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The Problem.
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no problem! - [ m g(?' ng to
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One partial solution

OUCH”'

Producer

077

é R

OK, so give me your
requirements & design
documents, source code,

test cases, safety proof...

Y




Verifying testing processes




When 1s testing complete?
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Coverage Measurement
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Verifying testing processes.
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Trusted Third Party

Hmm.... You can Hmm....
Trust ME!
NE 25
. )

s




Problem 1 with Basic 3rd P. M.

I’m going I'm gqing to
pay this guy? pay this guy?
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Results and Publications

* What were the software processes that the
producer used? Specification, Design,
Testing?

(Devanbu & Stubblebine, FSE 97, Zurich)
 What can | find from/about from the

software product itself, and what can the

producer tell me about it?

(Devanbu & Subblebine, ASE ‘97

Devanbu, Fong & Stubblebine ICSE ‘98

Devanbu & Stubblebine, Oakland ‘98)




Mobile Code (Java, ActiveX,...)

thousands millions

Vendor )

/
Safety Environment



Dimensions of Trust
INn Mobile Code

Safety. What properties does the host care about?
Efficiency. What’ s the runtime impact?

Cost: Additional time, personnel, complexity etc?

* Disclosure: What does the producer have to reveal ?

* Configuration: how hard isto upgrade the host’s
checking mechanism when a weakness is discovered?

Softwar e Engineering | ssues!




Our Proposal -- Part 1
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Our Proposal--Part 2

thousands millions

Trusted Configuartion Management



Java

Safety Property: Bytecode i1s well-typed.
Disclosure: Source code of the program.

Efficiency. Dataflow-based typechecking (+
typesafe linking + runtime sandboxing).

Cost: Minimal impact.

Configuration: O(10"7) upgrades, when aflaw Is
found.



ActiveX

Safety Property. None, based on signing.
Disclosure: Nil (just binary)

Efficiency: High (signature checking + no
runtime |load).

Cost: Substantial for non-trusted parties.

Configuration: None, unless fundamentally
changed.
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Proof Carrying Code
(http://www.cs.cmu.edu/~necul a)
Safety Property. Specified in formal logic

by host.
Disclosure: Invariant assertions + proof.

Cost: Producer creates complete, formal
proof of safety!!!

Efficiency: low: ~100's ms for small
programs (100’ s bytes)

Configuration: One per host, when faultsin
proof checker are discovered.
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Another Approach

Producer creates software.

The binary (or bytecode) Is submitted to a
trusted tool encased in a trusted computer.

The trusted tool verifies that the software
has the desired property, and appends a
statement, and a signature.

Host just checks the signature, and runs

Key management for configuration
management.
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Java (re-visited)

Safety Property. Bytecode verified at
producer’s site.

Disclosure: Source code of the program.

Efficiency. signature checking (+ typesafe
linking + runtime sandboxing).

Cost: low to moderate.

Configuration: Just key mgmt for hosts,
software updates for producers.
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Proof-Carrying Code (re-visited)

Producer creates binary, assertions, and
proofs. Annotated binary checked at

producer’s site, unannotated binary signed
& delivered.

o Safety Property: Host’s choice.
* Disclosure: Nothing beyond binary!!
« Efficiency. Very high. Signature check only.

« Upgrades. Key management + checking
software upgrades.
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Key management for
Configuration
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Difficulty: Resource limitation in smart
cards. Form factor + physical security + heat
dissipation constraints.

Can we use “host” computer, at producer’s
site, to off-load some computation?

But, the Producer’s Machine is hostile!!!

|dea: Leveragelimited resourcesin smart
card to enforce integrity of much more
resource-intensive computations.
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Producer’ s Machine (PM)

ADT Operations
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Smart Card

Results

Signatures,
hashes, etc
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New:
o = Random()
Card (to Producer’ s Machine PM): New Stack(o)

Push(item):
Card(to PM): item, o
o = Sgnature{ Append(item, o))

Pop:
Card(to PM): Do a Pop!
PM(to Card): item, oldo
|s g = Sgnature(Append(item, olda)) ?7?
If yes,  =oldg and continue...
If not, terminate!

O(1)bitsin smart card, O(1) bits transferred per operation, O(1)

signature computations per operation.
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Problem: Trusted software engineering.

Approaches:

rust in Process:. Cryptographic test
coverage verification, ACM SIGSOFT FSE
96.

Trust in Product: Software tools embedded
In physically secure processors, with
assoclated key management infrastructure.
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Conclusions

e Two Issues with current approach to trusted
software engineering: configuration
management, and disclosure of intellectual
property.

« Our approach: Using atrusted tool at the

code producer’s site, along with trusted
configuration management.

* Interesting software engineering challenge:
resource limitation on trusted computers.



Compiled Java Scenario
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Building in the Policy
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