
Generating Wrappers for Command Line Programs:

The Cal-Aggie Wrap-O-Matic Project

Eric Wohlstadter, Stoney Jackson, and Premkumar Devanbu
Department of Computer Science,

University of California,
1, Shields Way

Davis, CA 95616 USA
+1 530-752-7004

{wohlstad|jacksoni|devanbu}@cs.ucdavis.edu

ABSTRACT
Software developers writing new software have strong
incentives to make their products compliant to stan-
dards such as corba, com, and JavaBeans. Standards-
compliance facilitates inter-operability, component-
based software assembly, and software reuse, thus lead-
ing to improved quality and productivity. Legacy soft-
ware, on the other hand, is usually monolithic, and hard
to maintain and adapt. Many organizations, saddled
with entrenched legacy software, are confronted with
the need to integrate legacy assets into more modern,
distributed, componentized systems that provide criti-
cal business services. Thus wrapping legacy systems for
inter-operability has been an area of considerable inter-
est. Wrappers are usually constructed by hand, which
can be costly and error-prone. In this paper, we specifi-
cally target command-line oriented legacy systems, and
describe a tool framework that automates away some
of the drudgery of constructing wrappers for these sys-
tems. We describe the Cal-Aggie Wrap-O-Matic sys-
tem (CAWOM), and illustrate its use to create corba
wrappers for a) the JDB debugger, thus supporting dis-
tributed debugging using other corba components, and
b) the Apache web-server, thus allowing remote web-
server administration, potentially mediated by corba-
compliant security services. While CAWOM has some
limitations, in several relatively common settings it can
produce better wrappers at lower cost.

Keywords
Wrappers, corba, legacy systems.

Draft of paper to be submitted to ICSE 2001. We respect-
fully request that this paper not be shown to anyone besides
the ICSE 2001 reviewers without the authors’ permission.

1 INTRODUCTION
Legacy systems (LS) are ubiquitous, and provide many
useful functions. Organizations often reluctantly en-
dure a continuing dependency on these systems for
critical business functions. Efforts to maintain, re-
engineer and evolve such systems are hindered by poor
documentation, lack of source code, lack of appropri-
ate (perhaps outdated) skills, and brittle architectures.
On the other hand, there are strong incentives to up-
date these systems to support inter-operation with the
rest of an organization’s information technology infra-
structure. Systems that can inter-operate using stan-
dards such as corba, com and Javabeans can exploit a
large and growing body of components (e.g., com GUI
components), services (e.g., corba Event and Security
Services), and architectures. Thus, organizations us-
ing legacy systems face an unpleasant dilemma: bear
the cost and risk of updating legacy systems to inter-
operate, or live with fractured information technology.

Wrappers offer a potential way out: a surrounding
software layer shields a LS from the burden of inter-
operability. Nestled within a wrapper, a LS can remain
unchanged, and live comfortably in the past; the wrap-
per assumes the burden of mediating the LS’s interac-
tion with more modern, standards-conformant systems.
Traditionally, wrappers are constructed by hand1 Build-
ing a wrapper for a specific LS, for a particular inter-
operability standard, would require expertise both in
the LS and in the standard. Standards are complex,
and legacy systems often are, as well; thus, manual de-
velopment of wrappers is likely to be time-consuming,
expensive and error-prone.

The Problem
We focus on a specific, but fairly common situation—
wrapping command-line oriented LSs. Such systems are
ubiquitous both in Unix and in older, legacy operating
systems. Such systems can certainly be used directly
by a user sitting at a terminal, typing commands and

1There has been work on automating wrapper generation for
heterogenous, distributed information systems, e.g., answering
queries by extracting information from web pages. Our work
relates more behavourial aspects of wrapping rather than data
re-structuring; more on this when we discuss related work.

observing the reply. They might also be driven by batch
scripts that mimic interactive users, or by user-interface
wrappers that hide the command-line LS behind a nice
GUI that provides a more pleasant user-experience (e.g.,
the ddd [32] wrapper for the popular GNU debugger
JDB. Wrapping command-line LSs for standards-based
inter-operability provides several advantages:

1. At a basic level, the wrapper can enable remote ac-
cess to the LS’s services, and thus allows for better
integration of the LS.

2. The type system in the relevant interface defini-
tion language (IDL), together with the applicable
programming language type system, impose a cer-
tain level of programming discipline on the devel-
opment of client systems that use the legacy system
via the wrapper. This avoids run-time errors due
to type errors. Systems that directly interact with
the legacy systems do not provide this discipline.

3. The leverage of other COTS standards-based com-
ponents can allow additional functionality. For
example, we wrap the JDB Java debugger and
demonstrate how the corba Event Service can be
leveraged to support distributed debugging sessions
in a natural way.

4. Standards such as corba provide the opportunity
for finer-grained control over access to command-
line systems. The traditional approach of providing
a restricted shell is fairly coarse-grained. corba se-
curity mechanisms [28], for example, can be used to
implement far more intricate access control policies.

