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Code Analysis tools provide support for such software engineering tasks as program understanding,
software metrics, testing and re-engineering. In this paper we describe genoa, the framework
underlying application generators such as Aria [Devanbu et al. 1996] and gen++ [?] which have
been used to generate a wide range of practical code analysis tools. This experience illustrates
front-end retargetability of genoa; we describe the features of the genoa framework that allow
it to be used with different front ends. While permitting arbitrary parse tree computations, the
genoa specification language has special, compact iteration operators that are tuned for expressing
simple, polynomial time analysis programs; in fact, there is a useful sublanguage of the genoa
language that can express precisely all (and only) polynomial time (PTIME) analysis programs
on parse-trees. Thus, we argue that the genoa language is a simple and convenient vehicle for
implementing a range of analysis tools. We also argue that the “front-end reuse” approach of
GENOA offers an important advantage for tools aimed at large software projects: the reuse of
complex, expensive build procedures to run generated tools over large source bases. In this paper,
we describe the genoa framework and our experiences with it.

Categories and Subject Descriptors: D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; D.2.6 [Software Engineering]: Programming Environments

General Terms: Languages

Additional Key Words and Phrases: source analysis, reverse engineering, metrics, code inspection

1. INTRODUCTION

A big part of the cost of maintaining large systems is the effort spent by pro-
grammers to comprehend unfamiliar pieces of code. Corbi [Corbi 1989], based on
practical experience at IBM, reports that programmers can spend 50% of their time
on program comprehension. This comprehension task has been called discovery. In
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a previous paper on the LaSSIE [Devanbu et al. 1991] system, we argued that
knowledge about a large software system can be captured in a software information
system (SIS), and made available to assist programmers. One of the most impor-
tant issues raised in our work is the difficulty of acquiring the knowledge for a SIS.
Fixed analysis tools such as cia, cscope [Chen and Ramamoorthy 1986; Steffen
1981], etc., extract information directly from the source code of the system. These
tools perform a partial, targeted scan of the code, and produce predefined reports
(perhaps directly into a database). Although these tools are useful, the information
they extract is fixed; as we shall see below, there is often a need for information
that is syntactically extractable, but is not available from such fixed analysis tools.
Much useful information sought by programmers during discovery can be obtained
simply by static analysis of the source code. Here are some examples (pertaining
to C++ code):

(1) Are there any switch statements in this code that don’t have a default: case ?
(2) Do all routines which switch on a variable of enumeration type TrunkType handle

the ISDN case?
(3) Do any routines which call the SendMsg routine, default on the last 3 arguments?
(4) Which routines call only the routine SendMsg and don’t have references to data

of type TrunkData?
(5) Does any subroutine redeclare a variable in a contained context with the same

name as a parameter or a global variable?
(6) Which functions are declared both virtual and inline?
(7) Is there a call to the function SendMsg routine that is control dependent on a

call to the function isProcessAlive?

Questions such as these can be answered by analyzing the syntactical structure of
the source program1. In most cases, this would involve parsing the source code2 to
yield an abstract syntax tree, and then traversing the abstract syntax tree to gen-
erate the needed information. The only difference between the different questions
is the nature of the abstract syntax tree traversal required to answer them.

In addition to program understanding, there are a wide range of applications for
static analysis in metrics, testing, inspection, etc. The goal of the genoa framework
is to simplify the implementation of static analysis tools. We would like to specify
particular kinds of analyses that would be performed on an abstract syntax tree,
with a simple scripting language. From this specification, an executable analyzer
would be generated. This analyzer could be run over source files. This scheme is
illustrated in Figure 1. Source code is lexically analyzed, parsed, perhaps type-
checked and semantically analyzed by a front-end, which builds an abstract syntax
tree; a specification of how to traverse this is translated into a back-end. Together,

1Some of the examples shown above can involve pointer aliasing analysis, e.g., function calls can
be indirected through a call table. In such cases, we assume a conservative approximation can be
accomplished by syntactic analysis: for example, all functions with the same signature could be
reported as possible aliases.
2Some tools such as lsme [Murphy and Notkin 1996], trade-off accuracy for efficiency and “toler-
ance” by ignoring parsing altogether. We discuss this later.
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the front- and back-end constitute the analyzer (inside the large box with rounded
corners).

There are important considerations in the design of this scripting language. It
should be simple and concise (analysis task scripts should be compact); it should
also have concise operators that are designed to express iterated traversals of ab-
stract syntax trees (e.g., “Find all the assignment-statements”) and to move to the
some specified child of a node in the abstract syntax tree (e.g., “go to the left hand
side of an assignment”). Its computational properties are also important; analyz-
ers generated from queries could be run over many hundreds of thousands of lines
of code, so it would be desirable for the scripting language to have an efficiently
computable subset. This subset should also be powerful enough to express many
of the questions that programmers might want to ask about large bodies of code.
The language should have transparent semantics so that, given a script, it is easy
to explain what it does, and to make a good guess about its execution time. If it is
hard to predict the running time of a given script, the toolsmith or a programmer
would be left uncertain about how long a given query might take to run over a large
body of code. The genoa language attempts to address these issues: it’s a simple,
compact language, with straightforward procedural semantics. To see an example
of an analysis specification in the genoa language, see Example 1 beginning on



     

4 · Prem Devanbu

page 10. We also show in §7 and §8 that there is a subset of the genoa language
which can express all (only the) polynomial time computations (on the size of the
parse tree). The expressiveness result in §8 shows that this subset captures a wide
set of useful queries (a great many useful tools turn out to be no worse than polyno-
mial in the size of the parse tree). Furthermore, these results give a good intuition
about how to estimate the complexity of queries written in the subset of the genoa
language.

In addition, there are two important pragmatic details. First, toolsmiths building
source analyzers for popular languages, like C and C++ have to overcome a major
hurdle: these languages have many irregularities in their lexical, syntactic and
type structures; this leads to a lot of intricate special-case handling during parsing.
Toolsmiths have to confront the unpleasant task of either constructing a parser or
adapting an existing parser. Second, it can be difficult to incorporate new tools
into an existing large project. There may be thousands of source files, header files,
and configuration parameters. Build procedures which run compilers over a large
source base can be very complex and brittle. These procedures can involve intricate
makefiles and build scripts which often run into thousands of lines, and require
several full time support staff. The build procedures are often more expensive to
create and maintain than the source code itself, and are particularly complex for C
and C-like languages (See, for example [Zeigler ]). These build procedures depend
on the specific compiler that is being used: compilers have specific environmental
factors such as command-line options, include files, and “-D” options. Converting
these build scripts to run a tool (which makes different environmental assumptions)
over thousands of files, with complex compile time options and numerous include
files, is a major undertaking. The cost of this modification can often exceed the
benefits of using the tool. Tools based on gen++ (which uses the the Cfront parser)
accept the same command line options as the standard Cfront-based compiler.

By re-using an existing parser, we save the effort of re-building a parser, and
produce tools which mimic the environmental behavior of the parser. These tools
are easier to integrate into existing environments. Here is an executive summary
of the genoa framework’s contributions:

—It is designed to be language-independent and parser-retargetable; it can be in-
terfaced to a wide range of parsers for different languages (the limits of retar-
getability are discussed in §6). In this way, we both avoid reconstructing the
parser, and build on the quality, features and coverage of an existing, validated
system. The interface (to the existing parser) itself is generated from a formal
interface specification, using a companion system called genii, which is described
in §6.

—An important benefit of re-using an existing parser is that the parser’s “command-
line signature” is reflected in tools, and thus existing build procedures can be
re-used to run tools over large, complex source bases.

—genoa provides a compact scripting language which facilitates the implementa-
tion of tasks such as the ones listed above.

—This language is simple, and has transparent semantics. We demonstrate this
empirically with several examples, and analytically by showing the complexity
and expressivity of a useful sublanguage.
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In this paper, we first motivate both the “parser-retargetable” architecture of the
genoa framework by describing the difficulties inherent in constructing a source
code analysis tool, and the simple scripting style used in the genoa language.
We then introduce the genoa language with a detailed example which illustrates
the analysis of C programs. Afterwards, we describe how genii can be used to
instantiate the genoa framework to other languages/front-ends. We then conduct
a more detailed exploration of the genoa specification language, and identify a
useful subset that has polynomial time complexity.

2. RELATED WORK: SOURCE CODE ANALYZERS

Consider the conventional design for the general category of tools that process
source code. These range in function from simple cross-referencing tools, such as
Cscope [Steffen 1981] to complex tools, such as the ones that construct program
dependency graphs or style checkers such as Lint. All of these tools have a very
similar internal structure (See Figure 2). There is a “front end” including a lexical
analyzer, parser, and semantic processor. The lexical analyzer reads the input file
and turns into a stream of tokens, which are processed according to the grammar
of the input language, and arranged into a parse tree (and/or abstracted into an
abstract syntax tree, or AST). The AST is processed to extract semantic information
such as the scope, type and value of symbols; this information is captured and
entered as annotations into the AST, resulting in an abstract semantics graph (ASG)
(See [Rosenblum and Wolf 1991] for a description of this term). Symbol references
may point “back up” the AST; in general, we have a graph.

