
A General Model for Authentic Data Publication

Chip Martel�, Glen Nuckolls, Michael Gertz, Prem Devanbu, April Kwong Stuart G. Stubblebine
Department of Computer Science CertCo

University of California 55 Broad Street { Suite 22
Davis, CA 95616 USA New York, NY 10004

fmarteljnuckollsjgertzjdevanbujkwongag@cs.ucdavis.edu stuart@stubblebine.com

Abstract

Query answers from on-line databases can easily be corrupted by hackers or malicious database
publishers. Thus it is important to provide mechanisms which allow clients to trust the results from
on-line queries. Authentic publication is a novel scheme which allows untrusted publishers to securely
answer queries from clients on behalf of trusted o�-line data owners. Publishers validate answers using
compact, hard-to-forge veri�cation objects (VOs), which clients can check eÆciently. This approach
provides greater scalability (by adding more publishers) and better security (on-line publishers don't
need to be trusted).

To make authentic publication attractive, it is important for the VOs to be small, eÆciently com-
putable and veri�able. This has led researchers to develop several di�erent data representations for
eÆcient VO computation. In this paper, we develop a novel, data model called Search DAGs. Within
this model, we develop a generalized algorithm for the construction of VOs. We show that the VOs
thus constructed are secure, compact and eÆciently computable and veri�able. We demonstrate how this
approach captures existing work on simple structures such as binary trees, multi-dimensional range trees,
tries, and skip lists; once these are shown to be Search DAGs, the requisite security, compactness and
eÆciency results immediately follow from our general theorems concerning Search DAGs. Going futher,
we also use search DAGs to prove the security of two new and much more complex data models for
eÆcient multi-dimensional range searches. This allows compact VOs to be computed (size O(logN +T))
for typical 1D and 2D range queries, where the query answer is of size T and the database is of size N .
We also show I/O eÆcient schemes to construct the VOs. For a system with disk blocks of size B, we
answer 1D and 3-sided range queries and compute the VOs with O(log

B
N + T=B) I/O operations using

linear size data structures.

This work was supported by NSF grant CCR 85961

�Contact author, phone +1 530 752 2651, fax +1 530 752 4767, email martel@cs.ucdavis.edu

1

1 Introduction

Large, complex, networked systems often have
aws that allow malicious outsiders to hack into them. Even
mature, reliable systems are hard to con�gure and administer properly. One can rarely be sure that a large
information system on the Internet is secure. Thus, the current state of security makes the trustworthiness
of online publishing sources suspect.

How, then, can one provide increased assurance for the integrity of high-impact information (e.g., �nancial,
medical, defense) securely on the Internet? In authentic publication a client, who only trusts a database
owner (or creator), can use an untrusted, third-party publisher for query processing. The owner herself can
remain safely o�-line and simply provide the database periodically to publishers, who answer queries on the
owner's behalf. When a client submits a query, the publisher responds with an answer Q and a veri�cation
object (VO). The client uses the VO and some digest values provided securely by owner to check that
the answer is correct (see Figure 1). These schemes provide the following crucial guarantee: if the answer
Q to a query is correct the client always accepts it, and if Q is incorrect, the client will detect that the
accompanying VO is incorrect unless the attacker has found speci�c collisions in a one-way hash function.
In some settings there will be a trusted certi�er who constructs and securely distributes the digest values.

owner

clients

.

publishers

query result +
verification−object

database

query

signed digest

Figure 1: Authentic Publication Scheme

The use of an untrusted publisher reduces the risks of operating a secure on-line system: an attacker
who gains control of a speci�c publisher would not be able to fool clients, who would simply �nd another
publisher. It also allows graceful scaling by adding additional publishers to meet increasing demand from
clients. Note that there are no secrets in this scheme: an adversary trying to fool the client is assumed to
know all the data, the hash function and all the digest values. Thus there is no privledged information to
be compromised. Note, however, that this approach is currently only practical when the data is relatively
static.

VOs must satisfy some critical requirements. First, they must be secure: it should be infeasible for a pub-
lisher to forge an acceptable VO for a wrong answer. Second, VOs must be compact, to reduce transmission
overhead. Finally, they must be both eÆciently constructible by the publisher, and eÆciently veri�able by
the client. The VOs we construct are cryptographic structures which use one-way hash-functions to make
forgery diÆcult.

The importance of �nding good veri�cation schemes for a broad range of queries has already led to the
development of secure schemes for a variety of data structures. The original structures focused on mem-
bership queries: binary search trees [12, 13], and recently, skip-lists [3, 4]. However, we are interested in
handling a much richer set of multi-attribute queries such as \return all patches for versions 4.1 to 5.3
of Netscape which were released after July 1, 2000". We used 2D-range trees for this in [7], but many
additional data structures can be used to support eÆcient answers to other types of queries. These include
queries on strings (as for genetic datatbases), on XML documents, on images and much more. Supporting
these queries eÆciently may require authentic versions of a variety of data structures.

However, as the data structures get more complex it can be hard to develop authenticated versions of these
structures. Thus we introduce a simple yet general data model which we call a Search DAG (for Directed

1

Acyclic Graph), and prove a security theorem for VOs of Search DAGs. Our Search DAG model uses a
new approach to veri�cation which is general enough to include all the traditional authentic data models
and much more. In particular, we can model hybrid data structures (e.g. combinations of trees, arrays,
and linked lists), and the use of constraint information associated with the structure (e.g. ranges of values
contained in a subtree). We then use our security theorem to prove the security of two much more complex
structures. We brie
y summarize the results below.