Our research goal is to find ways to simplify the task
of wrapping command-line oriented systems for inter-
operability. In this paper, we describe a tool, the
Cal-Aggie Wrap-O’Matic, (CAWOM) which generates
wrappers to enable command-line systems to be ac-
cessed through the OMG corba inter-operability stan-
dard. Although CAWOM works with the corba stan-
dard, the problems we confronted, and the solutions we
have developed, transcend the details of corba stan-
dard itself, and are applicable in other settings. Specif-
ically, we wrap the GDB-like debugger for Java (JDB)
to allow corba-compliant clients to access JDB’s ser-
vices. By simply adding a corba-compliant Event Ser-
vice, which effectively provides an off-the-shelf multi-
cast channel for debugging-related events, we can easily
support distributed debugging sessions with one con-
troller and many observers.

We assume that the reader has some familiarity with
the basic corba framework. The outline of the rest
of the paper is as follows. In Section 2, we present
an overview of our approach, and delve in more detail

into the issues that arise. In Section 3, we describe the
design choices we have made, along with rationale. In
Section 4, we describe our experience with wrapping
two different systems: the Java Debugger JDB, and the
Apache web server, and finally we conclude with future
directions.

2 APPROACH OVERVIEW
The overall scheme is shown in figure 12. The goal is

ORB ORB

CLIENT
Command Line
Legacy System

Wrapper
Specification

Wrapper
Generator

Wrapper
Generated

Wrapper
Interface

Figure 1: Overview of wrapper-generation framework. The legacy
command line system is shown within a jagged boundary. The wrap-
per that surrounds it allows it to inter-operate with a corba ORB.
The wrapper itself is generated from a specification in a high-level lan-
guage. The main contribution of our work is the development of this
language, and an appropriate architecture and run-time environment
for its implementation. Some corba-specific details are omitted.

to place a wrapper around a command-line oriented LS
(shown with the jagged boundary) and make it available
for inter-operation as a corba object-implementation.
This wrapper interacts with the corba ORB, accept-
ing corba method calls, and forwarding them to the
LS as ASCII commands. The ASCII stream responses
from the LS are parsed, and the appropriate corba-
compliant response is forwarded back to the ORB.

A wrapper for a command-line oriented system must
deal with the following aspects:

1. the interactions between the wrapper and the other
parts of the (standards-compliant) system (things
that happen across the dotted line in Figure 1),
including both the data-type aspects of the inter-
action (number and type of arguments in method
invocations) and the pragmatics of the interaction,
e.g., the synchronization and direction of the inter-
actions;

2. the “grammatical structure” of the strings accepted
and generated by the LS i.e., the strings exchanged
between the wrapper and the LS at the jagged
boundary.

We re-emphasize this point: these issues pertain to any
wrapper for a command-line LS, and transcend any spe-

2Certain corba-specific details, such as object adapters, are
omitted here for simplicity

2

cific inter-operability standard, such as corba, Java
RMI, or com. Developing and implementing concep-
tual approaches to these issues is of central concern to
our research. The wrapper specification language, and
code-generation must deal with each of these aspects;
we now discuss these issues, using the example of the
Java debuggger JDB.

Interface Description and Pragmatics
The wrapper interface must support all and just those
features of the LS that are to be made visible on the
wrapper interface.

First, the number and types of arguments must be spec-
ified. For example, a stop at command in the JDB de-
bugger must include a class name and line number to
set break point. Likewise, a break-point hit message
reported by the debugger will include the line num-
ber and class name. These aspects of the interactions
are described using features in the interface descrip-
tion language (IDL) supported by the inter-operability
standard. For example, corba IDL includes features
for specifying the number and type of arguments to a
method call.

Second, a command-line program includes several
modes, or pragmatics, of interactions with users. Some
commands, such as classes immediately print out the
list of active classes in the run-time. These interactions
can be naturally abstracted as synchronous procedure
calls inwards, to the wrapper interface. In other interac-
tions, the command-line program may ask the user for
information; these might reasonably be abstracted as
synchronous calls outwards through the wrapper inter-
face. Other interactions are asynchronous: trace mes-
sages are freely generated by a command-line program
without need for response. These must be accommo-
dated by sending asynchronous, non-blocking messages
outwards through the wrapper interface. Deferred Syn-
chronous interactions are also possible— the command
line program might accept a command from a user and
respond much later; additional information in the re-
sponse might provide the user with disambiguating con-
text. All these types of interactions are allowed within
corba, and must be supported by the wrapper inter-
face, and the wrapper specification language must be
able to describe them. Currently, cawom can handle
inwards synchronous, asynchronous and deferred syn-
chronous interactions, and outwards asynchronous mes-
sages on a designated multi-cast channel (corba event
channel). In principle, given the generic architecture of
cawom, we believe there is no hurdle to handling more
general types of synchronization primitives, including
the ones in the ADA language or in SR [1].

Interaction Syntax
The wrapper must send commands to the legacy sys-

tems, and also process the messages it generates.

The wrapper must generate the commands sent to the
LS, based on the data it receives through the wrapper
interface. Generating strings from data can be viewed
in general as unparsing, or pretty-printing [13, 29]. The
wrapper specification must include high-level unparsing
specifications to determine the generation of commands
based on received data.

The wrapper must also process the messages generated
by the LS and extract the semantics of the message
and the contained data. This is certainly akin to pars-
ing; however, in theory, an LS, being an arbitrary pro-
gram, can generate arbitrary strings. In general, an un-
restricted grammar (i.e., Type 0 grammar) would be
required to specify this set of strings; the parsing prob-
lem would therefore be undecidable. However, from a
pragmatic point of view, given a specific LS it may well
be possible and desirable to implement a wrapper to
process most (if not all) of the strings it generates. For
greater flexibility, it would thus be undesirable for the
parser to be limited to just context-free languages; we
use definite-clause grammars [17] for additional expres-
siveness.

