Stack and Queue Integrity on Hostile Platforms

Premkumar T. Devanbu
Department of Computer Science
University of California

Davis, California CA 95616 USA
devanbu@cs.ucdavis.edu

Abstract

When computationally intensive tasks have to be
carried out on trusted, but limited, platforms such as
smart cards, it becomes necessary to compensate for
the limited resources (memory, CPU speed) by off-
loading implementations of data structures on to an
available (but insecure, untrusted) fast co-processor.
However, data structures such as stacks, queues,
RAMS, and hash tables can be corrupted (and made to
behave incorrectly) by a potentially hostile implemen-
tation platform or by an adversary knowing or choos-
ing data structure operations. This paper eramines
approaches that can detect violations of datastructure
invariants, while placing limited demands on the re-
sources of the secure computing platform.

1 Introduction

Smart cards, set-top boxes, consumer electronics
and other forms of trusted hardware [2, 3, 16] have
been available (or are being proposed [1]) for applica-
tions such as electronic commerce. We shall refer to
these devices as 7. These devices are typically com-
posed of a circuit card encased in epoxy or a simi-
lar substance, that has been strewn with various elec-
tronic tamper-detection devices. The physical design
constraints on these devices include heat dissipation
difficulties, size (often a credit card or PCMCIA for-
mat), very low power consumption requirements, etc.
This leads (particularly in the credit card format) to
devices with exceedingly low data transfer rates, mem-
ory, and omputing resources. These resources are not
a limitation in a few applications areas as such as cash
cards, identity cards etc. However, for general purpose
multi-application cards, these resource limitations are
significant.

We have been exploring the use of trusted hardware
in software engineering [7, 6]. (see Section 6). In this
context, it becomes necessary store large amounts of
data in the form of various data structures (stacks,
queues, arrays, dynamic/static symbol tables, various

Stuart G. Stubblebine
AT&T Laboratories—Research
Florham Park, NJ 07932 USA
stubblebine@research.att.com

types of trees, etc.). Such data structures cannot fit
into the limited resources on the 7 device. However,
T devices are usually used in concert with a larger,
more powerful (and presumably adverse) host com-
puter (#). Such data structures can be stored on H.
But how can their integrity be assured? Data struc-
tures have invariants; for each instance of a data struc-
ture, these invariants can be stored in a “digested”
form as signatures within the 7 device. Data structure
operations are performed in conjunctions with modi-
fications on the signatures to maintain a “digested”
form of the invariants.

This approach differs from earlier work [4, 5]. Our
protocols are much simpler. We use O(1) memory in
the trusted computer, and transfer only O(1) amount
of data for each push and pop operation in an on-line
mode. Previous approaches used a O(log(n)) trusted
memory and O(log(n)) data transfer for each opera-
tion (where n is the size of the stack or queue). How-
ever, previous work [4, 5] assumed extremely power-
ful adversaries (information theoretic bounds). We do
follow in this line of work, but with quite different
techniques that are applicable with computationally
bounded adversaries.

This paper is organized as follows. In Section 2, we
present goals, threats, and related work. Section 3 de-
scribes our protocol for stacks and an evaluation of it.
In Section 4, we describe our protocol for queues and
an evaluation of it. Section 5 describes previous work
to handle random access memory and discusses the
relationship of stacks and queues to this work. Sec-
tion 7 describes extensions to our protocols. Section
6 describes applications using our protocols. Section
8 presents some concluding remarks.

2 Background

In this section we discuss the goals of the work,
threats, and related work.

The goal of this work is to maintain integrity of
stacks and queues maintained by a potentially hostile

platform. Also, we wish to do this in a manner that
is extensible for other desired properties described in
Section 7.

We need to make some assumptions about the ad-
versary and the environment. So that we may focus
our description on the security of the data structure
application, we assume the channel between 7 and
H is authenticated. We allow for an adversary that
may learn information on this channel. We assume
H is dishonest and need not follow the protocol. We
assume the adversary can also submit high level com-
mands to 7. Thus, the data structure protocols need
to be secure against chosen and known attacks. In this
context, a chosen attack is one where an adversary has
complete control over data and operations to the data
structure. A known attack is one where the attacker
is assumed to know operations and data. We assume
a computationally bounded adversary who is limited
in the number of operations that can be submitted
to the data structure, the amount of information that
may be stored, and the number of operations required
to process data and/or fill storage with data.