After this point, the “back end” performs a specialized traversal of the ASG,
extracting information that is relevant to the particular task. We show three exam-
ples in the right hand side of Figure 2, including a code generator (as in a compiler),
a checker (as in Lint) and a cross referencing tool (such as CIA).

Systems such as CIA and Cscope are not customizable, and have a fixed task to
perform; so they don’t need a full syntactic and semantic analysis of the code or a
fully attributed ASG. Their “front end” is tuned to the particular task and builds
only an abridged representation of the source code suited just for that specific task.
Systems such as Rigi [Storey et al. 1997] are more flexible, and can be customized
to extract different program representations. However, to extract new information
from the source code, it would necessary to modify the parser. In order to answer
arbitrary questions about the structure of the code, such as the ones posed in § 1, it
is necessary to make a full parse of the code, and construct a full ASG; an analyzer
can then walk over the ASG and extract the information desired.

There are two subsystems needed here: the front end, that builds the ASG and
the back end, that traverses this tree in a specifiable manner. There are several
existing systems that are potentially relevant to each of these tasks, but (as we shall
see) there are complications. A key difficulty in building front ends is that popular
languages, such as C and C++, are syntactically and semantically irregular. Certain
features of C and C++ conflate the different syntactic and semantic aspects of front-
end processing. There are several tools which provide suitable abstractions (such as
context-free grammars) that help specify and automatically generate the different
phases of front-end processing (such as lexing, parsing, static type inference, etc).
However, the syntactic and semantic intricacies of C and C++ demand a great deal
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Fig. 2. The internal structure of code analyzers

of special-case handling which makes it difficult to cleanly separate the different
phases, and create a simple implementation.

The UNIXTM tools Lex and Yacc are useful for building lexers and parsers, re-
spectively. Yacc can be used to build context-free grammar (CFG) parsers. Many
popular programming languages (such as C) aren’t context free, so Yacc provides
“semantic actions” that can be used to access symbol tables, etc. More modern
tools, such as the Pan system [Ballance et al. 1990], Metatool [Cleaveland and Kin-
tala 1988], Eli [Gray et al. 1992] CENTAUR [Borras et al. 1988], Gandalf [Haber-
mann and Notkin 1986], and the Cornell Synthesizer Generator [Reps and Teit-
elbaum 1984] provide an integrated environment to implement syntax/semantic
processing. In addition to a parser-generator, they provide ways of implementing
semantic processing. The CENTAUR system has two methods, one based on a tree
manipulation language (VTP) and the other based on a natural-deduction style
semantic specification (TYPOL). Other systems use attribute grammars [Reps and
Teitelbaum 1984; Gray et al. 1992]. GANDALF uses a programming language
(with tree manipulation data-type) called ARL; Pan can perform similar functions.
The tools mentioned above could theoretically be useful in building source analyzer
generators; but (for all the reasons mentioned in the previous paragraph) they are
not as helpful with languages such as C and C++. In order to use these tools, it
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would be necessary to implement within their special context a fully functioning
front-end; but it would be preferable to simply reuse an existing front-end.

The systems discussed above are designed for compiler or environment construc-
tion. There is another category of systems that have been primarily used for tool
construction. REFINE [reasoning systems, Inc of Palo Alto CA 1989] and
SCRUPLE [Paul and Prakash 1994] provide a (tree-based) pattern-action language
to locate interesting pieces of the ASG and perform operations on it. REFINE
includes procedural constructs as well; it is an extremely powerful analysis frame-
work. In particular REFINE allows transformations, whereas genoa does not.
While genoa is not as powerful, it’s easier to learn, and quite efficient in practice;
in addition the simple procedural genoa language allows the querying mechanism
to be retargetable. SCRUPLE uses an optimized finite-state machine based ex-
ecution mechanism to gain high levels of efficiency. The same authors have also
discussed a theoretical algebraic model for querying parse trees [Paul and Prakash
1996]. There are also several tools that use an awk-like language for operations
on parse trees. These systems can leverage the widespread user-base and knowl-
edge about awk. A* [Ladd and Ramming 1995] can be used to specify patterns
on parse trees; the pattern-based language used in A* is almost exactly just the
awk language. TAWK [Griswold et al. 1996] is a similar system also relies on pat-
terns on parse trees to implement syntactic analyzers; however, it addresses several
key issues raised by previous systems such as SCRUPLE and A*. Most notably:
TAWK allows patterns based on abstract syntax, rather than concrete; it allows the
toolsmith to select the granularity of the analyzed code (at the level of statement,
function, file etc.); actions associated with patterns can be defined in the familiar
C language. TAWK aims to achieve improvements in both memory-usage efficiency
and ease-of-use. Ponder [Griswold and Atkinson 1995] is a complete framework for
the construction of source-code analysis tools. Ponder is designed as a layered archi-
tecture with several elements for parsing, parse tree representation, and parse tree
querying. As in the case of TAWK, efficiency (e.g., the compact representation of
parse trees) and ease of use are key goals. A vital component of Ponder is a simple
parse tree-oriented scripting language designed for toolsmiths to encode analysis
tasks. Ponder has been tested on the MUMPS language, and can be re-targeted for
C. All these systems, unlike genoa, require the construction of a specialized parser
(and/or front-end) for each new language/dialect. Pattern-oriented languages can
be quite convenient for simple queries. However, as pointed out in [Crew 1997], lan-
guages such as genoa which offer procedural abstraction can provide higher levels
of reuse, which is quite useful for more complex analysis tasks. Crew [Crew 1997]
has created a Prolog-like language, called astlog for querying parse trees. This
language makes elegant of use of unification and backtracking to allow compact
specification of analysis tools. This tool was attached to a proprietary C++ parser
through manual effort; however the author has ([Crew 1997], Section 5, “Future
Work”) stated an intention to using genoa-like technology to make the tool more
easily retargetable.

The LSME [Murphy and Notkin 1996] system uses a different approach to build-
ing source code analyzers; it abandons parsing altogether! Analyses of source code
are expressed as regular expressions of lexical tokens. For example, forward function
declarations can be described by the pattern:
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[ type functionName ‘(’ type+ ‘)’ ‘;’ ]

This pattern searches for an occurrence of a type token (int, char etc.) followed
by a function name, followed by one or more type tokens within parantheses. The
key idea in LSME is the possibility of expressing complex analysis tasks as regular
expressions of lexical tokens, and detecting pattern occurrences without resorting
to parsing. This approach has several advantages. LSME is language independent.
Analysis tools implemented with LSME are tolerant of syntax errors, linguistically
variant dialects (such as K&R C and ANSI C) and can be used with inchoate source
code. The authors of [Murphy and Notkin 1996] report a very efficient implementa-
tion: LSME specifications are compiled into highly optimized finite state machines.
While LSME provides the ability to quickly create “approximate” analysis tools,
there are some complications: it can be difficult to implement accurate analyses for
complex languages like C++. For example, in the case of C++ call-graph analysis
(See Example 4, page 15), recognizing overloaded operator calls would be non-
trivial. genoa is based on parsing and ASG’s. Thus, it can be used to build more
accurate tools than LSME; on the other hand, genoa-based tools are not forgiving
of syntactically malformed (or dialectically variant) code.

There are some systems [Linton 1984; Horwitz and Teitelbaum 1986; Horwitz
1990] that address both of the issues raised above, viz., retargetable front-ends
and flexible querying. In addition to separating the front-end and the back-end,
they also provide a compact and convenient language for querying ASG’s. The
OMEGA system of Linton [Linton 1984] and Horwitz and Teitelbaum’s relational-
based editing environments [Horwitz and Teitelbaum 1986; Horwitz 1990] are ex-
amples. Linton builds a front-end for ADA that compiles programs directly into a
set of predefined relations, which are entered into a commercial relational database,
INGRES. All editing operations then involve queries and updates to the database.
Since the contents of the database can be queried with a relational query language,
a range of analyses can be obtained. The advantage of this approach is that instead
of re-constructing a front-end, one can simply modify an existing front end to write
the ASG into a relational database.

The problem with this approach is that even a simple interactive editing opera-
tion, like listing a 10-line file, involve several database operations and is therefore
very slow [Linton 1984]. Even if this approach were only used off-line for the anal-
ysis of completed code, it would still be doing much needless work: in a complex
language like C++, a parser would have to fully materialize dozens of different re-
lations into a database, whereas only a limited number of tuples in a few relations
might actually be of interest. Also, as Horwitz and Teitelbaum point out in [Hor-
witz and Teitelbaum 1986] (pp. 585-586), the limited power of relational operators
precludes performing several useful kinds of analyses on source code.

