
Software Engineering for Security: a Roadmap

Premkumar T. Devanbu
Department of Computer Science

University of California,
Davis, CA, USA 95616
devanbu@cs.ucdavis.edu

Stuart Stubblebine
CertCo

55 Broad Street, Suite 22
New York, NY USA 10004

stuart@stubblebine.org

ABSTRACT
Is there such a thing anymore as a software system that
doesn’t need to be secure? Almost every software-
controlled system faces threats from potential adversaries,
from Internet-aware client applications running on PCs,
to complex telecommunications and power systems acces-
sible over the Internet, to commodity software with copy
protection mechanisms. Software engineers must be cog-
nizant of these threats and engineer systems with credible
defenses, while still delivering value to customers. In this
paper, we present our perspectives on the research issues
that arise in the interactions between software engineering
and security.

Keywords
Security, Software Engineering, Copy protection, Water-
marking.

1 BACKGROUND
Just about every software system deployed today must de-
fend itself from malicious adversaries. Modern society is
critically dependent on a wide range of software systems.
Threats from a software security breach could range from
the very mild (such as the defeat of copy protection in a
video game) to the disastrous (such as intrusion into a nu-
clear power plant control system). With the advent of the
Internet, and increasing reliance on public packet-switched
networks for e-commerce, telecommuting, etc., the risks
from malicious attacks are increasing. Software system
designers today must think not only of users, but also of
adversaries. Security concerns must inform every phase of
software development, from requirements engineering to

This is a pre-print of paper to appear ICSE 2000 special
volume on the “Future of Software Engineering”. This pa-
per is under frequent revision until the conference. Please
pass on the URL rather than copying this paper.

design, implementation, testing, and deployment.

At the same time, changes in software development prac-
tices and software architectures have opened new opportu-
nities for applying security engineering. Techniques such
as cryptography and tamper-resistant hardware can be
used to build trust in software tools and processes. These
opportunities arise from the fact that software systems are
no longer monolithic single-vendor creations. Increasingly,
systems are complex, late-bound assemblages made up of
commercial, off-the-shelf (COTS) elements and even mo-
bile code. COTS offers great savings over custom-written
software. However, COTS vendors, seeking to protect in-
tellectual property, usually will sell components as bina-
ries, without source code or design documentation. Soft-
ware developers are thus faced with the risks of construct-
ing systems out of unknown black box components. The
late introduction of mobile code into applications is anoth-
er concern. Recent research has shown how cryptograph-
ic techniques such as interactive proofs and fair random
coin flips, as well as security technologies such as tamper-
resistant hardware can be used by the software practitioner
to address these concerns.

These and other interactions between software engineer-
ing and security engineering give rise to several fascinat-
ing research challenges and opportunities. These are the
subject of this paper. We have structured the paper rough-
ly along the lines of the waterfall model, beginning with
requirements and moving on through later lifecycle activ-
ities, ending with deployment and administration.

2 REQUIREMENTS AND POLICIES
Security, like beauty, is in the eye of the beholder. A
public library will clearly have a different view of com-
puter security than will a central clearing house for inter-
bank transactions. The specific security requirements of a
particular installation can only be determined after care-
ful consideration of the business context, user preferences,
and/or defense posture. The TCSEC [3] Glossary defines
security policy as “....the set of laws, rules, and practices
that regulate how an organization manages, protects, and
distributes sensitive information”. A security requirement
is a manifestation of a high-level organizational policy in-
to the detailed requirements of a specific system. We will

loosely (ab)use the term “security policy” below to refer to
both “policy” and “requirement”, to reflect current usage
in the security and software engineering research commu-
nity.

Security policies are complementary to the normal, or
functional requirements of a system, such as the features
that the customer would require. They are a kind of non-
functional requirement, along with such aspects as perfor-
mance and reliability. Favored methods for requirements
engineering such as use cases [49] do not typically include
security concerns as an integral part of requirements en-
gineering. Though some security concerns are addressed
during the requirements engineering stage, most security
requirements come to light only after functional require-
ments have been completed. As a result, security policies
are added as an afterthought to the standard (functional)
requirements.

Security Models and Policies: a brief survey
Early formulations of security policies were concerned with
mandatory access control (MAC). In MAC, objects have
associated security classifications (such as secret, top-
secret, etc.) and subjects may access1 them only if they
have an appropriate classification. The enforcement sys-
tem prevents any other type of access. This is in contrast
with discretionary access control (DAC), whereby access
restrictions are based on the identity of the user, and any
process and/or groups to which they belong. DAC is “dis-
cretionary” in the sense that subjects with a certain access
permission can pass that permission to another subject.

This early work represented the first clear formulation of
a model for policies that was clear, well-defined, easily im-
plementable. This was followed by the classic Bell & La-
Padula [9] multilevel security model, where objects were
considered to be readable and writable. Under this mod-
el, each subject and object are assigned a security level.
Subjects can only read objects at levels below them, and
write to objects at levels above them. The central innova-
tion here was that in addition to being clear, well-defined
and implementable, this policy also allowed one to show
that information never trickled down. If this policy was
implemented correctly, it would be impossible (if subjects
could only gain information from reading objects) for in-
formation at a higher level of security classification to leak
down to a lower channel. This early work has been fol-
lowed by many researchers (see for example, [42, 50, 59]),
who have contributed such innovations in policy models.
These efforts have led to a broad and rigorous understand-
ing of security needs. The breadth enables us to capture
the security requirements of a wide range of applications;
the rigor lets us clearly (often formally) characterize the
implications of these requirements.

The different models [59] for security policies discussed

1The word “access” (read, write, open, close, connect, etc) is used
to denote the act of a subject performing an action on an object.

above find their expression in policy languages, which may
be thought of as specification languages for expressing se-
curity requirements. There are several languages, as de-
scribed in [72, 45, 81, 46, 34, 82]. Policy languages are im-
plemented by enforcement mechanisms. There are a wide
range of approaches [55, 34, 72] for policy enforcement.

The selection of an appropriate security policy and model
is best done early in a product’s lifecycle. The challenge is
to integrate security requirements analysis with the stan-
dard requirements process.

Challenge: Unifying security with systems engi-
neering. A central challenge in systems engineering is to
develop product plans which optimize the use of limited
project resources (time, funds, personnel). Competitive
software vendors must utilize these resources to deliver
the most value to customers as early as possible. In ma-
ture markets, competitive software vendors already exhibit
quite sophisticated product positioning practices: systems
engineers choose carefully from a variety of possible fea-
tures, and deploy those most in demand and most likely
to maximize and front-load revenue.

Functional requirements are thus being handled in a ra-
tional manner. Unfortunately, security requirements have
not typically received the same type of careful analysis.
Designing a “truly” secure system (i.e., defending from all
credible threats) is too expensive. In practice, limited de-
velopment resources force compromises. Currently, these
compromises are made on an ad-hoc basis, mostly as an af-
terthought. We strongly support the view that systems en-
gineering must be unified with security engineering. Just
as systems engineers analyze and select market-critical fea-
tures, security engineers must develop applicable threat
models, and select those security measures that are most
needed for market success. Available resources can then
be deployed to build the right combination of customer
features and security measures.