In the following section, we describe in greater detail
how the design of cawom handles these issues.

3 DESIGN RATIONALE
In this section, we describe the design of the wrapper
architecture, as well as the wrapper-specification lan-
guage.

Wrapper Architecture

Client:Process

2

����
����
����

����
����
����

���
���
���
���

���
���
���
���

Server:Thread

Parser:Thread
Thread Process

CommandInterface:

1

4

5

8

WrapperMediator:

Unparser

Parser

7

3

6

Figure 2: Details of the wrapper architecture, shown in the UML
interaction diagram style. The “thread” within the dotted line be-
long to the wrapper. The “command interface process” box is the
legacy system. The Client process is the corba client that accesses
the LS through the wrapper. The interactions outside the wrapper
are shown in heavy lines: the corba interactions are solid lines, and
the command-line interactions are dashed. The Server thread inter-
acts with the corba environment. The Parser thread listens to the
LS systems output messages, parses and them and generates response
events. The Wrapper mediator thread co-ordinates between the client
requests received from the server thread, and the responses from the
parser thread. The Parsing and unparsing components are shown in
shaded rectangles. The numbers indicate the interaction sequence,
described in more detail in the text.

3

A UML-style interaction diagram (Figure 2) describes
the architecture of our generated wrappers. The wrap-
per consists of three Java threads, the Server, the Me-
diator and the Parser, all shown within the dotted line.
The Client process, which interacts with the wrapper
via the corba infra-structure (omitted in this diagram
for simplicity) is shown outside the dotted lines. The
Server thread handles interactions with the corba en-
vironment. The parser thread handles the grammatical
complexities of analyzing and categorizing the responses
from the LS. The corba invocations that arrive at
the server thread, and the responses that come back to
the parser thread, can overlap in an arbitrary, concur-
rent fashion. The mediator thread co-ordinates between
these two threads, and provides a cleaner separation of
concerns between the parser and the server threads. The
resulting reduction of coupling makes the entire wrap-
per structure easier to evolve, to handle other types of
legacy systems and inter-operability standards. Sullivan
et al [26] have described this type of mediation. This
powerful modularity-enhancing technique has a natural
application in cawomwrappers that must handle a va-
riety of interactions between the wrapped system and
the outside environment.

Specifically, our mediator thread has two main respon-
sibilities. First, it handles the relatively simple task of
generating command-line strings from the corba in-
vocations. Second, before it sends out these command
strings to the LS, it also arranges with the parser thread
(using states encapsulated in so-called command ob-
jects) to be notified when the parser receives and recog-
nizes the associated responses from the command-line
programs. cawom wrappers allow several requests to
be outstanding, and allow overlap between synchronous,
asynchronous, and deferred synchronous calls. The
three threads in the wrapper manage multiple pend-
ing calls and events using synchronization objects that
encapsulate the state of each request.

We clarify these functions with a scenario. The server
thread gets a method invocation from the client through
the corba environment (Sequence number 1). In re-
sponse, the server thread creates a command object and
forwards (2) it to the mediator thread. The medi-
ator thread pretty-prints the command into an equiva-
lent ASCII command-line. This command-line, together
with a particular response from the LS, may constitute
a synchronous method call. Here, the mediator forwards
a command object with information needed to find the
matching response, and forwards it (3) to the parser,
thus alerting the parser to be on the lookout for this
response. It then sends (4) the command-line to the
LS. When the LS responds (5), and the parser recog-
nizes this response as one associated with the command
object in step 4, it first extracts required values from

the response string (e.g. smallreturned or out values,
fields of exception structures, etc.). It then alerts the
mediator thread (6), when then signals (7) the server
thread that a response to the particular invocation ini-
tiated in step (1) is ready; the server then sends (8) it
back to the client process. If there are multiple pend-
ing command objects, the parser matches the responses
with the right command object, using the enscapsulated
state information.

Wrapper Implementation
Our implementation exploits several off-the-shelf soft-
ware tools. However, all the tools we use only require
that the Java 1.2 run-time is available on the platform
on which the wrapper is to run. Again, we emphasize
that the principal concepts in cawom transcend lan-
guage (Java) and inter-operability standard (corba).
The wrapper-generator itself (shown in figure 1) is im-
plemented with the Java version of the antlr parser-
generator [16, 22]; gj [4] is used for the parse-tree rep-
resentation. We built a simple template-style macro
language to facilitate programming the code-generation;
future versions will use a more powerful hygienic macro
system, such as jts [3]. The generated code in the wrap-
per is all custom, except for the component that parses
the the responses from the command-line LS.