We assume the adversary may try to replay data
from other instances of data structures. These replays
may be due to multiple concurrent runs of the protocol
and should not lead to a vulnerability. We assume
the adversary may try to compose new messages using
message fragments from other sessions.

Some issues are beyond the scope of this paper.
This paper does not address how to recover from cor-
rupt or lost data. Thus, we do not attempt to replicate
data structures and operations. The sharing of data
structures by multiple secure processors is also beyond
the scope of this paper.

2.1 Related Work

This work follows the memory protection investiga-
tions of [4, 5], which considered the problem of veri-
fying the correctness of a large memory of size n bits
maintained by an all-powerful adversary P, subject to
update requests from originator V with only a limited
amount of trusted memory. (Most of these schemes
are based on Merkle signature trees [12] which is de-
scribed in further detail in Section 5.) It is shown
that P can fool V' with an incorrect memory when-
ever V has access to less than log(n) bits of trusted
memory. They also describe implementations of stacks
and queues [5]. The stack implementation uses log(H)
memory accesses for operations on a stack of height
H. Our approach also relates to, but differs from the
work of Lamport [10]. His one-time password scheme
precomputes a chain of hashes on a secret w with the
sequence: w, H(w), H(H(w)),..., H(w). The pass-

word fo the i*" idenfication session, 1 < i < ¢, is
defined to be w; = H' ¢(w). In Lamport’s scheme,
the chain decreases with each useage. We also use a
chain of “digests” (signatures and/or hashes) in our
protocols; however, our scheme computes the chain
differently; in addition, our chain grows and shrinks
based on the change in state of the data structure.

In our approach, we expect that P is a constant fac-
tor faster than the V. We use only a constant number
of bits of trusted memory, irrespective of the size of
the stack and the queue. We also perform only a con-
stant number of untrusted memory operations for each
stack push and pop. We assume a “signature scheme”
that is collision/computation resistant and 2"¢
age resistant.

Goldreich [8] and Ostrovsky [14] give solutions for
oblivious machines. A machine is oblivious if the se-
quence in which it accesses memory locations is equiv-
alent for any two programs with the same running
time. This work solves a different problem yet relies
on techniques for protecting the integrity of memory
(e.g., Ostrovsky uses sequence numbers for protecting
RAMs), but does not address methods for protecting
the integrity of stacks and queues.

preim-

3 Stacks
We begin by defining a stack as follows:

1 Stack (T)

2 Interface

3 push : Stack(T) x T — Stack(T)
4 pop: Stack(T) —» T

5 new(T) : unit — Stack(T)

6 delete(T) : Stack(T) — unit

7 Invariants

8 pop(push(z,S)) = =

9 pop(new()) = error

We propose to implement this using a secure pro-
cessor T (for trusted), and an insecure processor H
(for hostile), using the following algorithm. Actions
taken by 7 are shown so prefixed, others in italics. r}s
are random numbers, generated by 7. o(z) is a signa-
ture on datum x by the trusted processor. In the basic
protocol (i.e., where there is only one trusted host),
o(z) can represent a cryptographic hash function (ei-
ther keyed or unkeyed) or a public key based digital
signature. We assume o(z) is collision/computation
resistant and 2"? pre-image resistant.

We assume the probability of a signature collision
can be made arbitrarily small by changing the param-
eters of the signature scheme. We also assume that

there is a good source of random numbers; such func-
tionality is starting to become available from hardware
devices. If o(z) is keyed, a separate key is generated
for each instance. The key is destroyed upon a delete
and the key never leaves 7.

We assume a authenticated channel with message
stream integrity between 7 and H. Also, entries on
the stack can be simple strings. Arrows indicate direc-
tion of transmission. Below, we use the “’ ” as in ¢’
to represent a new value for ¢o. Data structure opera-
tion requests from 7 to H are shown in double quotes
(e.g., “push ...”) followed by the relevant operands.