Challenge: Unifying security and system models.
Software engineers use models early in the life cycle to
improve the quality of artifacts such as requirements doc-
uments. Attention to quality in the early in the life cy-
cle of a project (e.g., requirements, design) leads to de-
fect detection and avoidance. It is well-known that such
defects, if undetected, can propagate downstream, where
the costs of detection and removal are greatly amplified.
The trend has been to use high-level, object-oriented mo-
dels (such as UML) early in the life cycle to support re-
quirements analysis and design activities [49]. Modern re-
quirements modeling and object-oriented design methods
begin with a careful analysis of the ontology of the ap-
plication domain. A model of domain ontology is first
constructed, and this drives the rest of the requirements
process [12, 62, 67]. This approach has been found use-
ful in practice, and is widely used in industry, especially
in the design of information systems, e.g., using the Fu-

2

sion [15] methodology. Modeling is also useful for reverse
engineering. Tools have been built to extract models from
a legacy system [48, 23]. Such models can be useful for
maintenance or for re-engineering.

So far, however, security modeling and policy work has
been largely independent of system requirements and sys-
tem models. Typically, system requirements and design
are done first, and security is added as an afterthought.
There has also been lack of interaction between research-
ers working on requirements modeling and design mod-
eling (e.g., in the UML community) and security policy
researchers2. Clearly, there is much to be gained by devel-
oping processes and tools to unify security policy develop-
ment into the system development process, specifically by
making using of system models when designing security
policies. One attractive approach is to adopt and extend
standards such as UML to include modeling of security
related features such as privacy, integrity, access control,
etc. There are several advantage that could accrue from
this:

• Unified design of systems and security policies.

• Modularity (through encapsulation), compactness
and reuse (through inheritance) in policy represen-
tation.

• Leverage of existing standards-based tools for design
and analysis (forward engineering) activities, as well
as for analysis of legacy code (reverse engineering)
activities.

A primary challenge here is to extend the syntax and sem-
antics of standards such as UML to address security con-
cerns. We believe that this presents an opportunity for
software engineering researchers. If we can develop tools
and processes to help unify the design of systems and se-
curity policies, the result will surely be systems that more
effectively meet business requirements in a more secure
fashion.

Readers interested in object-oriented modeling are also r-
effered to the companion paper on the future of OO mod-
eling [32].

3 ARCHITECTURE AND DESIGN OF SE-
CURE SYSTEMS

Re-Engineering for Security
Software designers have long recognized the need to incor-
porate non-functional considerations such as performance
and reliability into software design processes. It is well un-
derstood that adding performance and reliability require-

2Much effort has been directed recently at mobile code systems,
where the security concerns mostly burden the mobile-code host,
and the system development concerns are with the applet developer;
however, in general this is not true, and design of the policy and the
system could be unified.

ments into software architectures after the fact is difficult
or impossible.

Sadly, the situation with security-oriented non-functional
requirements is not not as advanced: very often, security
is an afterthought. This typically means that policy en-
forcement mechanisms have to be shoehorned into a pre-
existing design. This leads to serious (sometimes impossi-
ble) design challenges for the enforcement mechanism and
the rest of the system. The best resolution to this problem
is to refine requirements and design processes to bring an
earlier focus on security issues.

There are other reasons (besides poor planning) that se-
curity is not a factor in initial systems design. The advent
of networking and open standards often provide new busi-
ness reasons to re-engineer internal legacy systems (which
operated within secure intra-nets) for operation over the
open Internet. In such cases, there is no alternative to
adding security to a system after the fact. There are sev-
eral problems that arise here, resulting from different types
of architectural mismatch [38]. For example, data or pro-
tocol incompatibilities may render it difficult to make a
legacy system’s services available via standard protocols
such as HTTP[85] or IIOP[68], or in standard data for-
mats such as XML [85]. These problems are important,
and deserve attention. However, this issue not directly re-
lated to security, so we do not discuss it further, except
to point to related work on retargetability, wrappers, and
wrapper-generation tools.

Challenge: Legacy Security Mismatches. From a se-
curity perspective, the most serious problem is one of mis-
match between the security framework in the legacy sys-
tem and the security framework of the target standard pro-
tocol. For example, Unix systems and CORBA have differ-
ent security policies and enforcement mechanisms. Unix
authentication is based on user-password authorization.
CORBA uses Kerberos-based [66] authentication [69]. The
Unix file system uses the well-known access control based
on user, group, and everyone else. CORBA access control
is more flexible, based on credentials that are owned by a
CORBA client, and service controls which encapsulate the
access control policy of the related CORBA servant. These
difference greatly complicate systems where principals can
authenticate themselves with either mechanism (Unix and
CORBA) and use either UNIX or CORBA services.

Consider the task of making the services of a particular
Unix application, A, available via a CORBA object. If a
particular login, is not permitted to use A, we certainly
should also make sure that the same user cannot invoke
A’s services through CORBA. Unfortunately, there is no
simple way to ensure this.

Mancoridis [78] suggests the use of wrappers and sand-
boxes that enforce Unix-style policies. In general, such
mechanisms need to be made very flexible, allowing ad-

3

ministrators to formulate their own policies to suit their
needs, and thus use the full power of the CORBA security
system in offering secure services. Fraser et al[37] propose
a sophisticated, flexible wrapper mechanism that can sur-
round COTS components and enforce policies applicable
to the system hosting the COTS components.

The rational linkage between various security frameworks
is a growing area of concern. Customers demand “single
sign-on”, where by a user authenticates herself once us-
ing a specific mechanism and then gains access in a u-
niform manner to different services (perhaps on different
platforms). Developing uniform policies and enforcemen-
t mechanisms for a group of services that span different
platforms is a research challenge.

Challenge: Separating the Security “Aspect.” The
central problem in modifying the security aspects of a lega-
cy system is the difficulty of identifying the code that is rel-
evant to security, changing it, and integrating the changes
back into the system. A promising new approach to con-
structing systems with evolvable security features is sug-
gested by a confluence of two lines of research—work on
aspect-oriented programming [52], and work on architec-
tural connectors [73, 5].

Aspect-oriented programming is an approach to simplify-
ing software evolution. The idea is that some aspects of
code are naturally modular, such as data storage, which
can be placed in a database. Others (usually nonfunc-
tional requirements) such as performance, and distribu-
tion are scatterred throughout the code. Changing the
way a system is distributed, for example, would involve
the difficult task of identifying and changing scattered
code concerned with location, connection, distribution,
etc. Aspect-oriented programmers seek to isolate these
fragments centrally for ease of comprehension and mainte-
nance, thus achieving the classic goal of “separation of con-
cerns.” The task of re-scattering them back into the code
prior to compilation is automated using program trans-
formers, known as aspect weavers. With this strategy, an
aspect such as distribution is isolated and easier to change.
The other line of research arises in software architecture,
where researchers study two major elements of architec-
tures: components, which form the centers of computation
in the system, and connectors, which are the loci of in-
teraction between components. This is a conceptual dis-
tinction that is made at the design level—of course at the
code level, no such such distinction exists. This view, how-
ever, is useful non only for design-time activities such as
performance modeling, but also during programming ac-
tivities, especially for program understanding. The notion
that connectors could encapsulate various aspects of inter-
actions [5, 71] suggests a promising line of research.

Important security concerns, such as authentication and
access control, arise out of interactions between compo-
nents. Thus security concerns are naturally placed with ar-

chitectural connectors. Authentication, security policies,
and enforcement mechanisms could be considered differ-
ent aspects of connectors. Aspect weavers could take on
the task of integrating the implementation of these aspects
with the rest of the system. In this context, security fea-
tures would be easier to isolate and maintain.

