Re-targetability in Software Tools

*

Premkumar T. Devanbu,
Department of Computer Science,
University of California,

Davis CA 95616, USA

devanbu@cs.ucdavis.edu

http://castle.cs.ucdavis.edu

September 16, 1999

Abstract

Software tool construction is a risky business, with un-
certain rewards. Many tools never get used. This is
a truism: software tools, however brilliantly conceived,
well-designed, and meticulously constructed, have little
impact unless they are actually adopted by real program-
mers. While there are no sure-fire ways of ensuring that a
tool will be used, experience indicates that retargetability
is an important enabler for wide adoption. In this paper,
we elaborate on the need for retargetability in software
tools, describe some mechanisms that have proven useful
in our experience, and outline our future research in the
broader area of inter-operability and retargetability.

1 Introduction

Low productivity and unsatisfactory quality are persis-
tent problems in large software systems projects. CASE
tools promise significant improvements in various aspects
of software development, including productivity, quality,
and repeatability. However, the introduction of new tech-
nology in the form of innovative tools, specially in large
projects, is fraught with difficulty. While we focus primar-
ily on tool inter-operability (the last item listed below) we
list some other key failure modes:

Scalability Innovative tools are often not intended for
large-scale application; the emphasis, specially in re-
search environments, is often placed on proving the
concept in a medium scale system, rather than on
production use in large systems. For example, a tool
intended for interactive use that runs at about 1-
10Klines/minute is not usable in large scale applica-
tions with hundreds of thousands or millions of lines

*This is a draft, intended for submission to a special issue of the
ACM journal Applied Computing Review. Please do not circulate
without the permission of the author, or the concerned editors.

of code. Inadequate performance can hinder adop-
tion.

Customizability Software development organizations,
specially in large, long-running projects, have local-
ized and specialized development processes that are
both designed to meet the needs of the specific ap-
plication, and adapted to the culture of the orga-
nization. Software tools work best if their opera-
tion is well-tuned to existing processes. Thus, a tool
that generates paper output may not be helpful in
an email-based culture.

Familiarity Developers are pressured by schedules, and
keenly aware of the need to meet cost, schedule or
quality requirements. This engenders a conservative
bias towards simple, and/or familiar tools, even if
somewhat outdated. Builders of complex tools with
steep learning curves (even ones promising significant
gains) face the daunting hurdle of convincing busy
developers to invest training time.

Inter-operability Large and /or well-established
projects have various tool infra-structures in place,
such as project code repositories, build procedures,
software versioning and defect tracking mechanisms
etc. These infra-structures are highly tuned to
local needs, and can be very expensive to build
and maintain. A software tool that cannot readily
inter-operate with such entrenched development
infra-structures cannot be adopted easily.

The focus of this paper is on inter-operability and re-
targetability in software tools; we also argue that as a
side-effect of retargetability, sometimes we can make new
tools look familiar.

The outline of the paper is as follows. First, we describe
the motivations for retargetability. Next, we discuss the
difficulties of designing and building retargetable tool-
s. We then present two examples of retargetable tools:



CHIME and GENOA. Finally, we conclude after a de-
scription of some ongoing research.

2 Why Retargetability?

While innovative software tools promise substantial gains
in productivity, quality, and interval, there are significan-
t hurdles that have to be overcome before they can be
adopted in large software projects. In our research, some
of these hurdles have been overcome by making software
tools more retargetable. In this section, we describe some
issues that are addressed by retargetable tools: build com-
plexity, dialectical variants, user-interface familiarity and
software reuse.

2.1 Build Complexity

Large, complex software systems can have build proce-
dures that can themselves be very complex. The sys-
tem may be partioned into literally thousands of header-
and source-files. The process of compiling and linking
these is controlled by build scripts. These can run into
thousands of lines of Makefile-style code. Build scripts
can capture different types of dependencies between files,
configuration descriptions for different localized versions
of the system for different markets, or rules for compil-
ing under different compilers/architectures. Build scripts
are typically highly complex and brittle. Relative to their
size, maintaining these scripts costs more and is harder
than than maintaining code [32].

