakions can be conditionally run to respond not only to normal
fifth row shows an interesting comparison: it measures the plamiddleware events, but also to region transitions.

CORBA call, with additional data loaded into the service context QuOQ'’s version of adaplets are confined to a single system.
object, exactly equivalent to 10 request messagethout any Unlike DADO, Quo provides no special support for commu-
adaplet code whatsoever. This row corresponds to the precisigating information from a client-side adaplet to a server-side
straw-man comparison for sending daensDADO, and cor- adaplet.

responds to the way interceptor-based services (such as Trahasagne Lasagne[39] is a framework for dynamic and selec-
actions and Real-Time, as per [25], page 30 of Chap. 13) atiwe combination of extensions in component based applications.
currently programmed. Each component can be wrapped with a set of decorators to re-

As can be seen, the advice itself, which does not send afipe the interaction behavior with other components. Every dec-
data, does not induce very large overheads (comparing rowsofator layer is tagged with an extension identifier. Clients can
and 3, it's about 5% in both cases for 10 advice invocations) Thaynamically request servers to use different sets of decorators at
overhead for sending requests is largely due to the base costrofi-time. An innovative aspect of Lasagne is the usage of exten-
transmitting data over the service context object. By comparingjon identifiers to consistently turn on and off adaptive behavior.
the 100-Base-T and Wireless measurements one can see thetttiwever, the use of the decorator-style constrains all extensions
minishing cost of marshaling as the benefits of reduced latenty have the same interface. Any additional extension-specific in-
from piggybacked requests increases. The motivation of RMG@brmation must be communicated using a “context” object, with-
is to provide type-checkable interactions and modularization afut the benefits of typechecking or automated marshaling.
service features, we feel these measurements show the feasiBibftware Architecture In software architecture, connec-

ity of this approach. tors [22, 27, 1] have proven to be a powerful and useful mod-
eling device. Connectors reify the concern of interaction be-
8. Closely Related Work tween components, and are a natural foci for some cross-cutting

In this section, we discuss closely related work and Cornparceoncerns. Implementations of architectural connectors have also
them in greater d,etailwith DADO bg_en pro_posed [12, 31, 11, 35]. _ Some of these prowdg spe-
' cific services [31, 11, 35] ovédPH middleware, such as security.
Our work can be viewed as providing a convenient implementa-
Dassault Sysemes CVM The Dassault Sydtes Component tion vehicle for different connector-like services in a heteroge-
Virtual Machine (DS CVM) [13] is targeted at container-basecheous environment. The DAIDL language and compiler allow
systems, and allows the implementation of custom containgervice builders to write client and server adaplets that provide
services. The DSCVM comprises an efficient, flexible CVMmany kinds of “connector-style” functionality, while the DAIDL
that essentially supports a meta-object protocol which can Bplumbing” handles the communication details. Furthermore,
used for instrumentation of middleware-mediated events. Thike pointcut language allows a flexible way of binding this func-
allows the CVM to support the triggering of advice when thetionality to components, using pattern matching to bind events
CVM executes specific events such component method invoc- adaplets. The question as to whether connector specifications
tions. Pointcut “trigger” specifications are implemented usinge.g., in an ADL) can be translated to DAIDL specifications
the DSCVM events. Advice can be bound to patterns of thesend pointcuts is interesting, and we hope to address it in future
events, and thus be used to implement services. research.
DADO is complementary to DS CVM in that DADO allows)
elements of cross-cutting services to be placed on the client s Conclusion

in a coordinated manner, for reasons argu_ed earlier. . D“ADO We conclude here with several observations about DADO, it's
also operates outside of a component/container model in barlﬁhitations and our plans for future work

bones” CORBA; thus it must (and does) allow heterogeneity ir"CIient—Server." First, we note that when we repeatedly dis-

the implementation of triggering mechanisms such as SOUree s<client-" “ " ; .
) . ” . ss‘client-" and“server-" adaplets, we are speakingabient-
transformations, binary editing etc. (See Section 5.3). Th b b 9

het i " 5o inl desi ft Server roles in a synchronous RPC-style connectofthus
cterogeneity assumption aiso Intiuences our design ot YPEApg s not specific to a client-server architectural style. In

checked information exchange between client and server adngt DADO adaplets may be bound to CORBAeway calls
lets, using generated stubs and skeletons (Section 5.1). which are essentially asynchronous messages. '

Design ChoicesThe design space of a convenient framework to
QuO The Quality of Objects (QuO) [21, 40] project aims toimplementDH cross-cutting services is quite large, comprising
provide consistent availability and performance guarantees farany dimensions such as synchronization mechanisms, scope

of data, and the handling of exceptions. The current implemen{5] W. Cazzola and M. Ancona. mChaRM: a reflective middleware
tation of DAIDL has made some reasonable choices, but other
choices will need to be explored as other application demands
are confronted. Some examples: “service-scoped” state, i.ele]
state that is implicitly shared between adaplets; services whose
scope transcends a matched stub-skeleton adaplets; ether (