4 SOFTWARE PIRACY & PROTECTION
Software piracy is an enormous challenge to the software
business. Most vulnerable are vendors of popular and ex-
pensive products such as office suites for commodity desk-
top machines. When the cost of a legitimate copy of a
piece of software approaches the cost of a machine (e.g.,
about $300 for an office suite upgrade, versus about $700
for the cost of an entire new machine), the incentives for
individual consumers to commit piracy are intense. There
are also other, more dangerous types of pirates: organized,
rogue entities, especially in countries with lax enforcement
of copyright laws, who have the resources to pirate thou-
sands or millions of copies. Such entities may even ex-
port the pirated copies. From all sources, piracy is now
acknowledged to cost in the range of $15-20 Billion annu-
ally.

Law enforcement measures are essential practical deter-
rents for piracy. However, these measures must be aug-
mented with technology to keep otherwise honest people
honest. While there are various technologies exist to com-
bat piracy, we believe that a key innovation still awaits:
a good model of the economics of piracy. Without such a
model of the adversary, the effectiveness of such technolo-
gies cannot be properly evaluated.

Adversary Economics
Consider an entity (individual or organization) consider-
ing piracy of a software item. We assume that the software
item is needed by the entity. The entity can either buy (for
cost Cb) the item, or first hack the copy protection mech-
anism (cost Ch) and then make n copies (each of value
Cc) and bear the very small risk3 (P11) of getting caught,
which carries a large (possibly subjective) cost (C11). The
cost C11 and prosecution probability P11 may vary with
n. There may be civil liabilities payable to the software
vendor, although suing an individual in a tort lawsuit for
uninsured liabilities can be unrewarding. Criminal penal-
ties such as fines and jail terms are possible, though quite
unlikely. Given current technology, Ch is usually not high,
and (in most cases) copyright enforcement is lax. So the
confronted with the reality that

n ∗ Cb >> Ch + n ∗ Cc + P11(n) ∗ C11(n)

most people and organizations have a strong economic in-
centive to commit piracy. If the goal was actually sell
pirated copies, then with Cb as the profit, the same model
as above would apply. One may, however expect that the

3We use the subscript 11 for the so-called “eleventh”
commandment.

4

likelihood of getting caught would be greater.

Clearly, one approach is to reduce Cb to zero. This ap-
proach, adopted by the free software movement, is remark-
ably effective at discouraging illegal piracy! Barring this,
the technical challenge here is to increase the probability of
capture (P11), or increase Ch and Cc. Various approaches
are now discussed, and possible attacks are discussed.

Approaches to Protection
There are various technologies that may discourage piracy.
They are: hardware and software tokens, water marking,
and code partitioning.

Hardware and Software Tokens. Software tokens are
the most common technique. Along with the software pro-
duct, a “license” file is shipped. This file contains informa-
tion that the product checks every time it is run; if the file
is not present, or the information is wrong, the product
exits with a license violation error. The information may
include information specific to the installation site [51],
such as the hardware network card address. With hard-
ware tokens, one actually installs a physical “dongle” on
the machine, usually on a serial or parallel port. The soft-
ware checks for the presence of this token before starting
normal function. In both cases (hardware and software),
the protection code checks for the presence of a valid to-
ken. Another approach is to obtain the token dynamically
over a telephone or a network connection [44]. Yet an-
other popular approach is to exploit idiosyncratic physical
features specific to a particular digital medium (such as
timing anomalies on a specific floppy disk) as a “token”
that the protected program will check for; a copy will not
have the same features and thus will not run. In all these
cases, the basic goal is to raise the cost of breaking the
protection mechanism, or Ch.

In all these cases, the applicable attack is to locate the
token-checking code and patch around it. A debugger with
the ability to set breakpoints can be used for this purpose.
Another approach to search the binary for the character
string corresponding to the license violation error. Once
the code is found, it can be easily patched. The use of
names containing substrings such as license or dongle
in routines can make things easier for the attacker. There
are some techniques that make it difficult to run a de-
bugger on software; however, there are approaches to get-
ting around these as well. In general, token-checking (or
debugger-hindering) code in one or more fixed locations
in the code can be found and removed mechanically, once
the locations are known. There have been other sugges-
tions [8] which include some level of self-checking, where
the program monitors itself to detect tampering of the
license-checking mechanisms. Again, one has to find these
self-checking codes and disable them. Another approach
used here is to add self-destruct code that would destroy
all copies of the software (including any code in memo-
ry) upon detection of tampering efforts. Self-destruct ap-

proaches can be detected and contravened by running the
software under full emulation (or a system-level debugger)
and observing all system calls.

An entity desirous of making many pirated copies needs
to find and remove these checking mechanisms once, and
make as many copies as desired. An attack involves finding
the checking (including self-checking) code and patching
around it. Thus, the cost here is primarily a reverse engi-
neering cost: the greater this cost, the greater the barrier
to piracy. Unfortunately, none of the existing proposals
based on a token technique come with any guarantees such
as a lower bound on this reverse engineering cost. Anec-
dotal evidence regarding several commercial products that
use this approach leads to the discouraging conclusion that
these reverse engineering costs are likely to be low in most
cases.

Dynamic Decryption of Code. With this approach,
the software is stored in encrypted form on some digital
media, and is only decrypted prior to execution using an
independently stored key. Sometimes, multiply encrypted
keys [14] (such as DES key encrypted with an RSA pri-
vate key) associated with a particular machine are used
to protect the software. Some have proposed associating
keys with machines during manufacture [54]. Thus, copy-
ing the media without the key is useless. There are some
complications. The dynamic decryption may add an un-
acceptable performance overhead. Customers may find it
difficult to move the application from one of their machines
to another, for perfectly legal reasons (e.g., when retiring
one machine).

The applicable attack here would the direct monitoring of
the program memory locations to harvest the decrypted
code (since the code has to be in memory prior to ex-
ecution). By exercising all the different features of the
software, it should be possible to gather all the code for
the system. It might become necessary to write a monitor-
ing program for a specific operating system and platform
that harvests the decrypted code as it is being readied for
execution. Again, no precise lower bounds on the harvest
cost Ch are given, but it seems reasonable to assume that
it would be greater than the case of the simple token. This
approach is atypical in the software business, and in fact,
we not aware of any mass-market products that use it.

Watermarking. One approach to discouraging piracy is
to embed a secret “watermark” in the software specific
to each customer. A pirated copy could thus be traced
back to the original customer via the watermark. The
effect of this approach is to increase the probability of
getting caught, P11. If this could be made large enough,
most customers would balk at the risk of exposure and
prosecution.