Consider a new software tool that statically analyzes
source code for some purpose (style checkers, test cov-
erage tools etc). Such a tool must be run over all the
source files, with the proper include paths, command line
options etc set correctly. Adopting such a tool would
involve extensive changes the build scripts. The cost of
making these changes must be compared with the poten-
tial benefits of using the tool itself. In organizations with
tight schedules and short investment time-horizons, this
represents a major hurdle. A tool that required mini-
mal adaptation to the build procedures has a significant
advantage. One way to accomplish this would be build
the tool to have a similar “command line signature” to
the compiler used in the project; this would require fewer
changes to the build process to accommodate the tool.
We can do this with a tool that can be retargeted to the
existing compiler.

2.2 Language/Dialectic Variance

There are serious efforts underway to standardize popu-
lar languages such as C, C++ and Java. However, tool
builders are burdened with the significant task of sup-
porting legacy systems that conform to specific dialects
of the languages, such as for example the original “K&R”
dialect of C, older versions of C++ (2.1), Java etc. The
author is also aware of several proprietary variants of “C”
that are used in large industrial software projects, which

are not compatible with widely available compilers. In
addition, consider the fact that there are several popu-
lar platforms for C++ development that differ in subtle
ways: Visual C++, the GNU C++, the EDG C++ etc.
Each of these C++ compilers work best with a particular
variant of the required header files; porting files from one
dialect to another is a non-trivial effort.

This presents a challenge for tool builders: how does one
build a tool that can be used with different dialects of
a language? It would be nice if we could simply re-use
the compilers and parsers for each dialect. Rather than
adapting the tool for each variant, it would be better if
the tool could simply attach itself to the existing compil-
er/parser. This would allow the tool to be run with far
fewer modifications to the build scripts.

2.3 User Interface familiarity

Consider a system that is programmed in many different
languages. Such a system would involve the use of tools
specific to each language: browsers, debuggers, compiler-
s, editors etc. If tools have different user interfaces, the
developers are faced with the challenge of mastering sev-
eral different user interfaces. Clearly it would be best to
use the same user interface for each type of tool: e.g.,
a source code browser which had a similar user interface
for browsing all the different languages would be easier
to learn and use. Another example: web browsers are
ubiquitous and widely known. If we build tools around
web interfaces, we can leverage the widespread familiarity
with this interface.

A software tool that was retargetable to a familiar user
interface is clearly easier to adopt.

2.4 Incompatible repository formats

Many of the different software tools used during the soft-
ware lifecycle work with the same representation of the
relevant artifacts. Thus static analyzers, code generators
and interpreters can make use of a common abstract-
syntax tree representation. Likewise, cross-referencing,
browsing and build-dependency analysis tools can make
use of a common symbol table with definition and use in-
formation. Using a common data format across different
tools saves time and storage space: the format needs to
be built only once. For example, the parser need be run
only once over the source code to built a persistent AST.
It also saves programmer effort in maintaining different
versions of the parser for different tools. The common
storage manager is also reused by the different tools that
need persistent storage.

This fact has not been lost on tool builders. Thus, within
the CIA family of tools: cross referencing [7], testing [§]
and browsing [7] tools share a common internal reposito-
ry. The Arcadia environment [17] has a large family of
tools (e.g., [26]) that exploit a common internal represen-



tation. The REFINE [24] system uses a common shared
repository for ASTs. The Rigi [30] family of tools also
shares a common repository. There are numerous other
examples.

However, representations used by different tool families
are not always compatible. Thus the popular and widely
used REFINE and Arcadia formats are not compatible;
nor are the equally popular CTA and RIGI formats. For
the tool builder, this presents a quandary: the use of
one of these formats offers many advantages; on the oth-
er hand an early commitment to a specific format limits
the potential market for the tool. Here again, there is a
strong argument for building tools that are retargetable
to different shared repository formats.

2.5 Software Reuse

Lurking in all the discussions above is an underlying con-
cern with software reuse. Retargetable software tools can
usually reuse a large software infra structure: reposito-
ries, parse trees, build scripts etc all embody valuable
investments in software, which the tool builder or tool
adopter will have otherwise to re-create.

All the well-known advantages of software reuse [19] ac-
crue to the retargetable software tool. Risks, costs and
interval are reduced by avoiding development of critical
elements. Quality is also enhanced (in many cases) my
re-using tested, mature code. If the reused, existing soft-
ware has external user-interfaces, the users’ familiarity
with the existing software is leveraged.