. . . 0[7]
synchronous) interactions between adaplets. We would like t

implement an adaplet-per-object instance policy as well. Cur-[8

rently , only run-time exceptions are supported for adaplets—in
the Java mapping, better static checking would be desirable.
Implementation LimitationsCurrently our implementation has
some limits. As outlined earlier, the marshaling needs further
optimization. The Portable Interceptor approach to trigger ad-[°]
vice prevents the modification of invocation arguments or return
values; thus non-orthogonal [17] services that do affect these
values must be programmed with source or binary transformflo]
We need to broaden our base to more languages. .NET is cur-
rently not supported, but it could be interesting. CLR [38] would[11]
allow us to write adaplets for CLR applications in any CLR com-
pliant language.

Service interactions Feature interactions are a difficult open
research issue that DADO services must deal with eventuall{12]
We note here that it is currently possible to program interactions
between two DADO services: one can write a third service th

pointcuts adaplets in each, and responds to the triggering of bo

3]

by preventing one from running, changing argument values, re-
turn values etc. However, we do still not have enough experience

with this approach, and it remains future work.

(14]

In conclusion, DADO is an approach to programming cross-
cutting concerns in distributed heterogeneous systems based on
placing “adaplets” at the points where the application interactklS]
with the middleware. It supports heterogeneous implementation
and triggering of adaplets, allows client- and server- adaplets 3%6]
communicate in a type-checked environment using automat
marshaling, provides flexibility in communication between ad-
aplets, allows flexible binding, and late deployment of adaplets
on to application objects. While much work remains to be dong|17]
we believe that the current version of DADO provides many fea-
tures of interest to the software engineering research community.
Source code for Java using JacORB and C++ using TAO witkiL8]
MSVC++ is available on-line at http://rickshaw.cs.ucdavis.edu.

Acknowledgments: We would like to thanks the anonymous
reviewers for their detailed comments as well as support from

NSF 0204348.

(19]

References

(1]

(2]

(3]
(4]

20]

R. Allen and D. Garlan. A formal basis for architectural connec-[
tion. ACM Transactions on Software Engineering and Methodol-
ogy, 6(3), 1997.

B. Balzer. Transformational implementation: An exampEEE
Transactions on Software Engineerjritf1), 1981.

G. Blair and R. Campbell, editorfkeflective Middleware2000.

L. Capra, W. Emmerich, and C. Mascolo. Reflective middleware
solutions for context-aware applications liternational Confer- [22]
ence on Metalevel Architectures and Separation of Crosscutting
Concerns (Reflection2001.

(21]

for communication-based reflection. technical report disi-tr-00-
09, disi, universit degli studi di genova, 2000.

S. Chiba. A metaobject protocol for C++. @bject Oriented Pro-
gramming, Systems, Languages, and Applications (OORSLA)
1995.

S. Chiba. Load-time structural reflection in Java. Haropean
Conference on Object Oriented Programmi2g00.

] M. Clarke, G. Blair, G. Coulson, and N. Parlavantzas. An effi-

cient component model for the construction of adaptive middle-
ware. InProceedings of the IFIP/ACM International Conference
on Distributed Systems Platforms and Open Distributed Process-
ing (Middleware) 2001.

Y. Coady, A. Brodsky, D. Brodsky, J. Pomkoski, S. Gudmund-
son, J. S. Ong, and G. Kiczales. Can AOP support extensibility
in client-server architectures? Rroceedings, ECOOP Aspect-
Oriented Programming Workshpp001.

N. Coskun and R. Sessions. Class objects in S Personal
Systems DevelopeBummer 1992.

E. M. Dashofy, N. Medvidovic, and R. N. Taylor. Using off-the-
shelf middleware to implement connectors in distributed archi-
tectures. Ininternational Conference on Software Engineering
1999.

S. Ducasse and T. Richner. Executable connectors: towards
reusable design elements. Foundation of Software Engineer-
ing, 1997.

F. Duclos, J. Estublier, and P. Morat. Describing and using non
functional aspects in component based applications.Intier-
national Conference on Aspect-Oriented Software Development
2002.

T. Fraser, L. Badger, and M. Feldman. Hardening COTS software
with generic software wrappers. IBEE Symposium on Security
and Privacy 1999.

W. Harrison, H. Ossher, and P. Tarr. Symmetrically and assym-
metrically organized paradigms of program transformation. Un-
published manuscript, 2002.

F. Hauck, U. Becker, M. Geier, E. Meier, U. Rastofer, and
M. Steckermeier. Aspectix: a quality-aware, object-based mid-
dleware architecture. IRroc. of the 3rd IFIP Int. Conf. on Dis-
trib. Appl. and Interoperable Sy2001.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. An overview of Aspect]. [Buropean Confer-
ence on Object Oriented Programmirzp01.