Parsing responses from the LS is the most complex and
difficult aspect of wrapping. Indeed, the most complex
code in the ddd [32] GUI-wrapper for legacy debuggers
can be found in the part that parses responses from the
debuggers; this code is large, intricate, and difficult to
understand and maintain. . Our goal is to provide a
response-parsing facility in cawom that is both simple
and powerful. As discussed earlier, a “vanilla” context-
free grammar cannot in general always manage the arbi-
trary strings that can be generated by a command-line
program. So we use a definite-clause grammar (DCG)
system, built around PrologCafe [2], a Prolog-to-Java
translator. DCGs are powerful enough to express ar-
bitrary grammars. Despite their expressive power,
DCGs offer simple, intuitive style for writing many
types of context-sensitive grammars, and have a proven
track-record with complicated grammars, for example
in natural-language processing. A key aspect of DCGs
is an efficient implementation that exploits the built-in
unification and back-tracking in Prolog. The Prolog-
Cafe system accepts a DCG-style grammar describing
the responses from the LS and produces a parser in
Java that incorporates the needed Prolog mechanisms.
The presence of the Prolog run-time increases the foot-
print of our wrapper ; however, our wrappers demon-
strate acceptable run-time performance in the examples
we describe below. The use of DCG grammars trades
off greater usability for better performance. However,
a wrapper-builder has the option of building a custom

4

response-parser if so desired; she can still exploit the
rest of the cawom infra-structure.

The infra-structure we have described above constitute
the run-time environment of the generated wrappers in
cawom. We now turn to the specification language that
users would use to write the wrappers.

Wrapper Specification Language
There are two parts to a wrapper specification: the
command-line interface specification and the command-
line response grammar. The interface specification is
written in cIDL3, while the response grammar is written
in cRGL4. The interface specification primarily describes
the interface between the wrapper and the standard-
compliant systems (again the dotted line in figure 1).
An example cIDL specification can be found in figure 3.
It’s also used to define the unparsing or pretty-printing
to be performed by the Mediator component of the
wrapper (figure 2). The cRGL specification (See the ex-
ample in figure 4) specifies just the response grammar
LS for parsing responses from the LS. We now describe
these languages in more detail.

From figure 3, one can see that most of cIDL’s syntax
and semantics are the same those of corba IDL; we
clarify only the differences below (more information on
corba IDL can be found [23]).

The first notable difference is the key word command pre-
ceding the otherwise typical interface definition on line
1. This indicates that the interface that is being de-
fined is a wrapper for a command-line interface. Next,
we move to the pairs of curly braces and the expres-
sions they enclose (lines 5-10, 15, 19, 26 and 32). These
specify the syntax of the command to be issued to the
wrapped application whenever the corresponding oper-
ation is invoked. Finally, we note the deferred keyword
on line 24 that qualifies the gracefulRestart operation.
This qualifier specifies that gracefulRestart is an “de-
ferred synchronous” call. With this type of corba call,
a client invoking gracefulRestart does not wait for the
server to finish and returns before continuing. The client
may later poll to see if the server has completed the
request and can retrieve any results if the server has
completed.

The example does not show push operation qualifier. A
push operation is essentially a call back the server can
use to post information that the client did not request,
but may be interested in. Such operations are typically
used for servers to asynchronously notify a client when
an interesting or unusual event has occurred.

3cIDL is cawom’s IDL, and is an extension of corba’s IDL.
More details will be presented shortly.

4cRGL (cawom response grammar) is cawom’s definite-clause
grammar language based on PrologCafe [2].

1 command interface Server {
2 void start(in string serverRoot,
3. in int mineSeervers)
4. in int minServers)
5 {
6 "apachectl start " +
7 "-c \"MaxSpareServers " + maxServers + "\" " +
8 "-c \"MinSpareServers " + minServers + "\" " +
9 "-c \"ServerRoot " + serverRoot + "\"\n";
10 }
11 raises(CouldNotStartException,
12 ConfigurationSyntaxException) ;
13
14 void stop()
15 { "apachectl stop\n"; }
15 raises(CouldNotStopException) ;
17
18 void restart()
19 { "apachectl restart\n"; }
20 raises(CouldNotRestartException,
21 CouldNotStartException,
22 ConfigurationSyntaxException) ;
23
24 deferred
25 void gracefulRestart()
26 { "apachectl graceful\n"; }
27 raises(CouldNotRestartException,
28 CouldNotStartException,
29 ConfigurationSyntaxException) ;
30
31 boolean configTest()
32 { "apachectl configtest\n"; }
33 raises(ConfigurationSyntaxException) ;
34 exception CouldNotStartServer {string msg};
35 exception CouldNotRestartServer {string msg};
36 exception ConfigSyntaxError {string msg};
37 exception CouldNotStopServer {string msg};
38};

Figure 3: A sample specification written in the cawom language
(“cIDL”). Note the similarity to corba IDL, except for the added
keywords such as command, and the additional syntax describing how
to generate commands to the legacy system. The rest of the cawom
language, for specifying how to parse the responses from the LS is
shown in figure 4

Now we turn to figure 4, which shows an example of
the cRGL response grammar specification which char-
acterizes the response strings from the apachectl util-
ity. Specifications in cRGL contain a grammar that pre-
scribes how to parse the responses from the LS, and
also how to relate the responses to pending interactions
with the corba world. For brevity, we only describe
here the cRGL specification for ordinary (synchronous)
corba calls that go in the wrapper which result in a
command being executed synchronously by the LS.

In response to an incoming synchronous request, the
wrapper creates a “command” object encapsulating the
state of the request. The wrapper then prepares a pend-
ing “command” object with the information required
to process the expected response, and then unparses
the request to generate a command to the LS. The
information in the pending command objects are then
used by the parser thread in the wrapper to identify the
matching response from the LS. The cRGL grammar-
bases parsing in allied with a command object; when
certain non-terminals in this grammar are recognized, a

5

1 start → response,start.

2 response → "apachectl start: ", startRule.
3 response → "apachectl stop: ", stopRule.
4 response → "apachectl restart: ", restartRule.
5 response → any, response.

