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Abstract
In an open component market place, interface de-
scription languages (IDLs) such as CORBA’s pro-
vide for the consumer only a weak guarantee (con-
cerning type signatures) that a software service
will work in a particular context as anticipated.
Stronger guarantees, regarding the intended seman-
tics of the service, would help, especially if formal-
ized in a language that allowed static checking of
compatibility between the server and the client’s
service descriptions.

We propose an approach based on a family of for-
malisms called description logics (DLs), providing
three examples of the use of DLs to augment IDL:
(1) for the CORBA Cos Relationship service; (2)
for capturing information models described using
STEP Express, the ISO standard language used in
the manufacturing domain (and a basis of the OMG
PDM effort); and (3) constraints involving methods.

DLs, while being less powerful, do offer certain ad-
vantages over traditional formal specification tech-
niques. First, they typically support decidable
(sometimes even efficient) reasoning algorithms.
Second, DLs excel at modeling natural domains,
and are thus well-suited for specifying application-
and domain-specific services.

1 Introduction
The software component market is here, thanks to
the widely accepted standards such as CORBA and
COM [27]. Now, a vendor can build a software com-
ponent (such as a a financial calculator) and sell it
either to end-users or to integrators. In addition,
independently developed systems running on differ-
ent platforms can inter-operate via published inter-

faces. Although the details vary with the specific
standard, a key enabler of this new drive towards
heterogeneous system integration is the ability to
describe interfaces in a programming language in-
dependent manner. The core capability needed here
is some interface description language, or IDL [14],
which allows a component vendor or user to describe
the interface through which two bits of software can
interact. For example, a dictionary component may
support the following interface:
interface dictionary {

exception notFound (String key);
exception unInitialized();
exception badEntry(String key, String translation);
void enter(in String key, in String translation)

raises (badEntry);
void setup();
void lookup(in String key, out String translation)

raises (notFound, unInitialized);
}
With this published interface, and the use of vari-
ous stub and skeleton generators, and “on-the-wire”
RPC protocols, it is possible for dictionaries to be
implemented and (independently) client software to
be built. In principle, dictionaries will become a
freely replaceable and tradeable unit of software
composition. Besides domain-independent compo-
nents such as dictionaries and relationship servers,
domain specific services are also possible, with in-
terfaces defined specifically to support applications
for manufacturing, health, education, etc. (OMG1

has ongoing standardization efforts in some general
domains). We focus more on this second family of
applications.

IDL descriptions of a service resemble ordinary
type descriptions, and play several roles: (i) rep-
resenting agreement on the basic domain termi-
nology/identifiers; (ii) guiding the use of the ser-
vices in terms of the interface types and the ex-
ceptions; (iii) enabling automatic and static com-
patibility checks between the client’s requirements

1Object Management Group (OMG) is the standards
body controlling CORBA.
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and the services offered by a provider (again, view-
able as type checks). For languages with weak type
systems, one might even generate run-time tests to
validate arguments.

But in practice, IDLs leave many questions unan-
swered. For example, in the above specification:
Can more than one value be associated with the
same key? Can one add new words after the setup
procedure sets up an efficient access structure, if
one calls setup again? This is the problem of
service specification. Currently, some of this ad-
ditional information is provided informally, using
comments in natural language. In addition to the
standard problems of informal specifications (am-
biguity, etc.), this leaves item (iii) above totally
unsupported. It is therefore natural to consider
some formal approach to augmenting IDL service
specifications. In particular we imagine adding the
following kinds of information to an IDL interface:
(a) data invariants (particularly useful for database-
like “integrity constraints”), (b) procedure pre- and
post-conditions, (c) object behaviour models of dy-
namics.

In addition to expressing formally the domain se-
mantics, the hope would be that the specifications
of a client and supplier can be matched by some
computer program (type checker/theorem prover)
just as the IDL is matched.

What would the ideal formal service specification
language be? Many program specification for-
malisms (Predicate Calculus, object oriented Z [26],
Larch CORBA[15], Anna [16]) are highly expres-
sive, but pay for this expressiveness by giving up de-
cidable reasoning (item iii). Without effective rea-
soning, one cannot automatically determine if two
specifications are compatible, leaving the unpleas-
ant possibility of run time exceptions and errors.

