Authentic Third-party Data Publication

Prem Devanbu, Michael Gertz, Chip Martel Stuart G. Stubblebine

Department of Computer Science CertCo
University of California 55 Broad Street — Suite 22
Davis, California CA 95616 USA New York, NY 10004

{devanbu|gertz|martel } @cs.ucdavis.edu stubblebine@cs.columbia.edu
Abstract

Integrity critical databases, such as financial information, used in high-value decisions, are fre-
quently published over the internet. Publishers of such data must satisfy the integrity, authenticity,
and non-repudiation requirements of end clients. Providing this protection over public data net-
works is costly. This is partly because building and running secure systems is hard. In practice, large
systems can not be verified to be secure and are frequently penetrated. The negative consequences
of a system intrusion at the data publisher can be severe. The problem is further complicated by
data and server replication to satisfy availability and scalability requirements.

We aim to reduce the trust required of the publisher of large, infrequently updated databases.
To do this, we separate the roles of owner and publisher. With a few trusted digital signatures on
the part of the owner, an untrusted publisher can use techniques based on Merkle hash trees, to
provide authenticity and non-repudiation of the answer to a database query. We do not require a
key to be held in an on-line system, thus reducing the impact of system penetrations. By allowing
untrusted publishers, our solution moves towards more scalable publication of large databases.

1 Background

Consider an Internet financial-data warehouse, with historical data about securities such as stocks and
bonds, that is used by businesses and individuals to make important investment decisions. The owner
(or creator) of such a database might be a rating/analysis service company (such as Standard & Poors),
or it might be a government agency. The owner’s data might be needed at high rates, for example
by user’s investment tools. We focus our attention on data which changes infrequently. We assume
high Query/Update ratios, with millions of queries per day. The data needs to be delivered promptly,
reliably and accurately.

One approach to this problem is for the owner of the information to digitally sign the answers to users’
queries, using a private signing key, sk,. This signature is verified using the corresponding public key,
pko. Based on the signature a user can be sure that the answer comes from the owner, and that the
owner can’t claim otherwise. However, there are several issues here. First the owner of the data may
be unwilling or unable to provide a sufficiently reliable and efficient database service to handle the
needed data rates. Second, even if the owner is willing and able to provide this service, the owner
needs to maintain a high level of physical security and system security to defend against attacks. This
has be done to protect the signing key, sko,, which must be resident at the server at all times to sign
outgoing data. In practice, large software systems have vulnerabilities, and keeping secret information
on a publicly-accessible system is always risky. Using special hardware devices to protect the signing
key will help, as would emerging cryptographic techniques like “threshold cryptography,” but these
methods do not fully solve the system-vulnerability problem, and can be too expensive in our domain,
both computationally and financially.

A more scalable approach is to use trusted third-party publishers in conjunction with a key man-
agement mechanism which allows a certified signing key of a publisher to speak for the owner. The
database (or database updates) is provided securely to the publisher, who responds to user queries by
signing them with it’s own (certified) signing key, skp. Presumably, the market for useful databases
will motivate publishers to provide this service, unburdening database owners of the need to do so.
The owner simply needs to sign the data after each update and distribute it to the publisher. As
demand increases, more publishers will emerge, or more capable ones, making this approach inher-
ently scalable. But the approach still suffers from the problem and expense of trying to maintain
a secure system accessible from the Internet. Furthermore, the user might worry that a publisher
engages in deception. The user has to find a publisher that she can trust. She would have to believe
that her publisher was both competent and careful with site administration and physical access to the
database. She might worry about the private signing-key of the publisher, which has to be resident at
the publisher’s server and is therefore vulnerable to attack. To gain trust, the publisher would have to
adopt meticulous administrative practices, at far greater cost. The need for trusted publishers would
increase the reliance on brand-names, which would limit market competition.

In a summary of fundamental problems for electronic commerce [21], Tygar asks “How can we protect
re-sold or re-distributed information ... 7”7 We present an approach to this problem.

2 Owur Approach

We allow an untrusted publisher to provide a verification-object VO to a user to verify an answer
to her database query. The user can use the VO to gain assurance that the answer is just what the
database owner would have provided. The verification-object is based on a summary-signature
that the owner periodically distributes to the publisher. See Figure 1.