Protocol 1 (Stack Operation)

For new():

T selects random r;ni; €g {0, 1}’
T— H “new stack”, label: o(rinit)
H—>T “Done”

T o' o(Tinit)

To initialize a stack, the 7 generates a new random
number, signs it and sends it off to # with the “new
stack” command. Henceforth, this signature o (7;n:t)
is used by 7 to identify the stack.

For push(z, S):

T— H “push stack”, z,o, label: o(ripit)

H (stores the above two on top of stack)
H—->T “Done”

T o +— oz]| o)

Here, a “push” request is sent to H along with the
current stack signature and the new value. The stack
signature is updated by signing the string formed by
appending the pushed value to the current signature.
This signature is always retained in 7, and we refer
to it below as o¢op-

For pop(S)
T — M “pop stack”, label: o(rinit)
H—T Otop and (from top of stack), or

o(rinit) and “error” if stack underflow.
T if not “error”, computes o(|| otop)
and compare it with stored o
if “error”, compares o
with o(Pinit);
if above comparisons fail, terminate with
error
otherwise o' — o

S 3N

Hostile
Platform
Maintains
Stack (fy):

Trusted
Host (T): Finit On+1

Figure 1: A resource-limited, secure implementation
of stacks.

Upon a “pop”, the H returns the value ostensibly at
the top of the stack (z), and the signature of the
stack (o¢0p) When that value was pushed. The stored,
current stack signature is recomputed and checked as
shown above. 7 verifies an empty stack claim by re-
computing o(r;,i;) using the local copy of 7;,;; and
comparing it to the returned copy of o.

For delete(S):

T— H “delete stack”, label: o(rinit)
H—T “Done”

T Removes (0, 7init) tuple.

The “delete” command resets the stack protocol; as-
sociated signatures held by 7 are discarded.

The stack protocol is illustrated in Figure 1. The
arrows show the inputs to the computed signature.
There is always a signature of the stack maintained in
the T device. Prior to executing the push, the signa-
ture o of the stack is in the 7 device; when an item x;
needs to be pushed on, as the ’th member of the stack,
T computes a new signature ;11 as shown above and
in the figure. Then the new item z and the old signa-
ture o; are given to the H stack implementation, with
a request to execute a push. Normally, a push takes
one argument, but since we are using a fixed length
signature, these two arguments (the new item and the
old signature) can just be represented as a single bit
string. The inclusion of the signature adds a constant
amount of external storage and transmission overhead
for each operation. The new signature o;; is retained
in the 7 device’s memory as defense against tamper-
ing by ‘H. Thus, when a pop command is issued, # is
expected return the top item z, and signature of the
rest of stack, o;. Then the original signature ;. is
recomputed and checked against the value stored in

T. It is infeasible for # to spoof 7 by forging the
values of z; or o; so long as 7 retains o;,;. Thus the
stack invariants are preserved. This is argued in more
detail in the following section.
3.1 Evaluation

We now argue that our stack integrity checking pro-
tocols work provided the signature schemes we use are
collision resistant and 2"¢ pre-image resistant.

Definition 1 An ideal stack is one which works cor-
rectly according to the standard specification of a stack.

Specifications of a stack can be found on page 2, and
in [9] (page 170). Non-ideal stacks only show their
flaws when a pop is executed that returns a value other
than what should be on the top of an ideal stack.

Definition 2 We define an incorrect stack as
one which after some series of operations Q =
01, - .-0n,pop(stack;q) returns a value different from
the one that would be on the top of an ideal stack after
the operations o01,...0y.

Definition 3 A protocol for checking stack imple-
mentations is secure if an incorrect stack is always
detected whenever it returns the wrong value on a pop.

We can now present the main claim of correctness of
our stack protocol.

Theorem 1 Qur stack protocol is secure, as long as
the signature scheme on which it is based is collision
resistant and 2" pre-image resistant.

To prove this theorem, we first define the notion of
a correct digest of a stack. Next, we argue that our
protocols ensure that 7T, after any series of operations
Q will have a correct digest of the ideal stack after
operations 2. We then argue that if 7 has the cor-
rect digest of the ideal stack, then an incorrect stack
operation by H will be detected.