Main Results. There are three main results.

1. General model for eÆcient, authenticated data structures. We introduce the Search DAG model, which
characterizes a broad class of data structures and makes it fairly easy to create eÆcient authenticated
versions of these data structures. We prove that any data model which can be viewed as searching a DAG
supports authentic publication and typically does so using VOs whose size and construction time are linear
in the search time of the underlying data model. Current approaches to authentic publication using Binary
trees, 2-3 trees, and skip lists can be placed conveniently in the Search DAG framework.

2. I/O EÆcient VO construction. Publishers with large data-sets may need to use I/O eÆcient structures
(such as B-trees). We show how VO's can be constructed with good I/O performance.

3. New authenticated data structures. We develop authenticated data strutures for the important class of
multi-dimensional range queries which request all points in a d-dimensional rectangle.1 This also models
multi-attribute queries. In addition, answers to multi-dimensional range queries are important for support-
ing constraint query languages and queries on class hierarchies in object oriented databases [11]. Answers
to 2D range and 3-sided queries (rectangles with one direction going to in�nity) are the most important
special cases to handle.

For range queries over N points with answers of size T , we use Search DAGs to answer d-dimensional range
queries with a VO of size and construction time O(logd�1N + T). For 3-sided range queries, we use Search
DAGs to create an authenticated version of the complex data structure described in [1] to get VOs of size
O(logN + B + T) (B is the disk block size). The VO for 3-sided queries can be computed using only
O(logBN + T=B) I/O operations and using linear size data structures.

In summary, we have applied the general Search DAG model to several eÆcient data structures. In each
case, the resulting VO construction algorithms exhibit the same asymptotic time, I/O and space behavior of
the original (non-authentic) data structures, and produce compact VOs. Security results for the VOs also
immediately follow from the general security theorem. These results lead us to believe that our approach
is applicable to a wide range of other data structures.

Related Work. The idea of data authentication has been considered for timestamping [10] and micro-
payments [16]. The proposed techniques are based on the original work by Merkle [12] and re�nements
by Naor & Nissim [13] for certi�cate revocation. Recently, Goodrich and Tomassia showed that skip lists
provide compact and simple VOs for these settings [3, 4]. Devanbu and Stubblebine showed how to create
authenticated versions of stacks and queues [6]. In [7], we introduced the general idea of authentic data
publication, and we showed how to securely answer range queries. This work was extended to authentic
publication of XML documents in [8] using authenticated tries.

These schemes (like this paper) share a common theme of leveraging the trust provided by a few digest
values from a trusted party over multiple hashes, with the goal of protecting the integrity of the content,
by eÆcient veri�cation. However, our veri�cation approach is more general since it can use explicit rather
than implicit constraint information. This allows us to create authentic versions of much more complex
data structures. We extend and improve these prior results, and we provide a general framework for the
computation of compact VOs based on di�erent data structures. Necula [14] describes an alternate approach
using proof-carrying codes, which bundle logical proofs of relevant properties with programs. Note that
a similar logic-based approach (proof-carrying answers) in our case would lead in general to impractical

1An example 2D-range query is: return all points (x; y) such that 10 < x < 15 and 30 < y < 50.

2

proofs in the size of the databases themselves. Instead, we use an approach that relies on cryptography.

Structure of the Paper. In Section 2, we introduce the basic security properties of veri�cation objects
(VOs) and as an example, show how to eÆciently compute compact VOs for 1D range queries. In Section
3, we describe the search DAG model, and prove both its security and eÆciency. In Section 4 we show that
several existing secure structures can be easily modeled as search DAGS, and we then apply search DAGs
to B-trees and tries. In Section 5, we extend this framework to multi-dimensional range queries, focusing on
the general case as well as specialized queries (3-sided queries) and eÆcient computation schemes (fractional
cascading). In Section 6, we summarize our results and outline future work.

2 1-Dimensional Range Queries

We outline the principles of our data publication scheme and illustrate their use for membership and 1D
range queries. We show the traditional approach to this setting and our new scheme. Authentic publication
protocols involve three parties: the owner, who creates and is responsible for the content 2; the publisher,
who handles on-line query processing, and client, who submits queries to the publisher. The client relies
on the owner to create accurate data, but does not trust the publisher. The authenticity of our schemes
rely primarily on one-way hash functions (OWHF). Our protocols typically involve several steps. First, the
owner computes a digest d of the content using a OWHF over a data structure containing all the data. This
d is distributed securely to clients, perhaps using a public-key signature scheme. The owner then sends the
data to the publisher. When queries are received from the client, the publisher sends back an answer Q and
a veri�cation object VO. Using the VO and Q, the client can recompute d to verify that Q is exactly what
the owner would have given. We seek to guarantee the following important security property:

De�nition 1 An authentic publication protocol involving a client, publisher and owner is secure if, given
a digest (computed by owner), a VO and an answer computed by publisher, the client will only recompute
the digest when the answer is just what the owner would have given, unless the publisher has engineered a
collision in the hash function used (a more formal de�nition is given in Section 3).

As background, we now describe the use of binary search trees for queries over an ordered set of data items
x1 < : : : < xn. First, build a binary search tree whose leaves are associated with the xi values. Next,
we compute a digest of the tree thus: using a OWHF h, the value of the leaf associated with xi is h(xi)
(h1 : : : h4, as shown in Figure 2A). Each internal node's value is the hash of the values of its children. This
construction, due to R. Merkle [12], is called a Merkle hash tree and it has been used by several authors to
solve problems related to authentic publication [13, 10, 7]. The root digest value h� is distributed securely
by the owner to the client. The data is then distributed to the publisher, who can build the same binary
tree, and recompute the hash values.