3 Retargeting Barriers

There are many advantages to designing software tool-
s to be retargetable. However, there are difficult design
and implementation issues that must be faced while con-
structing a retargetable tool. We describe some of these
below, using the example of a static analysis tool.

Consider implementing a static analysis tool to perfor-
m coding conventions checking on a source program [12].
Such a tool typically starts with the abstract syntax tree
(AST) of a program. Many compilers build a fairly com-
plete AST which they use ultimately for code generation.
Hence, for all the reasons mentioned above, it would be
desirable to build source code analysis tool around such a
compiler; indeed, it would be desirable to build a source
code analysis tool to be retargetable, so it can work with
an existing compiler. However, this is not always easy to
do. We describe several types of difficulties:

3.1 Closed Legacy Software

In a heterogeneous, component-based, networked world,
people building and using software systems see “open-
ness” as an essential property. An open system can
communicate with other systems and mutually enhance
functionality. Systems are built to be accessible via one

or more standards. ODBC (Open Database Connect),
HTTP, CORBA, COM, XML are all popular standards
to which open systems adhere.

But it was not always so. Before networking and
component-based development, systems were built by s-
ingle vendors to run on a single machine for a single pur-
pose; market incentives such as the desire to “bond” with
the customer actually indicated that systems could not
be open. Examples abound:

1. Telephone switches that write billing records in pro-
prietary formats to tapes that have to be hand-
carried to proprietary billing systems;

2. Clinical information systems [28] which do not inter-
operate with hospital billing systems;

3. Complete chemical process-control systems incorpo-
rating both measurement and control, but which only
communicate externally through tape logs and con-
soles;

4. Compilers and source code analysis tools, both of
which build and use abstract syntax trees, but do
not inter-operate.

Systems that are closed are not easy to inter-operate with;
thus, it not easy attach them to retargetable tools.

3.2 Interface Design

“Attaching to” a closed legacy system can be conceived
as opening a window to its inner workings, so that an-
other system may receive information from it, as well as
affect its state. It may be desirable to provide an inter-
operable interface to the system, perhaps in the context
of a standard such as CORBA [22] or COM [1]. This can
be a non-trivial design problem. Interface design must
balance several conflicting goals:

interface must be simple, well-
documented, and comprehensible to both the
clients of the interface and the implementors. An
overly complex interface with poor or inconsistent
documentation is unlikely to be useful.

Simplicity The

Functionality A large closed legacy system typically
provides a large and diverse set of functions. It may
be desirable to access many of these functions via
with open standards. Unfortunately, more function-
ality leads to large, complicated interfaces. For a
complicated closed legacy system, the trade-off be-
tween simplicity and functionality complicates inter-
face design.

Extensibility Inevitably, a successful effort at “open-
ing” up a closed legacy system leads to increased
use. This usually leads to calls for changes and exten-
sions to the original interface; initial interface design
should consider the likely need for later extensibility.



Compatibility /Implementability The interface de-
sign must be implementable; there should be any
fundamental reason why such an interface is difficult
to build. This falls under the issue of architectural
mismatch, which we consider next.

3.3 Architectural Mismatches

The study of software architecture, beginning with [23]
has emphasized the importance of styles [27]. In particu-
lar, Garlan [13] has explored difficulties arising out of ar-
chitectural mismatch.. Two systems based on incompat-
ible architectural styles can be difficult to bring togeth-
er. For example, if two C or C++-based systems, both
of which include a “main” routine have to be integrat-
ed into one executable, some re-structuring of the code
will be required. As another example, a system based on
an interrupt-driven style may be difficult to integrate to-
gether with a system programmed in an event-loop based
style.

A more complex example: consider a process-control sys-
tem, which monitors and controls a chemical plant. The
system uses a standard real-time system architecture with
a single process handling a fixed number of tasks at dif-
fering priorities, and with different deadlines. High levels
of reliability would be required, and the (legacy) soft-
ware might have been developed with safety-criticality in
mind. It is desired to make this system web-accessible; a
web client should be able to view the status of the sys-
tem. To do this, a web server needs to be integrated with
the system. This presents various difficulties. The exist-
ing system design does not allow multiple processes; so
a web server cannot be simply added to the system. So
it would be necessary to hand-code the web service as an
additional task within the existing roster of tasks handled
by the lone executing process. Issues such as the priority
of the web service task, the handling of time-outs (in case
the web service is pre-empted by other tasks) etc. would
have to be carefully considered.