6 startRule [command start] →
7 startedResponse.
8 startRule [command start] →
9 raise = notStartedResponse,
10

11 startedResponse →
12 "httpd started".
13 startedResponse →
14 "httpd (pid ",integer,") already running".

15 notStartedResponse [exception CouldNotStartServer] →
16 msg = couldNotStartServerMsg.
17 couldNotStartServerMsg [string] →
18 "httpd could not be started".

19 stopRule [command stop] → stoppedResponse.
20 stopRule [command stop] →
21 raise = notStoppedResponse.

22 stoppedResponse → "httpd stopped".
23 stoppedResponse →
24 "httpd (no pid file) not running".
25 stoppedResponse →

"httpd (pid ",integer,"?) not running".

26 notStoppedResponse [exception CouldNotStopServer] →
27 msg = couldNotStopServerMsg.
28 couldNotStopServerMsg [string] →
29 "httpd could not be stopped".

30 restartRule [command restart] → restartedResponse.
31 restartRule [command restart] → startedResponse.
32 restartRule [command restart] →
33 raise = notRestartedResponse.
34 restartRule [command restart] →
35 raise = notStartedResponse.
36 restartRule [command restart] →
37 raise = badSyntaxResponse.

38 restartedResponse → "httpd restarted".
39 notRestartedResponse [exception CouldNotRestartServer] →
40 msg = couldNotRestartServerMsg.
41 couldNotRestartServerMsg [string] →
42 "httpd could not be restarted".

43 badSyntaxResponse [exception ConfigSyntaxError] →
44 msg = configSyntaxErrorMsg.
45 configSyntaxErrorMsg [string] →
46 "configuration broken, ignoring restart"

Figure 4: Example of a cawom response-parsing specification. The
specification relates the grammar for the responses expected from the
legacy system to the returned values and exceptions in the methods
of the interface defined for the wrapper; an example interface specifi-
cation is given in figure 3

corresponding command-object gets return values and
exceptions filled in from the elements of the recognized
response. The parser thread then notifies the media-
tor and then the server thread, which then initiate the
appropriate corba response. For example, on line 6
and 8, we have we have two possible rules for command
objects relating to the start method. The rule on line
8 generates an exception, whereas the other one does
not. These should be compared with the start method
defined (lines 2-11) in figure 3.

The (simplified) grammar of a cRGL rule is as follows:

rule :- nonterminal object-decl “→” body
object-decl :- “[” type identifier “]”
type :- “command” or “exception” or

‘struct”or “sequence” or primitive-types
primitive-types :- long or boolean or string

double or octet or etc
body :- RHS body
RHS :- nonterminal or Assignment
Assignment :- field “=” value

The head of a rule identifies a non-terminal, and an
affected object. The affected object may be a com-
mand (as on lines 6 and 8 in figure 4). The body has a
list of non-terminals that have to be recognized for this
rule, or some assignments that assign the recognized
values of non-terminals to the fields in the affected ob-
ject. For example, on line 9, the body of the rule for the
startRule non-terminal attempts to recognize the non-
terminal nonStartedResponse (see rule on line 15), and
assigns the recognized string to the field raise on the
start command object. This is a special reserved field
name that indicates that an exception has been raised.
The exception object itself is associated with the rule
on line 15: the nonterminal notStartedResponse creates
the exception object, which has a defined msg field (see
line 34 in figure 4 for the definition of this exception in
the interface specification) that is recognized by rule 17
as a string.

Methods can have out parameters specified in the in-
terface, or have returned values. In such cases, the cor-
responding command object would be specified at the
head of a rule; the body would assign values to the out

parameters. If a returned value is being recognized in
a response, then the reserved field name returns would
be used to assign that value from the response. corba
IDL also allows structures. In this case, the structure
name would be associated with the struct keyword in
the head of a corresponding rule, and the fields of the
structures could be assigned in the body.

The description of cIDL and cRGL given above has been
abbreviated, due to space constraints. From the cIDL

and cRGL specifications, the cawom compiler generates

6

the code for the components of the wrapper.

4 EVALUATION
In this section, we describe the application of the ca-
wom framework to generating wrappers for the Apache
server, and also for JDB. We also place our work in the
context of the existing literature.

WRAPPING APACHE
In one experiment, we specified and generated a wrap-
per for Apache [30] that enables certain administrative
functions of the Apache server to be accessed program-
matically from a corba client. In addition to the nor-
mal benefits of corba componentization (remote ac-
cess, type safety, leverage of other corba assets) it is
also important to note that the full power of the corba
security framework can be used for fine-grained access-
control over these administrative functions.

apachectl is a UNIX shell script that enables an ad-
ministrator to start, stop, and restart a web-server, and
perform several status checks. It also supports a “grace-
ful” restart which (unlike a a normal restart) allows web
servers to complete outstanding requests before restart-
ing them. The graceful restart is a deferred synchronous
call. We describe here the implementation of a cawom
wrapper for apachectl.

First, we define the apachectl’s command-line interface
in cIDL. This specification is shown in figures 3. From
this interface description, cawom will be able to derive
a corba IDL and the part of the wrapper that maps
incoming corba requests into commands for the shell.