Complete specifications may, in any case, be too
onerous and difficult to obtain for real-world large
products. But benefits can be obtained even with
partially characterized services; any increment over
the current IDL description provides a correspond-
ing benefit! This suggests formalisms that are ex-
pressively limited, with decidable reasoning prob-
lems. Some languages investigated in the formal
methods literature (e.g., Wright [2], Inscape [22],
etc.) fall in this category. However, a third de-
sirable feature of service specification languages is
that their basic ’ontology’ should match the ’object-
oriented’ nature of current IDLs, and they should
be well-suited to describe application domains in
the natural world. The aforementioned formalisms

are, however, better suited for capturing mathemat-
ically clean abstractions and special notions such as
concurrency.

In this paper, we propose to augment IDLs with
Description Languages/Logics (DLs), whose roots
are in AI knowledge representation and reasoning.
DLs have several features that make them good
candidates for enhancing IDLs. First, decades of
research have identified a variety of DLs that ad-
mit decidable, even highly efficient reasoners. There
are several refined and mature such reasoners avail-
able, and more under development. Second, the
basic ontology of DLs involves notions such as “ob-
ject”, “concept” (unary predicate), “attribute” (bi-
nary predicate), which are entirely compatible with
the basic ideas of object-centered IDLs such as
CORBA’s. Moreover, as detailed in [3], DLs re-
semble in many ways type systems, with DL judg-
ments such as “concept subsumption” and “individ-
ual recognition” corresponding to “type subsump-
tion” and “type inference” respectively. Therefore,
DLs are natural candidates to extend the type sys-
tem of IDLs to capture more details. Finally, DLs
arise from the long tradition of semantic nets and
frame systems [7], which are strongly biased towards
capturing real-world domain knowledge for use in AI
systems. So, while DLs are ill-suited for modeling
mathematical and algorithmic knowledge (e.g., Fast
fourier transforms and locking protocols), they are
by design and tradition well-suited for application-
and domain-specific services.

We provide three examples of the use of DLs to
augment IDL component interfaces with additional
semantics: (1) for the CORBA Relationship service;
(2) for capturing information models described us-
ing STEP Express — the ISO 10303 language devel-
oped to describe product data in the manufacturing
domain; (3) for describing constraints on procedu-
ral components. The first two examples are moti-
vated by the OMG effort to develop product data
management enablers in the manufacturing domain
[19], while the last one is meant to show that DLs
are useful for reasoning about meta-procedural, as
well as meta-data aspects. But first, we introduce
briefly Description Logics. (For further details, see,
e.g., [5] and the DL web site [12].)

2 Concept Description Languages/Logics
DLs have an object-centered ontology. DL objects
(which have immutable identity) may be related to
other objects via attributes and may be grouped into
concepts. For example, C45 (an instance of concept
CAR) can be related to its maker, Gm (an instance of
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MANUFACT and US-CORP) by having gm be a filler of
the madeBy attribute.2 By default, an object may be
related to zero or more other objects by an attribute
– e.g., ownedBy for C45 may include several entities,
indicating multiple ownership. Attributes that can
have at most one value are singled out, and will be
called features here.

DLs start from primitive concept and attribute
names, and combine these into composite con-
cepts using concept constructors. Some concept
constructors are the familiar boolean connectives:
(and CAR BLACK-OBJECT) denotes the set of cars
that are also black objects. Other concept con-
structors are more specially suited to represent con-
ceptual models of application domains. For exam-
ple, one can express cardinality constraints on at-
tributes using constructors at-least and at-most,
so that (at-least 2 ownedBy) denotes objects
with at least two owners. The values of attributes
can be restricted in various ways, including by uni-
versal quantification, as in (all ownedBy PERSON)
which denotes objects owned only by persons. For
readability, all is replaced by the when dealing with
features: (the madeBy MANUFACT)

The concept US-CORP may itself have been de-
fined as the conjunction of CORPORATION and (fills
incorporatedIn Usa), where the latter expression
denotes objects that include Usa among the fillers of
the attribute incorporatedIn. A useful property
of DLs is the ability to nest composite descriptions,
so that