The summary-signature is a bottom-up hash computed recursively over B-tree type indexes for the
entire set of tuples in each relation of the owner’s database, signed with sk,. Answers to queries are

database
Pkor Sko summary-signature Pko

Owner Publisher

query

response
verification—object

pk,
User °

Figure 1: We partition the role of information provider into owner and publisher. The owner provides database
updates and summary signatures to the publisher. The publisher is untrusted. The user makes inquiries with
the publisher. She gets responses which can be verified using a returned verification-object. Superscripts denote
keys known to that party. Only sk, is secret. The client must be sure of the binding of pk, to the owner.

various combinations of subsets of these relations. Given a query, the publisher computes the answer.
To show that an answer is correct the publisher constructs a verification-object using the same B-tree
that the owner had used to compute the summary-signature. This verification-object validates an
answer by providing an unforgeable “proof” which links the answer to the summary-signature. Our
approach has several features:

1. Besides his own security, a user need only trust the key of the owner. The owner only needs to
distribute the summary-signature during database updates. So, the owner’s private key can be
maintained in an “offline” machine, isolated from network-based attacks. The key itself can be
ensconced in a hardware token, which is used only to sign a single hash during updates.

2. Users need not trust the publishers, nor their keys. In particular, if a particular publisher were
compromised, the result would only be a loss of service at that publisher.

3. In all our techniques, the verification-object is of size linear in the size of the answer to a query,
and logarithmic in the size of the database.

4. The verification-object guarantees that the answer is correct, without any extra or missing tuples.

5. In all of our techniques, the overheads for computing the summary-signature, the VO, and for
checking the VO are reasonable.

6. The approach offers far greater survivability. Publishers can be replicated without co-ordination,
and the loss of one publisher does not degrade security and need not degrade availability.

A correct answer and verification-object will always be accepted by the user. An incorrect answer
and verification-object will almost always be rejected, since our techniques make it computationally
infeasible to forge a correct verification-object for an incorrect answer. Overall, the approach nicely
simplifies the operational security requirements for both owners and publishers.

3 Preliminaries

In this section we will discuss the basic notions, definitions and concepts necessary for the approach
presented in this paper. In Section 3.1 we will present the basic notions underlying relational databases
and queries formulated in relational algebra. In Section 3.2 we will discuss the computation and usage
hash-trees.

3.1 Relational Databases

The data model underlying our approach is the relational data model (see, e.g., [6, 19]), where the
owner and the publisher manage the data using a relational database management system (RDBMS).
A relation schema R(Ay, Ag, ..., Ay,) consists of a relation name R and an ordered set of attribute
names (Aj, Ag, ..., A,), also denoted by schema(R). Each attribute A; is defined on a domain D;.
An extension of a relation schema with arity n (also called relation, for short) is a finite subset of the
Cartesian product D1 X ... x D,. The extension of a relation schema R is denoted by r. The value
of a tuple t € r for an attribute A; is denoted by t.A;. We assume that with each relation schema
R a set pk(R) C {A1,...,A,} is associated which designates the primary key. The number of tuples
in a relation r is called the cardinality of the relation, denoted by | r |. A database schema S is
a collection of relation schemas & = {Ry,..., Ry, }. For a database schema S, the extension of the
relation schemas at a particular point in time is called a database instance (or database).

The basic five operators are selections, projections, unions, cartesian products and set-differences.
Other popular derived operations, used in complex queries, are natural join or equi-join X, condition
join or theta-join W (with C being a condition on join attributes), and set-intersection N.

3.2 Merkle Hash Trees

We describe the computation of a Merkle Hash Tree [13] for over given relation r with relation schema
R = (Ai,...,A,). For this, assume that A = (A;,..., Ag) is a list of attributes from schema(R). A
Merkle Hash Tree, denoted by M HT'(r, A), is computed using a collision-resistant hash function h:

1. First, compute the tuple hash h; for each tuple ¢t € r thus:
hi(t) = h(h(t.Ay) || ... || h(t.-Ay))

The tuple hash (by the collision resistance of the hash function) functions as a “nearly unique”
tuple identifier (for a hash-length of 128 bits, probability of collisions approaches 27128). We also
assume a distinct “boundary tuple” t;, with artificial attribute values chosen to be the extremal
tuple in the relation, with corresponding tuple hash hy .

2. Next, compute the Merkle hash tree for relation r. For this, assume that r is sorted by the values
of A so that for two distinct tuples ¢;_1,t; € r, t;_1.4 < t;.A.

Leaf-nodes : RO(i) = he(ts), i=1...]r],
R (i) = h(R~12i —1) || K'1(20)) fori =1... {(’27“—34‘) W J = 1...[logy(| 7)]
If a h/~1(...) needed to compute a h7 is not defined by the lower levels, it is taken to be hy,.
Thus hy is used to indicate the boundary of the M HT.