The string expression in quotations following an oper-
ation’s signature is the command issued to the shell
when the operation is invoked. Thus, when the start()

method is invoked, the command “apachectl start\n”
will be issued to the shell (see lines 2 through 11) The
erroneous response than can occur with apachectl are
shown with exceptions. Second, we write a grammar
for the command-line responses in cRGL; this is shown in
figure 4. Using the grammar, cawom will produce the
part of the wrapper that interprets the command-line
results and maps these results into the output parame-
ters of the corba request.

Once defined, the interface description and response
grammar are fed to cawom, which produces the corba
wrapper. The wrapper consists of corba stubs for
clients, and a fully implemented corba server. The
server can be started and ready to serve immediately.
Clients can then be implemented using the stubs to issue
commands to apachectl via corba. It’s interesting to
note that the entire wrapper specification is only about
80 lines long. cawom generates about 1,000 lines of
Java code that implements all the details of the wrapper.
The performance was satisfactory. We measured the

end-to-end performance of the wrapper: this includes
the time from when the wrapper receives a corba in-
vocation to the time the corresponding command-line
string is sent to the LS, and the time from when the
corresponding response is received from the LS and the
response is initiated back to the corba environment.
In all cases, for all methods, we found the end-to-end
times to be less than 4 milliseconds. However, since the
resolution of the clock itself is only a millisecond, we
can only say that the wrapper provides an acceptable
overhead in most situations where distributed objects
are used, and networking delays are involved. Measure-
ments were performed on a 366 MHz Sun Solaris Ultra-
10 machine, with 256MB of main memory and 1 MB
cache.

WRAPPING JDB
We have also implemented a cawom wrapper for JDB.
This was a more complex wrapper than apachectl ex-
ample discussed above, and used more of the features in
the specification languages. In this section, we describe
some of the highlights of this wrapper specification, and
evaluate its effectiveness. We assume some basic famil-
iarity with the Java language and run-time.

The JDB debugger supports many useful commands,
some of which are simple and synchronous, like the
print command which prints values of variables. Other
commands, like stop at, which sets break-points in a
Java class source file, are more complex. If the class
named in the stop at command is loaded, JDB returns
promptly with a confirmation. If the class is not yet
loaded, the JDB returns promptly, but with a message
confirming that the break-point will be set when the
class is loaded. When the class is finally loaded, JDB
pipes up with a message saying it has complied with
the earlier stop at request. This command is handled
in our wrapper with a pair of methods in the cIDL inter-
face specification. We show a relevant excerpt below:

1 booleanstopat(in string cls, in long line)

2 {
3 "stop at "+cls+":"+line+"\n";
4 } raises(StopUsageException);

5 push void setStopAt(in string where);

The first method (line 1 above) sets the breakpoint. The
two in arguments supply the class name and the line
number; the unparsing instructions on line 3 specify how
to generate the LS command. An exception is possible,
in case the class name is improper; in this case, the Stop-
UsageException might be raised. The second method
uses the push keyword which we have not yet discussed.
This keyword marks a method which is outbound, and

7

signifies an asynchronous event that is sent out from
the wrapper to a designated event channel (using the
corba Event Service [15]) that can be monitored by a
corba client.

The description of the response-parsing associated with
the synchronous stopat method is handled in the cRGL

specification is similar to the other methods described
in apachectl wrapper specification. The cRGL rule for
the push method (setStopat) is given below:

6 setStopAt [command setStopAt]

7 → "Set deferred breakpoint ",

where=atTail.

8 atTail [string]

9 → qualified,":",integer.

When a class targeted by a stopat command is finally
loaded, the JDB sets the break-point and generates a
message of the form,

Set deferred breakpoint late.coming.class:23.

This response is parsed by the rule at line 6 above, and
the asynchronous event push is generated.

Other interesting methods in the cIDL specification (not
shown) include locals, corresponding to the locals

command in JDB that prints out a list of values of lo-
cal variables, and a list of values of arguments. These
lists get parsed by the parser thread in the wrapper
and returned as two separate corba sequences (corba
IDL supports a sequence abstract datatype) of type
Variable, which is defined in the cIDL specification as a
struct consisting of 3 elements, representing the name,
type and value of each variable (all corba strings).
The cIDL specification handles these in similar way to
normal corba IDL. The cRGL specification has features
to parse lists and fill them into corba sequences; it also
includes ways of recognizing fields of structs and filling
them in during parsing.

For most simple commands such as setting breakpoints,
the wrapper end-to-end overhead was on the order of
20 ms; more complex commands, like print which re-
quire more extensive parsing, are on the order of 40
ms. We expect these times (and the ones for apachectl

to be considerably faster with better-tuned commercial
implementations such as BinProlog5.

It is reasonable to compare our wrapper implementa-
tion to that of ddd [32], which wraps JDB to provide
a more pleasant user experience via a GUI. The code
in ddd pertaining to wrapping JDB is about an order
of magnitude larger that the cIDL and cRGL specifica-
tions for the cawom wrapper. The ad-hoc response-
parsing code in ddd is also much more complex, in-

5Please see http://www.binnet.com

tricate and difficult to understand. The performance
of this wrapper is also quite reasonable. Of course,
a corba-compliant wrapper, which can inter-operate
with other corba components and services, is arguably
a far better vehicle for adding value to JDB than a cus-
tom wrapper for a specific purpose (i.e., a user inter-
face). The JPDA API [14] enables programmatic con-
trol of the Java debugger; however, it only allows ac-
cess to JDB functionality from other Java programs; a
cawom wrapper, enables access via the open corba
standard to any command-line system6

RELATED WORK
In this section, we survey related work in the area of
wrappers7. The fundamental goal of a wrapper is to
intervene between two different systems, hiding the de-
tails of one from the other. The structural role a wrap-
per plays is in the same spirit as the ADAPTER or
FACADE patterns in object-oriented programming [10]
although the implementation details vary: our work can
be described as generating wrappers for command-line
systems from a specification in a high-level language
(based on enhanced IDL). We describe work that re-
lates to ours, first in terms of the work’s goals (adapta-
tion) and then in terms of the implementation technique
used (generation from specifications, specially based on
enhanced IDLs).