Horwitz and Teitelbaum [Horwitz and Teitelbaum 1986] and Horwitz [Horwitz
1990] address the limitations in Linton’s work, while retaining the basic relational
representation. First, Horwitz [Horwitz 1990] describes the idea of “implicit re-
lations”, which are like non-materialized views in databases – these are generated
from ASGs only when they are needed. This addresses some of the performance
issues in OMEGA, which stores everything into INGRES. Secondly, Horwitz ex-
tends the power of the query language by combining it with attribute grammars:



      

GENOA - A Customizable, front-end retargetable Source Code Analysis Framework · 9

tuples can then be inserted into relations by grammar productions, and the compu-
tation of attribute values can include evaluation of relational queries (provided this
introduces no circular dependencies [Horwitz and Teitelbaum 1986],pp. 587-588).
With this extension, it is possible to express more queries than with pure relational
algebra. However, Horwitz and Teitelbaum caution us that there are complications
in extending relational query languages (page 578):

“While adding new operators would solve some problems, it would simul-
taneously introduce new ones: termination of queries might no longer
be guaranteed, and the efficiency of query evaluation and view updating
would undoubtedly increase ” [Horwitz and Teitelbaum 1986]

In Horwitz and Teitelbaum’s formalism, with no circular dependencies between
the attributes and/or the declared relations, the termination condition can be as-
sured; however, the complexity of query evaluation in this formalism is not known.
Thus, it may not always be easy to estimate the time required to process any par-
ticular query. Although this new formalism is an extension of relational algebra,
it’s unclear how expressive it is, i.e., exactly what kinds of queries can be expressed
in this formalism. Finally, the approach to defining a new query involves modifying
the attribute grammar itself, and perhaps defining new relations. After coding a
new query, the attribute grammar would first be checked for any circular dependen-
cies (the checking time can be exponential in the size of the grammar), and then run
through a parser-generator to produce a running analyzer. In some sense, to build a
new analyzer, one re-validates the grammar and rebuilds the parser. This could be
more involved than the approach we suggest in Figure 1 (page 3), where the parser
remains fixed, and only the traversal itself is modified by the query. Pragmatically,
our approach represents a different implementation trade-off; it offers advantages
for some applications.

Consens et al [Consens et al. 1992] describe an application where they use Graph-
log, a graphical database query language, for querying a Prolog database contain-
ing information about software. In their paper, they are concerned with structural
design information about software, such as the “use” dependency relationships be-
tween modules. They illustrate how Graphlog queries can be used to identify and
remove cyclic dependencies. Although it is theoretically possible to use Graphlog
to query parse trees, the authors do not discuss this application.

3. genoa’S VIEW OF ASG’S

The genoa specification language is based on a particular, simplified view of ASG’s
(see Figure 3). This figure shows an input C source file, and the corresponding ASG.
Note that the ASG is composed of nodes, which are labeled with types. These types
correspond to the non-terminals of the source language. For example, an ASG for
a C program can have nodes with types such as Function, Assignment, etc. Each
node (based on its type) has one or more slots, whose fillers are nodes of particular
types, as determined by the syntax and semantics of the source language. For
example, in C, a node of type Assignment has two slots, lhs and rhs, both of
which are filled by nodes of type Expression. Slots may have just one node as
a filler, or a list of nodes; for example, the parameters slot of a function is filled
by a list of nodes of type variable. From now on, we refer to all of the fillers of
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Fig. 3. An Abstract Semantics Graph with typed nodes

all the slots of a node collectively as children; descendants refer to all the nodes in
the irreflexive transitive closure of children. Some types of nodes can have several
derived node types . For example, in C, the node type Statement has (among
others) the derivations If-stmt, While-stmt, Compound-stmt, Goto-stmt, etc.
Derivations of a node type can themselves have derivations, thus forming a hierarchy
of node types. Conversely, we say that Statement is the base type of If-stmt,
While-stmt, etc. For any language, there is a set of node types, derivations, slots
and fillers.

A genoa source analyzer reads the ASG representation of a source program,
and can perform a range of traversals, tests, and iterations, and eventually gener-
ate output. To implement such analyzers, the genoa language provides a range
different constructs, which we describe in detail in §5. We continue now with a
short illustrative example.

4. A SIMPLE EXAMPLE

Without further ado, we present a simple example of a genoa language specification
for a C++ static analysis tool.



           

GENOA - A Customizable, front-end retargetable Source Code Analysis Framework · 11

Example 1. For each file, print all locations where variables are modified, and
where they are just accessed.

The following is a genoa language specification of an analyzer that carries out
the above task.

ROOTPROC VarUse

PROC VarUse

ROOT Cfile;

1 {
2 [

3 (?NameRef

4 (IF (AND (HAS-TYPE $parent Assignment) (IS-EQUAL $slot ‘‘lhs’’))

5 (THEN (PRINT stdout "Variable %s defined at %s" $token $location))

6 (ELSE (PRINT stdout "Name %s accessed at %s" $token $location))))]

7 }

A genoa language specification is a set of declarations and procedures, some
of which are root procedures; these, like the “main” procedure in C, are invoked
right after the ASG is built, in the order they occur in the specification. In this
case VarUse is the (only) root procedure. A procedure in the genoa language is a
series of constructs, each of which is an operation on an implicit current node. The
current node can be accessed by the primitive $token; its location is given by the
primitive $location. A construct may print out the current node, copy it into a
variable, move to a child of the current node, etc., but may not modify the ASG.
The various types of constructs are syntactically distinguished by enclosing them
in different kinds of parentheses.

Returning to the above example, the ROOT Cfile declaration specifies that the
current node for the initial invocation of VarUse is a node of type Cfile, repre-
senting the entire file. At this point, we conduct a global search of all the nodes
below the current node ([ ...] is a global iteration, where a new, local $token
varies over descendant nodes in a pre-order traversal ), looking for nodes of type
NameRef. (These are essentially references to names of any kind.) When we find
name references, we check to see if the parent of that node is of type Assignment,
and if we got to the NameRef node via the lhs slot (which means the name reference
being assigned to here). If both of these conditions are satisfied, it’s a modification;
otherwise it’s just a use3. From this specification, a tool is generated; this tool can
be run over each source file using a shell script or makefile, as desired (just like a
compiler).

5. THE genoa LANGUAGE

The genoa language is designed to implement traversals of ASGs, and to extract
information. The genoa framework represents ASGs as collections of a specific
datastructure called a gnode. Figure 4, page 13 gives the core4 syntax of the

3This is an obviously over-simplified example, presented for illustrative purposes.
4Full details can be found in the manual, available from [Devanbu 1998]; the shortened treatment
here omits such details as IF, READ, OPEN/CLOSE (for files), INCLUDE (for C/C++ headers),
external (foreign) function declaration and usage, genoa FUNCTIONS which return values etc.
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genoa language. The language consists of expressions, statements, traversals, and
declarations, as shown on numbered lines in Figure 4. These line numbers are used
in the discussion below.
Expressions can be built-ins, such as $token (line 1), which is the current node,
or $parent, which is the parent of the current node; $location is a string giving
the line number and file name of the current node; $slot is a string corresponding
to the label on the edge along which the current node was accessed. Expressions
can be variables, constants, or booleans (line 2) or list operations (Lines 3 through
7). Booleans can be an equality (line 9), list member operations (line 11), a test if
a node is of a certain type (line 12) or a nil list test (line 13).
Statements can be assignments (statements, line 2), prints (line 3), subroutine
calls (line 4) or an escape to C: the eval operation simply executes the C statement
(a string in quotes); this C statement is expected to return a node of the type
specified. Macros are provided to translate between gnode’s and C data structures
(See [Devanbu 1998] to get a copy of the manual). Conditional statements (lines 6
and 7) are like LISP’s.
Traversals form the core of the language. These are the constructs that allow the
description of traversals over ASGs. A typetag simply corresponds to the name of
a node type, such as Statement, Function, or Expression. Slot-traverse (line 2)
moves the current node to the filler of the slot corresponding to slotname (e.g., the
lhs slot of an assignment node on line 16 on page 11), and executes traversal∗

over it. (If this is a list, then one might use a list iteration – see below – to traverse
each of its elements.) Test-traverse (line 3) checks if the current node is of type
typetag, and if so, executes traversal∗ over it. In other words, it is equivalent to

(IF (HAS-TYPE $token typetag)

(THEN traversal) )

List-traverse (line 4) iterates over a list of values (such as the list of variables that
form the parameters of a function), executing traversal∗ over each one. Subtree-
traverse (line 5) iterates over all the descendents the current node, and executes
traversal∗ over each one. A common idiom in the genoa language is to use list-
traverse or subtree-traverse with an embedded test-traverse in order to find nodes
of a particularly type.