In summary, while retargetability offers several advan-
tages, there are some serious difficulties that arise in any
specific effort.

4 Retargeting Experiences

We have and continue to build retargetable software tools.
In this section, we describe our experiences with different
systems, and the lessons learned.

4.1 The CHIME Experience

Program understanding is a significant and time-
consuming component of software development. Source
code browsers support this task by exposing implicit re-
lationships in the source code (between function call sites
and the definitions of the functions, for example) as hy-
pertext links. Software development environments of-
ten provide built-in hypertext browsing for source code.

However, few of these source code hypertext systems
are as powerful, sophisticated, compatible, dynamic and
feature-rich as the the world-wide web. The goal of the
Chime [11] system is to bring the rich (and getting richer)
infra-structure of the world-wide web to existing software
development environments. Chime is a domain-specific
framework that generates link-insertion engines that in-
sert HTML links into source code. Links can, for example,
connect a function call in the source code to the function
definition. A complex language like C++ admits many
such relationships. Chime includes a link specification
language in which links can be specified. The user can
control both the position and the semantics (i.e., what
should happen when the link is activated?) of a link.
Different program understanding tasks require different
reading tactics [20]. Chime allows the creation of dif-
ferent “views” of a source file, that expose different links;
thus, it can be tuned for different tasks and different users.
Chime needs certain information to insert these links: for
example, the position of function calls, and the location of
function definitions. This information is typically stored
in repositories in software development environments. As
discussed above in Section 2.4, different repositories use
different formats; this makes it difficult to get the needed
information out. Chime addresses this problem by adopt-
ing an interface very similar to the open database connect
(ODBC) standard for accessing databases. This interface
includes facilities for querying databases, iterating over
the tuples in a database relation, and accessing attributes
in a tuple. To use Chime in conjunction with an exist-
ing software repository, it is sufficient to implement this
interface. Once this is done, it is possible to specify sever-
al different types of views comprising different groupings
of HTML links; users can then browse source code with
WWW clients using these views.

The core retargetable component of Chime is the reposi-
tory interface. As discussed in Section 3.2. This presented
several challenges. There are several possible variation-
s in repositories. Different data models could be used:
relational, entity-relationship, object-oriented, semantic,
hierarchical, etc. Each of these models would require a
different style of interface for data access: eg., the notion
of “relation” and “tuple” does really exist in a seman-
tic data model. We felt that an interface to accommo-
date all these different data models would make the in-
terface, as well as the Chime system very complex. So
we chose to accommodate a relational style, with some
extensions for set-valued attributes. While different re-
lational databases provide somewhat different APIs, we
settled on an ODBC-style interface, which is mature and
has broad coverage. Clearly, there is a trade-off here: it
would be easiest to implement this interface for relational
repositories; others would be not as easy. On the posi-
tive side, with reference to the discussion in Section 2,
the retargetability aspects of Chime provide several ad-
vantages.



1. User Interface: WWW browsers are almost uni-
versally familiar interfaces This familiarity can be
fruitfully transferred over to source code browsing.

2. Repository Format: Chime takes a simple, uni-
form view of repositories, via an interface. This sim-
plifies the problem of adapting to new repositories
(Section 2.4): it is only necessary to implement this
interface for each new repository format. Chime has
been retargeted to several formats, including both
the CTAO [7] and the Rigi [30] formats.

3. Software Reuse: In addition to the formidable, so-
phisticated, rapidly evolving base of software avail-
able for the WWW, the software used to construct
the repository is leveraged.

4. Build Complexity: By reusing the existing repos-
itory, Chime precludes the need to modify the build
procedure in order to introduce a new tool. The use
of the existing repository also avoids the need to con-
struct parsers for different dialects of programming
languages etc.

4.2 The GENOA /GENII Experience

Consider the problem of building static source code ana-
lyzers for C4++ programs. Here are some typical tasks:

1. For each file, print all locations where variables are
modified, and where they are simply accessed (with-
out regard to aliasing, pointers etc).