For the tree in Figure 2A, the publisher can prove that 23 is in the data set by providing as a VO :
23; 45; h34. We proceed botom-up. Using the �rst two values the user computes h1; h2 and then h12.
h12 is then hashed with h34 to get the root digest. This VO also proves that 30 is not in the tree.

To better illustrate our general data model, where we want to be able to represent structural information,
we now describe a di�erent approach to digesting the tree and verifying an answer. Assume that internal
node vi has a data value di associated with it, where di is the largest value in the left subtree of vertex vi
(thus when searching for a value x, we go left at node vi if x � di otherwise right). The digest value of an
internal node vi will now be h(di; L;R) where L;R are the digest values of the left and right children of vi
(see �gure 2B). With this type of digest it is easy to show that a value is (or is not) in the tree using a
top-down approach. For example, to show 50 is not in tree we give as our VO:

45; h12; h34; 52; h3; h4; 52

2there might instead be a certi�er who is responsible for assuring the correctness of the data and distributing a digest

3

The �rst three values hash to the root digest h�, con�rming that 45 is the correct split value, so we know
to move right (to the node with digest value h34). The next three values hash to h34, con�rming 52 is the
correct split value, so we know to move left. Finally 52 hashes to h3 (the left child digest value) con�rming
it is the correct leaf value and that 50 is not in the tree (since a search for 50 ends at a leaf of value 52).

In general this digest of the tree allows the publisher to give the client a VO which lets the client simulate
a proper search in the tree and �nd the correct leaf values. Similarly, if the client asks for all values in the
range (50, 60), it is straightforward to give a VO which simulates a search for all values in the tree which
fall in that range. The VO will have a triple of values for each node visited in the search (range searches
can also be easily veri�ed using the standard Merkle tree as in Figure 2A).

23 52

45

h1 h2 h3 h4

23 45 52 78

(A)

h12=h(h1,h2)

h* =h(h12,h34)

h34=h(h3,h4) 23 52

45

h1 h2 h3 h4

23 45 52 78

h* =h(45,h12,h34)

h34=h(52,h3,h4)h12=h(23,h1,h2)

(B)

Figure 2: Computation of digest values (A) and including split values (B)

Our new approach may be less eÆcient (since we hash three values instead of two) but it gives additional

exibility which we will use for multi-dimensional searches where we may want to stop the search before
reaching the leaves. This type of top-down VO can also make the VO more transparent.

3 A Generalized Model for Query Veri�cation

In the authentic data publication setting the owner determines the most important part of the query
veri�cation structure: the logical view which supports digesting and query veri�cation. In this section we
introduce a general model for digesting data and verifying answers to queries on the data. It is general
enough to capture most existing data structures with search procedures and allows general use of constraint
information about the data structures. This allows us to model much more complex data structures than
any of the prior authenticated structures.

3.1 De�ning the Search DAG Model

A Search DAG consists of a directed acyclic graph (DAG) G = (V;E) and an associated search procedure P
(we de�ne P more precisely shortly). G has a unique source node s with in-degree zero. For each v 2 V , the
owner de�nes data associated with v which is denoted a(v). This data can contain information about the
successors of v as well as any other information the owner decides is relevant to the search procedure (such
as constraint information) as well as data for query answers. The sink nodes of the graph have out-degree
zero. We assume that each non-sink node has its successors speci�ed in order (so we can refer to, e.g., the
third successor of v).

The owner is also responsible for de�ning a search procedure P which takes a query q, searches G to �nd
the appropriate associated data, and returns the correct answer for q. Based on q, P begins searching G by
reading a(s), and outputting the next node v2 to be visited (where v2 is a successor of s). P next reads the
data associated with v2 to determine the next node to visit. P continues in this manner (always visiting
successors of previously visited nodes) until it completes its search, then outputs done and Q, the actual
answer to the query q. P can also output reject if it reads an invalid or inconsistent data item or a bad
query. For convenience of our veri�cation procedure, we will assume that the next vertex output of P is

4

in the form (j; k) which means: next visit the kth successor of the jth node visited (e.g. (3,2) says next
visit the 2nd successor of the third node visited in the search). For any query q, the correct answer to q is
de�ned to be the output of P when run on the owner's DAG G. This lets us de�ne our setting for a broad
class of queries without having to specify their speci�c semantics.

3.2 Digesting the DAG

The owner computes the digest value of the source in G using a one-way hash function h. The digest
function f applies to every node in G and has a simple recursive de�nition:

f(v) =

�
h(a(v)) : v is a sink node
h(a(v); f(v1); f(v2); : : : ; f(vk)) : where v1; : : : ; vk are the successors of v in order

We can now describe the general authentic publication scheme at a high level. The owner chooses an
appropriate Search DAG for his data set and gives a copy to the publisher along with h. Using a secure
protocol, the owner sends the client the digest value f(s) (the \root hash"), the hash function h and the
search procedure P . We also assume that P and h only need to be sent once, while f(s) may need to be
resent periodically to re
ect updates to the owner's data set. We now show how to verify answers.

3.3 The Veri�cation Objects and Veri�cation Procedure

We have de�ned correct answers to queries and how to digest our DAG. We now show that an untrusted
publisher can provide a VO for any query de�ned for the search procedure P . We now describe the structure
of such a VO and the client's veri�cation process. We present a straightforward veri�cation procedure for
clarity, but a number of implementations are possible which adhere to the basic model.