(all madeBy (and MANUFACT

(the postedProfit (minimum 2.5))))

describes objects made by MANUFACTs who posted a
profit of at least 2.5 (billion dollars) — (minimum
k) denoting the set of numbers greater or equal to
k. Other concept constructors can specify rela-
tionships between (chains of) attributes:
(and CAR (same-as madeBy hasEngine.madeBy))

describes cars whose maker is the same as the maker
of their engine.
One can also define composite attributes, using
attribute constructors. For example, (inverse
madeBy) would be the natural definition of the at-
tribute makerOf, if madeBy and makerOf were in-
verses of each other. Other useful attribute con-
structors include relation composition: (compose
p q), and transitive closure of an attribute p:
(transClosure p)

2Notational conventions: concept names are all-caps, in-
dividuals have first letter capitalized, and attributes begin
with lower case letters. Keywords are bold-face

Table 1 contains a subset of DL constructors
(mostly ones used in this paper) from the ARPA
KRSS standard collection [21]3.

CONCEPT
TERM

TRANSLATION TO FOL
ψ(x) is shown for λx.ψ(x)

TOP True
BOTTOM False
(and C D) C(x) ∧D(x)
(all p C) ∀z p(x, z) ⇒ C(z)
(at-least n p) ∃z1, ...,∃zn

p(x, z1) ∧ . . . ∧ p(x, zn)∧
zi 6= zj

(at-most n p) ∀z1, ..., zn,∀zn+1

(p(x, z1) ∧ . . . ∧ p(x, zn+1) ⇒
(z1 = z2 ∨ . . . ∨ zn = zn+1)

(same-as p q) ∀z p(x, z) ⇐⇒ q(x, z)
(fills p I) p(x, I)
(set I1,...,Im) x = I1 ∨ . . . ∨ x = Im
(minimum k) x ≥ k
( maximum k) x ≤ k
(not C) ¬C(x)
(overlap p q) ∃z p(x, z) ∧ q(x, z)
(notsameas p q) ∃z ¬(p(x, z) ⇐⇒ q(x, z))

ATTRIBUTE
TERM

TRANSLATION TO FOL
ψ(x, y) is shown for λx, y.ψ(x)

identity x = y
(inverse p) p(y, x)
(compose p q) ∃z p(x, z) ∧ q(z, y)
(role-or p q) p(x, y) ∨ q(x, y)
(transClosure p) transitive closure

of binary predicate p

Table 1: Some concept and attribute constructors
and their semantics in Predicate Calculus

DLs (just like UML, for example) can express in-
formation about a domain of discourse; but DLs
are also logics that provide reasoning services. A
basic operation is determining if some concept C
is subsumed by another, D (C v D). For example,
(all ownedBy (set Alicia Roma)) v
(at-most 2 ownedBy)

3The list of constructors in [21] was arrived at empiri-
cally, in efforts to express the meaning of natural language
sentences and other Artificial Intelligence tasks. Subsets of
its constructors have been used to develop a number of sub-
stantial ontologies, in areas such as medicine, botany, etc. —
see [12].
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In some situations, the question of subsumption is
asked in the context of a number of other stated
“declarations” of subsumption and equality (called
a knowledge base/ontology). For example, (and A
C) v (and B E) holds in the context of A v B and
C .= (and E F).

Another logical deduction is determining whether a
concept or set of concepts is coherent (an incoher-
ent concept can never have an instance — it corre-
sponds to the predicate FALSE). And, though not
relevant to this paper, there is more logic dealing
with individuals, facts, and their connection to con-
cepts.

The various DLs investigated so far have three kinds
of implementations: classic, loom and back[12],
the three most widely used, are implemented us-
ing a “normalize then compare” approach, which
is quite different than standard theorem proving.
classic has been used, among others, in indus-
trial configuration applications, while loom has a
wide user-base in AI. This class of DLs can also
support interesting lattice-based operators on con-
cepts such as “difference” and “least common sub-
sumer”, as well as semantic pattern-matching, and
the ability to explain its reasoning (a feature of-
ten absent from theorem-proving techniques based
on model-checking or tableaux). A second fam-
ily of DLs, typified by crack[12], is implemented
with tableaux-like refutation theorem proving tech-
niques. Recently, several powerful decidable DLs
have been identified, that are closely related to
Converse Propositional Dynamic Logic [10]; hence,
these can rely on extensions of the theorem provers
for the latter.