Definition 4 A correct digest of a stack with initializ-
ing value sy, and items sy, ... S, is defined as follows:

(o)) :O'(S(])
O'iZO'(Si H Ui—l) ,Z:].’n

We are now ready to state the main claim about the
digest maintained by our protocol.

Claim 1 After any series of operations = 01 ...0,
Our protocol always maintains the correct digest of an
ideal stack in T, providing a) T operates correctly ac-
cording to our protocol, and b) the underlying signa-
ture scheme is collision resistant and 2*¢ pre-image
resistant.

This is shown by induction, assuming that the 7~ works
according the stack protocol given above. The correct-
ness of the digest initial state is trivial. Now suppose
that we have a correct digest o; 1 of the ideal stack af-
ter the first ¢ — 1 operations. There are two significant
cases: o; may be a push or a pop.

Push For push(z), the T will compute a signature
thus:
g; = O'(SC H 0',',1)
which is correct by definition (see description of
“push” in Protocol 1) and by inductive assump-
tion.

Pop Upon a pop, the H is expected to return two
values: the item at the top of the stack z, and
the signature of the rest of the stack o,.. T checks
that the following holds:

gi1=o0(z|| or)

Since we assume a collision resistant and 2™? pre-
image resistant signature scheme, it would be in-
feasible for H to find other values of z, o, so as to
satisfy the above constraint. So and o, are in-
deed the same values that were used to compute
0;—1 originally. This means that if o;_; correctly
digests the ideal stack, then so does o, after the
pop is executed.

The operation may also be a delete or a new; in either
case, the effect will be either to create a new, inde-
pendent, (correctly initialized) digest of a new stack,
and/or to terminate the current stack instance (even
if there are elements in it).

Our final claim is shown below; when this claim is
established, the theorem is proven.

Claim 2 If the T always stores the correct digest of
the ideal stack, after every sequence of operations 2 =
01 ...0y,, then an incorrect stack operation can always
be detected, provided the underlying signature scheme
is collision resistant and 2*¢ pre-image resistant.

Without loss of generality, assume that after the
operations) above, we execute a pop. Assume the T
correctly digests the ideal stack after the operations (2
into op,, which was (during some operation 0;,1 <7 <
n) computed as:

on =0(z || or)

where « is the item currently on the top of the stack.
Now, because of the collision resistance of signature
scheme, H cannot feasibly substitute another z or
or. Therefore, an incorrect stack operation will be
detected via a bad signature.

4 Queues

Queues are implemented by keeping two items in
trusted memory — the signature of the entire queue,
including the items that used to be at the rear of the
queue, and a signature of all the items that have been
removed from the queue.

We begin with a brief description of the interface
of a queue.

Queue (T)

Interface
ng : Queue(T) x T — Queue(T)
dg: Queue(T) - T
new(T) : unit — Queue(T)
delete(T) : Queue(T) — unit

Axiomatization is not provided; it can be found in
standard texts on formal specification, such as Gut-
tag & Horning [9]. As in the case of stacks, we assume
messages between 7 and 7 are sent over an authen-
ticated channel having message stream integrity, bit-
string entries on the queue, and (for simplicity) a new
signing key for each queue instance.

Protocol 2 (Queue Operation)

For new(Q):

T selects random ;i € {0, 1}
T— H “Imit Queue” label : o(Pinit)
H—T “Done”

T 0q < 0(Tinit), 0r < 0(Pinit)

As in the case of the stack, 7 generates a new ran-
dom number, signs it, and sends it to 7 as an identifier
to initialize a new queue.

For TL(I(Q, l‘).‘

T H “enqueue” 113,0'(1' || Uq)v label : O'(T'init)
H T “Done”

T o'y « oz | oy)

On an enqueue, 7 computes a new signature by sign-
ing the string formed by appending the new item with
the current signature of the entire queue. This sig-
nature is sent to H along with the current item; this
signature also updates the current queue signature af-
ter the enqueue operation.

For dq(Q):
T— H “dequeue”, label: o(Tinit)
7.[— T O'fronta T

Removed

Rear Front Elements
Hostile
Platform O
maintains
Queue (f;):
Ot
same| same
—
Trusted o Finit o /
Host (T): n

Figure 2: A resource-limited, secure implementation
of queues.