We start by describing a correct VO for a query q, which we will denote VO(q). Let v1(= s); v2; : : : ; vn be
the nodes visited when P is run with input q on the owner's DAG. We also let ui

1
; : : : ; uiki be the successors

of vi. The correct VO for q is then the following values:

a(s); f(u1
1
); : : : ; f(u1k1); a(v2); f(u

2

1
)); : : : ; f(u2k2); : : : ; a(vn); f(u

n
1
); : : : ; f(unkn)

Each vector is ended by a \;" and is called a step of the VO. An example of this type of VO is given in
Section 2 for binary search trees. As in that case, the client veri�es that the �rst step is correct by hashing
the individual items and comparing the result to f(s). If correct, he inputs a(s) to P . If the next node
visited is the kth successor of s, the �rst output from P will be (1; k). The second step is then checked by
hashing it and comparing the result to f(u1k), and if it matches, we input a(v2) to P . P then outputs (j; k),

(with j = 1 or 2). We hash step three and compare the result to f(ujk), and input a(v3) to P , and so on.
After inputting a(vn), P will produce the answer and halt.

Thus a correct VO is a sequence of vectors of integers separated by semicolons. Any VO not in this form
is immediately rejected. Thus any syntactically correct VO can be described as:

x1; y
1

1
; y1

2
; : : : y1k1 ; x2; y

2

1
; y2

2
; : : : y2k2 ; : : : ;xn; y

n
1
; yn

2
; : : : ynkn

We let si refer to the values in the ith step of the VO. Given a query q and a syntactically correct VO V the
veri�cation process, VP (q), for V proceeds just as we described above for the correct VO for q (repeatedly
hashing the values in a step, comparing the result to what it should be, and then giving the next data value
to P to get the next node to visit). We continue in this manner until P halts and the answer is output (the
veri�cation is successful), a computed value mismatches (reject V), or you run out of steps (again reject
V). In essence, VP proceeds just as P would when searching G except that, at each node, the additional
veri�cation data for that node is processed.

5

3.4 Security Theorem for the Veri�cation Procedure

We prove that a VO is accepted by our veri�cation process VP only if VP (q) veri�es and extracts the same
query data that the owner would have, unless the publisher was able to forge the VO for q. We �rst consider
a particular type of bad VO which could trick our veri�cation procedure.

De�nition 2 A syntactically correct VO V is a forgery of VO(q) if V has a step si, such that si is not
the same as the ith step of VO(q), but both steps hash to the same value using h.

We note that forgery is a necessary condition for fooling our veri�cation, but it is often not suÆcient. For
example, even if an attacker uses an alternate step ~xi; ~y

i
1
; ~yi

2
; : : : ~yiki which has the same hash value as the

correct step xi; y
i
1
; yi

2
; : : : yiki , the value ~xi may not be a valid input to P , so will be rejected. From our

de�nition of a correct VO and query answer, we know that if the user is provided with a correct VO for a
query q, then VP (q) will accept it and return the correct query data set Q. We can now prove our main
security theorem for Search DAGs.

Theorem 3 Given a candidate VO V 6= VO(q), if V is not a forgery of VO(q), then VP (q) rejects V .

Proof sketch: We prove that for all n up the length of VO(q), if the �rst n� 1 steps of V are correct, but
step n is incorrect, then VP (q) rejects V after processing step n. The theorem follows immediately from
this. The proof is by induction on n and uses the fact that since V is not a forgery of VO(q) the nth step
can only hash to the proper value if it is in fact the correct values; since the �rst n� 1 steps are correct we
know the value to which step n should hash. 2

The security theorem applies to all Search DAGs, but our focus is on Search DAGs created from eÆcient
search procedures. We now prove an eÆciency theorem for an important class of Search DAGs. To do so,
let N(q) be the number of nodes visited in the search which answers q and T (q) be the time taken by P to
process q before it starts the search.

Theorem 4 Consider a Search DAG where G has bounded degree, the data values a(v) associated with
the nodes are of bounded size, and P can process a data value a(v) in O(1) time. Then for any query q,
we can build VOs of size O(N(q)) which can be constructed and veri�ed in time O(N(q) + T (q)).

Proof sketch: The VO for q has N(q) steps each of O(1) size by the bounded assumptions of a(v) and
the degree of G. If each step is processed in O(1) time the veri�cation/construction time follows. 2

We note the above boundedness assumptions apply to many normal search procedures such as binary search
trees, multi-dimensional range trees, and skip-lists. In the next section we show that it is easy to cast these
in our model and thus get good VO schemes. However, the main advantages of our model is for the more
complex data structures we deal with in the �nal sections.

Our general method may lead to some ineÆciencies, but once the basic digesting/verifying method is known,
it is often easy to modify the veri�cation process to exploit speci�c properties and improve eÆciency. Most
common is to do the veri�cation \bottom-up" by starting with values from the fringe of the search and
hashing them to get the predecessor node's value. We will also show how to deal with high degree nodes.

4 EÆcient VOs for Dictionaries, Range Queries and Strings

We now discuss several ways to build VOs for structures which support dictionary queries: is element x
in the data set? The structures also can support eÆcient insertions and deletions of new elements. Our
general results for Search DAGs give easy security proofs for several standard structures.