2. Find method calls of all types (constructor, destruc-
tor, overloaded operator, etc) and report their loca-
tions (file, line number).

3. Report all cases where a destructor is not virtual.

The tasks above involve reading in the source code, per-
forming lexical analysis, parsing, scoping analysis, type
checking etc; finally, the resulting annotated AST can be
processed for the indicated analysis task. While a tool
specialized for each of the tasks above would be hard to
build, there is much in common across all such tools. In
fact, these tools would only differ by the final process-
ing done with the decorated AST. In GENOA, the above
examples (and other similar tools) are implemented by
writing an AST traversal in a high-level language that is
specialized for processing ASTs. One may think of this
language as “a query language for ASTs”. Most of the
above tools can be implemented in a few lines in this lan-
guage. Full details of GENOA can be found in [10], and
the software is available free [9].

Conceptually, GENOA rests on the notion of querying
ASTs, and is independent of a specific language, or a par-
ticular representation of an AST in terms of specific data

1 Funcall: (IS-A Expression)

2 ’p->nodetype == E_FUNCALL’ ‘‘UNARYEXPR *’’ {
3 atline: an Integer <’’p - >getLine ()’’>
4 atFile: a String < ?’p - >getFile ()’’°>
5 callname: a String < ’’p - >funName ()’’>
6 args: an OrderedContainer of Expression

<’ ’p->getArgs()’’>

7}

Figure 1: Sample GENII specifications

structures. Given a specific language on a specific plat-
form, it is necessary to tokenize and parse the language
to construct the abstract syntax tree. In some cases, as
with over-loaded operators in C++, it is even necessary
to use semantic information in order to recognize some-
thing as an over-loaded operator. Languages like C++
have complex interactions between syntax and semantic-
s. For example, the declaration “typedef int F00” in
C and C++ changes the lexical role of the token “F00”
from an identifier to a type name. Constructing a pars-
er to build an AST for C++ is quite a time-consuming
task, requiring a great deal of manual effort beyond the
support provided by tools based on purely grammatical
descriptions such as Yacc [16], CENTAUR [3], Refine [24],
etc. In addition, there are many dialectical variants of C
and C++, with their own idiosyncrasies. Thus there are
many good reasons to attempt to reuse an existing AST
builder. GENOA relies on a subsystem called GENII,
which makes the AST querying mechanism retargetable.

The GENII language is designed to model AST imple-
mentations. Some sample GENII specifications for a func-
tion call AST node are shown in figure 4.2: This specifi-
cation indicates that a function call (line 1) is a kind of
Expression (defined elsewhere, not shown). In this im-
plementation it is represented (end of line 1) by a data
structure (line 2) of type UNARYEXPR *. Assuming that
a variable p is of this type, the test p -> nodetype ==
E_FUNCALL can be used to check if p really points to a
Funcall node. A function call node includes information
about the line number and file name where it occurs (lines
3,4) the name of the function being called (line 5) and a
list of arguments (line 6). The actual code to extract this
information is shown within “< ... >”. Of course, a full
GENII specification describing all the details of an AST
implementation is quite large. For example, the GENII
specification that retargets GENOA to a C++ compiler
includes descriptions of about 300 AST node types, and
is about 1600 lines long. This approach has been used
successfully to retarget GENOA to 3 different C4++ com-
pilers, one C compiler, and one Java parser. We have
realized several advantages with this approach, as sum-
marized in Section 2



1. Build Complexity: As described in Section 2.1,
the use of an existing parser/compiler in GENOA
analysis tools is a major advantage. In the case
of GEN++ [9], which is based on a widely used
C++ compiler, generated analysis tools have exactly
the same “command-line signature” as the compiler.
Build procedures can invoke the source code analysis
tools exactly as they invoke the compiler to compile
the source code. In our experience, incorporating a
GEN++ tool into an existing compiler typically in-
volves changing only a few lines in the make scripts.