T computes and checks that
O front = 0(z || ov)
T OJ'r — O front

NB: If # says “queue empty”, ensure that o, = oy

When the H gets a dequeue request, it returns the
item ostensibly at the front of the queue, and a signa-
ture o front. 7 appends the returned item to its stored
o, signs the result, and compares the signature with
Oront- If the signatures match, it approves the oper-
ation, and updates o, to o fron:.

The queue protocol is illustrated in Figure 2. T
retains two signatures: o4, which is an digest of the
entire queue, and o, which is a digest of all the items
that have been removed. With each enqueue request,
the 7 updates the o, to include the item in the queue
digest. The H is asked to store the item and the cur-
rent digest. We assume o(z) represents a keyed cryp-
tographic hash or public key signature. Upon a de-
queue request, H is asked to return the item at the
front of the queue x, and the associated signed di-
gest Ofront- T now uses the o, item value stored in
trusted memory to authenticate the dequeued value:
this signature represents all the items that have ever
been removed from the queue. 7 compares a new o',
value to the result of signing the string obtained by
appending the item « claimed to be at the front of the
queue to the old signature, o,.. The following section
examines the correctness of our protocol more closely.

4.1 Evaluation

We now argue that the queue protocol detects in-
correct operation of queues by #.

Definition 5 An ideal queue is one which works ac-
cording the usual LIFO discipline.

As before, incorrect queues are ones which, (after
some series of operations) on a dequeue, return an
item other than the one which would be at the head
of the ideal queue after the same set of operations.

Definition 6 We define an incorrect queue as
one which after some series of operations Q =
01,...0n,dequeue(queue;q) returns a value different
from the one that would be on the head of an ideal
queue after the operations oy,...0y,.

Definition 7 A protocol for checking queue imple-
mentations is secure if an incorrect queue is always
detected whenever it returns a wrong value on a de-
queue.

Here is the main claim of correctness of our queue
protocol.

Theorem 2 Qur queue protocol is secure, as long as
the signature scheme on which it is based is collision
resistant and 2*¢ pre-image resistant.

We use the notion of a correct digest here as well;
however, in the case of the queue, there are two pieces
to the digest, o4, which represents the entire “histor-
ical” queue, including items that have ever been en-
queued, and o,, which represents just all the items
that have been dequeued (see figure 2).

Definition 8 A correct digest of a queue with ini-
tializing value qo, items qi,...q, that are currently
on the queue (with q; being the item to be next de-
queued) and items ry...r,, that have been removed
(r1 the first item removed, 7., the item most recently
removed) consists of two signatures, oq4,0, which are
computed as follows:

Org = a-(qO)

op,=0(ri||or_y), 1=1...m

Ogo = Or

m
Ogq; :U(qi H U‘Ii—l)’ i=1...n

Claim 3 After any series of operations 2 = 01 ...0,
Our protocol always maintains the correct digest of an
ideal queue in T, providing a) T operates correctly
according to our protocol, and b) the underlying sig-
nature scheme is collision resistant and 2™ pre-image
resistant.

We show this by induction: at initialization, the
claim holds trivially. Now consider each queue opera-
tion:

Enqueue On an enqueue(z) request, the o, is un-
changed (by Protocol 2); this is specified by Def-
inition 8. The o4 is computed as follows (again,
as specified by Definition 8):

oq =0z || og)

Dequeue On an dequeue(z) request, the o, is un-
changed (by Protocol 2) as specified by Defini-
tion 8 above. The o, is updated as described in
Protocol 2. The H returns a signature, o], and an
item x. The following equality is checked:

o, =o(z || ov)

if the equality holds, then (assuming that the sig-
nature scheme that is used has the desired prop-
erties) setting o, to ol will correctly update .
Note that # does not compute .. (since the sign-
ing key is secret and we assume collision resistant
and 2"? pre-image resistant signature schemes).
This value is given to ‘H at the time x is enqueued:
if H returns that value, and it checks out, the cor-
rectness of the digest is preserved. Note that the
way signatures are used here is different from the
stack protocol. In the stack protocol, the H re-
turns an item and an old signature (i.e., inputs
to the signature algorithm) which when signed
should yield a value identical to the digest held in
T. In the case of queues, the # should return an
item and an output signature; the item, and the
o, digest, when signed together, should match the
output signature returned by #.