The sole hash value at the level [logy(] 7 |)], is the “root hash” of the Merkle tree. In the sequel,
we denote the two values h/~1(2i — 1) and h?~1(2i)) used to compute h’(i) as hash siblings; h/ (i) is
their parent. In figure 2: h34 is the parent of h3 and h4; h3 and and h4 are hash siblings. This
construction easily generalizes to a higher branching factor K > 2, such as in a BT-tree; however, for
our presentation here, we primarily use binary trees. Indeed, our approach works best if the owner
and the publisher build an M HT around index structures that are used in query evaluation. In this
case, constructing a VO is a very minor overhead over the query evaluation process itself.

Note that (by the cryptographic assumption of a collision-resistant hash function) if the correct value
of the parent is known to the client, the publisher cannot forge the value of its children. The owner’s
signature on the root hash value of the Merkle tree underlies the security of our approach, in the same
spirit as [15].

h* =h(h12 || h34)

h12=h(h1 || h2) h34=h(h3 || h4)

o O O

hl h2 h3 h4

Figure 2: Computation of a Merkle hash tree

Definition 1 (Hash Path) Let h°(i) be a leaf node in MHT(r, A) corresponding to a tuple t; € r.
The nodes necessary to compute the hash path up to the root hash is denoted as path(t;). Such a hash
path always has the length [logs(| r |)] and comprises 2 * [logy(| 7 |)] — 1 nodes where ezactly two
nodes are leaf nodes. Of these, only [logy(| 7 |)] + 1 need be provided to recompute the value at the
root. Hash paths can also be provided for non-leaf nodes.

The [logy(] 7)] + 1 nodes in path(t;) constitute the VO showing that ¢; is actually in the relation.
The owner’s signature on the root node certifies its authenticity. Indeed any interior node within the
hash tree can be authenticated by giving a path to the root. Hash paths show that tuples actually
exist in a relation; to show that set of tuples is complete, we need to show boundaries.

Definition 2 (Boundaries) Any non-empty contiguous sequence q¢ = (t;,... ,t;) of leaf nodes in a
Merkle Hash Tree M HT'(r, A), has two special leaf nodes LU B(q) and GLB(q) that describe the lowest
upper and greatest lower bound values, respectively, of q and are defined as follows:

(1) GLB(q):={t|terntA<t;,AN(-Tser:sA>tANs.A<t.A)}
(2) LUB(q):={t|terAntA>tjAN(-Tser:s A<t ANs.A>1t;A)}

The above definition is somewhat simplified, and ignores tuples occurring at the edges of the M HT;
that extension is straightforward. We also assume that both GLB(q) and LUB(q) are singletons.
This can easily be accomplished by adding pk(R) to the list A of attributes by which the leaves in
MHT(r, A) are ordered.

Any non-empty contiguous sequence g = (t;, ... ,t;) leaf nodes in a Merkle Hash Tree M HT(r, A), has
a lowest common ancestor LC'A(q). This situation is illustrated in Figure 2. Given LCA(q), one can
show a hash path path(LCA(q)) to the authenticated root hash value. After this is done, (shorter)
hash paths from each tuple to LC'A(q) can provide evidence of membership of ¢ in the entire tree.
This approach can also be used to provide evidence that two nodes are proximate in the tree.

Definition 3 (Prozimity Subtree) Consider a consecutive pair of tuples (leaf nodes) s, t in M HT (r, A),
and their lowest common ancestor, LCA((s,t)). This node, along with the two paths showing that s
(respectively, t) is the rightmost (leftmost) element in the left (right) subtree of LC A((s,t)) constitute
the “proximity subtree” of s and t, denoted by ptree(s,t).

Proximity subtrees are used in boundary cases, with GLBs and LUBs i.e., to show a “near-miss”
tuple that occurs just outside the answer set lies next to the extremal tuples in the answer set. In this
case, it is important to note that by construction, we just need to reveal the relevant attribute value
in the “near-miss” to show that it is indeed a near miss; with just the hash of the other attributes, the
tuple hash, and the rest of the proximity tree can be exhibited. This allows us to provide evidence of
completeness without sending along the entire database.