Watermarking is applicable to any type of object, and ab-
stractly, to any message. Most research in the area has

5

been concerned with watermarking visual or audo me-
dia [18, 87, 76, 53]. Abstractly, given a message M of
N bits, one seeks to embed a smaller message, or a wa-
termark, w of n bits into the original message, as a way
of identifying provenance. The goal is that any time this
message M is found, the watermark w can be readily ex-
tracted, thus establishing the provenance of the message
M . An adversary A seeks is to disguise the message M
so that the watermark can no longer be extracted. Coll-
berg and Thomborson [16] have recently published a use-
ful analysis of software watermarking techniques. They
describe two desirable properties of a watermark: stealth,
so that it is difficult for A to find it; and resilience, so that
A cannot remove it without damaging the message M .
They divide software watermarking techniques into static
and dynamic approaches. Static watermarking techniques
encode the watermarks in static program properties, such
as the ordering in the program text of otherwise indepen-
dent basic blocks. Static program analysis can then re-
veal the watermark. Dynamic watermarks are embedded
in program state, typically in the response to a specif-
ic input. Such watermarks are also called “easter eggs.”
One example might be to encode a number as a particular
state of connectivity in a stored graph. The watermark
is detected by running the program against this input,
and observing the program state. Collberg and Thombor-
son [16] discuss various types of watermarking techniques,
and applicable attacks. Although most of their proposed
techniques have attacks, they offer useful intuitions of the
difficulties of watermarking programs. They also present
several useful metrics for evaluating the effectiveness of
watermarks; however, the application of these metrics to
known approaches remains an open issue. A knotty tech-
nical problem in watermarking software is the wide vari-
ety of meaning-preserving transforms that are available to
the attacker to confound the watermark. Most the wa-
termarks that have been proposed are masked by the ap-
plication of program transforms. In domains such as dig-
ital imaging and sound, where watermarking techniques
have been more successful, such a plethora of meaning-
preserving transforms are not available.

As we discussed earlier, the core aim of watermarking is
to raise the probability of getting caught, P11. Of course,
watermarking says nothing about the actual cost of get-
ting caught, C11. This suggests non-technical means to
evade prosecution. A pirate might hire someone difficult
to prosecute, such as a juvenile, or a destitute individual
in a foreign country to be the “front man” on the original
purchase. Another approach might be to pirate copies in a
jurisdiction with lax enforcement. In addition, legitimate
consumers may have privacy concerns in associating them-
selves with specific software purchases. Customers may
seek to mask purchases via cash or anonymous transac-
tions [56]. If anonymity becomes common in e-commerce,
watermarks will do little to discourage pirates.

Code Partitioning. A pirate with access to a bus an-
alyzer and a probe can contrive to harvest any software
that is visible in ordinary RAM, even if it is only visible
immediately prior to execution. Recognizing this, some
inventors recommend placing a portion of the software in
inaccessible memory. One early proposal [74] recommend-
s placing just the license-checking part of an application
in protected hardware. In this case, the attacker can find
the code within the application (which is in unprotected
memory) that invokes the protected license-checking code,
and patch around it.

To discourage such attempts, it will be necessary to phys-
ically protect a more substantial portion of the applica-
tion. One such approach [80] recommends placing a “pro-
prietary” portion of an application within ROM, leav-
ing the rest in RAM. However, a bus analyzer could
simply harvest the addresses and instructions as they
were retrieved from the ROM, developing a complete
address −→ instruction map of the ROM, allowing it to
be readily copied. To avoid this attack, it is necessary not
only to protect the memory storing part of the program,
but also the processor executing these instructions, and
the memory bus itself. One approach [61] is to relegate the
protected part of the program to a remote server admin-
istered by a trusted party (perhaps the software vendor).
This program component invoked using a remote proce-
dure call. When such a call is received, the caller’s identity
is checked for valid licensing before it is allowed to proceed.
As long as critical functions could be separated into the re-
mote server, pirated copies at unauthorized sites would be
inoperative. Performance is certainly an issue with this ap-
proach. Perhaps more critically, users might worry about
covert channels to the server, and the attendant loss of
privacy. These issues can be addressed running the pro-
tected components locally, within a tamper-resistant hard-
ware device such as a smart card [86]. The protected part
of the software could be shipped encrypted, using the pri-
vate key associated with the smart card at manufacture,
and decrypted and run within the device [58].

A central question with code-partitioning approaches is
the criteria that should be used for selecting the portion
of the code to be protected. Unfortunately, this issue has
remained open.

Sander and Tschudin [77] have proposed a number-
theoretic approach for protecting software. Using homo-
morphisms over rings, one can create encrypted versions
of functions to compute polynomials. These encrypted
versions are resistant to reverse-engineering; adversaries
cannot feasibly decipher the polynomials. However, the
results computed by the polynomials are also encrypted,
and must be sent back by customers to the vendor for
decryption. This approach is so far restricted to the com-
putation of polynomials. In addition, the need to have the
final results decrypted by the vendor raises both perfor-

6

mance and privacy concerns, and may not be suitable for
interactive applications. However, the approach is both
elegant and provably secure, and the limitations might be
ameliorated in the future.

Challenge: Attacker Cost Models. Most of the re-
search described in this section is not based on an eco-
nomic model of the adversary’s behavior. Without such
a model, it is difficult to judge the effectiveness of each
approach.

For example, consider a token-based approach, augment-
ed with some self-checking code, and perhaps some ad-
ditional measures to inhibit debugging. The cost here is
the one-time reverse engineering cost of identifying and
removing these defensive measures. How does one quanti-
fy this cost for a particular implementation of the token-
based approach? With the dynamic decryption approach,
the attack is to monitor, using hardware devices or a de-
bugger, the instruction stream flowing past the CPU and
gradually accumulate the code for the entire system in the
clear. There are several different approaches to dynamic
decryption of code that attempt to complicate the har-
vesting task, but none of them provide a clear model of
adversary cost. The same criticism applies to watermark-
ing approaches. Collberg [16] suggests several measures
to evaluate the “resistance” of watermarking techniques
to attack. He also discusses applicable attacks. But the
actual human cost of removing watermarks still awaits in-
vestigation.

In our view, given that adversaries have full access to
the hardware and software of the operating platform, the
best method to protect software is partitioning, with the
protected component executed entirely within a tamper-
resistant co-processor. This approach has been known for
quite a while; however, proponents have failed to provide a
suitable cost model. There are two attacks here: one is to
break the physical security of the co-processor [7], and the
other is to passively reverse-engineer the contents. The
latter task would involve first fully characterizing the be-
havior of the protected component and re-implementing it.
The vendor must ensure that these costs are high. Tech-
niques to partition the software to meet these considera-
tions await development.

Cost models of possible attacks must consider not only
current attacks, but all possible future attacks. One way
to do this to use reduction techniques[10] that relate the
cost of attacks to cryptographic problems thought to be
difficult, such as the difficulty of inverting one-way func-
tions or factoring large numbers. Sander & Tschudin [77]
is an example of this, although at the moment their re-
sults are primarily of theoretical interest, being limited to
computing polynomials. Without such strong results, copy
protection remains a black art.

In addition to economic models of the cost of attacks on

different protection techniques, we need an over-arching
model of the entire piracy process. Our piracy cost relation
(above, and reproduced below)

n ∗ Cb >> Ch + n ∗ Cc + P11(n) ∗ C11(n)

is at best a very rudimentary beginning.