The operations delete and new; will create a new,
independent, (correctly initialized) digest of a new
queue, and/or to terminate the current stack instance.

When the following claim is established, the theo-
rem is proven.

Claim 4 If the T always stores the correct digest of
the ideal queue, after every sequence of operations
Q =01...0,. then an incorrect queue can always be
detected, provided the underlying signature scheme is
collision resistant and 2*® pre-image resistant.

Assume that after the operations 2 above, we ex-
ecute a dequeue. Assume the 7 correctly digests the
ideal queue after the operations (2 into o4 and o,. Now

on the dequeue, H returns an item z and a new sig-
nature o)., which is verified as:

o\ = o(z | o)

where z is the item currently on the head of the queue.
Now, because of the collision resistance of signature
scheme, and the cryptographic assumption that H is
unable to compute the signature, H cannot feasibly
substitute another = or o). Therefore, an incorrect
queue operation will be detected via a bad signature.

5 Schemes for RAM and Trees

There have been several schemes proposed in
the literature to handle a random access memory
(RAM) [5]. Most of these schemes are based on
Merkle signature trees [12]. We describe the signature
tree and discuss the tradeoffs in implementing secure
stacks and queues using them.

5.1 Prior Work on RAMs

Given an n-bit address space, one can construct se-
cure RAM M as a binary tree with 2" leaves and 2"
interior nodes, using 2"*! data elements on an inse-
cure memory array M (where “:” stands for insecure).
Each bit of the address selects a branch on the binary
tree. Figure 3 shows a (tiny) RAM with a 4 bit address
space. Each node in the RAM is unambiguously des-
ignated by a bit substring of the address. The leaves
store the values of the RAM. That is, given a (com-
plete) n-bit address string a, and the buggy RAM,
M?[a] is the actual value of the memory cell at ad-
dress a. Tampering of these values by the adversary is
deterred (with high probability) by storing signatures
in the interior nodes. These signatures are computed
as follows. For a given interior node with address a
where | a |< n (Note: we treat each bit string as a dif-
ferent index into the (insecure) memory array. Thus
0011 is not the same as 11. This can be accomplished
by a simple transformation of the bit string into an
integer array index).

M'la] = o(M'[a || 0] || M'[a] 1))

The root value M*[0] is kept in the 7. When an
address a is accessed, all n values on the interior nodes
along the address path a, as well as the n additional
values need to compute the signatures on the interior
nodes, (as well as the root value) are also accessed.
When an address is modified, all the signature val-
ues on the interior nodes along the address path are
recomputed.

1010

Figure 3: RAM: Address shown 1010

5.2 Can we do just do Stacks & Queues
on RAM?

Since RAMs are the most general type of memory,
the question naturally arises, can we not simply imple-
ment secure stacks and queues using the secure RAM?
The answer to this question in a given specific situ-
ations depends on a set of engineering design issues.
The main consideration in using a RAM is the number
of signature computations. Any time any particular
(leaf) value is addressed in the binary tree represen-
tation, n signature computations are required. This
could be avoided by partitioning the RAM into large
pages, there by reducing the effective number of sig-
nature computations. Another approach is to retain a
certain number of pages in the 7 and “swap in” pages
from H only when needed. This would amount to a
secure virtual memory.

There are several complications in implementing se-
cure paging systems based on the RAM schemes de-
scribed above. Limited program (text) space on a T
device (e.g., a smart card) may preclude implementa-
tion of a secure virtual memory. Limitations in the
data memory will limit the amount of “trusted” pages
that can be kept within 7. Bandwidth limitations will
force high penalties for page faults. Decreasing the
page size too much will increase the number of signa-
ture computations on each page fault. With an n bit
address space, there will be O(n) signature computa-
tions on a page fault: signatures will have to checked
when an “outdated” dirty page is read, and recom-
puted upon write out. If another page is swapped in,
another set of signatures will have to be checked.