A key focus of KR&R, and specially DL research
has been the trade-off between expressiveness of a
KR language and the feasibility of reasoning with
it. Specifically, there are detailed results about the
computational complexity of reasoning with various
subsets of constructors (and restrictions of them).
Of interest are subsets for which reasoning is de-
cidable (a variety of subsets of constructors from
KRSS are known to result in logics in which rea-
soning is undecidable), or even computable in poly-
nomial time. Through judicious choice of concept
constructors (versions of the first 11 in the first ta-
ble on page 3) standard classic [6] has a com-
plete subsumption algorithm that is o(n3). The
tableaux techniques appear to function quite fast
in practice, though having worst-case exponential-
time complete subsumption. Finally, loom, which
offers a much wider set of constructors, has an in-

complete reasoner since subsumption is undecidable
for several different subsets of its language.

Since the full KRSS DL is still known to express
only a very limited subset of Predicate Calculus (the
“3 variable subset”), for practical purposes systems
such as classic and loom offer “escape hatches”:
ways of describing concepts using either procedures
(test-concepts) or full first order logic ((satisfies
ψ)). Their reasoners tend to treat these as black
boxes.

Let us turn now to applications of DLs in describing
the semantics of interfaces.

3 The CORBA Relationship service: Cos-
Relationship

The OMG common object services (COS) frame-
work defines a relationship service (called Cos-
Relationship [1]) which is used to model entities
and relationships that arise in application software,
in the style of Entity-Relationship models. The ser-
vice is widely referenced because it is compatible
with other CORBA services such as naming, life-
cycle, transaction, persistence, security, etc.; it also
includes useful operations for traversing the graph
of a relationship.

The service is formally specified in pure CORBA
IDL; but the limitations of IDL force many mod-
eling decisions (e.g., about cardinalities) to remain
implicit in the implementation of the clients and
servers. In this section, we briefly introduce the
service using the example of a public school, and il-
lustrate how DL-based modeling can explicate such
decisions, and (through reasoning) statically deter-
mine whether there are incompatibilities that could
rear up during actual inter-operation.

Consider a system dealing with public schools. In-
formally, a school is located in a district, and per-
sons reside in a district. Students can be enrolled
in a school. To enroll in school, the student must
reside in the same district that the public school is
located in. To model this one starts with classes for
PERSON, SCHOOL, DISTRICT, and then establishes
relationships according to a general approach illus-
trated in Figure 1. An object participates in re-
lationships, such as enrollment, via a role (e.g.,
the PERSON object is connected with a role object
student to the enrollment binary relationship.) A
fragment of the corresponding IDL would be

module PS {
interface PERSON { . . . }
interface SCHOOL { . . . }
interface DISTRICT { . . . }
interface student :
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Figure 1: Example binary relationships

CosRelationship::Role
interface attended :

CosRelationship::Role
interface enrollment

CosRelationship::Relationship;
etc.

Let us examine in detail the process of enrolling a
child in a school, using the above service. First,
the createRole method of an implementation of a
CosRelationship::RoleFactory is invoked to create a
attended role for the SCHOOL object. The semantics
of the domain require that there must be between
50 and 200 students attending the school. If the
latter upper bound is violated, the MaxCardinality-
Exceeded exception (which is predefined for Cos-
Relationship) is signalled. Second, a student role
is created for the child, who is required to be an
instance of PERSON having age under 21. Moreover,
the student must live in the same district that sup-
ports the school. These translate into checks made
by the software – for example, that the student
role has an associated PERSON object who lives-in
the same DISTRICT that supports the SCHOOL.
The violation of these constraints may be signalled
by raising additional kinds of exceptions. Finally,
the createRelationship method of a CosRelation-
ship::RelationshipFactory object is invoked to cre-
ate the enrollment relationship between the above
two roles.