Finally, fulltree-traverse is just a subtree-traverse beginning at the root node. It
should be noted here that both subtree-traverse and fulltree-traverse visit the ASG
nodes in pre-order discipline; additionally, the slots are expanded in the inverse
order given in the genii interface specification. However, by combining the list
traversal operator with the use of specific slot accessers, the genoa programmer
can create specific traversals to suit his/her needs. The control flow graph exam-
ple (See Section 5) uses a specialized traversal to perform, in effect, an abstract
interpretation of the program to generate a control flow graph.
Declarations are required for local and global variables, parameters, and output
files, with a simple syntax (lines 1 through 9). The procedure declaration (lines
10 through 13) specifies a procedure name (line 10), the type of the node at which
the procedure will be called (the ROOT specification, line 11), and a list of local
variable and argument declarations (line 12) followed by a list of traversals to be
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Expressions

constant := $token | $parent | $location| $slot 1
expr := Variable | Constant | boolean 2

:= (CONS expr expr ) 3
:= (APPEND expr expr ) 4
:= (LENGTH expr ) 5
:= (CAR expr ) 6
:= (CDR expr ) 7

boolean := (IS-EQ expr expr ) 9
:= (IS-EQUAL expr expr ) 10
:= (IS-MEMBER expr expr ) 11
:= (HAS-TYPE expr typetag ) 12
:= (IS-NULL expr ) 13

Statements

stmt := assign | print | eval | call | condstmt 1
assign := (ASSIGN variable expr ) 2
print := (PRINT variable string expr∗ ) 3
call := (CALL tag expr∗ ) 4
eval := (EVAL nodetype string ) 5
condstmt := (COND onecond∗ ) 6
onecond := ( ( boolean ) traversal∗ ) 7

Traversals

traversal := stmt | slot-traverse | test-traverse
| list-traverse | subtree-traverse

| fultree-traverse 1
slot-traverse := 〈slotname traversal∗ 〉 2
test-traverse := (?typetag traversal∗ ) 3
list-traverse := {typetag traversal∗ } 4
subtree-traverse := [ traversal∗ ] 5
fulltree-traverse := [ ∧ traversal∗ ∧] 6

Declarations

declarations := vardecl | procdecl 1
vardecl := globaldecl | argdecl | localdecl 2
globdecl := globalvardecl | globalfiledecl 3
globalvardecl := 〈newline〉 global varspec ; 4
globalfiledecl := 〈newline 〉 file tag string ; 5
localvardecl := 〈newline〉 local varspec ; 6
argdecl := 〈newline〉 arg varspec ; 7
varspec := vartype tag ; 8
vartype := node | float | string | int 9
procdecl := 〈newline〉 PROC tag 〈newline〉 10

ROOT typetag ; 11
[argdecl | localvardel ]∗ 〈newline〉 12
{ traversal ∗ } 13

Fig. 4. Syntax of the Genoa query language
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executed on the root node.

Here is another example of a genoa specification:

Example 2. Find any violations of the coding style rule that the then and else
parts of if-statements must be blocks, i.e., statements enclosed in braces.
ROOTPROC badiffind

PROC badiffind

ROOT CFile;

{
LOCAL GNODE hasdefault;

[
(?If

< ifTHENbranch

(COND ((NOT (HAS-TYPE $token Block))

(PRINT stderr "Line %s then part not a block!" $location)))>

< ifELSEbranch

(COND ((NOT (HAS-TYPE $token Block))

(PRINT stderr "Line %s else part not a block!" $location)))>

) ] }
We first do a global search for If statements; we have to check the then and else

parts of the If statement. We use the <ifTHENbranch ...> construct to move
to the then branch. If this branch has a value, then we’ll want to check if the filler
is a C block, i.e., if it has type Block. This is done in the COND statement, using
HAS-TYPE. The else branch is handled likewise. Coding style checkers have also
been discussed elsewhere [Duby et al. 1992].

As a next example, we present a tool which generates an inheritance hierarchy
of a given C++ program; the output is generated in the form of edges in a graph;
this can be fed to a graph layout tool to generate a visual graph.

Example 3. Generate an inheritance hierarchy of a C++ program.
ROOTPROC inhier

PROC inhier

ROOT CFile;

{
LOCAL GNODE BASE;

[
(?ClassDef

<defname (ASSIGN DERIVED $token)>

<bases {BaseSpec
<defname (PRINT ‘‘%s -> %s’’ DERIVED $token)> }>)

] }
In this query, we iterate over the entire parse tree, starting at the root node,

looking for class definitions. When we find one, we store the name of the class in
the variable DERIVED; we then iterate over the base classes (via the bases slot) of
this class and print out edges from the derived class to each of its bases. The next
examples shows a simple (but pleasantly surprising) query to create a normal call
graph.
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Example 4. Generate a callgraph for a C++ program.

ROOTPROC FunWhere
FILE cgr
PROC FunWhere
ROOT CFile;
{
LOCAL GNODE funid;
LOCAL GNODE callid;
<globals

{Declaration
(?FunctionDef

<defname (ASSIGN funid $token)>
[(?FunCall

<callname
(ASSIGN callid $token) >
(PRINT stdout " %̈s-̈> %̈s"̈ funid callid)
)])

}
>

}

This query looks for function definitions; when it finds one, it saves the name of
the function in the variable funid. Then it searches for function calls below the
function definition; when it finds one, it saves the name of called function in callid
and generates an edge in the callgraph, printed to stdout. Behind the apparent
simplicity of this query lurks a very pleasant detail: because genoa works on
the ASG, the node type FunCall captures all types of function calls: not only
normal syntactic function calls, but also implicit constructor and destructor calls
and overloaded operator calls. For example, if a function foo() uses an expression
like ‘‘Dr. ’’ + ‘‘Smith’’, a line of the following form would be generated:

"foo" -> "Tmpstring::operator +"

This illustrates two important advantages of basing an analysis tool generation
environment on the ASG built with a complete and accurate compiler: first, queries
can be compact (we just refer abstractly to FunCall to capture all types of calls)
and second, to the extent which the semantics of the program (like overloaded calls)
are available in the ASG, they can be used for analysis. We now describe a fragment
of a traditional, if somewhat more complex tool.

Example 5. Generate a control flow graph of a C/C++ program (a separate
one for each function).

The query (with the GEN++ instantiation of GENOA) to extract flow graphs for
C++ programs is about 250 lines long. A complete description of the full details
of the tool (which handles “dangling elses”, breaks, continues, goto’s, etc.) is
beyond the scope of this paper; we merely illustrate a simplified portion of it to
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handle if statements with block statements (enclosed in { ...} braces) on the
true and else branches, and switch statements with { ...} blocks for each case.
In the following, we assume that the procedure blockFlow handles the control flow
(as a recursive co-routine) within a { ...} block statement. We also assume that
the local variable curLoc has the current location in the source code.
ROOTPROC cfgen;

PROC cfgen

ROOT CFile

{
LOCAL GNODE curLoc;

. . . lines elided for simplicity . . .
(?If

<ifTbranch

(PRINT stdout ‘‘%s -> %s [label = true]’’ curLoc $location)

(CALL blockFlow curLoc $token)> /* Handle flow on ‘‘then’’

block */

<ifFbranch

(PRINT stdout ‘‘%s -> %s [label = false]’’ curLoc $location)

(CALL blockFlow curLoc $token)> /* Handle flow on ‘‘else’’

block */

)

(?Switch

<switchbody

(?Block

<blockbody {Statement
(?Case (PRINT control " %s -> %s; " curLoc

$location)

<next (CALL blockFlow curLoc $token))>

(?Default (PRINT control " %s -> %s; " curLoc

$location)

<next (CALL blockFlow curLoc $token)>)}>)>)
. . . lines elided for simplicity . . .
}

In the fragment handling the If type, we examine the true and false branches;
for each branch, we generate an appropriately labeled condition flow statement;
after this (assuming that each branch is a compound statement) we recursively call
blockFlow to handle it. We pass in the current location and the compound state-
ment to blockFlow so that it can handle the flow within the compound statement
and continue the flow to the next statement after the If statement. For the Switch
statement, we generate labels for each Case and for the Default statement; since
we assume that each of these is followed by a block, we call blockFlow to handle
that. Several more applications (in the areas of software metrics, program analysis,
and program dynamics visualization) are described in the paper on Aria [Devanbu
et al. 1996] and in papers reported by users of gen++ [Basili et al. 1995; Mendonça
and Kramer 1998; Woods and Quilici 1996; Jerding et al. 1997; Bieman and Kang
1995; Karstu and Ott 1994; Devanbu et al. 1996]. One application, a C++ coding
standards checker, has been used by several large industrial projects.
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The genoa language has several limitations. First, lists are the only type of
data structure available. This is often insufficient: for example, an efficient data
flow analyzer [Steensgaard 1996] may require a union/find datastructure. In such
cases, it is necessary to use the foreign function interface. For reasons discussed in
the following section, the genoa language contains no primitives for dealing with
transformations on parse trees. In addition, queries work on one file at a time, thus
requiring a separate post-processing phase for global information. The tools that
are easiest to implement with genoa are ones where the result can be computed in
a single pre-order scan of the parse tree. While we have implemented many tools
that don’t fall into this category, these typically require more complex coding, or
foreign functions for data structures, or both.

Finally, the initial version of the genoa language did not support recursive func-
tions and functions that returned values (a restriction that has been removed).
Without recursion, it would be difficult, for example to write an expression evalu-
ator.

6. FRONT END RETARGETABILITY: THE genii SUBSYSTEM

genoa insulates itself from the vagaries of the ASG implementation by assuming
an abstract data-type corresponding to a language-independent ASG. This abstract
data-type forms a “movable fire-wall” between the backend and the (arbitrary)
front-end.