F. Kon, M. Ronén, P. Liu, J. Mao, T. Yamane, L. C. Magaks,
and R. H. Campbell. Monitoring, Security, and Dynamic Con-
figuration with the dynamicTAO Reflective ORB. IRIP/ACM
International Conference on Distributed Systems Platforms and
Open Distributed Processing (Middlewar000.

S. Liang, P. Hudak, and M. Jones. Monad transformers and mod-
ular interpreters. IrSymposium on Principles of Programming
Languages1995.

K. Lieberherr, D. Lorenz, and M. Mezini. Programming with
aspectual components. Technical Report NU-CCS-99-01, Col-
lege of Computer Science, Northeastern University, Boston, MA,
March 1999.

J. Loyall, D. Bakken, R. Schantz, J. Zinky, D. Karr, R. Vanegas,
and K. Anderson. QuO Aspect languages and their runtime inte-
gration. InProceedings of the Fourth Workshop on Languages,
Compilers and Runtime Systems for Scalable Componk38s.

N. R. Mehta, N. Medvidovic, and S. Phadke. Towards a tax-
onomy of software connectors. International Conference on
Software engineerin@000.

[23] G. C. Murphy, A. Lai, R. J. Walker, and M. P. Robillard. Sepa-[44] E.Wohistadter, B. Toone, and P. Devanbu. A framework for flex-
rating features in source code: An exploratory studyinterna- ible evolution in distributed heterogeneous systemsinterna-
tional Conference on Software Engineerj2§01. tional Workshop on Principles of Software Evolution (4 pages)

[24] P. Narasimhan, L. Moser, and P. Mellior-Smith. Using intercep- 2002.
tors to enhance CORBAEEE ComputerJuly 1999.

[25] Object Management GroupCORBA 3.0 Specificatior.0 edi-
tion.

[26] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. Jac: A flex-
ible framework for aop in java. linternational Conference on
Metalevel Architectures and Separation of Crosscutting Concerns
(Reflection)2001.

[27] D.E. Perry and A. L. Wolf. Foundations for the study of software
architecture ACM SIGSOFT Software Engineering Not&g(4),
1992.

[28] F. Rivard. Smalltalk: a reflective language. Pmoceedings, Re-
flection 96.

[29] E. Roman, S. Ambler, and T. JeweNastering Enterprise Jav-
aBeans Wiley, 2001.

[30] T. Romer, G. V. D. Lee, A. Wolman, W. Wong, H. Levy, B. N.
Bershad, and J. B. Chen. Instrumentation and optimization of
Win32/Intel executables using etch.Uisenix Windows NT Work-
shop 1997.

[31] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and
G. Zelesnik. Abstractions for software architecture and tools to
support themSoftware Engineering21(4), 1995.

[32] J. Siegel. CORBA 3 Fundamentals and ProgramminyViley
Press, 2000.

[33] Y. Smaragdakis and D. Batory. Implementing layered designs
with mixin layers. InEuropean Conference on Object Oriented
Programming 1998.

[34] T. S. Souder and S. Mancoridis. A tool for securely integrating
legacy systems into a distributed environmentWarking Con-
ference on Reverse Engineerjrig99.

[35] B. Spitznagel and D. Garlan. A compositional approach to con-
structing connectors. IWorking IEEE/IFIP Conference on Soft-
ware Architecture (WISCAROO1.

[36] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. S. Jr. N degrees
of separation: Multi-dimensional separation of concernsinin
ternational Conference on Software Engineerih§99.

[37] M. Tatsubori, S. Chiba, K. Itano, and M.-O. Killijian. Openjava:

A class-based macro system for java. O®@PSLA Workshop on
Reflection and Software Engineerjid99.

[38] A. Troelsen.C# and the .NET PlatformApress, 2001.

[39] E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten, and B. N. Jor-
gensen. Dynamic and selective combination of extensions in
component-based applications. Ihternational Conference on
Software Engineerin@2001.

[40] R. Vanegas, J. Zinky, J. Loyall, D. Karr, R. Schantz, and
D. Bakken. Quo’s runtime support for quality of service in dis-
tributed objects. Innternational Conference on Distributed Sys-
tems Platforms and Open Distributed Processing (Middleware)
1998.

[41] R.J. Walker and G. C. Murphy. Implicit context: easing software
evolution and reuse. IRoundations of Software Engineering
2000.

[42] N.Wang, K. Parameswaran, and D. Schmidt. The design and per-
formance of meta-programming mechanisms for object request
broker middleware. I'€onference on Object-Oriented Technolo-
gies and Systems (COOT2P00.

[43] E. Wohlstadter. Crosscutting adaptation in distributed heteroge-
nous systems. Ph.D. thesis proposal, 2002.