Path "

Proximity LCA(9)
Subtree
Proximity
Subtree

LU%q)\/ \j(q)
q

Figure 3: A Merkle tree, with a contiguous subrange ¢, with a least common ancestor LCA(q), and
upper and lower bounds. Note verifiable hash path “1” from LCA(q) to the root, and the proximity
subtrees (thick lines) for the “near miss” tuples for LUB(q) and GLB(q) which show that q is complete.

We finally define desirable properties of the answer set ¢ returned by publisher, in terms of the correct
answer that would have been returned by owner.

Definition 4 The answer given by publisher to a query q is inclusive if it contains only the tuples
that would have been returned by owner, and is complete if contains all the tuples that would have been
returned by owner.

4 Base level Relational Queries

In this section we outline the computation of VO for answers to queries. We illustrate the basic idea
behind our approach for selection and projection queries in Section 4.1 and 4.2, respectively. Slightly
more complex types of queries (join queries) and set operators are discussed in Sections 4.3 and 4.4.

4.1 Selections

Assume a selection query of the form o4,0.(r),¢ € D; which determines a result set ¢ C r. Fur-
thermore, assume that the Merkle Hash Tree M HT(r, A;) has been constructed. For each possible
comparison predicate © € {=,#, <, >}, we show how the publisher can construct the VO that client
can use to verify that the answer ¢ is inclusive and complete. In all the following cases, if owner and
publisher construct Merkle hash trees over the same index structures used for querying, the overhead
for constructing the VO is minor. We first consider the cases for the comparison predicate © = =
over some attribute A;. We consider two cases: when ¢ = {}, and otherwise. If ¢ = {}, then the VO
must show that tuple exists that satisfies the selection. For this, we provide paths of the two tuples
that “surround” the non-existing tuple. The two tuples are determined by GLB(q') and LU B(q") with
¢’ = c¢. Determining path(GLB(q')) and path(LU B(q')) requires searching the two associated tuples
in the leaf nodes of M HT(r, A;). The proximity subtree ptree(GLB(q'), LUB(q')) provides required

evidence that the answer set is empty. The size of the VO is O(log, | 7 |).

If ¢ # {}, it is a set of tuples which build a contiguous sequence of leaf nodes in M HT(r, A;). We
provide a VO for ¢ thus: first, identify [:= LCA(qUGLB(q) U LUB(q)) in MHT(r, A;), and show a
verifiable path from [to the root. Next, identify proximity subtrees showing that GLB(q) (LU B(q))
occur consecutively to the smallest (largest) element of q. Now, the entire sub-tree from the elements

of the set ¢ to [can be constructed, using the hash values of the tuples in ¢q. This verifies that the
entire set occurs in the leaf nodes of the tree. To construct this subtree and to verify the root hash
on the LC'A(q) of this subtree, the length of the VO is O(| q | +1logy(] 7 |)). The proximity subtrees
establish that no tuples are left out. We produce VOs for © =# (negated) and © € {<,>} (range)
queries in analogous fashion, bracketing the included tuples with boundary tuples to show inclusivity
and completeness. Details are omitted here for brevity, and can be found in [8].

In [8] we present a formal proof that our construction VOs for selections is secure:

Lemma 5 If publisher cannot engineer collisions on the hash function or forge signatures on the root
hash value, then if client computes the right authenticated root hash value using the VO and the answer
provided for selection queries, then the answer is indeed complete and inclusive.

The statement and proofs regarding the security of Vs for operators besides selections are similar to
the one presented for selections in [8]. This, however, is not an exact-security proof [2], which is left
for future work.

4.2 Projections

For queries of the pattern m4(R), A C schema(R), the projection operator eliminates some attributes
of the tuples in the relation r, and then eliminates duplicates from the set of shortened tuples, yielding
the final answer q. There may be many different possible projections on a relation R. If client wishes
to choose among these dynamically, it may be best to let the client perform the projection. The client
will then also have to eliminate duplicates because these are not automatically eliminated in SQL,
unlike the relational algebra. So in this case, the client is provided with the whole intermediate result
7 (or some subset thereof after intermediate selections etc) and the VO for Z before the projection; so
the VO will be linear in size | Z |, rather than the smaller size | ¢ | of the final result. Note also that
the projection may actually mask some attributes that the client is not allowed to see; if so, with just
the hash of those attributes in each tuple, the client can compute the tuple hash, and the VO for 7
will still work.

Consider the case where a particular projection m4(r) (which is used often) projects onto attributes
where duplicate elimination will remove numerous tuples, leaving behind a small final answer ¢q. Given
the pre-projection tuple set, the client would have to do all this work. Now, suppose we have a Merkle
tree MHT(r, A), i.e., we assume that the sets of retained attribute values can be mapped to single
values (which corresponds to building equivalence classes) with an applicable total order. In this case,
we can provide a VO for the projection step that is linear in the size of the projected result q.