In genoa, the “fire-wall” is an abstract data-type layer that defines a notion
of trees having typed nodes, and operations and looping constructs designed for
such trees. This fire-wall is made “movable” by a translator-generator tool which
accepts a specification of a target source language SL and the description of the
ASG built by some existing front end (for the language SL), and produces interface
routines which can translate the tree built by the front end into the data structures
used by genoa. This translator generator is called genii (for GENoa Interface
Implementor). In this section, we describe how genoa gets integrated with a front
end. Figure 5 illustrates how genii and genoa interact. Instantiating genoa for a
new language is accomplished by writing a specification in the genii specification
language, and running this through the genii applications generator; this creates a
set of routines which implement the decorated abstract syntax-tree abstract data-
type. We first present an overview of the genii support for interfacing to front end
data structures; and then we show how everything fits together, using Figure 5.

6.1 Interfacing to the ASG data structures

To illustrate the genii specification language, we show some details of the specifi-
cation that implements5 the interface between genoa and the ASG data structures
of the Cin C interpreter [Kowalski et al. 1991]. The full specification is quite long,
so we show here only the part having to do with the different kinds of statements
in C, and the details of the compound statement. The specification consists of a
series of declarations of node types. There are essentially three major kinds of node
type declarations: a base node type declaration, a node derivations declaration, and

5The details shown here differ slightly from the actual implementation: the names of the data
structures and fields have been made more readable.
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a derived node type declaration. The following is a base node type declaration,
describing its slots and fillers.

0 Statement: < "Snode *" > {
1 LineNo: an Integer

< " host in ->CValue.LinenoOffset" >
2 Filename:a String

< " host in ->CValue.LinenoFname" >
3 }

This declares a node of type Statement. It is represented in the Cin interpreter
by a pointer to the Snode data structure. It has two slots, capturing the line
number of the file where this statement occurs. The first slot is LineNo, with a
filler of type Integer, and the second is FileName, with a filler of type String.
The fragments of C code in quotes provides the front-end code to be invoked to get
the line number of a statement from the data structures used by the front end. The
variable host in is always implicitly bound to the parse tree node representing the
Statement, i.e., it points to an Snode. Thus, the fragment on line 1 would return
an integer representing the line number, and that on line 2 would return a string
representing the filename. These slots would be “inherited” by the various node
types corresponding to the different kinds of statements in C. These are specified
in a node derivations declaration.

0 Statement: [

1 Exit |

2 Freturn |

3 Goto |

4 Continue |

5 CompoundStmt |

6 Switch |

7 Whileloop |

8 If |

9 Forloop |

10 Doloop |

11 ExprStmt

]

Line 0 identifies the node type (here it is a Statement) for which the derivations are
being identified. Eleven different kinds of statements in C are displayed, from Exit
(line 1) through to ExprStmt (line 11) (which is an expression statement, like an
assignment statement). We call each of these a derived node type in genii. Clearly,
when the front end produces nodes (in its representation of the ASG) corresponding
to these different kinds of statements, we need to be able to identify the type of
statement it is, and translate it back into a node of the right derived type for
genoa. A derived node type declaration follows:

0 CompoundStmt : "((CN *) host in)->CnWhat == NtBlock" {
1

2 LocalVars: ListOf Variable

3 < "( (CN) host in)->NtVar"

4 "( (ID) host in) ->NextVar"

5 >
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6 StmtList: ListOf Statement

7 < "(FirstStmt ((CN) host in))"

8 "( (CN) host in)->NextStmt"

9 >
10 }

We declare node of type CompoundStmt (line 0). The code fragment in quotes is
the front end code that is invoked to test if a node is a compound statement. If so,
such a node has two slots: LocalVars (the filler is a list of nodes, each of which is
of type Variable), and StmtList (here the filler is a list of Statements). The code
fragments on lines 3 and 4 provide an iterator over the list LocalVars, describing
how to get the first Variable (line 3) and successive variable values (line 4). Note
that the two type casts are different: the first type is the compound statement,
the second an element in the list of local variables. When the second expression
(line 4) returns NULL, the iteration is complete. Similarly, lines 7 and 8 provide an
iterator for StmtList. Since genoa can deal with ASG’s, occasionally a link can be
“backward”, i.e., it can point to a parent node. For example, a recursive function
can include a function call node which points back to the function definition. These
slots are included as a convenience for the toolsmith, but can lead to termination
problems while doing a full traversal of the ASG. To avoid this, some slots in the
genii specification can be flagged by preceding them with a “!” character. This
excludes these slots from being traversed during a ‘‘[ . . . ]’’ tree traversal.

Note that there is a crucial limitation of genoa and genii: all the accesses to the
ASG built by the front end are read-only. There is no provision in the genii interface
for code fragments to modify the ASG. genoa is mainly intended to implement code
analyzers, so it is not possible, as in the case of REFINE [reasoning systems,
Inc of Palo Alto CA 1989], to implement transformations.

What are the front-ends to which genii can attach? Different front-ends may
produce ASG’s of varying levels of detail: for sufficiently simple languages, or where
efficiency is not a concern, it may be possible to generate code on the fly during
parsing, without building any intermediate representations. Compilers of more
complex languages, like C++ and ADA, need to store a fair bit of information
about the source code for symbol resolution, type inference, higher order component
instantiation, optimization, etc. genoa and genii do not require a full parse tree
representing the entire program; whatever is available can be described in a genii
interface specification, and queried with genoa. However, genii assumes that the
data structures have a certain abstract structure. The assumptions made by genii
are perhaps best clarified with a description of the signature assumed by genii.
A formal notion of an ASG as envisioned by genii is a quintuple ≺ ν, τ, θ, σ, φ,Â
where

—ν is an (arbitrary) set of nodes,
—τ is a set of node types6.
—θ is a set of boolean type functions theta1, theta2, . . . , theta|τ | (one for each node

type) of type ν → {true, false}, which returns true just when a node is of the

6The set of types correspond to the various constructs in the programming language, such as
multiply expressions, if-statements, etc. There may be a type hierarchy.
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corresponding type.
—σ is a set of slot labels. These are names such lhs, location, type, etc which

essentially refer to labels on the outgoing edges from nodes on the ASG.
—φ is a set of slot functions (τ × σ) → (ν → {2ν

S
{⊥}}) Given a node type, and

a slot label, the slot function φ returns a function that maps a node to a node,
or set of nodes that is the filler of this slot, or returns ⊥, or “bottom”, which is
essentially an error condition7

A genii specification instantiates the elements of this signature with respect to
a specific language, and supplies the implementation in a specific front end via the
code fragments. Specifically, a genii specification supplies the following:

(1) A way of instantiating the set of nodes ν (with a front-end that can build a
ASG).

(2) Define the different types of nodes (the types of nodes τ that occur in an ASG)
e.g., function declarations, statements, expressions, etc. These are specified in
node type declarations of genii.

(3) A way of testing each node to determine it’s type, i.e., the function θ. For
example, given a node representing one of the statements in the body of a
function, we may want to know what type of statement it is, i.e., is it a function
call? an if statement? a do loop? This is specified in genii by the code
fragments in derived node type declarations such as the one for CompoundStmt
shown above.

(4) A list of allowable edge labels, or slot names. Such as lhs, rhs, of-type, formal
arguments, function body, etc. These are specified as slots in the node type
declarations.

(5) Given a node, a node type, and a slot label, define function(s) that can find a
filler of that particular slot of that node, (if applicable). These are specified in
genii as code fragments that can be used to compute the fillers of given slots
for given nodes.

Although we would certainly not claim that the above signature captures all
ASG’s, in practice it has proven to be quite flexible. To date, genii has been used to
attach genoa to several different front ends. The full interface specification for the
Cin front end to C has declarations of about 90 node types (both derived and base)
and is about 800 lines of genii code. The node types are mostly independent of the
kind of front end used, and have to do more with the language; the embedded code
fragments are of course specific to the front end being accessed. The specification
in this case expands to over 17,000 lines of C++ interface code. There is also a
widely distributed implementation of genoa for C++, called gen++, which can
be freely downloaded [Devanbu 1998]. This interface specification is considerably
more complicated: it comprises 290 node types; the genii specification is about
1600 lines long, and expands to about 37,000 lines of C++ code. In terms of lines

7Normally, a set of slots is associated with a given type of a node. Thus, a node of type equality
condition (corresponding, to say, “a == b”) will have two slots, lhs and rhs. Now, if we have a
node n of type, say function call, and try to take the lhs slot, we will get an error; in this case, φ
(function call , lhs) (n) = ⊥
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of code, the genii specification is an order of magnitude smaller than the parser.
Also, as shown above (in the examples at the beginning of this section) the genii
is a description of the data structures, and is conceptually far simpler than the
intricate parsing, scoping and type checking mechanisms in the front end.