If the application primarily uses stacks and queues,
and the above mentioned complications dominate,
then our stack and queue schemes will be useful. How-
ever, if a high-quality implementation of a virtual se-
cure memory is available, then it would be reasonable
to use that. However, the authors are not aware of

any such implementations for 7 devices currently on
the market. Unlike secure virtual memory schemes,
which must be carefully implemented and tuned, our
schemes are relatively simple, and can be built by an
application programmer.

6 Applications

The problem of checking large data structures with
limited memory was motivated by new applications for
software tools [7, 6]. The goal of this work is to place
trusted software tools (static analyzers, type check-
ers, proof checkers, compilers/instrumenters, etc.) in
trusted hardware; the output of these tools would be
attested by a signature in a public-key crypto system.

One particular application concerns Java’™ byte-
code verification [11]. This is a process similar to type-
checking that is carried out on Java”™™ virtual ma-
chine (JVM) programs. The JVM is a stack-oriented
machine. The typechecking process ensures that for
every control flow path leading to a given point in a
JVM program, the types of the stack entries are com-
patible: e.g. an object of type NetSocket is never con-
flated with an object of type Circle. There are other
properties that bytecode verification ensures, but the
key typesafety property is at the core of the security
policies of the JVM. Currently, this process is carried
out by browsers such as NetscapeT™ prior the execu-
tion of mobile JavaT™ code such as applets. Perfor-
mance, security, configuration management, and in-
tellectual property protection advantages are claimed
when bytecode verification and similar static analysis
processes are conducted by a a trusted 7 machine.
The result of the analysis is attested by a (pubic-key
based) cryptographic signature on the mobile code.

The bytecode verification algorithm [11] involves,
inter alia a) maintaining an agenda of control flow
paths to be expanded, b) computing the state of eval-
uation stack, c) looking up the typing rules for vari-
ous types of instructions d) maintaining symbol tables
of variables. This resource-intensive data usage taxes
the resources of all but the most powerful (and expen-
sive) T devices. Another application discussed in [6]
is placing a proof checker in a 7 device. Necula [13]
suggests that mobile code should carry with it a proof
of an applicable safety property. Unfortunately, such
proofs reveal a great deal about data structure and
layouts, loop invariants and algorithms. Vendors may
balk at revealing such intimate details of their prod-
ucts. With a proof checker in a 7 device, the vendor
can check the proof at their site. The bare binary
(sans proof) can be signed by the T device to attest
to the correctness of the proof, which can then re-
main secret. Yet another application is the creation of

trusted, signed analysis products (control dependency
graphs, data dependency graphs, slices etc.) to accom-
pany mobile code. Such trusted analysis products can
be used by security environments to optimally “sand-
box” [15] mobile code.

Techniques such as the ones we suggest will form
a useful implementation technique in placing trusted
software analysis tools in trusted hardware. While
trusted hardware devices can be expected to be-
come more powerful, the inherent physical design con-
straints (form factor, energy usage, heat dissipation)
are likely to prevent the performance gap (with con-
ventional machines) from narrowing; so implementa-
tion techniques such as ours will remain applicable.

7 Extensions and Future Work

The techniques we have discussed above simply in-
sure the integrity of stacks and queues. We now dis-
cuss some extensions and future work to address some
related issues such as confidentiality, key expiration,
and data structure sharing.

Providing Confidentiality Confidentiality may
be a concern in applications of stacks and queues.
Our protocol designs allow for layering (or integrating)
confidentiality mechanism on top of the basic proto-
cols.

Updating Keys Since we assume a computation-
ally bounded adversary, cryptographic keys used to
protect the integrity of the data structure have a lim-
ited lifetime. Relying on keys beyond their lifetime
could compromise the integrity of an instance of the
data structure. We now discuss how to manage keys
for instances of data structures.

One general approach of replacing keys is the most
obvious: complete rewrite. That is to temporarily sus-
pend normal usage of the data structure to remove all
elements from one instance of the data structure and
add them to a new instance with a new key. Some
issues arise from this approach. It may not be pos-
sible to go directly from one stack to another since
the order of the elements would be reverse. However,
this problem can be corrected by repeating the pro-
cess with another stack. Alternatively the operation
can be performed in a single pass using a queue.