Each tuple t in the result set ¢ may arise from a set S(t) C r with tuples having identical values for
the projected attribute(s) A. We must show that the set ¢ is inclusive and complete:

1. To prove t € g, we show the hash path from any witness tuple y € S(t) C r to the Merkle Root.
However, “boundary” tuples make better witnesses, as we describe next.

2. To show that there are no tuples missing, say between ¢ and ¢, (¢, € q), we just show that
S(t),S(t'),C r are contiguous in the sorted order. Hash paths from two “boundary” tuples
y € S(t) and x € S(t') that occur next to each other in the Merkle tree can do this.

We observe that both the above bits of evidence are provided by displaying at most 2 | ¢ | hash paths,
each of length [logyr|. This meets our constraint that the size of the authentication evidence be
bounded by O(| ¢ | logy | 7 |).

Constructing merkle trees to provide compact VOs for duplicate elimination with every possible pro-
jection might be undesirable. In this case, we might construct trees for only highly selective projection
attributes, and leave the other duplicate eliminations to be done by the client, as with SQL.

4.3 Joins

Joins between two or more relations, specially equi-joins where relations are combined based on pri-
mary key — foreign key dependencies, are very common. We focus on pairwise joins of the pattern
R Mg S where C' is a condition on join attributes of the pattern Ar©Ag, Ar € schema(R), Ag €
schema(S),0 € {=,<,>}. For O being the equality predicate, we obtain the so-called equi-join. We
show 3 different approaches, for different situations.

Given a query of the pattern R Mg S, one structure that supports computation of very compact VOs
for the query result is based on the materialization (i.e., the physical storage) of the Cartesian Product
R x S. This structure supports the three types of joins, which can all be formulated in terms of basic
relational algebra operators, i.e., R Mg,044 S = 0ap04(R % S). Assume m =| R |,n =| S |. The
verification structure for R Mo S queries is constructed by sorting the Cartesian Product according to
the difference between the values for Ar and Ag, assuming such an operation can be defined, at least
in terms of “positive”, “none” or “negative”. This yields three “groups” of leaf nodes in the Merkle
Tree: (1) nodes for t. Ap — s.Ag for two tuples t € R, s € S is 0, thus supporting equi-joins, (2) nodes
where the difference is positive, for the predicate >, and (3) nodes where the difference is negative, for
the predicate <. If only simple © joins, with ® ==, > or < are desired, there is no need to construct
binary Merkle trees over the entire cross product—we can just group the tuples in R x .S into the three
groups, hash each group in its entirely, and append the three hashes to get the root hash. In this case,
the VOs for the three basic © queries would consist only of 2 hash values! For more complex queries,

If it is known that the querys will only result in equi-joins against the database, an optimized structure
can be used. We will only sketch the basic concept for using this structure here. Instead of a space-
consuming materialization of the Cartesian Product R xS, we materialize the Full Outer Join R XC S
which pads tuples for which no matching tuples in the other relation exist with null values (see, e.g.,
[6, 19]). The result tuples obtained by the full outer-join operator again can be grouped into three
classes: (1) those tuples ts,t € R,s € S, for which the join condition holds, (2) tuples from r for
which no matching tuples in s exist, and (3) tuples from s for which no matching tuples in r exist.
Constructing a VO for the result of query of the pattern R X404, S then can be done in the same
fashion as outlined above.

Suppose R and S have B-tree indices over the join attributes, and these trees have been Merkle-
hashed; also suppose, without loss of generality, that of the two relations, R has the smaller number
of distinct values, say r¢, and that the size of the answer is ¢. We can now provide larger VOs of size
O(r?logn + r?logm+ | ¢ |) in the worst case!. This is done by doing a “verified” merge of the leaves
of the two index trees. Whenever the join attributes have the right 0 relation, witness hash paths in
the trees for R and S are provided to show inclusiveness of the resulting answer tuples; when tuples in
R or S are skipped during the merge, we provide a pair of proximity subtrees in R or S respectively
to justify the length of the skip. This conventional approach to joins gives rise to larger VOs than the
approach described above, but at reduced costs for publisher and owner.