There is also a version of genoa, called aria [Devanbu et al. 1996], that has
been interfaced to reprise [Rosenblum and Wolf 1991], a persistent ASG rep-
resentation of C++. genoa has also been attached to the EDG C++ parser,
a commercially available C++ parser from Edison Design Group. These efforts
demonstrated the practical viability of this approach. For example, in the case
of aria, the genii specification to interface genoa to reprise was written by a
student (who was initially unfamiliar with both these systems) during part of a
summer. Of the four different front-ends (Cin, Cfront, reprise and EDG) that
we have worked with, none took more than two months to interface to genoa.
This represents significantly less time and effort than would be required to write
a complete, fully validated C++ parser and type-checker from scratch, even using
sophisticated compiler construction tools; C++ incorporates many intricate details
involving features such as inheritance, virtual functions, constructors, destructors,
over-loaded operators (and their interaction) that would necessitate a great deal of
special-case handling.

Indeed, the intricacy and complexity of the C++ language was the primary
motivation to use C++ front-ends in conjunction with genoa. The Cfront version
was the first; Reprise was the next, to provide a persistent parse tree representation;
and the EDG interface was done most recently, as the popularity of this particular
parser has increased. In each case, the quality, features and linguistic coverage of the
respective parser is fully available to the tools that were built with the corresponding
genoa port. Thus for example, the Reprise parser creates a persistent repository
of parse trees; tools based on the Aria [Devanbu et al. 1996] port can exploit this
persistent store to avoid needless re-parsing. The EDG parser is written in a highly
portable dialect of C, and thus that retargeting of genoa is highly portable as
well (genoa and genii are both ANSI and K&R C compliant). After the first
attachment, to Cfront, was complete, the node type declarations could be used
mostly as is for the other parsers; typically just the code fragments had to be
changed. In each of our ports, however, we had either complete documentation
about, or access an expert on, the internal representation used by the front end.
Without this, the retargeting effort would be compounded by effort to learn those
details.

There are, of course, limitations to this approach of reusing an ASG built by an
existing parser. First of all, in order to write the genii specification, it is necessary
to have a good understanding of the ASG representation used by the front end;
however, once this specification is written, the details of the representation are
hidden from the toolsmith. The genii system currently does not support any
facilities for constructing or modifying the front-end data structures. This precludes
any applications involving code transformation8. The genoa framework currently

8There are some overarching difficulties in transforming C and C++ programs: they generally
include some pre-processing directives (“#ifdef”) and macro expansion. These often do not fit
nicely into a ASG representation; this complicates the process of regenerating source code from
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Fig. 5. How genoa and genii interact

does not allow for node attribution in the style of attribute grammars [Reps and
Teitelbaum 1984; Gray et al. 1992], although this feature could conceivably be
added to future versions. In all instantiations of genoa, it has been attached to
systems that deal only with “compile-time” information; global information (of
the type handled by linkers) is not available. Many kinds of useful analysis tasks
involve information at a global level. One approach to address this would be use
to genii to interface genoa to the data structures built by a symbolic debugger.
Another approach would be interface genoa as a querying mechanism to project
management databases [Horowitz and Williamson 1985; Penedo 1986; Lamsveerde
et al. 1988]; this would allow access to project management information in addition
to source code information. Indeed, the front-end retargeting approach might be
a useful way to adapt project management databases to “difficult” languages like
C++ and to variant dialects.

Although it has its limitations, the front-end retargeting approach in genoa has
proven useful in practice.

the parsed representation.
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6.2 Implementation Details

Figure 5 shows the top level parts and data flow in the genoa and genii systems.
A typical analysis tool in the genoa framework is built with some reused pieces,
and with some code generated by specialized compilers. This diagram shows all of
the pieces. The dark grey boxes (2,10,5) in the diagram are pre-existing; the specific
front-end (2), the genoa language compiler (10) and the genii (5) compiler. The
data specific to a given source file that the tool processes are shown as octagons:
the source code (1), the parsed representation (3) produced by the pre-existing
front-end, the genoa specific gnode representation (8), and the tool output (13).
The shadowed boxes are artifacts (6,7,12) generated by genoa or genii.

To interface genoa to a given front-end, it is sufficient to write a genii specifica-
tion (4) describing the data structures and access methods of the parsed represen-
tation produced by the front end (1). From this, the genii compiler (5) generates
wrapping routines (7) which read the representation (3) generated by the front-end
(2) and create the wrapped representation (8) as needed; genii also generates a dic-
tionary (6) used by the genoa language compiler (10) to validate specifications (9).
This validation makes sure that the names of the syntactic (non-terminals & termi-
nals) and semantic (types) entities used in the genoa specification are appropriate.
Once the interface specification (4) is written, a toolsmith can freely write many
different specifications (9) to create various tools to process any source files that the
front-end (2) can parse. From the tool specification (9), the genoa compiler(10)
generates traversal routines (12) which access the gnode data structures(8) gen-
erated by the wrapping routines (7); these traversal routines also generate the
analyzer output (13) particular to the tool specified in (9).

The retargetability hinges on the generated wrapping routines (7) which “lazily”
translate the parsed representation (3) into gnode structures (8). If the parsed
representation is “in-core”, then these routines access the tree directly from the
representation created by the front-end. If the representations are persistent, these
representations are accessed. These routines are invoked by the tool-specific back-
end that is generated from the genoa specification. In the case when genoa is
used with a parser that is part of an existing compiler, the compiler’s back-end
has to be removed; now the tool-specific “wrapping routines” can be linked to the
remaining front-end create the tool executable.

There are 3 main types of wrapping routines: for traversal, testing, and unparsing.
We just describe the traversal routines in detail here. Traversal routines typically
take two arguments, a gnode, and a string representing the name of the slot; they
return the filler of that slot. For example, one traversal function might take a gnode
representing a Statement, and the string ‘‘LineNo’’ and return another gnode
representing an integer that is the line number where the statement occurs. We
refer the reader back to the genii specification in § 6.1, page 18. The code for this
function (generated by genii) is shown below, paraphrased for clarity:

1 GNODE Zgna23(GNODE GNparent) {
2 GNODE GNchild = (GNODE) NULL;
3* Snode *host in;
4* int host out;
5 if !(TypeOf( GNparent,Statement)) {
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6 . . . Error Message!!! . . .
7 return GNchild;
8 } else {
9* host in = (Snode *) GETHOSTVAL ( GNparent);
10* host out = (int) host in->CValue.LinenoOffset
11 GNchild = NEW GNODE();
12* PUTHOSTVAL( GNchild,Integer,host out);
13 return( GNchild);
14 }
15 }

This generated function Zgna23 contains some boilerplate with some fragments
from the Statement specification on page 18. Lines with such fragments are high-
lighted with “*”. A gnode data structure includes an enum field indicating type of
front-end AST node it represents, and a pointer to the front end datastructure. The
actual types of the front end datastructures are available in the genii specifications,
and are used to generate the local declarations on lines 3 and 4. On line 5, we test
the incoming gnode, GNparent, to make sure it’s of the right type, using the enum
field; the generated dictionary (6, figure 5) is used to also recognize subtypes of
Statement such as If. If GNparent, is not a Statement, an error message is gen-
erated, and a null output gnode is generated. Otherwise, the pointer to the AST
node representing the statement is pulled out of the GNparent datastructure, and
typecast; then the field corresponding to the line number is grabbed. Both of these
(lines 9,10) are done using the information from the genii specification. Now, the
linenumber gets stuffed into output gnode structure, with the appropriate node
type (line 12) and returned (line 13). All the traversal routines have a similar struc-
ture; the ones that involve slot fillers have lists (like the list of Statements in the
body of a CompoundStmt involve some additional complexity that create a gnode
list. Testing and printing routines involve different boilerplates, but their structure
is conceptually similar.

These generated wrapping routines hide the details of the front-end AST imple-
mentations; they all deal with gnodes, which form the front-end independent layer
in genoa-based tools. It may be possible in principle to take a legacy parser, and
write code manually to adapt all it’s data structures to resemble those used by a
tool construction framework such as Ponder, A* or Tawk. This would involve iden-
tifying each type of datastructure and operations, and “wrapping” each operation
within a function so that the result fits within the specific system (Ponder, A*,
Tawk etc). There would a lot (very similar) little functions to write. Indeed, the
main advantage of genii is that it eliminates the drudgery of creating wrappers by
raising the “level of discourse” for wrapper implementation. One simply describes
the nodes that occur in the ASG and their implementation; genii generates the
code to make the ASG look like it was made up of gnodes. In this way, genii
both simplifies the implementation of the wrappers, and reduces opportunities for
mistakes.
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6.3 Packaging

Since genoa is a complex system, comprised of language- and front-end-specific
parts and some non-specific parts, the packaging of an instantiation of genoa (for
a given front-end) is clarified here. In the case of gen++, (with reference to figure 5
the front-end (Cfront), and the generated wrapping routines (7), and dictionary
(6) (for this front-end) are packaged into a library; the genoa language compiler is
shipped as an executable. The package also includes build procedures and a shell
script which allows a tool smith to type a single command giving the name of the file
that contains the tool specification (9) to build an executable. This script runs the
compiler (10), and links the generated traversal routine (12) with the front end (2)
and the traversal routines (7) to create the tool. The genoa framework is equipped
to handle both front-ends which can work as subroutines and front-ends that need
to be the “main” procedure. The genoa framework allows each generated tool
to define it’s own command line options and environment variables. However, the
handling of these depends on the front-end that is being used. The names and
use of such environmental options have to be chosen to avoid interference with the
design assumptions in the front end.