A binary Merkle tree is the classic way to support an authenticated dictionary and it also de�nes a compact
VO for a 1D range query. Section 2 described how to model a binary search tree as a Search DAG. It is
also trivial to convert a 2-3 tree into a Search DAG if one wants to support eÆcient updates (as in [13]).

6

Skip lists [15] can provide an attractive alternative to trees, and Goodrich and Tamassia recently showed
how to create eÆcient VOs for skip list answers [3, 4]: O(log n) size with small constants and eÆcient
updates. A skip list is easily viewed as a DAG, and it is easy to create an authenticated skip list using
Search DAGs. The obvious DAG for skip lists gives O(log n) access time but O(n) update time. By splitting
the nodes which are at the bottom of towers, it is easy to get a Search DAG which also has O(log n) update
time. The digesting scheme used by Goodrich and Tamassia is similar to this improved Search DAG, but
they get better constants by using a bottom up approach and introducing a commutative hash function.

4.1 I/O EÆcient construction of VO's

Binary search trees (BST) and skip-lists are good for main memory implementations, but for large data sets
requiring secondary storage, they have poor I/O performance. A classic way to get good I/O performance
is to use a B-tree. Again, it is easy to cast a B-tree in Search DAG terms where each node's data is the
B� 1 split values to decide where to go next. Unfortunately, this would lead to larger VOs of size B logBN
for data sets of size N . We get a similar size VO using the traditional bottom-up veri�cation.

We can reduce the size of the VO by replacing each B-tree node by a BST of height logB. A search through
this tree determines the next B-tree node to visit (we get a pointer to the root of the BST corresponding
to that B-tree node). This new Search DAG is a BST, so we get smaller VOs for both membership and 1D
range queries. However, it is easy to store this tree in an I/O eÆcient manner since each BST corresponding
to a B-tree node and its associated values can be stored in O(1) disk blocks. Thus traversing this binary
tree uses the same asymptotic I/O operations as for the B-tree.

This demonstrates a general method which may allow high degree Search DAG nodes to be replaced by a
tree of lower degree nodes. This also emphasizes the fact that the Search DAG is only a logical view of the
data, and need not restrict the publisher's physical implementation. Now, consider a 1D range query on N
data points using disk blocks of size B. It follows from theorems 3 and 4 that:

Theorem 5 For a 1D range query with T answer points we get a (binary) VO of size �(logN + T) which
can be constructed with �(logBN + T=B) I/O operations using a multi-way tree of size �(N).

Proof sketch: The VO size and security follow from theorems 3 and 4 since we have a BST as our Search
DAG. For the I/O results, note that we can store the BST for a B-tree node in O(1) disk blocks. The
search looks at O(1) disk blocks for logB levels of the BST, and we only look at two leaf disk blocks (�rst
and last) which do not contain �(B) answer points. 2

The above describes a static multi-way tree, but I/O eÆcient updates to a B-tree translate into I/O eÆcient
updates to our BST version of the tree.

4.2 String Applications

Data structures to support fast string searches are important in many settings. A trie and its special form
as a suÆx tree are used in many applications [9] including our recent use of tries to authenticate XML
documents [8]. As a tree-like structue, a trie is easily represented as a Search DAG. As long as the alphabet
size � is a constant, theorems 3 and 4 apply to the Search DAG. Thus to �nd if a pattern of length m
is in our trie, we can build a VO of size O(m) which can be constructed in O(m) time. Of course since
the branching factor can be �, the VO size is really O(m�). We can reduce the VO size to O(m log �) by
replacing high degree nodes by binary trees as we did for B-trees.

SuÆx trees allow us to preprocess a long string S of length n in O(n) time and space. We can then �nd if
a pattern is in S in O(m) time and �nd all k occurances in O(m+ k) time. They have many uses in string
matching in general and computational biology in particular [9]. Since a suÆx tree is a trie, we want to use
the results on authenticated tries. However, because a suÆx tree is a compacted trie, a simple extension
of our trie result blows up the space used. With some care it is possible to create an authenticated suÆx

7

tree which still uses O(n) space, has the same search times, and has VOs whose size is linear in the search
time. As before, a hidden multiplicative constant of � can be reduced to log �.

5 Multi-dimensional Range Queries

In this section, we introduce eÆcient computation schemes for multi-dimensional range queries. The general
case using range trees is outlined in Section 5.1. In Section 5.2, we discuss an improved computation scheme
using fractional cascading. VOs for 3-sided queries, a special and important type of range queries, are
detailed in Section 5.3. In all cases we get eÆcient authenticated structures using Search DAGs.

5.1 Multi-dimensional Range Trees

For a database of N points, rectangular queries of the pattern (xl1 ; xu1); (xl2 ; xu2); : : : ; (xld ; xud), can be
eÆciently processed by so-called multidimensional range trees (mdrts) [2] in time O(logdN + T). In this
section, we show that mdrts can be used to eÆciently compute VOs for rectangular queries as well. In the
following, we �rst outline the basic characteristics of mdrts and then show how to convert them to a Search
DAG to get compact VOs. We discuss 2D queries, but the framework extends to higher dimensions. The
basic result on mdrts largely duplicates our results in [7], but we repeat the details since we build on them
later in our improved results.