4.4 Set Operations

All set operations involve two relations v and v. We may assume that u and v are intermediate results
of a query evaluation, and are subsets of some relations r and s respectively, and that r and s are each
sorted (possibly on different attributes) and have its own Merkle tree M HT'(r, A) and MHT (s, A'),
the root of which is signed as usual. We consider unions and intersections.

Union. In this case, the answer set is ¢ = v Uwv. The client is given VOs for u and v, along with
VOs for both; client verifies both VOs, and computes u U v. This can be done in O(u + v) using a

While we can construct pathological cases that require VOs of this size, practical cases may often be better, being
closer to O(qlogn + qlogm). Further empirical study is needed.

hash merge. Since | ¢ | is O(| u | + | v |), the overall VO, and the time required to compute and verify
the answer, are still linear in the size of the answer.

Intersection. The approach for union, however, does not produce compact VOs for set intersection.
Suppose ¢ = u N v where u and v are as before: note that often | ¢ | could be much smaller than
| w |+ | v|. Thus, sending the VOs for v and v and letting the client compute the final result could
be a lot of extra work. We would like a VO of size O(| q |). If Merkle trees exist for u and v, we can
do inclusiveness in O(| q |): publisher can build a VO for g with O(| ¢ |) verification paths, showing
elements of ¢ belong to both u and v. Completeness is harder. One can pick the smaller set (say
u) and for each element in u — ¢, construct a VO show that it is ¢ wv. In general, if v and v are
intermediate results not occurring contiguously in the same Merkle tree, such a VO is linear in the
size of the smaller set (say u). Consider for example a set of tuples (name, age, salary), where one
wishes to select tuples in a specific salary and age range. Assume then that v has been obtained by
performing a selection based on salary, and v based on age. u and v would be verified by VO’s
resulting from different Merkle hash trees: one sorted by salary, and one sorted by age. Computing
the intersection uNv would result in a VO with size linear in | u |: this VO would provide inclusiveness
evidence (in u and v) for each element of v N v, and would show completeness by showing that each
remaining element in (v — (v Nwv)) is not in v. This again leaves us with the unsatisfactory situation
of a VO being linear in the size of a potentially much larger intermediate result (if | w [>|unNwv |).
A similar problem occurs with set differences u — v.

We have not solved the general problem of constructing VO’s linear in the size of the result for inter-
sections and set differences. Indeed, the question remains as to whether (in general) linear-size VOs
can even be constructed for these objects. However, we have developed an approach to constructing
linear-size VOs for a common type of intersection, range query, such as the (name, age, salary) range
query discussed above. This is accomplished using a data structure drawn from computational ge-
ometry called a multi-dimensional range tree. This also supports set differences over range querys on
several attributes.

In d-dimensional computational geometry, when one is dealing with sets of points in d-space, one could
ask a d-space range query. Consider a spatial interval (< a1,z > ... < :ccll,acg >): this represents a
axis-aligned rectilinear solid in d-space. A query could ask for the points that occur within this solid.
Such problems are solved efficiently in computational geometry using so-called Range Trees (See [10],
Chapter 5). We draw an analogy between this problem and a database query of the form

Uc% <A1<c? (T) ﬂ s ﬂ Uc(li<Ad<03 (T)

where {A1,... Aq} C schema(R) for a relation R. We use the multi-dimensional range tree (mdrt)
data structure to solve such queries and provide compact verification objects. For brevity, we omit the
full details of our approach. However, in [8], we show how to construct VOs for “d”-way range queries
such as the ones shown above. We also argue that the size of these VOs, for a relation with size n, is
O(| ¢ | dlogn +1log? n). The mdrt itself uses O(nlog? ! n) space and can also be constructed in time

O(n logd—! n). While the data structure arises out of computational geometry, it can be used with any
domain that has enough structure to admit a total order. Full details are availabe in [8]

5 Pragmatic Issues, Related Work and Future Research

We now examine some pragmatic considerations in using our approach, as well as related work and
future research.

Query processing flexibility. What querys can be handled? A typical SQL “select ... from ...
where ...” can be thought of one or more joins, followed by a (combined) selection, followed by a
projection. A multi-dimensional range tree can be used for both efficient evaluation and construction

of compact VOs for such queries. Specifically, consider a query that involves the join of two relations
R and S, followed by a series of selections and a final projection. Let’s assume a Theta-join over
attribute Ay (A; occurring in both relations), followed by selections on attributes Ay and As, and a
final projection on several attributes, jointly represented by A4 (as discussed in Section 4.2). Full details
are deferred to [8]. However, to summarize briefly: such a query can be evaluated by constructing a
multi-dimensional range tree, beginning with the join attributes, followed by trees for each selection
attribute, and perhaps finishing with a tree for some selective projection attributes.