2. Software Reuse: Most software analysis tools use
a custom C++ parser. Tools such as CIA [6] and
Cscope [29] use this approach. As discussed earlier,
this can be a difficult and time-consuming task. It
is better to re-use and adapt an existing parser: e.g.,
CIA++ [14] uses the parser component of a C++
compiler. However this adaptation process must be
carried out for each analysis tool. With the GENOA
approach, we model the data structures in an existing
parser using the GENII language, and use this model
to construct an entire range of analysis tools.

3. Language/Dialectic Variance: GENOA offers a
solution to the problem (Section 2.2) of dialectic vari-
ance: by retargeting the parse tree querying engine
to a parser for a specific dialect, it becomes possible
to produce an analysis capability for that dialect.
In general, is better to re-use an existing, validated,
well-proven parser for a dialect rather than develop-
ing a new one (or adapting an existing one to suit
the new dialect).

These advantages of retargetability were obtained as a re-
sult of careful design trade-offs that were made in order to
address the difficulties in constructing retargetable tools.

1. Closed Legacy Systems: GENOA can make use
of ASTs constructed by systems where the AST not
intended to be reused in other contexts. For exam-
ple, one port of GENOA, viz., GEN++, makes use
of a widely used C++ compiler, that has a very com-
plex AST representation, consisting of several dozen
classes and a few hundred different methods. The
compiler was intended to be a closed system, not de-
signed for interoperability with other systems. The
AST representation was designed specifically for use
within the compiler, and thus simplicity and inter-
operability was not a goal. The GENII system can
be used to model this complex representation once
and for all; after this, the complexity can be hidden
from the tool builder. In this manner, the intricate
details of the closed legacy compiler are made open
for use by a whole family of source code analysis tool-
S.

2. Interface Complexity: GENOA takes a very spe-
cific view of ASTs that is suitable for source code
analysis tools. Analysis tools need to traverse an
AST node and its descendants, unparse and print
the node, identify the corresponding location in the
source code, etc. The GENII interface description
must identify code within the legacy parser that per-
forms all these functions. As shown in figure 4.2,
there are functions provide to traverse the differen-
t components of an AST node (the called function
name associated with a function call, etc). GENI-
I also provides a simplified model of collections and
lists, such as the statements in a function body or
the arguments to a function call. However, GENOA
is designed mainly for analysis tasks; so the interface
that GENII provides to the legacy AST is quite re-
stricted. For example, GENOA does not allow tool
builders to modify the AST. In addition, the access
to the AST is navigationally restricted. There is no
notion of propagating values up or down the AST,
as can be done with attribute-grammar based ap-
proaches [25]. Thus, if an analysis tool is exploring
one portion of the AST, there is no systematic way
to look at a related part of the AST; in general, such
non-local accesses must be done using standard s-
tack or global variables. However, in practice, the
compromises made in this interface have not proven
a barrier to users; a range of applications have been
reported [2, 4, 5, 31, 21, 15, 18]

5 Future Work: retargetable de-
buggers

Our current research is focused on a different task: de-
bugging programs. Specifically, we are interested in de-
bugging domain specific languages. We briefly describe
this research before concluding the paper.

The software industry is under great pressure to reduce
costs, increase quality and shorten development interval-
s while simultaneously creating products which are more
customizable. Industry has found it difficult to meet these
conflicting goals by building systems with convention-
al programming languages. Domain Specific Languages
(DSL)’s, which are high-level languages with constructs
tuned to express concepts in a specific application do-
main, have emerged as a viable approach. Entire appli-
cations can be generated from short scripts in a DSL.
DSLs can be implemented either by compilation to a lan-
guage like C or Java, or by interpretation. But once a
DSL is implemented, developers using that DSL face a
downstream problem: debugging applications written in
DSLs. This problem has not received much attention.

DSL applications can be large. GENOA, for example, has
been used for complex tasks such as control dependency
analysis and path condition generation. Such GENOA



programs can be hundreds of lines long, and include com-
plex control flow and data dependencies. In such cases,
defects inevitably creep in. Defects cause various fail-
ures: bad output, infinite loops, or run-time errors such
as popping an empty stack. When failures arise, the D-
SL user may try to isolate the problem by reading the
DSL program and mentally “simulating” its execution.
This is hard to do for large programs. The user may also
try inserting “print” statements to display intermediate s-
tate; but this requires repeated re-compilations, and risks
leaving stowaway debugging “print”s in the final prod-
uct! Interactive debugging is a powerful way to isolate
defects in programs. However, debuggers are expensive
and difficult to build, and it is typically not economically
feasible to construct debuggers for each domain-specific
language. So DSL users are typically left without inter-
active debugging facilities. The question arises, can we
construct a reusable framework that can be leveraged to
provide debugging support for different DSLs?