5 TRUSTING SOFTWARE COMPONENTS
Much of software development today is largely a matter of
integrating off-the-shelf components; rarely are new sys-
tems built entirely from scratch. Middleware technolo-
gies (see also the companion paper specifically on middle-
ware [31]) such as COM and CORBA have given rise to
a wide range of components, frameworks, libraries, etc.
These are collectively known as commercial off-the-shelf
software (COTS). A useful summary of research issues in
COTS products are very attractive to developers confront-
ed with ever more stringent requirements of cost, qual-
ity and time-to-market. However, the use of these pro-
ducts, particularly in safety-critical systems, is fraugh-
t with risk. The procurement policies of the customers
of safety-critical systems (utilities, government, etc) have
traditionally required software vendors to disclose enough
details to evaluate their processes and products for safe-
ty. However, these policies are not compatible with current
component vendors, who are faced with the risk of intellec-
tual property loss. Recently a committee appointed by the
National Research Council (NRC) in the U.S.A (See [70],
pp. 71–76) has discussed the reuse of COTS software in
nuclear power plants. Their report states (Page 76, first
para):

Dedication of commercial components requires
much more information than commercial ven-
dors are accustomed to supplying. . . Some ven-
dors may be unwilling to provide or share their
proprietary information, particularly about de-
velopment or testing procedures and results of
service experience.

Speaking on the same issue, Voas ([83], page 53) states:

Software components are delivered in “black box-
es” as executable objects whose licenses forbid
de-compilation back to source code. Often source
code can be licensed, but the cost makes doing
so prohibitive.”

This leaves would-be users of COTS products with two
unpleasant choices: forego the use of components, and the
attendant cost savings, or live with the risk of using a
“black box” component. The COTS vendor also faces a
similar challenge: how can she assure her users of the qual-
ity of her development process and the resulting product
without untoward intellectual property loss? One might
call this the grey-box verification problem.

7

Black box Approaches
Voas [83] proposes two complementary approaches: first,
test the component in situ to make sure it doesn’t mis-
behave, and second, test the system to make sure it can
still function even if the component misbehaves. These ap-
proaches treat the component as a black box, and employ
extensive testing to ensure that the system functions as de-
sired. The significant advantage here is that no additional
effort is required by the COTS vendor. In addition, the
COTS vendor need not disclose any intellectual property.
The additional testing effort is likely to be time-consuming
and expensive; however, it will likely contribute toward-
s the overall quality of the entire system, so it is effort
well spent. However, if a conscientious COTS vendor has
already used stringent testing and verification practices,
then the above approach might lead to duplicated effort.
In this context, one might seek a grey box that might allow
the COTS vendor to guardedly disclose enough details of
her verification practices to convince a skeptical COTS us-
er, while also protecting much of her intellectual property.

Gray-box Approaches
We have described two [27, 22] approaches: one using in-
teractive cryptographic techniques, and the other relying
upon tamper-resistant hardware.

Cryptographic coverage verification. Suppose a
COTS vendor has achieved 99% basic-block coverage. This
is a significant achievement indicative of a stringent QC
process. To convince a user of this, she would typical-
ly have to use a third party (trusted by her and the us-
er) to verify the coverage, or she would have to disclose
the source code, the tests, and any applicable tools to
her customer. In [26, 27], we propose a way in which
the customer can provide credible evidence of coverage,
while disclosing (in most practical situations) only a few
test cases. Essentially, our approach is driven by a fair
random process. An unbiased coin flip (say) chooses ba-
sic blocks at random, and vendor provides test cases as
evidence of coverage of those blocks. The challenges are
unpredictable, and the vendor cannot easily cheat. We
describe an approach whereby the vendor makes a claim
about her level of coverage (say 80%) and each additional
challenge lowers the upper-bound on the probability that
she is lying. With about 25 challenges, we can reduce
the lying probability to about 0.05. The verifiable use
of a fair random process (technically, a cryptographical-
ly strong pseudo-random number generator [60]) allows
the vendor, acting alone, to provide this evidence. Thus
any vendor, regardless of reputation, can provide credible
evidence of stringent quality control with only a modest
additional effort over the cost of coverage testing.

Tamper-resistant Hardware. Suppose a vendor has,
with great effort, constructed a formal proof4 that the

4This situation is analogous to the proof-carrying codes of Necu-
la [64].

component satisfies some important safety property, but
that this proof discloses significant details such as loop in-
variants, datastructure invariants etc. Certainly, the ven-
dor would like the customer to know that this proof ex-
ists, without disclosing the proof details. In this context,
we suggest the use of tamper-resistant hardware [22] de-
vice (e.g., a smart card) comprising a secret private key.
Attempts to extract this key would render the device inop-
erative. We embed a proof checker in such a device. Proof
checking is well-known to be much simpler and faster thant
proof creation. The vendor presents the device with the
COTS software (appropriately annotated with invariants,
etc.) and the proof; the smart card then processes the
component and the proof. Now, using the private key, the
smart card signs the component, and a statement that the
applicable property has been proven, using its private key.
We assume that the corresponding public key is introduced
to COTS users with the appropriate certificates. This ap-
proach allows the proof to remain undisclosed. The COTS
user can reasonably rely on the signature (and his trust in
the proof checker and the smart card) as evidence that
a correct, complete proof of the desired property indeed
exists.

Challenges: more Grey box Approaches. Both the
approaches described above are only beginnings, which ad-
dress only certain aspects of the grey box verification prob-
lem. We have developed test coverage verification proto-
cols only for block and branch coverage. Some U.S. gov-
ernment agencies require more stringent coverage criteria
(e.g., data-flow based criteria [36]). Our protocols are vul-
nerable to certain types of attacks, for example attempts
by the vendor to boost coverage by including spurious (eas-
ily covered) code. Resilience to these attacks is needed.

Cryptographic approaches might also be feasible for some
verifying the use of other types of quality control method-
s, such as model-checking approaches. Fair random choice
approaches could perhaps be used to show that a) a par-
ticular model is a reasonable, fair abstraction of a system,
and b) that the model has the desired properties. The
challenge here, again, would be provide “grey box” evi-
dence of these claims, without untoward disclosure.

6 VERIFICATION OF SYSTEMS
U.S. and other military establishments have a long histo-
ry of building high assurance secure systems. Out of the
U.S. effort came the so called “rainbow series” of books
including the “orange book” [19] which specified security
feature requirements and assurance requirements for the
implementation of those features. This effort was largely
too costly for use in general purpose systems.

The U.S. government has been forced to move towards
using COTS software to meet cost, quality and schedule
constraints. The latest evaluation criteria for software is
the Common Criteria [1] which has been internationally
standardized [2]. Although the evaluation required will be

8

more aligned with the needs of commercial systems, it is
not clear that that the state of evaluation technology has
adequately advanced to make such evaluation practical for
most systems and companies.

Traditionally, the high quality expectations on secure sys-
tems have led investigators to apply rigorous formal meth-
ods to show desirable security properties of computing
systems (particularly access control and information flow
properties), and of cryptographic protocols particularly
showing properties of authentication [13]. Formal meth-
ods involve significant human labour, and are expensive.
They are usually based on formal specifications, rather
than on actual implemented systems; confidence in formal
verification is therefore subject to concerns about the fi-
delity and completeness of the specification with respect
to customer expectations, and the relationship of the final
implementation to the specification. In addition, imple-
mentations are typically much larger and more complex,
and in practical languages like C++. All of this renders
manual or automated verification of implementations dif-
ficult. An applicable engineering approach here is to not
attempt to show correctness, but to make use of conser-
vative techniques such as model checking [39, 29, 63, 20]
and static analysis to find defects. While such techniques
do not guarantee the complete elimination of defects, they
can be a useful adjunct to conventional defect testing.

