Techniques for Trusted
Software Engineering

Premkumar Devanbu
University of California, Davis
devanbu@cs.ucdavis.edu
http://www.cs.ucdavis.edu/~devanbu

(Collaborators:
Jonathan Peters, Henry Naftulin UC Davis

Dr. S. Stubblebine, AT&T Research,
P.W. Fong, Simon Fraser University)

The Problem.

/This Isaredly safe\
program, trust me! Y ou
can run it on your machine, ! .
no problem! - [m g(?' ng to
7 trust this guy?

Applet, Aglet,
Switchlet, CGI bin, Application

Producer or Software Component. H ost

One partial solution

OUCH”'

Producer

077

é R

OK, so give me your
requirements & design
documents, source code,

test cases, safety proof...

Y

Verifying testing processes

When 1s testing complete?

Input
Domain

System

Sub-domain
testing

Coverage Measurement

Source
Code

—>

Preproces, Compile,

o

Link etc.

> Binary

Instrumented

Binary

Coverage
Report

\

—

Verifying testing processes.

- ! N~

Trusted Third Party

Hmm.... You can Hmm....
Trust ME!
NE 25
.)

s

Problem 1 with Basic 3rd P. M.

I’m going I'm gqing to
pay this guy? pay this guy?

74
S=Z2\

{

Results and Publications

* What were the software processes that the
producer used? Specification, Design,
Testing?

(Devanbu & Stubblebine, FSE 97, Zurich)
 What can | find from/about from the

software product itself, and what can the

producer tell me about it?

(Devanbu & Subblebine, ASE ‘97

Devanbu, Fong & Stubblebine ICSE ‘98

Devanbu & Stubblebine, Oakland ‘98)

Mobile Code (Java, ActiveX,...)

thousands millions

Vendor)

/
Safety Environment

Dimensions of Trust
INn Mobile Code

Safety. What properties does the host care about?
Efficiency. What’ s the runtime impact?

Cost: Additional time, personnel, complexity etc?

* Disclosure: What does the producer have to reveal ?

* Configuration: how hard isto upgrade the host’s
checking mechanism when a weakness is discovered?

Softwar e Engineering | ssues!

Our Proposal -- Part 1

thousands

Vendor)

millions

_ J
Trusted

Safety Environment

)

Diminished

Safety Environment

7

Our Proposal--Part 2

thousands millions

Trusted Configuartion Management

Java

Safety Property: Bytecode i1s well-typed.
Disclosure: Source code of the program.

Efficiency. Dataflow-based typechecking (+
typesafe linking + runtime sandboxing).

Cost: Minimal impact.

Configuration: O(10"7) upgrades, when aflaw Is
found.

ActiveX

Safety Property. None, based on signing.
Disclosure: Nil (just binary)

Efficiency: High (signature checking + no
runtime |load).

Cost: Substantial for non-trusted parties.

Configuration: None, unless fundamentally
changed.

10

Proof Carrying Code
(http://www.cs.cmu.edu/~necul a)
Safety Property. Specified in formal logic

by host.
Disclosure: Invariant assertions + proof.

Cost: Producer creates complete, formal
proof of safety!!!

Efficiency: low: ~100's ms for small
programs (100’ s bytes)

Configuration: One per host, when faultsin
proof checker are discovered.

11

Another Approach

Producer creates software.

The binary (or bytecode) Is submitted to a
trusted tool encased in a trusted computer.

The trusted tool verifies that the software
has the desired property, and appends a
statement, and a signature.

Host just checks the signature, and runs

Key management for configuration
management.

12

Java (re-visited)

Safety Property. Bytecode verified at
producer’s site.

Disclosure: Source code of the program.

Efficiency. signature checking (+ typesafe
linking + runtime sandboxing).

Cost: low to moderate.

Configuration: Just key mgmt for hosts,
software updates for producers.

13

Proof-Carrying Code (re-visited)

Producer creates binary, assertions, and
proofs. Annotated binary checked at

producer’s site, unannotated binary signed
& delivered.

o Safety Property: Host’s choice.
* Disclosure: Nothing beyond binary!!
« Efficiency. Very high. Signature check only.

« Upgrades. Key management + checking
software upgrades.

14

Key management for
Configuration

U

‘Host

llllllllllllllllll

lllllllllllllllllll

llllllllllllllllll

_—

/

llllllllllllllllll

lllllllllllllllllll

llllllllllllllllll

A

T, O(l, 1)

Updates v%ﬁe\Certs

N

)

A

Reledse Certs

-

Release
Manager

~

. Update R

o

~

N\

Info
_

Certificate
Manager

~

J

J

Difficulty: Resource limitation in smart
cards. Form factor + physical security + heat
dissipation constraints.

Can we use “host” computer, at producer’s
site, to off-load some computation?

But, the Producer’s Machine is hostile!!!

|dea: Leveragelimited resourcesin smart
card to enforce integrity of much more
resource-intensive computations.

19

Producer’ s Machine (PM)

ADT Operations

<

Smart Card

Results

Signatures,
hashes, etc

20

New:
o = Random()
Card (to Producer’ s Machine PM): New Stack(o)

Push(item):
Card(to PM): item, o
o = Sgnature{ Append(item, o))

Pop:
Card(to PM): Do a Pop!
PM(to Card): item, oldo
|s g = Sgnature(Append(item, olda)) ?7?
If yes, =oldg and continue...
If not, terminate!

O(1)bitsin smart card, O(1) bits transferred per operation, O(1)

signature computations per operation.
21

Producer’s
Machine

Smart
Card

Bottom

\

n+1

Problem: Trusted software engineering.

Approaches:

rust in Process:. Cryptographic test
coverage verification, ACM SIGSOFT FSE
96.

Trust in Product: Software tools embedded
In physically secure processors, with
assoclated key management infrastructure.

23

Conclusions

e Two Issues with current approach to trusted
software engineering: configuration
management, and disclosure of intellectual
property.

« Our approach: Using atrusted tool at the

code producer’s site, along with trusted
configuration management.

* Interesting software engineering challenge:
resource limitation on trusted computers.

Compiled Java Scenario

Java Source

|

Compiler

!

Binary

\

—» | Explanation ———

=

Smart
Card

J

ak_l(Binary)

15

Building in the Policy

Java Source

l / Explanation \

Compiler || Instrumented | | Smart

Py Binary Card

J

ak_l(Binary, Policy)
Safety Policy

16