We approach this situation by first observing that all de-
buggers have several functions in common—first, a user
interface (graphical or otherwise) allowing users to set
break points at specific points in the code, and also to in-
spect the state of the application being debugged. They
may also have an event pattern recognizer, which allows
a specific pattern of events to observed. We also note
that several DSLs are implemented via interpreters. Our
approach then, is to construct a retargetable debugging
framework that can be attached to an existing interpreter
for a DSL. This framework provides such common func-
tionalities as a user interface, event pattern recognizer
etc. This framework is attached to a specific interpreter
much in the same way as GENOA is attached to a spe-
cific parser or AST builder. There is a retargeting sub-
system, where one models the data structures used by a
specific interpreter to represent the state of the running
program. This model is constructed in a specification lan-
guage similar to GENII. From this model, the retargeting
machinery is generated. The retargeting machinery then
provides the debugging framework with a uniform, sim-
ple way to access the running program’s state. Additional
modifications to the interpreter will be required to enable
the debugger to start and stop the interpreter at specific
points in the interpreted program.

The advantages here are typical of a retargetable tool:
First, there is a significant amount of code reuse. Both
the interpreter and the debugging framework are lever-
aged. Second, the interpreter’s entire run-time is avail-
able not only to inspect the running programs state, but
potentially also to evaluate expressions, etc.

Several potential hurdles also exist. First, to simplify
the retargetable tool framework, it is necessary to design
a uniform, simple interface to the interpreter’s runtime
datastructures. This will bring with it some limitations
on what aspects of the state can be inspected. Second,

DSL interpreters are likely to be closed legacy systems,
without any consideration given to allowing reuse in a
different context. There may be architectural reasons why
some interpreters will not work with a given design for the
debugging framework. This work is ongoing.

6 Conclusion

In this paper, we have identified some key obstacles to
widespread adoption of tools. We focus on retargetability
and inter-operability. We explore some of the advantages
of retargetable tools, and describe some of the obstacles
to retargetability. We present our experience with two re-
targetable tools, Chime and GENOA /GENII. Finally, we
describe our current research with retargetable debuggers
for DSLs.

There has been great innovation in software tools for ver-
ification, testing, metrics, coding standards etc. Retar-
getability is an important feature that will support more
widespread exploitation of these innovations.

References

[1] ActiveX Consortium. http:/www.activex.org.

[2] J. Bieman and B-K. Kang. Cohesion and reuse in an
object oriented system. In Proceedings Proc. Sympo-
sium on Software Reusability (SSR’95), 1995.

[3] P. Borras, D. Clement, Th. Despeyroux, J. Incerpi,
G. Kahn, B. Lang, and V. Pasual. Centaur: The sys-
tem. In Proceedings of the Symposium on Software
Development Environments, 1988.

[4] L. Briand, P. Devanbu, and W. Melo. An investi-
gation into coupling measures for c++. In Proceed-
ings, Nineteenth International Conference on Soft-
ware Engineering. IEEE Press, 1997.

[5] L. Briand, S. Morasca, and V. Basili. Goal-driven
definition on product metrics based on properties.
Technical Report CS-TR-3346, University of Mary-
land, Computer Science Department, 1995.

[6] Y. Chen, M. Y. Nishimoto, and C. V. Ramamoor-
thy. The c information abstraction system. IEEFE
Transactions on Software Engineering, 16(3), March
1990.

[7] Yih-Farn Chen, Glenn S. Fowler, Eleftherios Kout-
sofios, and Ryan S. Wallach. Ciao: A Graphical Nav-
igator for Software and Document Repositories. In

International Conference on Software Maintenance,
1995.



[8]

[14]

[15]

[16]

[17]

[18]

Yih-Farn Chen, David S. Rosenblum, and Kiem-
Phong Vo. Testtube: A system for selective regres-
sion testing. In Proceedings of the 16th International
Conference on Software Engineering, 1994.