Challenge: Implementation-based verification
methods. Automated tools that do a credible job of find-
ing security-related defects in the implementations prac-
tical systems are needed. One approach is to use model-
checkers on abstractions derived automatically from source
code [30, 63, 17] to identify states in which potential secu-
rity vulnerabilities may exist.

Another approach, by analogy with Verisoft [39], is to cre-
ate “hostile” library versions of popular APIs (such the file
system API), which attempt, after applicable API calls, to
“simulate” attacks on a program and attempt to expose
vulnerabilities. An application can then be re-linked a-
gainst this “hostile” library and tested to expose security
vulnerabilities.

Companion papers on analysis [47] and testing [43] present
useful summaries of existing work on testing and verifica-
tion, as well as important issues for the future. trained on
using such techniques.

7 SECURE SOFTWARE DEPLOYMENT
The use of component software within popular desktop ap-
plications has exploded. Consider a particular componen-
t, say c, produced by a vendor v. This component c may be
used in any application: a word-processor, a spread sheet,
an e-mail program, or an electronic game. These appli-
cations may be created by different vendors, who package
and ship their application together with the constituent
components. Certainly as time passes, component vendor

v continuously updates his component software c to fix
defects, and improve functionality, thus creating versions
c1, c2, etc. Thus it could happen that two needed appli-
cations eventually will require different, incompatible ver-
sions of the same component: one using c1, and the other
c3 e.g. Thus arises a common, difficult problem: installing
one application may cause another, apparently unrelated
application to fail. Most users of personal computers have
suffered the consequences of such problems. In addition,
personal computer users are often asked to update and re-
configure their systems in response to announced threats
(e.g., viruses) and newly discovered vulnerabilities. Such
announcements are not infrequent, and the recommend-
ed remedies are often beyond the abilities of the unskilled
user.

Resolving these problems is very time consuming, and may
require a user to spend long hours with technical support
personnel or with a help-line and discuss intimate details of
the software installed on their PC. This certainly risks an
individual’s privacy. Worse, a potentially malicious out-
sider (at the help-line, for example) can induce an unsus-
pecting user to reveal critical details of the installation at
a particular PC. These details could reveal vulnerabilities
that could be subsequently exploited to gain access to crit-
ical data and services on the user’s PC or perhaps even his
network.

The task of maintaining a correct, current configuration of
software at a machine has been called “post-deployment
configuration management” [40] (PDCM). There are now
several approaches to automating some aspects of PD-
CM [57, 41] (see also the companion paper in this volume
on configuration management [33]). All of these provide
timely distribution of both information about correct con-
figurations, and the software releases themselves. Howev-
er, there are several security challenges that remain to be
addressed.

Secure Configuration Management
There are some security issues [25] which still need to be
addressed in PDCM systems: controlled delegation of ad-
ministration and privacy protection.

Challenge: Controlled Delegation. PDCM is a com-
plex task. Complex application configurations and inter-
dependencies have to be considered in deriving the right
configuration. This may involve expertise drawn from
within and without the organization. Some sources may
be trusted for certain types of expertise, but not for others.
In addition, the software itself may be published from dif-
ferent sites, with varying accordances of trust levels. In re-
sponse to security events, responsibility for an attack may
be properly fixed on a previously trusted source, whose
privileges may have to be revoked. Indeed, a user may re-
ly upon one or administrators to identify trusted sources of
PDCM information and software releases. Administrators
or their delegates may source information, until or unless

9

their privileges have been revoked.

PDCM systems need to provide facilities which can allow
and enforce flexible delegation and revocation of PDCM
administrative privileges.

Challenge: Privacy Protection. While obtaining in-
formation or software releases from sources, the PDCM
system must uphold the user’s privacy. Of course, notions
of privacy may vary from user to user; the user should be
able to specify what information at his or her site can be
accessible to whom. The PDCM system must be flexible
in this regard, but must take responsibility for enforcing
such policies. Of course, there are theoretical limits to
full enforcement of privacy policies; within this limitation,
the PDCM system should make use of the best and most
applicable technologies [79, 75] to protect privacy.

8 SECURE COMPUTATIONS, NOT SECURE
COMPUTERS

All software systems are potentially error-prone, and may
be expected to sometimes produce incorrect results due to
defects in the software. Where security is a concern, users
may worry that a system has been compromised by at-
tackers, and thus might perform incorrectly. In general, it
requires effort to decide whether the the result of a compu-
tation is correct. This need for a test oracle is recognized
as a significant problem for software testers [84]; how can
one know that a system responded correctly to a test? If
it were possible for a system to produce a proof of correct-
ness, along with the computed results, a user (or a tester)
can gain solid assurance that the system has functioned
correctly, regardless of whether it is under attack. An ef-
ficient proof-checker can automate the process of checking
the proof, thus providing an automated test oracle.

Some early work in this area includes work to check cryp-
tographic operations performed by an untrusted assist-
ant [35] and for secure circuit evaluation [4]. Other ap-
proaches are in the direction of using quorum schemes for
distributing trust among servers using threshold cryptog-
raphy [21]. However, these suffer from performance issues
associated with quorum schemes.

A low-level step towards this direction is the use of secure
data structures. In this scenario, a processor off-loads s-
torage of data onto an untrusted co-processor. In this con-
text, it is necessary to verify that the data returned by the
co-processor is correct. Approaches have been reported for
off-loading RAMs [11], secure stacks and queues [28], and
other linked data structures [6]. At a higher level, one
would like “application servers” that provide a useful ser-
vice to generate “proof carrying answers” that come with
a proof of correctness. One example of this is Necula &
Lee’s certifying compiler [65]. Given a source program, the
compiler’s certifier either produces a proof of type safety
(of the resulting binary) or a counter example illustrating
a potential violation. As another example, consider third-

party publication of databases, whereby the contents of a
database are published by an untrusted entity, who takes
over the task of responding to queries from a customer. In
this context, we would like the publisher to provide com-
pact proofs of correctness along with answers. In [24], we
show how to construct proofs of correctness that are linear
in the size of the answer to the query.

9 CONCLUSION
The security of software-controlled systems has become
critical to normal everyday life. The timely, effective and
correct construction of these systems is an ongoing, dif-
ficult challenge faced by software engineers. In this pa-
per, we have outlined some of the important open issues
faced by researchers in software engineering and security
as we engineer security-critical systems for the next mil-
lennium.

REFERENCES

[1] COMMON CRITERIA VERSION 2.1, see
http://csrc.nist.gov/cc.

[2] Working group 3—Security Criteria. Technical re-
port, International Standards Organization (ISO),
Joint Technical Committee 1—Information Technol-
gy, Subcommittee 27—Security Techniques.

[3] TCSEC: Department of defense trusted computer sys-
tem evaluation criteria. Dept. of defense standard,
Department of Defense, Dec 1985.

[4] M. Abadi and J. Feigenbaum:. Secure circuit evalua-
tion. Journal of Cryptology, 2(1), 1990.

[5] R. Allen and D. Garlan. Formalizing architectural
connection. In Proceedings of the 16th International
Conference on Software Engineering. IEEE Computer
Society, May 1994.

[6] N. M. Amato and M. C. Loui. Checking linked data
structures. In Proceedings of the 24th Annual In-
ternational Symposium on Fault-Tolerant Computing
(FTCS), 1994.