The problem is that while IDL can represent the
existence of the exceptions, it cannot specify the
precise conditions under which these exceptions are
raised. The constraints noted above can however
be expressed in DL (classic) by declaring con-
cept identifiers for interfaces (SCHOOL, DISTRICT,
PERSON), attribute and feature identifiers for the
roles (resident, residence, student,..., and
then adding restrictions on the concepts:

PERSON v (the residence DISTRICT)

CHILD
.
= (and PERSON

(the age (maximum 21)))

STUDENT v (and CHILD

(same-as residence attended.supporter))

SCHOOL v (and
(at-most 200 attended)

(all student CHILD)

(the supporter DISTRICT))

These concept descriptions can be explicitly en-
tered into the interface description as annotations
(perhaps in comments, as in [23]). These asser-
tions amount to an explicit representation of do-
main knowledge that would otherwise be implicit in
the implementation, or would appear in comments.
For example, the interim OMG PDM Enabler pro-
posal [20] uses stylized comments to capture cardi-
nality constraints.

Consider two software systems desirous of commu-
nicating over a school module, such as the one
above. As long as their IDL formulation is the same,
they can communicate. In addition, each IDL for-
mulation will now include a model of the constraints
on the various relationships in the form of DL con-
cepts. In this case, using DL inferences, the two
models can be statically compared for consistency
using the subsumption interface.

For example, assume that two components define
an interface COMPLIANT-SCHOOL differently. Assum-
ing the following additional semantics
SCHOOL v (the class-size Integer))

supporter
.
= (inverse supportedBy)4.

RICH-DISTRICT
.
= (and DISTRICT

(the supportedBy

(the class-size (maximum 30))))

suppose that one district defines COMPLIANT-SCHOOL

as: (and SCHOOL (the class-size (maximum

30))) while another describes it as:
(and SCHOOL (the supporter RICH-DISTRICT))

classic will quickly infer that these two definitions
are in fact equivalent, and declare the components
compatible; updates to the various relationships can
be carried out between these components, without

4If inverse is not
available, and the attributes are features, this can be cap-
tured
as (same-as supporter.supportedBy identity).
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fear of CosRelationship cardinality or other excep-
tions.

We note that to deal with non-binary relationships,
recursive constraints, and to detect certain kinds
of modeling errors (models that cannot be satisfied
in finite databases, only infinite ones), it may be
advantageous to use a more expressive DL for mod-
eling [8].

4 Capturing express in DL
The Object Management Group (OMG) standard-
ization efforts for manufacturing software[19] have
strong ties to the established ISO Standard for the
Exchange of Product Model Data (step), which
helps manufacturers share product data. A key
element of step is the language express, used
to present “information models” for different kinds
of applications (e.g., CAD designs, electrical prod-
ucts). Hardwick et al [13] provide an introduction to
step and express. They also describe a mapping
from express features to IDL, which can be used to
support distributed information sharing. express
[25] is a powerful object-centered data specification
language. It is more expressive than most object-
oriented modeling languages and supports several
special features. We show a mapping from express
to DLs to demonstrate the latter’s suitability for
application-specific domains. In addition, our map-
ping provides a formal semantics for part of ex-
press which is not yet available elsewhere. We use
part of an example from [25] to illustrate express,
and describe its translation into DL. This allows
partial reasoning with express.

The example concerns the registration of cars, and
is summarized informally thus:
Cars are objects, which have (single-valued) at-
tributes such as model (which is a car model ob-
ject), serial number, ownedBy. The car is made by
a manufacturer, who is said to make the model as
well, and the manufacturer of the car plus its serial
number distinguish this car from all other cars.
A car also can have up to 100 options, and a his-
tory of transfers. Each transfer records from which
owner to which owner the item was transfered, and
the date when this occurred. Each car’s trans-
fers are organized in a sequence, so that the pre-
vious owner is the seller, and the dates are in non-
decreasing order.

The following is the express syntax capturing this
information.
1. entity CAR;

2. model : CAR-MODEL;

4. options : set [0:100] of CAR-OPTIONS;

5. serialNo : INTEGER;

6. ownedBy : OWNER;

7. history : list of TRANSFER;

derive

8 madeBy : MANUFACT := model.madeBy

where

9. datesOK(self.history) // checking history

10 exchangeOK(self.history) // for correct ordering

unique

11 (madeBy, serialNo)

end entity;

entity TRANSFER;

item : CAR;

from : OWNER;

to : OWNER;

when : DATE;

end entity;

The only non-self-explanatory material are lines 9
and 10, which illustrate express’s “escape mecha-
nism”: for material that cannot be captured using
the dictions of express, there is a full-fledged pro-
gramming language for writing functions.