Conventions. It is important to note that all interested parties: the owner, the publisher and the
client, share a consistent schema for the databases being published. In addition there needs to be
secure binding between the schema, the queries and the query evaluation process over the constructed
Merkle trees. A convention to include this information within the hash trees needs to be established.
All parties also need to agree on the data structures used for the VO. It is also important that the
publisher and the client agree upon the format in which the VO together with the query result is
encoded and transmitted. Tagged data streams such as XML provide an attractive option.

Recent Query Evaluations. Verifiers must verify that query evaluation is due to an “adequately
recent” snapshot of the database and not an old version. We assume the technique of recent-secure
authentication [20] for solving this problem. Risk takers (e.g. organizations relying on the accuracy
of the data) specify freshness policies on how fresh the database must be. The digital signatures over
the database include a timestamp of the last update as well as other versioning information. Clients
interpret the timestamps and verify the database is adequately recent with respect to their freshness
policies.

Query flexibility. For efficient verification of query answering, we make use of different trees over
sorted tuple sets. Without such trees, our approach cannot provide small verification objects. This
points to a limitation of our approach—only queries for which Merkle trees have been pre-computed
can be evaluated with compact verification objects. Our approach cannot support arbitrary interactive
querying with compact verification objects. Arbitrary interactive querying, however, is quite rare in
the presence of fixed applications at client sites.

In practice, however, data-intensive applications make use of a fixed set of queries. Indeed, via mech-
anisms such as embedded SQL (see, e.g., [19]) database queries are compiled into applications. These
queries can still make use of parameters entered by a user and which are typically used in selection
conditions. Our approach is compatible with such applications. Essentially, client applications commit
a priori the queries they wish to execute; the owner and the publisher then pre-compute the required
Merkle hash trees to produce short verification objects.

So while our approach cannot provide compact verification objects in the context of arbitrary in-
teractive database querying, it is quite compatible with the widely-used practice of embedding pre-
determined (and parameterizable) queries within data-intensive applications. In case there is a demand
for a great many different projections, then we can only use Merkle trees for the most selective at-
tributes, and in other cases let the client do the projection himself.

Costs and Trade-offs. If the owner and publisher can use the same data structure for processing
queries and for computing VOs, the additional effort of providing verification is greatly reduced. The
Merkle hash values can be computed while building the B-tree index data structures, and can be
updated while updating the indices. These computations can be reproduced at both the owner and
publisher sites. Likewise, the VOs objects can be easily extracted at minor additional cost during
normal query-processing.

Some of our approaches to Joins (materializing cross-products or full outer joins) are expensive; howev-
er this cost is amortized over more efficient query processing, and more compact VOs. In addition, this

10

approach is similar to quadratic physical structures (e.g., clustered indices) currently used in databas-
es and warehousing applications, and offers similar performance benefits. In addition, although the
construction of multi-dimensional range trees is expensive, it leads to more efficient computation of
(and smaller VOs for) range-query type of set-intersections.

Trade-offs between query performance and storage costs are common. We introduce a new factor, the
cost of computing and verifying VOs; this cost, fairly modest in many cases, comes with the benefit of
additional security, i.e.,, the elimination of the need to trust the database publisher. Further research
will provide other possible implementation and design choices.

Future Work. To our knowledge, this is a new perspective on authentic data publication; many
issues await exploration. We present a short list here: a) Possible lower bounds on the size of verifica-
tion objects for different operations b) more efficient and/or secure underlying physical data structures
c) Exact security analyses [2] of the precise costs of attacking our approach d) generalization to non-
relational data models (e.g., XML, OODB, etc.) e) approaches to supporting re-engineering of existing
databases for authentic re-publication f) Other protocol models, e.g., perhaps with partially trusted
publishers, or quorums.

Related Work. The use of Merkle hash trees for authentication of data is not new. This work is
most closely related to the work of Naor & Nissim [15] for revocation. Haber and Stronetta [9] use
similar techniques for timestamping. Similar schemes [18] have also been used for micropayments.
All these schemes (including ours) share a common theme of leveraging the trust provided by a few
digital signatures from a trusted party over multiple hashes, hash paths or hash trees, with the goal of
protecting the integrity of the content, with efficient verification, since hashes are more efficient than
digital signatures. However, the use of such trees for authentic data publication is new.