[7] R. Anderson and M. Kuhn. Tamper resistance—a
cautionary note. In Second Usenix Electronic Com-
merce Workshop. USENIX Association, November
1996.

[8] D. Aucsmith. Tamper resistant software: An imple-
mentation. In Hiding Information Hiding, First In-
ternational Workshop, volume 1174, pages 317–333.
Springer-Verlag, 1996.

[9] D. Bell and L. LaPadula. Secure computer system
unified exposition and multics interpretation. Techni-
cal Report MTR-2997, MITRE, Bedford, MA, 1975.

10

[10] M. Bellare. Practice-oriented provable security. In
G. D. E. Okamoto and M. Mambo, editors, Proceed-
ings of First International Workshop on Information
Security (ISW 97), volume 1396 of LNCS. Springer
Verlag, 1997.

[11] M. Blum, W. Evans, P. Gemmell, S. Kannan, and
M. Noar. Checking the correctness of memories. Al-
gorithmica, 12(2/3):225–244, 1994.

[12] A. Borgida, S. J. Greenspan, and J. Mylopoulos.
Knowledge representation as the basis for require-
ments specifications. IEEE Computer, 18(4):82–91,
1985.

[13] M. Burrows, M. Abadi, and R. Needham. A logic of
authentication. Technical Report SRC Research Re-
port 39, Digital Equipment Corporation, Feb. 1989.
Revised February 1990.

[14] B. J. Chorley and et al. Software protection device.
United States Patent 4,634,807, 1987.

[15] D. Coleman, P. Arnold, S. Bodoff, C. Dollin,
H. Gilchrist, F. Hayes, and P. Jeremaes. Object-
Oriented Development: The Fusion Method. Prentice-
Hall, 1994.

[16] C. Collberg and C. Thomborson. Software water-
marking: Models and dynamic embeddings. In
Symposium on principles of Programming Languages,
1999.

[17] J. C. Corbett. Constructing compact models of con-
current java programs. In Proceedings of the Interna-
tional Symposium on Software Testing and Analysis
(ISSTA), March 1998.

[18] S. Craver, N. Memon, B. L. Yeo, and M. M. Ye-
ung. Resolving rightful ownership with invisible wa-
termarking techniques: Limitations, attacks and im-
plications. IEEE Journal on Selected Areas in Com-
munications, 16(4):573–586, May 1998.

[19] Department of Defense. Trusted Computer System E-
valuation Criteria Orange book, 1985.

[20] Z. Dang and R. A. Kemmerer. Using the astral mod-
el checker to analyze mobile ip. In Proceedings of the
21st International Conference on Software Engineer-
ing, pages 133–142, 1999.

[21] Y. Desmedt and Y. Frankel. Threshold cryptosys-
tems. In Advances in Cryptology—CRYPTO, 1989.

[22] P. Devanbu, P. Fong, and S. Stubblebine. Techniques
for trusted software engineering. In Proceedings of the
20th International Conference on Software Engineer-
ing, 1998.

[23] P. Devanbu and W. Frakes. Extracting formal domain
models from existing code for generative reuse. ACM
Applied Computing Review, 1997.

[24] P. Devanbu, M. Gertz, C. Martel, and S. Stubble-
bine. Authentic third-party
data publication. (http://seclab.cs.ucdavis.edu-
/~devanbu/authdbpub.pdf), 1999.

[25] P. Devanbu, M. Gertz, and S. Stubblebine. Securi-
ty for automated, distributed configuration manage-
ment. In Proceedings, ICSE 99 Workshop on Software
Engineering over the Internet, 1999.

[26] P. Devanbu and S. Stubblebine. Cryptographic Verifi-
cation of Test Coverage claims. In Proceedings, Fifth
ACM/SIGSOFT Conference on Foundations of Soft-
ware Engineering, 1997.

[27] P. Devanbu and S. Stubblebine. Cryptographic ver-
ification of test coverage claims. IEEE Transactions
on Software Engineering, 1999. Accepted to appear.

[28] P. Devanbu and S. G. Stubblebine. Stack and Queue
Integrity on Hostile Platforms. In Proceedings of
IEEE Symposium on Security and Privacy, Oakland,
California, May 1998.

[29] M. B. Dwyer and L. A. Clarke. Data flow analysis
for verifying properties of concurrent programs. In
Proceedings, Second ACM/SIGSOFT Conference on
Foundations of Software Engineering, 1994.

[30] M. B. Dwyer and J. Hatcliff. Slicing software for mod-
el construction. In Proceedings of ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-
Based Program Manipulation (PEPM’99), 1999.

[31] W. Emmerich. Software engineering for middleware:
a roadmap. In A. Finkelstein, editor, “The Future of
Software Engineering”, Special Volume published in
conjunction with ICSE 2000, 2000.

[32] G. Engels and L. Groenewegen. Object-oriented mod-
eling: a roadmap. In A. Finkelstein, editor, “The Fu-
ture of Software Engineering”, Special Volume pub-
lished in conjunction with ICSE 2000, 2000.

[33] J. Estublier. Software configuration management: a
roadmap. In A. Finkelstein, editor, “The Future of
Software Engineering”, Special Volume published in
conjunction with ICSE 2000, 2000.

[34] D. Evans and A. Twyman. Flexible policy-directed
code safety. In Proceedings of the 1999 IEEE Sympo-
sium on Security and Privacy, 1999.

[35] J. Feigenbaum. Encrypting problem instances, or, can
you take advantage ofsomeone without having to trust
him. In Advances in Cryptology—CRYPTO, 1986.

11

[36] P. Frankl and E. J. Weyuker. An applicable family
of data flow testing criteria. IEEE Transactions on
Software Engineering, August 1988.

[37] T. Fraser, L. Badger, and M. Feldman. Hardening
COTS software with generic software wrappers. In
IEEE Symposium on Security and Privacy, 1999.

[38] D. Garlan, R. Allen, and J. Ockerbloom. Architec-
tural mismatch, or, why it’s hard to build systems
out of existing parts. In Proceedings of the 17th Inter-
national Conference on Software Engineering. IEEE
Computer Society, May 1995.

[39] P. A. Godefroid. Model checking for programming
languages using verisoft. In Proceedings, POPL 97,
1997.

[40] R. S. Hall, D. Heimbigner, A. van der Hoek, and A. L.
Wolf. An architecture for post-development configu-
ration management in a wide-area network. In 17th
International Conference on Distributed Computing
Systems, May 1997.

[41] R. S. Hall, D. Heimbigner, and A. L. Wolf. A co-
operative approach to support software deployment
using the software dock. In International Conference
on Software Engineering, May 1999.

[42] M. A. Harrison, W. L. Ruzzo, and J.D. Ullman. Pro-
tection in operating systems. Comunications of the
ACM, 19(5), 1976.

[43] M. J. Harrold. Testing: a roadmap. In A. Finkel-
stein, editor, “The Future of Software Engineering”,
Special Volume published in conjunction with ICSE
2000, 2000.

[44] M. E. Hellman. Software distribution system. United
States Patent 4,658,093, 1987.

[45] J. A. Hoagland, R. Pandey, and K. Levitt. Security
policy specification using a graphical approach. Tech-
nical Report CS-98-3, University of California, Dept.
of Computer Science, Davis, California, July 1998.

[46] M. Hurley and M. Zurko. The adage policy language
http://www.camb.opengroup.org/ri/secweb-
/adage/index.htm.