9

1 5 12 23

13

5

3 8
4

X−tree

−treeY

(1,9) (4,7) (5,2) (9,6) (12,5) (13,20) (23,8) (45,3)

(45,3) (12,5) (23,8) (13,20)

v

Figure 3: Example of a 2D Range Tree

Consider the example mdrt shown in Figure 3, consisting of one X-tree, and multiple Y -trees which repre-
sents points in the 2D space. The X-tree sorts the points by x coordinate. Each interior node in the X-tree
is an ancestor of a set of points represented by a Y -tree. Consider the interior node v in the X-tree, which
is the ancestor of points with coordinates (12,5), (13,20), (23,8) and (45,3). An mdrt contains a link from
v to the root of an associated Y -tree, denoted as Y (v). This Y -tree contains the same four points; however,
in this tree, they are sorted by the y coordinate. Likewise each interior node vi in the X-tree has a pointer
to an associated 2D mdrt Y (vi) for the points in the subtree below vi. For higher dimension mdrt's, each
node v of a j + 1-dimensional mdrt contains a pointer to a j-dimensional mdrt. The nodes of the �nal
1D-tree (Y -tree(s) above) do not have such pointers.

Consider a 2D rectangular query of the form (xl; xu); (yl; yu). To answer this query, we �rst de�ne a node
v in the X-tree as a Canonical Covering Root (CCR) if all descendents of v satisfy the x-range of the
query, but not all the descendents of v0s parent do. There are O(logN) CCRs, which can be found in
O(logN) time [2]. For each CCR, the corresponding Y -tree is searched for the requisite range, thus
yielding an O(log2N + T) time for 2D range searches (recall T is the number of answer points). In general,
d-dimensional range queries can be computed in time O(logdN + T). Range trees require O(N logd�1N)
storage space, and can be constructed in time O(N logd�1N).

To convert an mdrt to a Search DAG, the nodes and arcs of the DAG are exactly as in the mdrt. Each
internal node has its split value (in the appropriate dimension as in Figure 3) as its associated data values.
A leaf has the (x; y) coordinates of its associated point. This is suÆcient to guide a search which �nds the
CCR roots and then searches for the appropriate leaves in the associated Y trees. A trace of this search
is the VO. Each node has degree at most three and a bounded amount of data. So by Theorem 4 we

8

immediately get a VO of size and construction time equal to the number of nodes visited: O(log2N + T).
The above 2D construction extends easily to a d-dimension mdrt (e.g. for 3 dimensions, each node of the
Y -tree points to a Z-tree sorted on the z-coordinate).

Theorem 6 We can verify a d-dimensional range query using a VO of size O(logdN + T) which can be
computed in the same time.

5.2 Improved Multi-dimensional Range Queries: Fractional Cascading

We apply our Search DAG model to a more eÆcient range query structure. Fractional cascading [2, 5]
reduces the search time for a d-dimensional query by a factor of O(logN) to O(logd�1N + T). We review
fractional cascading and use the Search DAG model to construct O(logN) size VOs for 2D range queries.

With 2D mdrts, we �rst �nd O(logN) x-dimension CCRs and then, for each CCR, we search the associated
Y -tree. Each Y -search produces an O(logN) piece of the VO. In fractional cascading each node v in the
X-tree has a pointer to an associated array denoted Y (v) containing all points in the subtree rooted at v,
sorted by their y-coordinate. Let Y (v)[i]:y denote the y coordinate of the ith element of Y (v). Let w; a
be the left/right children of v in the X-tree. An element Y (v)[j] has a pointer to Y (w)[i], where i is the
smallest index such that Y (w)[i]:y � Y (v)[j]:y. Y (v)[j] also points to the analogous entry Y (a)[m] (see
Figure 4).

root

55 60 62 65 70 77 80 95 9795 45 99

55 62 65

9 97

9 55 60 62 65 77 97

77 97

path for

5 45 99958070

9 60

60 77

*

*

CCR

*

*

CCR

Y(L)

Y(u)

Y(w)

Y(b) Y(c)

Y(a)

Y(v)

aw

v

L R

u

Vsplit

b c

X−tree

xl = 10, xu = 30

yl = 50, yu = 75

xl

Figure 4: Fractional Cascading Scheme (only y-coordinates and select pointers are shown)

For a 2D query (xl; xu); (yl; yu), we �rst do a 1D range search for (xl; xu) in the X-tree, to �nd Vsplit, the
�rst node with answer points under both its children, and the CCR roots as in Figure 4. If Vsplit is a leaf,
it is the answer. Otherwise let L and R be the children of Vsplit. Y (L) now has all the points in the subtree
rooted at L; we seek the smallest j such that Y (L)[j]:y � yl. The pointers associated with Y (L)[j] directly
indicate candidate Y -range points; we just follow a pointer to the �rst possible answer element and then
scan till we hit an out-of-range point. The cascading pointers allow scans rather than searches, and provide
the additional eÆciency over mdrts. The search in the X-tree tells us which nodes v under L are roots of
CCRs, so we do these scans on the corresponding Y (v) arrays.

The Search DAG Our DAG builds on the mdrt Search DAG of the previous section. The X-tree and
associated Y -tree's are the same, except that the leaves of a Y -tree now only hold y coordinates and are no
longer sinks. The nodes, which were leaves of a tree Y (v) in the regular mdrt, will now have pointers to the
corresponding elements of the fractional cascading array. Just as for the mdrt, we identify the CCR's in the
X-tree and the split node Vsplit. A search in the Y -tree associated with Vsplit lets us �nd the correct place
to begin our fractional cascade search (value 55 in the prior example). To make the arrays a Search DAG
we make each array element a node with three outgoing pointers: to its right neighbor from the array, and
the two cascade pointers. Since we now have a Search DAG of constant degree with O(1) data per node
theorems 3 and 4 apply, and this extends easily to a d dimensional mdrt with fractional cascading.