To begin with, here is the limited model that could
be captured in OMG IDL:
interface CAR {

attribute CAR-MODEL model;

attribute set<CAR-OPTIONS> options;

attribute OWNER ownedBy;

attribute seq<TRANSFER> history;

attribute MANUFACT madeBy;

}
The DL translation of the express model is more
accomodating. First, we use DL primitive attribute
names for express attributes that have aggregation
domains, like SET or LIST (options and history
in this case); the rest become features, having at
most one value. Also, all entity names are trans-
lated into primitive concept names. Types (not
shown) are translated to corresponding concept def-
initions. For example, the express type GENDERS

= enumeration of (’masc,’fem); becomes
GENDERS

.= (set ’masc ’fem).

The basic attribute domain and cardinality con-
straints (lines 2 to 7) are immediately translated
to DL as subsumption constraints on concept CAR:
CAR v (and

(the model CAR-MODEL) (at-least 1 model)

(all options CAR-OPTIONS)

(at-most 100 CAR-OPTIONS)

(the serialNo INTEGER) (at-least 1 serialNo)

(the ownedBy OWNER) (at-least 1 ownedBy)
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(all history TRANSFER)

(all madeBy MANUFACT) (at-least 1 madeBy) )

In addition, express has derive and where con-
straints. derive provides a way to ’compute’
the value of the attribute. Many of the sim-
ple derives constraints can be expressed directly
in DL: e.g., line 8 adds (same-as madeBy
model.madeBy) to the above. (The express

line madeBy: MANUF := Ford would add (fills
madeBy Ford).) The remaining kinds of derivations
are encoded in the catch-all
(test-concept xpr-derive madeBy “≺expressionÂ”)

As in express these cannot usually be reasoned
with statically, but can be checked dynamically in
a particular model.

The express where conditions are used to state
complex boolean constraints. In fact, line 8 could
have also been stated as
where madeBy :=: model.madeBy . Again, some

where constraints can then be captured by DL
constructs; and concept constructors and , or ,
etc. can be used to combine them to get com-
plex boolean expressions. Lines 9 and 10 become
DL terms like (test-concept datesOK history).
The final constraint, unique, is unfortunately very
common in computer-based information systems
and man-made worlds (in the natural world, there
are no globally unique external identifier). Re-
cently, classic has been extended with a con-
cept constructor that can capture this as (key

[madeBy,serialNo] CAR). In general, though, this
would have to be represented as (test-concept key
[madeBy,serialNo] CAR).

A simple Prolog program can translate abstract
syntax trees for express declarations (using a
slightly different grammar that generates the ex-
press language) to DL terms; after some simple
post processing, these produce a set of concept and
role specifications for classic, for example. In fact,
for the above example classic was sufficient, and
hence reasoning is very efficient, as mentioned ear-
lier.

Finally, suppose we would like to represent explic-
itly the list of transfers in the history (using an at-
tribute next say), so that we could enforce con-
straints such as the fact that the buyer in a transfer
needs to be the seller in the next one – (same-as
dest next.src). This sounds quite manageable if
we could define a concept corresponding to a linked
list cell (CELL v (the next CELL)). However, this
combination of language constructors — “recur-
sive” constraints and same-as on feature chains

— can be used to encode the well-known undecid-
able “word” problem, and hence is not permitted in
classic. There are DLs, such as CIQ [10], which
can handle recursive concept declarations, and even
fixed-point definitions. To ensure decidability of
reasoning, these exclude the constructor same-as.
There is no way out of this dilemma in general.
The benefit provided by DL research is the a priori
knowledge of what combinations are undecidable,
so that one is aware that complete reasoning can-
not be expected in principle.

We remark that the recent trend to extensible DL
reasoners [4], allows specialized, possibly incom-
plete reasoners to be customized for applications.
For example, probably the only important rea-
soning with keys is like (key [madeBy,serialNo,α)

CAR) v (key [madeBy,serialNo) VEHICLE) for any
attribute list α. The classic 2.3 release allows this
kind of inference to be added to the basic implemen-
tation so that (test-concept key ≺FeatureListÂ
≺ConceptIdÂ) will behave appropriately.