7. COMPLEXITY ANALYSIS OF THE genoa LANGUAGE

Analyzers generated with genoa are likely to be run over large bodies of code,
so it is important to understand their computational properties. In the ensuing
discussion, we analyze the complexity of programs written in the genoa language,
with respect to the number of nodes in the input ASG. For example, we can consider
the computational complexity of the various operators in the language.
Expressions: The operations listed above (append, is-equal, cons, is-member,
etc.) are all low-order polynomial time. cons of a single node to a list is O(1), and
so is is-equal with single nodes. append of two lists is linear, as is is-equal and
is-member. It should be noted here that the only operations allowed on lists are
cons, cdr/car, and is-member.
Traversals: Taking a specific slot of a node (say, the lhs of an assignment node)
is a constant time operation.

Testing if a node is of a node type is O(1). List traversals (again, only over lists
of nodes that exist in ASG) and subtree traversals are respectively linear in the size
of a list, or of the subtree.

What kinds of queries can be specified in the genoa language? Clearly, using
recursions, one can write a non-terminating computation. Also, using the eval
construct, one can specify arbitrary programs. Even without recursion and evals,
we can readily construct lists that are exponential in the size of an ASG: just embed
an append of a variable to itself inside a [∧ . . . ∧] traversal, so that it doubles
the length of a list each time. Thus, it is possible to write queries that result in
work that is exponential in the size of the ASG. To avoid this, let us restrict one
argument of append and cons expressions to be a tree node, not a variable. Since
the tree itself cannot be modified, we can see that in the worst case, we can grow
the lists by at most n nodes (where n is the size of the ASG) for each node we
visit in the tree; hence, one can only grow lists that are polynomial in the size of
the ASG. We call Qgenoa the subset of the query language satisfying the above
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conditions: no recursion, no eval, and only one variable allowed as an argument to
append or cons.

Lemma 1. Any program written in Qgenoa can be executed in time polynomial
in n, the number of nodes in the ASG.

Proof: The proof is by induction. We first analyze the induction step, that gives
us a recurrence relation for the complexity of a query of size k in terms of a query
of size k − 1. Once we get this recurrence relation, we can introduce the boundary
condition (for a query of size 1), and then derive a closed form.

First, consider an arbitrary query qk−1 of size k − 1, which executes in time
f(n, k − 1) on a tree with n nodes; we are trying to establish that f is polynomial
in n. Assume to begin with that qk−1 is memory free (i.e., it has no local or global
variables). The most expensive query, qk, of size k that can be constructed out
of qk−1 would be to embed it in square brackets, which would execute qk−1 over
every node in the ASG, n times. Other constructions, such as embedding qk−1 in
other constructs, or just sequencing (k − 1)-size constructs would not increase the
computational difficulty in this way. Since qk−1 is memory free, it takes the same
time f(n, k − 1) at each node, since it recomputes essentially the same query each
time. Thus, qk would execute in time n ∗ f(n, k − 1). If f(n, k − 1) is polynomial
in n, then so is n ∗ f(n, k − 1), giving us the inductive step. Therefore, the worst-
case cost of a query of size k to be nk−1 ∗ f(n, 1) (f(n, 1) is the highest possible
cost of the unit query). Our unit operations (only the expressions, and print and
assign are applicable) are restricted to be at most linear time in the size of the
tree. Assuming a constant time tw (worst-case) for each node, we get the following
closed form for the worst-case computational complexity of a query qk of size k:

tw ∗ nk

This is O(nk), polynomial in the size of the ASG. Now, we relax the assumption
that qk−1 is memory free. If qk−1 is embedded in square brackets, and if the
variables used in qk−1 are defined and modified only within qk−1 itself (during each
evaluation of qk−1), then the variables aren’t carried over to next iteration of qk−1;
the cost of qk−1 is the same for each iteration. The inductive step trivially follows:
f(n, k) is simply n ∗ f(n, k − 1), and we get the same complexity as before. We
also get the same result if the variables are global, and are not modified in qk−1:
its cost remains constant.

Finally, we eliminate the assumption that all the variables used in qk are bound
entirely with qk. In this case, if qk conducts several iterations of qk−1, the size of
the variables used in qk−1 can increase with each iteration, and thus, the cost of
executing qk−1 within qk can also increase. This complicates the computation of
the complexity. To analyze this, let us postulate a size function s, that dynamically
measures the size of the global data during the (repeated) execution of the query
q, of size k, starting with an initial global data size of σ. Thus, we have

s(k, n, σ)

which gives the worst case bound on the size of the global data in query qk after it
has executed over a parse tree with n nodes. If qk is repeatedly executed, the size
will grow monotonically with each iteration. We now make this claim about s:
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Lemma 2.

s(k, n, σ) ≤ σ + c ∗ nk

We omit the proof here for brevity; full details are available in the author’s disser-
tation [Devanbu 1994]. Let us now say that the worst-case complexity of executing
a qk of size k on a parse tree of size n will depend upon the initial size of this global
data, and is given by:

f(n, k, σ)

We can now present the complexity result.

Lemma 3. For large σ,

f(n, k, σ) ≤ σ ∗ n
(k+2)∗(k+3)

2

This proof is somewhat complex, and we refer the interested reader to [Devanbu
1994] for the full details. The complexity figure is O(nk

2
), and hence the com-

plexity of a query in Qgenoa is polynomial in n, the size of the parse tree, and
exponential in the size of the query. This also concludes the proof of Lemma 1.
The polynomial time complexity result also indicates that any query expressed in
Qgenoa can be evaluated “quickly”. It provides us with some comfort; we can write
various analyzers using this language, and bravely run it over very large collections
of source code; they won’t take “too long”. On the other hand, Lemma 1 puts a
limit on the kinds of queries that can be written; one simply cannot express any
query that would determine a property that takes, for example, time exponential
in the size of the parse tree. This leaves with the question as to what queries can
in fact be expressed in Qgenoa. It may turn out that the queries in this language
can be evaluated very fast, but the language itself is so weak that only very few
queries can be expressed in it9. This motivates us to take a closer ‘look at the class
of queries that can be expressed in this sublanguage, using techniques developed in
database theory.

8. EXPRESSIVE POWER OF GENOA

Database query languages are typically not Turing-complete–they tend be expres-
sively restricted. Queries expressed in relational algebra, with a fixpoint operator,
for example, can express all polynomial time queries on relational databases, if
there is an ordering relationship between the atoms in the domain. We can prove
a similar result for Qgenoa

Lemma 4. Any PTIME computation (polynomial in the size of the parse tree)
can be expressed in Qgenoa

Proof: The proof10 is based on a technique due to Immerman [Immerman 1986].
It involves taking an arbitrary Turing Machine that performs a polynomial time
computation, and encoding this Turing Machine in Qgenoa. If this encoding can
always be done, then Qgenoa can represent all polynomial-time computations.

9Clearly, Qgenoa is fairly expressive, since the examples we presented above where all expressible
therein.
10Full details are in [Devanbu 1994].
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So, let us consider an arbitrary polynomial time turing machine TMPT , with an
input of length n cells on its tape. Each cell can have symbols σi, i = 1 . . .m and
the machine has states sj , j = 1 . . . l + 1, with a distinguished state sl+1 denoting
acceptance. Since TMPT is polynomial, we can assume some constant c and integer
k such that the machine will always terminate in c ∗ nk steps.

The encoding of computation of TMPT is conducted as follows:

(1) First, we encode the tape by three variables: two list variables rlist, llist
representing the tape on either side of the head, and one variable now represent-
ing the value under the head. The variable now and the elements of llist and
rlist are one of the symbols σi, i = 1 . . .m. The state of the turing machine
is held in a variable state which can have just the values sj , j = 1 . . . l + 1.

(2) We require that the input tape of TMPT be presented to our Qgenoa program
in the form of a tree with 2 ∗ n nodes as follows.
(a) There are two types of nodes, Integer and Cell. Cell has two slots:

value, which points to a node of type Integer giving the value of the
node, and next, which points to another Cell encoding the successor cell.

(b) We associate an integer value between 1 and m with each of the tape
symbols σi, i = 1 . . .m, and encode the input on the tape of TMPT as a
tree using Cell and Integer nodes to represent the tape as a linked list of
nodes.

This tree encoding of the input forms the input ASG to the Qgenoa program
which emulates TMPT . For the purposes of simulation, the above special tree-
like list is placed as a regular cons-list inside global variable llist, by the
following Qgenoa fragment:

[∧ (assign llist (cons $token llist)) ∧]

(3) The various steps of TMPT ’s computation are simulated as follows.
(a) A state transition to a state σ is accomplished by simply assigning σ to the

variable state.
(b) The movement of TMPT ’s head is simulated using assign, and the car,

cons, and cdr operators of Qgenoa. Thus, for example, to move left, we
have to 1) cons the current value under the head (in the variable now)
to rlist, 2) set now to the car of llist, and 3) set llist to the cdr
of itself. In step 1), we have a complication: Qgenoa does not allow two
variable operands in a cons expression. We solve this problem by having m
different cons expressions, one for each of the tape symbols σi, i = 1 . . .m,
and selecting the right cons expression by an m-way cond, which finds
which cons to execute.