A second general approach for updating keys is
gradual transition from one key to another. This can
eliminate the need for the data structure to be un-
available during key updates. That is, multiple sig-
natures using different keys are maintained until the
entire structure has been updated with the new key.

Sharing Data Structures Multiple entities may
wish to share operations to a data structure. Issues
involved in sharing the data structure concern sharing
the most recent signatures and keys associated with
the structure. Such schemes may be built on top of se-
cure quorum schemes. However, it is unclear whether
such schemes satisfy the security and performance re-
quirements for sharing data structures. This area is a
topic of future research.

8 Conclusion

We have described protocols by which resource-
limited, trusted computers can store stacks and queues
on untrusted hosts while retaining only a constant
amount of memory in the trusted machine. Tahis ap-
proach differs from earlier work [4, 5]. Our protocols
are much simpler. We use O(1) memory in the trusted
computer, and transfer only O(1) amount of data for
each push and pop operation in an on-line mode. Pre-
vious approaches used a O(log(n)) trusted memory
and O(log(n)) data transfer for each operation (where
n is the size of the stack or queue). However, un-
like previous approaches, which use information theo-
retic bounds, we assume computationally limited ad-
versaries. We present arguments to show that our
protocols will detect attacks which return incorrect
values.

9 Acknowledgements

This work has greatly benefited as a result of early
discussions with Dave McAllester on RAM trees, more
recent discussions with Philip Fong on associative ar-
rays, as well as feedback from the anonymous review-
ers of this conference.

References
[1] Javacard 2.0 Application Programming Inter-
faces, Sun Micro-systems, Inc., October 13,
1997. (See also: http://java.sun.com/java/-
products/javacard).

[2] Spyrus Product Guide, Spyrus, Inc. (See also:

http://www.spyrus.com).

[3] The Mondex Magazine, Mondex International
Limited, July 1997. (See also: http://www-
.mondex. com).

[4] Nancy M. Amato and Michael C. Loui. Check-
ing linked data structures. In Proceedings of the
24th Annual International Symposium on Fault-
Tolerant Computing (FTCS), 1994.

[6] Manuel Blum, William Evans, Peter Gemmell,
Sampath Kannan, and Moni Noar. Check-
ing the correctness of memories. Algorithmica,

[7]

[16]

12(2/3):225-244, 1994. Originally appeared in
FOCS 91.

P. Devanbu, P. W. Fong, and S. Stubblebine.
Techniques for trusted software engineering. In
Proceedings of the Twentieth International Con-
ference on Software Engineering, 1998.

P. Devanbu and S. G. Stubblebine. Crypto-
graphic verification of test coverage claims. In
Proceedings of The Fifth ACM/SIGSOFT Sym-
posium on the foundations of software engineer-
ing, Zurich, Switzerland, September 1997.

O. Goldreich. Towards a theory of software pro-
tection and simulation by oblivious rams. In Pro-
ceedings of the 19th Annual Symposium on The-
ory of Computing. ACM, 1987.

John V. Guttag and James J. Horning. LARCH:
Languages and Tools for Formal Specification.
Springer Verlag.

L. Lamport. Password Identification with Inse-
cure Communications. Communications of the
ACM, Nov 1981.

Tim Lindholm and Frank Yellin. The Java™™
Virtual Machine specification. Addison Wesley,
Reading, Mass., USA, 1996.

R. C. Merkle. A certified digital signature. In
Advances in Cryptology—Crypto 89, 1989.

George Necula. Proof-carrying code. In Proceed-
ings of POPL 97. ACM SIGPLAN, 1997.

R. Ostrovsky. Efficient computations on oblivious
rams. In Proceedings of the 19th Annual Sympo-
sium on Theory of Computing. ACM, 1990.

Robert Wahbe, Steven Lucco, Thomas Anderson,
and Susan Graham. Efficient software-based fault
isolation. In Proceedings of the Symposium on
Operating Systems Principles, 1993.

Bennet Yee and Doug Tygar. Secure coprocessors
in electronic commerce applications. In Proceed-
ings of The First USENIX Workshop on Elec-
tronic Commerce, New York, New York, July
1995.