The facility of DLs to state definitions is a major
missing feature of express, which can only declare
primitive concepts, with necessary conditions, and
then add sufficient conditions as assertions. So for
example, the classic definition of ADULT .= (and
PERSON (the age (minimum 22)))
would require the use of procedures or queries
(which are equivalent to FOPC) in express:
entity ADULT

age/PERSON : INTEGER

where

necessaryCond: (self.age ≥ 22);

suffCond: query( p < ∗ PERSON | p.age ≥ 22 )

⊆ query( c < ∗ CHILD | true );

end entity;

5 Modeling dynamics
The above examples illustrate the modeling of static
aspects of a domain; we now turn to dynamic as-
pects. In AI, actions (verbs) are modeled using a
“case frame” approach where the participants of the
activity are linked to it via attributes. So, for ex-
ample, one can have the primitive concept DELIVER,
with features object, src, dest and when:
DELIVER v
(the object CAR) (the src MANUFACT)

(the dest DEALER) (the time DATE)

corresponding to the IDL specification
interface CAR{
...

deliver(in CAR object, in MANUFACT src,
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in DEALER dest, in DATE time)

...

}
However, to capture additional constraints on the
participants (for example, that the object and src
must be located in the same place at the beginning)
one can no longer use IDL — the only trace of it
would be an exception NOT-SAME-PLACE raised
by the method. We can however also model the ini-
tial and final conditions associated with a method
using DLs as follows: (i) For each method (e.g.,
deliver, sell) associated with an interface (e.g.,
CAR), declare a corresponding feature in the DL con-
cept:
CAR v (the deliver DELIVER)

(ii) Express the preconditions as descriptions relat-
ing the parameter features, as in
;; object delivered must be co-located with the source

CAR and (same-as deliver.object.location

deliver.src.location)

Preconditions can also involve the attributes of the
concept itself (recall that in OO methods, the data
members of a class can be accessed by a method);
for example,
;; the car’s maker delivers it to the dealer

CAR and (same-as madeBy deliver.src)

Similarly, it is the owner of the car who is supposed
to sell it, so we need precondition
CAR and (same-as ownedBy sell.src)

The specification can also indicate that the latter
condition is checked, by associating an exception
with its violation; in contrast, if the condition does
not raise an exception, then it is an assumption – a
proof obligation.
Final conditions are treated similarly. So for exam-
ple, the effect of selling the car is to give it a new
owner
;; the destination of sell is the new owner

CAR and (same-as ownedBy sell.dest)

Some initial and final conditions may be too hard
to express in DLs so they can be either stated in-
formally, as comments, or as argument formulas to
satisfies .

Finally, DLs can also represent dynamic sequenc-
ing constraints on the methods of a service. It
is not uncommon in the OO world to provide
some description of the valid sequences of opera-
tions on the objects of a class. Rather than us-
ing state charts, or other formalisms which re-
quire introducing new identifiers (for state names),
we use regular-expression based notation for valid
operation sequences. In the CAR example, as-

sume methods to deliver it to the dealer, to sell
a car, and to destroy it. The usual valid se-
quence would be captured by the regular expression
deliver (sell)∗ destroy . Interestingly, the example
in [25] actually states that “after destruction, earlier
transfers (sales) can still be recorded”. This means
that the server might specify the regular expression
deliver (sell)∗ destroy (sell)∗, with suitable restric-
tions on the sell method’s time.
A client desiring the first service could use the sec-
ond one, but not vice versa. How can we verify
this? As it happens, one large family of decidable
DLs is based on a close correspondence with “con-
verse propositional dynamic logic” [10]. The basis
of this correspondence is model-theoretic: objects
are states (hence concepts are state-predicates),
attributes are state transitions (hence programs).
Therefore, all we have to do is view the above regu-
lar expressions as complex attribute-expressions in
a concept definition, e.g.,

(at-least 1 (compose deliver

(compose (transClosure sell) destroy)))

We can then use the usual subsumption engine.
Moreover, the correspondence to PDL allows much
more complex “programs” to be written, describing
complex local conditions under which methods can
be invoked.