(c) Each state of the TMPT is handled by an l+1-way cond expression which
compares the value of the variable state with each state value si, i =
1 . . . l+1. Each of these cond cases can have a nested cond comparing the
value of now with each of the m symbols, and taking appropriate action.
Halting of the machine is simulated by setting state to l + 1; the cond
case corresponding to this value of state will have no further actions, i.e.,
once we get into this state, we do nothing more.
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(4) Finally, to simulate the Turing Machine moves, we have an l+1-way cond, with
cases corresponding to the states of TMPT . Since the machine is guaranteed
to run in PTIME, there exist constant c, and integer k such that machine
terminates in time ≤ c ∗ nk, when given an input of size n. We then merely
nest the finite state machine encoding in k+1 levels of the “[∧ . . .∧]” iteration
operator to ensure c ∗ nk steps of TM machine execution for sufficiently large
n.

Putting Lemmas 1 with 4, we get the following tight characterization of Qgenoa
queries on ASGs:

Theorem 1. The queries expressible in Qgenoa are precisely the queries com-
putable in PTIME on ASGs.

What is the pragmatic implication of these complexity and expressiveness results?
First, this tells us that Qgenoa is a very useful language. It has the power to specify
almost all practical analyses that can be done on source files. Indeed, most of the
examples given in this paper can be done in polynomial time. Examples: 1, 2, 5, and
6 in Sections 1 are linear or low-order polynomial; and modulo function pointers,
3, 4, and 7 are as well. Example 1, in Section 4 as shown, is linear time. Examples
2, 3 and 5 in Section 5 are linear time; and again, modulo function pointers, 4 is
as well. There are certainly analysis tasks that are intractable: common examples
include many of the optimization tasks in the code generation phase of compilers
(such as register allocation and instruction scheduling).

Second, a guarantee can be made that any analyzer resulting from a specification
written in Qgenoa should run “fairly quickly” (i.e., in time roughly polynomial in
the size of the ASG representation of the source file). Finally, it is fairly easy to
obtain a reasonable estimate of the computational cost, given a query in Qgenoa,
by inspecting the level of nesting of the [ . . . ] operators. Thus a tool builder can
determine whether a tool is going to be quadratic, cubic, etc, in the size of the ASG
without much difficulty. This is a direct result of the simplicity and compactness
of the language. With a more complex language, perhaps one involving complex,
interactive rules, and/or with recursive functions, it would be far more difficult to
make such an estimate. In our experience, tools can be run over extremely large
source bases, so a good estimate of the running time is very helpful.

9. PERFORMANCE EVALUATION

The performance of a genoa-based analyzer depends on two factors: the partic-
ular front-end that is used to build the parse tree, and the desired analysis task.
Tools that can be implemented with a single pass of the source code (like a sim-
ple call graph generator) will be faster than a complex application like the control
dependence graph analyzer we implemented using the ARIA [Devanbu et al. 1996]
instantiation of the genoa framework.

Consider the case of gen++, an instantiation of the genoa framework built
around the Cfront parser. Tools built with gen++ (always) first begin with a full
parse and type check of the input program, and then perform their specific analysis
task. Table 1 presents a comparison of the rate of “consumption” (thousands of
lines/second) of various gen++ tools (using post-processed lines of C++ code,
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and time measured by sys + user times from the Unix time command on a Sparc
20/61, with 96 Meg of main memory). As a baseline for comparison, we also show
times (in the first two columns) for the CIA++ [Grass and Chen 1990] system, and
the C++ to C translation phase of the Cfront compiler. The next column is the
consumption rate for an inheritance graph tool, followed by a control flow graph
tool, followed by a tool to generate data for the Chidamber-Kemerer [Chidamber
and Kemerer 1994] metrics; the next is a call graph extractor. The final column,
included for comparison, is the time to run the grep search egrep -e ’[a-zA-Z]*
*([^ )]*)’ over the same source base. This pattern is a crude, highly inaccurate
approximation for discovering function calls.

It’s not surprising that the C++ to C translator is the slowest. CIA++ is the
next slowest, since it gathers information about call graphs, inheritance diagrams,
macros, include files, and builds a highly optimized compressed database. Our sam-
ple C++ source base (based on the sample code for buttons, menus, etc., provided
the Interviews [M. J. Linton 1989] distribution) contained proportionately greater
header file material (type, class, inline and macro definitions) than executable func-
tion definitions. This explains why the inheritance diagram tool is slower than the
control flow graph tool (which only looks at non-inlined function code, usually in
the .c file). The call graph tool shows intermediate performance, since call rela-
tionships are found both in the header files (due to in-line functions) and elsewhere.
Finally, the crude regular expression approximation for function calls is much faster,
reflecting its simplicity and consequent inaccuracy (See Example 4).

We now turn to the space usage of gen++. Let us consider the space used by
gen++ falls into 3 categories: the space used by the front-end (Cfront in this case)
to build the parse tree; the space used by the abstract syntax dictionary (Item 6
in Figure 5), and the space used by gnodes. The space used by the dictionary is
generally a constant, about 70 kilobytes (Kb). The space used by the Cfront parse
tree varies. Given a particular source file with about a 1000 lines of C code (about
2500 lines after pre-processing), Cfront’s parse tree uses up about 2 Megabytes.
The peak total space used by a gen++ application also includes (gnodes) and
varies with the application, and is shown in Table 1. We did not have the ability
to build an instrumented version of CIA and Cfront to collect the memory usage
data, so that is omitted. In addition, the same source file was processed by A*
[Ladd and Ramming 1995] and Tawk [Griswold et al. 1996] to produce a function
call graph (we had to use a C program rather than a C++ program). Tawk used
about 250Kb, and A* uses about 833Kbytes11. Tawk in particular is carefully
optimized for low memory usage; it actually adjusts its memory foot print to reflect
the particulars of the required analysis task. gen++ is uses more memory than
these other tools. There are two reasons for this: first, the front end used as is,
without any modifications or optimizations. gen++’s front end is a full C++
parser, whereas the others are C parsers. C++ is much more complex than C,
and the datastructures that represent the ASG are more cumbersome. Second, the
retargeting machinery uses space to provide a “neutral” representation for use by
the back-end. So in this sense, genoa trades off space for retargetability. But with

11The author gratefully acknowledges J. C. Ramming and W. G. Griswold for generously donating
their valuable time to obtain this data.
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Tool CIA++ C++ to C IS-A CFG Metrics Call Regex

(Cfront) Diagram (C-K12) Graph Match

kLines/Sec 3.3 2.9 3.9 6.0 4.2 5.5 45.8

Kilobytes — — 2920 3493 2908 3014 Minimal

Table 1. Performance: source line consumption rate Comparisons (kLines of pre-processed C++
code per second, measured as user + sys by the UNIXTM time command.) and memory usage
with PURIFYTM .

a front end that uses less memory, we could expect genoa-based tools to have a
smaller footprint.

Overall, this table reflects our experience with gen++ based tools; performance
is within the range of custom-implemented tools such as CIA++. Viewed alterna-
tively, the time penalty for the extra “parser retargeting” machinery in gen++-
based tools is moderate, and the code generated from compact genoa language
scripts is still tolerably efficient. The data in Table 1 shows that the performance
of genoa-based tools is comparable to tools of similar capability [Ladd and Ram-
ming 1995; Murphy and Notkin 1996; Griswold et al. 1996; Paul and Prakash 1994].
There is an important caveat, however, with gen++ — it is not incremental. If a
source file is changed, it would have to be completely reparsed: neither the underly-
ing parser (Cfront) nor genoa are capable of incrementality. It would be desirable
to redesign genoa (including the query language and the retargeting machinery)
to exploit an incremental parser: we intend to pursue this in future work.

10. CONCLUSION

We have described the genoa framework, which is a portable, language-independent
querying mechanism for abstract semantics graphs. We also discussed some the
theoretical properties of the genoa query language. We have used this system
to build gen++, a static analyzer generator for C++. The techniques described
here enabled us to implement the gen++ system very quickly, and at low cost.
Perhaps because of the difficulties involved in implementing a C++ parser, at the
time of first release (Fall 1993) it was the only available system of its kind for
C++. The retargetability of genoa has been proven in practice by implementing
interfaces to four different, independently developed front-ends. It has been used
to generate analyzers for a wide range of applications, including metrics, case tools,
reverse engineering, testing and coding standards enforcement. Specific applica-
tions include a tool to gather the Chidamber/Kemerer object-oriented design met-
rics for C++ [Chidamber and Kemerer 1994], a slice-based cohesion measurement
tool [Karstu and Ott 1994] (which incorporates a static slicer), an architectural re-
covery tool [Mendonça and Kramer 1998] a control flow graph generator, a control
dependence analyzer, and a path condition generator (both reported in [Devanbu
et al. 1996]). gen++ can be freely downloaded [Devanbu 1998]; it has many active
users, and is supported by the author.
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