P. Devanbu. The GEN++ page. http://seclab.cs.-
ucdavis.edu/~devanbu/genp, 1998.

P. Devanbu. Genoa - a customizable, front-end retar-
getable source code analysis framework. ACM Trans-
actions on Software Engineering and Methodology,
9(2), April 1999.

P. Devanbu, R. Chen, E. Gansner, H. Muller, and
A. Martin. Chime: Customizable hyperlink insertion
and maintenance engine for software engineering en-
vironments. In International Conference on Software
Engineering, 1999.

C. K. Duby, S. Myers, and S. Reiss. Ccel: A meta-
language for c++. Technical Report CS-92-51, Dept.
of Computer Science, Brown Univeristy, 1992.

D. Garlan, R. Allen, and J. Ockerbloom. Architec-
tural mismatch, or, why it’s hard to build systems
out of existing parts. In Proceedings of the 17th Inter-
national Conference on Software Engineering. IEEE
Computer Society, May 1995.

Judith Grass and Y. F. Chen. The C++ Information
Abstractor. In The Second USENIX C++ Confer-
ence, April 1990.

D. Jerding, J. Stasko, and T. Ball. Visualizing mes-
sage patterns in object-oriented program. In Proceed-
ings, Nineteenth International Conference on Soft-
ware Engineering. IEEE Press, 1997.

S.C Johnson. Yacc — yet another compiler-compiler.
Technical Report 32, Bell Laboratories, 600, Moun-
tain Ave., Murray Hill, NJ 07974, July 1975.

R. Kadia. Issues Encountered in Building a Flexible
Software Development environment: Lessons from
the arcadia project. In Proceedings of the SIGSOFT
Symposium on Software Development Environments,
1992.

S. Karstu and L. Ott. An investigation of the be-
haviour of slice based cohesion measures. Technical
Report CS-TR, 94-03, Michigan Technical University,
1994.

Charles W. Krueger. Software reuse. ACM Comput-
ing Surveys, 28(2), 1996.

S. Letovsky. Cognitive processes in program com-
prehension. In Proceedings of the Second Workshop
on Empirical Studies of Programmers, Washington,
DC, 1986. Ablex Publishers, Norwood, NJ.

[21]

[24]

[25]

[26]

[31]

[32]

N. C. Mendonga and J. Kramer, editors. Proceed-
ings of the Workshop on Program Comprehension,
Los Alamitos, California, April 1998. IEEE Comput-
er Society, IEEE Press. 1996.

OMG. The common object request broker architec-
ture (CORBA) http://www.omg.org/, 1995.

Dewayne E. Perry and Alexander L. Wolf. Founda-
tions for the study of software architecture. ACM
SIGSOFT Software Engineering Notes, October
1992.

REASONING SYSTEMS, INC of Palo Alto CA. RE-
FINE User’s Guide. 1989.

T. Reps and T. Teitelbaum. The synthesizer gener-
ator. In Proceedings of the Symposium on Software
Development Environments, 1984.

D. J. Richardson, T. O. O’Malley, C. Tittle Moore,
and S. Leif Aha. Developing and integrating prodag
in the arcadia environment. In Proceedings of the
SIGSOFT Symposium on Software Development En-
vironments, 1992.

Mary Shaw and David Garlan. Software Archi-
tecture: Perspectives on an Emerging Discipline.
Prentice-Hall, 1996.

Warner Slack. Cybermedicine: How Computing Em-
powers Doctors and Patients for better Healthcare.
Jossey-Bass, 1997.

J. Steffen. The CScope Program, Berkeley UNIX Re-
lease 3.2, 1981.

Margaret-Anne Storey, Kenny Wong, and Hausi A.
Mueller. Rigi: A visualization environment for re-
verse engineering. In Proceedings of the 1997 inter-
national conference on Software engineering, 1997.

S. Woods and A. Quilici. Some experiments toward
understanding how program plan recognition algo-
rithms scale. In Proceedings of the Working Confer-
ence on Reverse Engineering, Monterey, CA, Octo-
ber 1996.

S. Zeigler. Comparing development costs of ¢
and ADA. http://sw-eng-falls—-church.va.us/AdaIC-
/docs/reports/cada/cada_art.html.