Alternatively, one could use the plan-based DL
clasp [11], which can be added onto classic using
the extensibility features [4]. Plans are constructed
through sequence, alternation and looping from ac-
tions, with the additional benefit of checking the
consistency of sequencing: preconditions of actions
cannot conflict with postconditions of their prede-
cessors.

6 Discussion
We have argued that IDLs, such as that of OMG,
provide only limited type information as a basis of
the agreement about the services provided or de-
sired, and this limitation can easily lead to run-time
errors (at best) or worse, unintended effects that re-
main undiscovered.

One solution is to increase the power of the ser-
vice “type description language”, which in the limit
can be a powerful program specification formalism,
such as Larch CORBA [15] or ADL [24] — the most
closely related previous work to ours.

However, we also seek a decidable, or even tractable,
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formalism to allow compile-time “type checking”.
We have argued that Description Logics are type-
like formalisms (concepts are unary predicates after
all), where subsumption can be used in ways simi-
lar to type signature matching. In fact, DLs seem
to form a nice middle ground between signature
matching [28] and specification matching [29]. DLs
were designed for modeling application domains in
the natural world. Many such domains arise from
the standardization efforts of the OMG subcom-
mittees in manufacturing, medicine, etc., where we
have observed the need for capturing additional ser-
vice semantics being met by the stylized use of com-
ments. We note that an IDL service specification
already provides us with a valuable commodity: a
consensus on primitive terms (concept and attribute
names for DLs), from which composite terms and
assertions can be built using the DL constructors.
This contrasts with the harder task of merging mul-
tiple data sources (e.g., heterogeneous database in-
tegration) — a problem to which DLs are also being
applied assiduously (e.g. [9, 18]).

In specific terms, we have showed how DL concepts
can be used to capture some of the (i) data invari-
ants related to interface attributes for services that
are data/relationship centered; (ii) pre and post
conditions needed to describe methods; (iii) condi-
tions under which exceptions will be raised; (iv) as-
pects of event dynamics. We have argued that DLs
are well suited especially for the first task by us-
ing actual services (CosRelationship) or languages
like express, which have been originally developed
to specify services in special domains. Also, the re-
cently exploited connection between PDL and some
expressive DLs makes it possible to make strong
statements about dynamics while staying in the
same framework!

In addition to checking for exact matching of the
above 4 kinds of information between the client and
server, the formal assertions and DL reasoning allow
us to perform additional tasks:

Compatibility testing of the specifications:
Even if the client’s requirements do not match
the provider’s specifications exactly, if the client’s
needs are stronger, (e.g., an extra initial condition),
then the client can be warned, and it might even
be possible for the language translation to auto-
matically add “wrapper code” for run-time checks.
This would require us to be given methods to ac-
cess primitive concept and attribute instances, but
would generate code for complex descriptions.
(Local) consistency checking:

Formal interface specifications can be checked for
self-consistency. For example, the initial conditions
of a method should not be inconsistent with the
data invariants for its interface class.
More thorough treatment of exceptions:
By associating IDL exceptions with formal asser-
tions we obtain, to begin with, some validation
benefits if we discover assertions that did not have
IDL exceptions, and vice-versa. For example, the
takesSpouse CosR relationship may specify that
(a) it is anti-symmetric, (b) one person’s spouses
cannot overlap with another person’s, (c) a person
has at most one spouse, etc. For each of these con-
straints, a different exception would be specified.
Variability in services provided:
Interestingly, if the checking of some assertions is
left to be generated automatically from the aug-
mented IDL (as mentioned earlier), with the choice
of which assertions are to be checked left to the
client, but the code being generated/used at the
server site, we get a much more flexible kind of
inter-operation. For example, the takesSpouse re-
lationship server could then be used in a polyan-
drous society, by omitting constraint (c).

To conclude, we repeat that DLs provably cannot
capture all the possible things one might want to
say about a service – but then neither can anything
else that is decidable. And for certain services (e.g.,
ones involving numeric computing, or concurrency)
there are surely far better alternatives to DLs. That
is why we have emphasized the kind of services that
we see DLs being particularly well suited to deal
with. Moreover, the technology of extensible DL
reasoners holds the promise of being able to cus-
tom tailor DLs that are specially suited for certain
application domains.
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