[47] D. Jackson and M. Rinard. Reasoning and analysis:
a roadmap. In A. Finkelstein, editor, “The Future of
Software Engineering”, Special Volume published in
conjunction with ICSE 2000, 2000.

[48] D. Jackson and A. Waingold. Lightweight extraction
of object models from bytecode. In Proceedings of the
1999 international conference on Software engineer-
ing, Los Angeles, CA, May 1999.

[49] I. Jacobson, M. Griss, and P. Jonsson. Software Reuse
: Architecture Process and Organization for Business
Success. Addison Wesley, 1997.

[50] A. K. Jones, R. J. Lipton, and L. Snyder. A linear-
time algorithm for deciding subject–object security.
In Proc. of the 17th Annual Foundations of Computer
Science. IEEE Press, 1976.

[51] B. S. Joshi. Computer software security system. U-
nited States Patent 4,688,169, 1987.

[52] G. Kiczales, J. Lamping, A. Mendhekar, C. Mae-
da, C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In European Con-
ference on Object-Oriented Programming (ECOOP),
number 1241 in LNCS. Springer-Verlag, 1997.

[53] J. Kilian, F. T. Leighton, L. R. Matheson, T. G.
Shamoon, R. E. Tarjan, and F. Zane. Resistance of
digital watermarks to collusive attacks. Technical Re-
port TR-585-98, Princeton University, Computer Sci-
ence Department, July 1998.

[54] S. Kubota. Microprocessor for providing software pro-
tection. United States Patent 4,634,807, 1991.

[55] T. Lindholm and F. Yellin. The JavaTM Virtual Ma-
chine specification. Addison Wesley, Reading, Mass.,
USA, 1996.

[56] S. Low, N. F. Maxemchuk, and S. Paul. Anonymous
credit cards and its collusion analysis. IEEE Tran-
sactions on Networking, Dec. 1996.

[57] Marimba, Inc. Castanet
product family, 1998. http://www.marimba.com/data-
sheets/castanet-3 0-ds.html.

[58] S. M. Matyas and J. Osias. Code protection using
cryptography. United States Patent 4,757,534, 1988.

[59] J. McLean. Security models. In J. Marciniak, editor,
Encyclopedia of Software Engineering. Wiley & Sons,
1994.

[60] A. J. Menezes, P. C. van Oorschot, and S. A. Van-
stone. Handbook of Applied Cryptography. CRC Press,
1996.

[61] A. Monden. A secure keyed program in a network
environment. In Proceedings of the Twentieth Inter-
national Conference on Software Engineering, 1998.

[62] J. Mylopoulos, A. Borgida, M. Jarke, and M. K-
oubarakis. Telos: Representing knowledge about in-
formation systems. ACM Transactions on Office In-
formation Systems, 8(4):325–362, October 1990.

12

[63] G. Naumovich, G. S. Avrunin, and L. A. Clarke. Data
flow analysis for checking properties of concurrent ja-
va programs. In International Conference on Software
Engineering, 1999.

[64] G. Necula. Proof-carrying code. In Proceedings of
POPL 97. ACM SIGPLAN, 1997.

[65] G. C. Necula and P. Lee. The design and imple-
mentation of a certifying compiler. In Proceedings of
the ’98 Conference on Programming Language Design
and Implementation, 1998.

[66] B. C. Neuman and T. Ts’o. Kerberos: An authenti-
cation service for computer networks. IEEE Commu-
nications, 32(9), 1994.

[67] B. Nuseibeh and S. Easterbrook. Requirements engi-
neering: a roadmap. In A. Finkelstein, editor, “The
Future of Software Engineering”, Special Volume pub-
lished in conjunction with ICSE 2000, 2000.

[68] OMG. The common object request broker architec-
ture (corba) http://www.omg.org/, 1995.

[69] OMG. The security service
http://www.omg.org/homepages/secsig, 1995.

[70] Committee on Application of Digital Instrumentation
& Control Systems to Nuclear Power Plant Opera-
tions and Safety. Digital Instrumentation and Control
Systems in Nuclear Power Plants—Safety and Relia-
bility Issues–Final Report. National Academy Press
(Board on Energy and Environmental Systems, Na-
tional Research Council), 1997.

[71] R. Pandey, V. Akella, and P. Devanbu. Support for
system evolution through software composition. In
ICSE ’98 International Workshop on the Principles
of Software Evolution, 1998.

[72] R. Pandey, R. Olsson, and K. Levitt. Policy-driven
runtime support for secure execution of user code
in extensible kernels. (http://seclab.cs.ucdavis-
.edu/~pandey/ariel.html).

[73] D. E. Perry and A. L. Wolf. Foundations for the study
of software architecture. ACM SIGSOFT Software
Engineering Notes, October 1992.

[74] A. Pickholz. Software protection method and appa-
ratus. United States Patent 4,593,353, 1986.

[75] M. G. Reed, P. F. Syverson, and D. M. Goldschlag.
Anonymous connections and onion routing. IEEE
Journal on Selected Areas in Communication Special
Issue on Copyright and Privacy Protection, 1998.

[76] J. Ó. Ruanaidh, H. Petersen, A. Herrigel, S. Pereira,
and T. Pun. Cryptographic copyright protection
for digital images based on watermarking tech-
niques. Theoretical Computer Science, 226(1–2):117–
142, Sept. 1999.

[77] T. Sander and C. F. Tschudin. On software protec-
tion via function hiding. In Information Hiding, pages
111–123. Springer-Verlag, 1998.

[78] T. S. Souder and S. Mancoridis. A tool for securely
integrating legacy systems into a distributed environ-
ment. In Working Conference on Reverse Engineering
(WCRE), Atlanta, GA, October 1999.

[79] S. Stubblebine, P. Syverson, and D. Goldschlag. Un-
linkable serial transactions: Protocols and applica-
tions. ACM Transactions on Information and System
Security, 2(4), November 1999.

[80] L. J. Tolman and A. J. Etstrom. Anti-piracy system
using separate storage and alternate execution of s-
elected public and proprietary portions of computer
programs. United States Patent 4,646,234, 1987.

[81] V. Ungureanu and N. Minsky. Unified support for
heterogeneous security policies in distributed systems.
In 7th USENIX Security Symposium, San Antonio,
Texas, 1998.

[82] V. Varadharajan and T. Hardjono. Security model
for distributed object framework and its applicabili-
ty to CORBA. In S. K. Katsikas and D. Gritzalis,
editors, Information Systems Security – Facing the
information society of the 21st century, Proceedings
of the 12th International Information Security Con-
ference IFIP SEC’96, pages 452–463, Samos, Greece,
May 1996. Chapman & Hall.

[83] J. M. Voas. Certifying off-the-shelf software compo-
nents. IEEE Computer, 31(6), 1998.

[84] E. J. Weyuker. On testing non-testable programs.
The Computer Journal, 25(4):465–470, 1982.

[85] WWW-3C. The World-Wide Web Consortium
http://www.w3c.org/, 1999.

[86] B. Yee and D. Tygar. Secure coprocessors in electron-
ic commerce applications. In Proceedings of The First
USENIX Workshop on Electronic Commerce, New Y-
ork, New York, July 1995.

[87] M. M. Yeung. Digital watermarking. Communica-
tions of the ACM, 41(7):30–33, July 1998.

13