There is quite bit of related work in the general area of database security, particularly on access control,
statistical querying etc [5, 12]. Anderson [3] discusses an approach to third-party publication of data
in files, but without querying over the contents. Again, to our knowledge, this particular problem of
authentic database publication has remained unexamined.

Finally, our approach can be viewed as providing “proof-carrying” [16] answers to database queries;
however, unlike the embedded logical proofs of [16] our VOs are based on secure hashing, rather than
on formal logic.

6 Conclusion

We have explored the problem of authentic third party data publication. In particular, we have
developed several techniques that allow untrusted third parties to provide evidence of inclusive and
complete query evaluation to clients without using public-key signatures. In addition, the evidence
provided is linear in the size of the query answers, and can be checked in linear time. Our techniques do
involve the construction of complex data structures, but the cost of this construction is amortized over
more efficient query evaluation, as well as the production of compact verification objects. Such pre-
computation of views and indexing structures are not uncommon in data warehousing applications [17].

Our techniques suggest the use of a single hash function. In particularly high-integrity applications
where tolerance of failure is very low, one can use multiple one-way hash functions to construct each
Merkle tree. Clients requiring higher levels of integrity may check more than one hash computation.

However, our techniques are restricted currently to the relational model. Our techniques do not allow
interactive querying, but can be used with embedded queries in applications. We cannot currently
construct linear-size VOs general SQL queries, such as ones including arbitrary intersections; we also
leave open the (lower-bound) question as to whether such VOs are possible. We believe, however, that

11

our techniques are a start on an important problem area, and subsequent work will perhaps remove
some of these limitations.

References

[1]

2]

[11]

[12]
[13]
[14]
[15]

[16]
[17]
[18]

[19]
[20]

[21]

N.M. Amato and M.C. Loui. Checking linked data structures. In Proceedings of the 24th Annual
International Symposium on Fault-Tolerant Computing (FTCS), 1994.

Mihir Bellare. Practice-oriented provable security. In G. Davida E. Okamoto and M. Mambo,
editors, Proceedings of First International Workshop on Information Security (ISW 97), volume
1396 of LNCS. Springer Verlag, 1997.

R. J. Anderson. The Eternity Service. In Proceedings of Pragocrypt, 1996.

M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Noar. Checking the inclusiveness of
memories. Algorithmica, 12(2/3):225-244, 1994. Originally appeared in FOCS 91.

S. Castano, M. Fugini, G. Martella, P. Samarati Database Security Addison-Wesley, 1995
C.J. Date. An Introduction to Database Systems (7th Ed), Addison-Wesley, 1999.
C.J. Date and H. Darwen. A Guide to the SQL Standard (4th Ed), Addison Wesley, 1997.

P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine. Authentic third-party data publication.
(http://seclab.cs.ucdavis.edu/~devanbu/authdbpub.pdf), 1999.

S. Haber and W. S. Stornetta. How to timestamp a digital document J. of Cryptology, 3(2), 1991.

M. D. Berg , M. V. Kreveld, M. Overmars and O. Schwarzkopf. Computational Geometry.
Springer-Verlag, New York.

S. Jajodia, P. Samarati, V. S. Subramanian, E. Bertino, A Unified Framework for Enforcing
Multiple Access Control Policies Proceedings ACM SIGMOD, 1997.

T. Lunt, (Ed.) Research Directions in Database Security Springer-Verlag, 1992
R.C. Merkle. A certified digital signature. In Advances in Cryptology—Crypto '89, 1989.
J. Melton, A.R. Simon. Understanding the New SQL. Morgan Kaufmann, 1993.

M. Naor, K. Nissim. Certificate Revocation and Certificate Update. Proceedings, 7th USENIX
Security Symposium. 1998.

G. Necula. Proof-carrying code. In Proceedings of POPL 97. ACM SIGPLAN, 1997.

W.H. Inmon. Building the Data Warehouse John Wiley & Sons, 1996.

S. Charanjit and M. Yung. Paytree: Amortized Signature for flexible micropayments Second
Useniz Workshop on FElectronic Commerce Proceedings, 1996

A. Silberschatz, H. Korth, S. Sudarshan: Database System Concepts, McGraw-Hill, 1997.

S. G. Stubblebine. Recent-secure authentication: Enforcing Revocations in distributed systems
IEEE Computer Society Symposium on Security and Privacy, 1995.

J. D. Tygar Open Problems In Electronic Commerce Proceedings ACM SIGMOD PODS, 1999.

12