Theorem 7 The fractional cascading VO for a d-dimensional range query q with T satisfying points is of
size O(logd�1N + T) and can be computed and veri�ed in time O(logd�1N + T).

9

5.3 3-Sided Range Queries

3-sided range queries are de�ned by an x-range (xl; xu) and a one-sided y-range (yl;1). Arge et.al. present
an I/O and space eÆcient indexing scheme for 3-sided range queries in [1]. They use linear storage and
O(logB N + T=B) I/O operations to answer queries. We use the Search DAG model to construct a VO for
this structure using constant additional storage and I/Os.

They divide the N points into sets of size �(B2) with each set stored in �(B) data blocks. As a result, the
blocks can be indexed using O(B) values and which blocks contain query points can be determined with
constant I/Os. We refer to their structure for storing �(B2) points as an ASV structure.

A search tree, which we will call the base tree, is used to determine which of the ASV structures need to
be examined. The base tree is a balanced tree with branching factor �(B) and each node has an associated
ASV structure. An internal node also has O(B) key values which direct the search in the base tree. Arge
et.al. show that an initial search in the base tree can identify all nodes whose associated ASV structure
might contain answer points using O(logB N + T=B) I/O operations. This result depends on the search
using structural data at the nodes to terminate the search before reaching the base tree leaves. Thus our
model works here while a \bottom up" veri�cation approach does not.

Since the focus of this indexing scheme is eÆcient I/O operations, we would like to have a veri�cation result
stated in terms of I/Os as well. We can treat their data structure as a Search DAG. For each ASV structure
there is a node of degree �(B) with the index information. Its successors are the �(B) data blocks, and
these are the sink nodes. Each node in the base tree has its children as successors as well as the index node
of its ASV structure. Since the data and hash values associated with each node in this Search DAG can be
accessed with O(1) I/Os, our eÆciency theorem applies:

Theorem 8 VOs exist for 3-sided queries which can be constructed with O(logB N + T=B) I/Os.

This approach has VOs of size �(B logB N+T). Using properties of the ASV structure to carefully organize
the search, we obtain a more eÆcient search and reduce the size and computational time of the VO to
O(logN + T + B) while maintaining I/O eÆciency. We also reduce the node degrees using the technique
for B-trees presented in Section 4.1. The details of this and theorem 8 are presented in the appendix.

6 Conclusions and Future Work

One major issue which needs further work is updating the database. Our data publication schemes assume
fairly static data sets, an assumption which is reasonable for a wide variety of data publication scenarios.
Most of the data structures we discuss do admit eÆcient algorithms for updates. The conversion of a data
structure to a Search DAG will often leave the update properties of the original data structure intact: it
will be almost as easy to update the Search DAG and digest as the original data structure. This was
true for most of our structures, but for fractional cascading the Search DAG is harder to update (due
to its chain of hash values). Similarly, the obvious search DAG for skip lists is hard to update. Finally,
authentic publication covers a broad range of secure query processing on the internet|much work remains
to handle other indexing structures, types of queries, other data models, and other trust models such as
data integration from di�erent owners.

References

[1] L. Arge, V. Samoladas, and J.S. Vitter. On Two-Dimensional Indexability and Optimal Range Search
Indexing In Proc. of the 18th Symposium on Principles of Database Systems (PODS '99), 346-357,
1999.

[2] M. D. Berg , M. V. Kreveld, M. Overmars and O. Schwarzkopf. Computational Geometry. Springer,
New York, 2000.

10

[3] M. Goodrich , R. Tamassia. EÆcient Authenticated Dictionaries with Skip Lists and Commutative
Hashing, Preprint, 2001

[4] M. Goodrich, R. Tamassia, and A. Schwerin. Implementations of an Authenticated Dictionary with
Skip Lists and Commutative Hashing. To appear in DISCEX II, 2001

[5] B. Chazelle, L.J. Guibas. Fractional Cascading: I. A Data Structuring Technique. Algorithmica 1(2):
133{162, 1986.

[6] P. Devanbu, S. Stubblebine. Stack and Queue Integrity on Hostile Platforms, IEEE Transactions on
Software Engineering 26(2), 2000.

[7] P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine. Authentic Third-party Data Publication,
14th IFIP 11.3 Working Conference in Database Security (DBSec 2000), 2000.

[8] P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls, and S. G. Stubblebine. Flexible Authenti-
cation of XML documents, to appear in the 8th ACM Conference on Computer and Communications
Security, 2001.

[9] D. Gus�eld. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, 1997.

[10] S. Haber and W. S. Stornetta. How to timestamp a digital document J. of Cryptology, 3(2), 1991.

[11] P. Kanellakis, S. Ramaswamy, D. Vengro�, and J. Vitter. Indexing for Data Models with Constraints
and Classes. Journal of Computer and System Sciences, 52(3), pp. 589{612, 1996.

[12] R.C. Merkle. A certi�ed digital signature. In Advances in Cryptology{Crypto '89, Lecture Notes in
Computer Science, Vol. 435, 218{238, Springer, 1990.

[13] M. Naor, K. Nissim. Certi�cate Revocation and Certi�cate Update. In Proceedings of the 7th USENIX
Security Symposium, 1998.

[14] G. Necula. Proof-carrying code. In 24th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, 106-119, 1997.

[15] W. Pugh. Skip Lists: a Probabilistic Alternative to Balanced Trees CACM 33(6): 668{676, 1990.