Of most immediate relevance, Javamatic [18] is a wrap-
per that makes the services of command-line LS sys-
tems available via a Java applet. No details of the
architecture or the specification language are available
in [18], and the authors have stated that the work has
been abandoned. Rather providing GUI access, cawom
wrappers allow inter-operation with the LS. Previous
work in software engineering has attacked the problem
of adaptation. Purtilo and Atlee [19], described a tech-
nique to adapt interfaces into a more suitable form.
Yellin and Strom [31] describe a technique for medi-
ating between two subsystems that conform to different
protocols of interaction.

Wrapper technology has frequently been employed in
the domain of security. Wrappers in the security domain
are used to either monitor or restrict the behavior of
applications. Naccio [8] uses wrappers to enforce secu-
rity policies on a particular platform. Fraser [9] defines
an architecture for wrappers to either enforce or mon-
itor applications on a given platform. Macoridis [24]
describes wrappers that mediate between different se-
curity architectures (e.g. Unix and corba).

There has also been considerable work in the database
community on wrapper generation. Garlic [20] and

6We are currently working on wrapping GDB using cawom.
7Due to space considerations, our survey of related work is

representative, rather than comprehensive.

8

TSIMMIS [6] are systems that integrate heterogeneous
data sources using a mediator based approach. Wrap-
pers (called translators here) are used to provide a com-
mon query interface on top of the existing source in-
terfaces. In this way, sources are adapted to a global
query environment. Gruser et. al. [11] similarly de-
scribe a toolkit for refitting, via wrappers, web-based
data sources with JDBC compliant interfaces. Sahuguet
and Azavant [21] developed W4F, a GUI for semi-
automated creation of wrappers for web-based data
sources. PrismTech in their OpenSynergy software
suite offer OpenMigrator [27], a wrapper based tech-
nology for supporting data migration. The goal in
databases, has been translating data between differ-
ent data models, query interfaces, or views. cawom-
generated wrappers actually mediate between different
execution environments—one based on corba, and the
other on ASCII command streams.

There has been quite a bit of work on enhancing IDLs to
introduce additional functionality. Flick [7] is a modu-
lar IDL compiler supporting multiple IDLs and language
mappings. Flick’s modular design lends it for use in cus-
tom IDL languages and code generation; thus allowing
wrapper code to be generated as part of the product of
an IDL compiler. Sterne et al [25] embed DTEL++ (do-
main type enforcement language for the object oriented
model) into corba IDL, thusly providing access control
for corba objects. Brose [5] describes how access con-
trol for corba objects can be achieved by introducing
the notion of views into corba IDL. Hence, Koch and
Kramer [12] demonstrate how concurrency controls for
corba objects can be achieved by making synchroniza-
tion assertions in an IDL. Our work adopts the same
general approach but with the specific goal of wrapping
command-line systems.

Limitations
cawom has several limitations. Some of these are the
subject of ongoing work; however, others are inherent
to the problem setting and/or our design approach.

Currently, cawom assumes that the LS reads com-
mands from and writes responses to the same stream
channel. It’s fairly straighforward to generalize this so
that the wrapper can feed commands to one of several
streams and also read responses from several channels.
cawom wrappers can now handle all three types of
interactions (synchronous, asynchronous, and deferred
synchronous) going into the wrapper; however, cawom
wrappers can only generate asynchronous events, and
only to fixed event channel, going outward. Again, ex-
tending cawom to handle all three types of interactions
into and out from the wrapper would be fairly straight-
forward within our general framework. The above two
limitations are being addressed in current work.

Other limitations of cawom are problems inherent to
the particular legacy setting (command-line systems)
and also the design choices we have made. Thus, some
command-line systems may have response languages
that are too complex to parse even with DCGs. Still
other languages may be parseable, but may require
much expensive backtracking before a successful parse
can be found. In such cases, the most viable choice
may be to hand-craft a custom, heuristic (but perhaps
incomplete) parser that works efficiently most of the
time.

Finally, there are many legacy systems that are not
command-line programs. We would like to provide
wrapper-generators that help in more settings; but this
remains an open problem.

5 CONCLUSION
Legacy systems continue to provide critical business
functions in many contexts, but do not inter-operate
well with more modern and standards-compliant sys-
tems. The difficulty of re-engineering these systems
has encouraged developers to wrap them for inter-
operability. Our goal is to simplify the construction
of wrappers. We focus specifically on command-line
oriented legacy systems, which are very common, and
try to automate away some of the drudgery of build-
ing wrappers for such systems. cawom is a tool that
generates wrappers for command-line systems from a
high-level specification. We describe its design and im-
plementation, and evaluate it with two examples, JDB
and Apache.

