
1

Techniques for Trusted
Software Engineering

Premkumar Devanbu
University of California, Davis
devanbu@cs.ucdavis.edu

http://www.cs.ucdavis.edu/~devanbu
(Collaborators:

 Jonathan Peters, Henry Naftulin UC Davis
Dr. S. Stubblebine, AT&T Research,

P.W. Fong, Simon Fraser University)

2

The Problem.
This is a really safe

program, trust me! You
can run it on your machine,

no problem! I’m going to
trust this guy?

This is reall good
example of text that
can be u sed to rep
This is reall good
example of text that
can be u sed to rep
This is reall good
example of text that
can be u sed to rep
This is reall good
example of text that
can be u sed to rep

Applet, Aglet,
Switchlet, CGI bin, Application

or Software Component.Producer Host

3

One partial solution

OUCH!!!

OK, so give me your
requirements & design

documents, source code,
test cases, safety proof...

Producer
Host

????

Verifying testing processes

I really, really tested
my software. Really!
TRUST ME!! Why should I

trust this guy?

When is testing complete?

System

Input
Domain

Sub-domain
testing

Coverage Measurement

Source
Code

Preproces, Compile,
Link etc.

Binary

Instrumented
Binary

Test
Cases

Coverage
Report

Verifying testing processes.

OK, so give me your
source code, your test
cases, compilers,
makefilesÉ.

YouÕre joking,
right?

Trusted Third Party

Hmm.... You can
Trust ME!

Hmm....

Problem 1 with Basic 3rd P. M.

IÕm going to
pay this guy?

IÕm going
pay this guy?

4

Results and Publications

• What were the software processes that the
producer used? Specification, Design,
Testing?
(Devanbu & Stubblebine, FSE ‘97, Zurich)

• What can I find from/about from the
software product itself, and what can the
producer tell me about it?
(Devanbu & Stubblebine, ASE ‘97
Devanbu, Fong & Stubblebine ICSE ‘98
Devanbu & Stubblebine, Oakland ‘98)

6

Mobile Code (Java, ActiveX,…)

Vendor Host

µµ

Safety Environment

thousands millions

5

Dimensions of Trust
in Mobile Code

• Safety: What properties does the host care about?

• Efficiency: What’s the runtime impact?

• Cost: Additional time, personnel, complexity etc?

• * Disclosure: What does the producer have to reveal?

• * Configuration: how hard is to upgrade the host’s
checking mechanism when a weakness is discovered?

* Software Engineering Issues!

7

Our Proposal -- Part 1

Vendor Host

µµ

Diminished
Safety Environment

thousands millions

Trusted
Safety Environment

8

Our Proposal--Part 2

Vendor Host

µµ

thousands millions

Trusted Configuartion Management

µ
σκ(µ,π)

9

Java
• Safety Property: Bytecode is well-typed.

• Disclosure: Source code of the program.

• Efficiency: Dataflow-based typechecking (+
typesafe linking + runtime sandboxing).

• Cost: Minimal impact.

• Configuration: O(10^7) upgrades, when a flaw is
found.

10

ActiveX

• Safety Property: None, based on signing.

• Disclosure: Nil (just binary)

• Efficiency: High (signature checking + no
runtime load).

• Cost: Substantial for non-trusted parties.

• Configuration: None, unless fundamentally
changed.

11

Proof Carrying Code
(http://www.cs.cmu.edu/~necula)

• Safety Property: Specified in formal logic
by host.

• Disclosure: Invariant assertions + proof.

• Cost: Producer creates complete, formal
proof of safety!!!

• Efficiency: low: ~100’s ms for small
programs (100’s bytes)

• Configuration: One per host, when faults in
proof checker are discovered.

12

Another Approach

• Producer creates software.

• The binary (or bytecode) is submitted to a
trusted tool encased in a trusted computer.

• The trusted tool verifies that the software
has the desired property, and appends a
statement, and a signature.

• Host just checks the signature, and runs!

• Key management for configuration
management.

13

Java (re-visited)

• Safety Property: Bytecode verified at
producer’s site.

• Disclosure: Source code of the program.

• Efficiency: signature checking (+ typesafe
linking + runtime sandboxing).

• Cost: low to moderate.

• Configuration: Just key mgmt for hosts,
software updates for producers.

14

Proof-Carrying Code (re-visited)

Producer creates binary, assertions, and
proofs. Annotated binary checked at
producer’s site, unannotated binary signed
& delivered.

• Safety Property: Host’s choice.

• Disclosure: Nothing beyond binary!!

• Efficiency: Very high. Signature check only.

• Upgrades: Key management + checking
software upgrades.

Key management for
Configuration

µ

Verifier

Vendor Host

µ

Release
Manager

Certificate
Manager

µ

π, σ(µ,π)

Tool Updates Release Certs

Update
Info

Release Certs

19

Difficulty: Resource limitation in smart
cards: Form factor + physical security + heat
dissipation constraints.

Can we use “host” computer, at producer’s
site, to off-load some computation?

But, the Producer’s Machine is hostile!!!

 Idea: Leverage limited resources in smart
card to enforce integrity of much more
resource-intensive computations.

20

Smart Card

Producer’s Machine (PM)

Abstract
Data Type

Implementation

ADT Operations

Results

Signatures,
hashes, etc

21

New:
σ = Random()
Card (to Producer’s Machine PM): New Stack(σ)

Push(item):
Card(to PM): item, σ
 σ = Signature(Append(item, σ))

Pop:
Card(to PM): Do a Pop!
PM(to Card): item, oldσ
Is σ = Signature(Append(item, oldσ)) ??

Ιf yes, σ = oldσ and continue...
If not, terminate!

Ο(1) bits in smart card, O(1) bits transferred per operation, O(1)
signature computations per operation.

X

σ

X

σ

X

σ

1

1 2

2

n

n

σr init n+1

Producer’s
Machine

Smart
Card

Bottom Top

23

Problem: Trusted software engineering.

Approaches:

 Trust in Process: Cryptographic test
coverage verification, ACM SIGSOFT FSE
96.

Trust in Product: Software tools embedded
in physically secure processors, with
associated key management infrastructure.

Conclusions

• Two issues with current approach to trusted
software engineering: configuration
management, and disclosure of intellectual
property.

• Our approach: Using a trusted tool at the
code producer’s site, along with trusted
configuration management.

• Interesting software engineering challenge:
resource limitation on trusted computers.

15

Compiled Java Scenario

Java Source

Compiler

Binary

Explanation Smart
Card

σ −1
k

Binary()

16

Building in the Policy

Java Source

Compiler

Safety Policy

Explanation

Smart
Card

σ −1
k

Binary Policy(,)

Instrumented
Binary