[16] S. Charanjit and M. Yung. Paytree: Amortized Signature for
exible micropayments, Second Usenix
Workshop on Electronic Commerce Proceedings, 1996

[17] J. D. Tygar. Open Problems In Electronic Commerce In Proceedings of the 18th Symposium on
Principles of Database Systems (PODS '99), 101, 1999.

7 Appendix: Three-Sided Range Queries

In this section we describe the details of theorem 8 followed by a more eÆcient Search DAG for 3-sided
queries. The I/O eÆcient result of theorem 8 is a fairly straightforward application of the search DAG
model. However, the improved version relies on more details of the ASV structures. We reduce the size of
the VO and construction time while maintaining the space and I/O eÆciency. Our approach continues to
build on the Arge, Samoladas, Vitter scheme.

Applying the Model for I/O EÆciency

We now describe the Search DAG for achieving I/O eÆcient VOs. Each node v in the base tree is a node
of the Search DAG, and the data associated with v is the O(B) index values used to determine which of its
O(B) children to search. The successors of v are its children in the base tree and a single node whose data
is the index information of the associated ASV structure.

11

The search DAG for each ASV structure will have a node containing the O(B) index values and also a node
for each of the O(B) data blocks whose associated data is their O(B) data points. Thus, the sink nodes
contain the data blocks.

We search the base tree just as for the original data structure. For each ASV structure examined, we go to
the index node and from its data determine which of its successors has the answer data.

Theorem 8 VOs exist for 3-sided queries which can be constructed with O(logB N + T=B) I/Os.

Proof: Each node visited in the Search DAG corresponds directly to an I/O operation in the structure.
We also store, with each non-sink node, the digest values of all its successors. Since each node has O(B)
data and successors, the VO data for each node can be stored in O(1) blocks, and thus can be constructed
and veri�ed using the same number of I/Os as nodes visited. 2

A More EÆcient Search and VO

To avoid describing too many details of the complicated Arge et.al. scheme, we outline our improved Search
DAG and abstract the main properties of their approach which make the analysis work. The base tree can
be viewed (for our purposes) as a balanced multi-way tree which sorts points by their x-coordinate. First
note that any time we get �(B) answer points from a visited node we are OK: we put �(B) values into
the VO, but we get �(B) answer points. Arge et.al. show that you get �(B) amortized answer points for
each node visited, except for what we call fringe nodes. These are nodes in the base tree along the extreme
right and and left path which only partially overlap the x-range. Our improved Search DAG will make
these accesses more eÆcient.

One part is fairly easy. Since the base tree is basically a multi-way tree, we can convert each base tree node
into a binary tree of height O(log2B) just as we did for B-trees. The \binary" base tree now has constant
degree and the sequence of fringe nodes in it has length O(log2B) � logBN = log2N . Also, any time all
the data points in a subtree rooted at an base tree node v have Y -value below yl, we stop exploring that
subtree.

Reducing the degree of the nodes for the ASV structures requires more detailed knowledge of their indexing
scheme. Each block of data points in an ASV structure has an associated x-range xmin; xmax and y-range
ymin; ymax. A query of the form: xl � x � xu and y � yl, will access this block of points i� ymin � yl < ymax

and the X-range overlaps (xmin; xmax).

Since Arge et.al. only worry about I/O performance, they �nd the correct data blocks by scanning all �(B)
index values. We speed up searching the ASV index by using three levels of binary search trees (BST). The
�rst level BST has the ymin values of the blocks associated with its leaves. Associated with each such leaf
is the set of blocks which satisfy the Y search constraint. The second level Sequence BSTs, one for each set
of blocks, have the xmin values associated with their leaves. They are used to search for the blocks, which
also overlap the query x-range. The third level point BSTs, one for each block of points, are used to search
for the points within a block. The leaves of this tree are the actual data points sorted by x-coordinate and
these are the sinks of our Search DAG. Note that although there are logically O(B2) of these point trees,
there are only O(B) blocks of points in an ASV structure, so only this many distinct trees (and the overall
structure is a DAG, not a tree).

Thus when we access an ASV structure we �rst search in the top tree to �nd the largest ymin � yl, this
gives us the root of the correct Sequence tree which has all the blocks satisfying the y-range. We do a 1D
range search in that tree to �nd blocks which overlap the x-range of our query. Finally we get the actual
points from each data block with another x-range search.

Theorem 9 We can answer a 3-sided query using �(logBN +T=B) I/Os and build a VO of size �(logN +
T +B) using linear size data structures.

12

Proof Sketch:

Since we have only given a high level overview of their data structure, here we only give the main ideas of
the proof.

We can pack each of the binary trees associated with each node of the X-tree as well as the top level binary
ASV structure trees and each sequence and point tree into O(1) disk blocks. Thus, we can simulate the
search used by Arge et.al. with the same I/O performance.

For VO size we only need to analyze the fringe nodes, since each non-fringe node examined in the search
corresponds to a contribution of �(B) points to the query answer, so non-fringe nodes contribute O(T) in
total to the VO size. As indicated above, we now use only an O(logN) size VO to describe the fringe paths.
When we access the associated ASV structure for a fringe node, our search trees give us the same type of
performance as for a 1D range query: O(log2B+k) size VOs where k is the number of points satisfying the
x-range. Since there are O(logBN) such \fringe" structures accessed, we get O(logN + T) total size. The
one �nal point is to deal with a fringe node at the very bottom of the search which has points which are
not above yl. There are at most two such ASV structures accessed (one for the left/right path) and each
may contribute �(B) points to the �nal VO. 2

13