We continue to refine cawom’s features, and are
testing it on other legacy applications. Upto-
date information on CAWOM can be found at
http://castle.cs.ucdavis.edu. Our long term goal is
to build a modular suite of wrapping tools for a variety
of legacy systems and inter-operability standards.

ACKNOWLEDGEMENTS
We gratefully acknowledge support from the National
Science Foundation (SGER Grant #9985560), without
whose generosity this work would not have been possi-
ble.

REFERENCES

[1] G. Andrews and R. Olsson. The SR Programming
Language—Concurrency in Practice. Benjamin-
Cummings, 1993.

[2] M. Banbara and N. Tamura. Translating a linear
logic programming language into java. In Proceed-
ings of ICLP’99 Workshop, 1999.

[3] D. Batory, B. Lofaso, and Y. Smaragdakis. jts:
Tools for implementing domain-specific languages.

9

In Proceedings, 5th International Conference on
Software Reuse, June 1998.

[4] G. Bracha, M. Odersky, D. Stoutamire, and
P. Wadler. Making the future safe for the past:
Adding genericity to the java programming lan-
guage. In OOPSLA, 1998.

[5] G. Brose. Towards an access control policy speci-
fication language for corba. In ECOOP EWDOS,
1998.

[6] S. Chawathe, H. Garcia-Molina, J. Hammer,
K. Ireland, Y. Papakonstantinou, J. Ullman, and
J. Widom. The TSIMMIS project: Integration of
Heterogeneous Information sources. In IPSJ Con-
ference, 1994.

[7] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lind-
strom. Flick: A flexible, optimizing idl compiler.
In ACM SIGPLAN PLDI, 1997.

[8] D. Evans and A. Twyman. Flexible policy-directed
code safety. In IEEE Symposium on Security and
Privacy, 1999.

[9] T. Fraser, L. Badger, and M. Feldman. Hardening
cots software with generic software wrappers. In
IEEE Symposium on Security and Privacy, 1999.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley, 1994.

[11] J. Gruser, L. Raschid, M. Vidal, and L. Bright.
Wrapper generation for web accessible data
sources. In CoopIS, 1998.

[12] G. Henze, T. Koch, and B. Kramer. Annotations
for synchronization constraints in corba idl. In
IEEE SDNE, 1996.

[13] J. Hughes. The Design of a pretty-printer Library.
In J. Jeuring and E. Meijer, editors, Advanced
Functional Programming, volume 925 of LNCS.
Springer-Verlag, 1995.

[14] Javasoft Inc. JPDA API for Java debugging, 2000.
http://java.sun.com/products/jpda/faq.html.

[15] OMG. The security service
http://www.omg.org/technology/documents-
formal/event-service.htm, 1995.

[16] T. Parr and R. Quong. Antlr: A predicated-ll(k)
parser generator. Software Practice and Experi-
ence, July 1995.

[17] F. Pereira. Definite-Clause Grammars. Artificial
Intelligence, 1980.

[18] C. Phanouriou and M. Abrams. Transforming
command-line driven programs into web applica-
tions. In Proceedings, Sixth WWW Conference,
1997.

[19] J. M. Purtilo and J. M. Atlee. Module reuse by
interface adaptation. Software Practice and Expe-
rience, 21(6), 1991.

[20] M. T. Roth, M. Arya, L. M. Haas, M. J. Carey,
W. Cody, R. Fagin, P. M. Schwarz, J. Thomas,
and E. L. Wimmers. The Garlic Project. ACM
SIGMOD Record, 1996.

[21] A. Sahuguet and F. Azavant. WysiWyg Web
Wrapper Factory (w4f). In WWW Conference,
1999.

[22] G. L. Schaps. Compiler construction with antlr and
java. Dr. Dobb’s Journal, March 1999.

[23] J. Siegel. CORBA-3 Fundamentals and Program-
ming. John Wiley and Sons, 2000.

[24] T. S. Souder and S. Mancoridis. A tool for securely
integrating legacy systems into a distributed envi-
ronment. In Working Conference on Reverse En-
gineering (WCRE), Atlanta, GA, October 1999.

[25] D. F. Sterne, G. W. Tally, C. D. McDonell, D. L.
Sherman, D. L. Sames, P. X. Pasturel, and E. J.
Sebes. Scalable access control for distributed object
systems. In USENIX Security Symposium, 1999.

[26] K. J. Sullivan, I. Kalet, and D. Notkin. Evaluating
the mediator method: Prism as a case study. IEEE
Transactions on Software Engineering, 22(8), Au-
gust 1996.

[27] S. Trythall. Solving the data migration prob-
lem: Openmigrator, September 1999. PrismTech:
www.prisimtechnologies.com.

[28] V. Varadharajan and T. Hardjono. Security model
for distributed object framework and its applica-
bility to CORBA. In Proceedings of the 12th In-
ternational Information Security Conference IFIP
SEC’96, May 1996.

[29] P. Wadler. A Prettier Printer. Journal of Func-
tional Programming, 1999.

[30] The. Apache. website. http://www.apache.org.

[31] D. M. Yellin and R. E. Storm. Protocol specifi-
cations and component adaptors. ACM TOPLAS,
19(2), 1997.

[32] A. Zeller and D. Luetkehaus. ddd - a Free Graph-
ical Front-End for UNIX Debuggers. ACM SIG-
PLAN Notices, January 1996.

10

