Flexible authentication of XML documents

Prem Devanbu} Michael Gertz, April Kwong, Chip Martel, Glen Nuckolls
Department of Computer Science

University of California

Davis, California CA 95616 USA
{devanbu|gertz|kwonga|martel|nuckolls }@cs.ucdavis.edu

ABSTRACT

XML is increasingly becoming the format of choice for in-
formation exchange, in critical areas such as government, fi-
nance, healthcare and law, where integrity is of the essence.
As this trend grows, one can expect that documents (or
collections thereof) may get quite large, and clients may
wish to query for specific segments of these documents. In
critical applications, clients must be assured that they are
getting complete and correct answers to their queries. Ex-
isting methods for signing XML documents cannot be used
to establish that an answer to a query is complete. A sim-
ple approach has a server processing queries and certifying
answers by digitally signing them with an on-line private
key; however, the server, and its on-line private key, would
be vulnerable to external hacking and insider attacks. We
propose a new approach to signing XML documents which
allows wuntrusted servers to answer certain types of path
queries and selection queries over XML documents with-
out the need for trusted on-line signing keys. This approach
enhances both the security and scalability of publishing in-
formation in XML format over the internet. In addition, it
provides greater flexibility in authenticating parts of XML
documents, in response to commercial or security policy con-
siderations.

1. INTRODUCTION

XML is increasingly becoming the format of choice for
publication of information over the internet in critical ar-
eas such as government, finance, healthcare and law, where
integrity is of the essence. As the volume of information
available in XML format grows, one can expect that clients

*We gratefully acknowledge support from the NSF ITR
Program, Grant No. 0085961. Devanbu and Gertz were
also supported by the Defense Advanced Research Projects
Agency and the Space and Naval Warfare Systems Com-
mand under Contract Number N66001-00-8945. The con-
tent of the information does not necessarily reflect the po-
sition or the policy of the U.S. Government and no official
endorsement should be inferred.

Permission to make digital or hard copies of all or part of this work for

Stuart G. Stubblebine
Stubblebine Consulting, LLC,
8 Wayne Blvd,
Madison, NJ 07940
stuart@stubblebine.com

may wish to query for specific elements of interest. In critical
applications, clients must be assured that they are getting
complete and correct answers to their queries. Thus, for
example, an employer seeking to hire a driver might wish
to query for all available information on traffic violations
in all precincts with the same social security number. A
complete and correct listing of all violations would be crit-
ical. Another example is servicing requests submitted un-
der the Electronic Freedom of Information Act Amendments
(E-FOIA), which requires US Government agencies to pro-
vide an online index, and search for records by electronic
means’. Other democracies have similar procedures that al-
low ad-hoc oversight of governmental activities by concerned
citizens. Traditional, paper-based processes that have been
used in the past to satisfy FOIA requests are haunted by
the specter of “plausible deniability”. Some may fear that
governments might contrive to hide or destroy records, other
than through lawfully and procedurally sound means.

Motivated by the above examples, we consider the fol-
lowing question: When an untrusted party returns parts of
an XML document claiming them to be the complete and
correct answer to a query, how can this claim be verified?

Existing approaches to signing XML documents [13] allow
a server to use a single signature over an entire document to
authenticate a given portion of the document; however, it is
not possible to use the document signature to show that a
set of document segments is a complete and correct answer
to a query.

Certainly, a server could process queries and certify an-
swers by digitally signing each answer with an on-line private
key; however, the server, and its on-line private key, would
be vulnerable to external hacking and insider attacks. At
any rate, if the server itself is untrusted, then having it
digitally sign answers is pointless. We propose a new ap-
proach to signing XML documents which allows untrusted
servers to answer certain types of path queries and selection
queries over XML documents without the need for trusted
on-line signing keys. This approach enhances both the secu-
rity and scalability of publishing information in XML format
over the internet. In addition, it provides greater flexibility
in authenticating parts of XML documents, in response to
commercial or security policy considerations. Although our
approach can be applied to any type of DTD, in this pa-
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were non-recursive. So we believe our approach will be use-
ful in many applications. Our approach extends easily to

!See 44 U.S.C 3506(b)(4) and 5 U.S.C 552(a)(2) and (3)(C)



recursive DTDs, by simply bounding the recursive depth
using the target document itself, where the recursion depth
is naturally bounded.

In Section 2, we present background information on re-
lated technologies assumed in this paper and we also present
related work. In Section 3, we present our basic approach
for authenticating answers to path queries. We conclude in
Section 4.

2. BACKGROUND

Suppose that a client C' desires to process queries over a
large XML document D held by a trusted server S. The
traditional model can be described thus:

1. C(Pk) 2, S(D, Sk) (Client C, with a Public key
Pk, asks server S, who has document D and private
key Sk for the result of query @ over document D)

eval(Q.D)

2. C(Pk) ok (epel(@.0) S(D, Sk) (Server returns an-
swer and verifable digital signature to client).

In the above scenario, it is not practical to pre-compute
all possible signatures for all possible answers; so the server
needs to be trusted, and needs to securely maintain an on-
line signing key. For greater security, as well as scalability,
we would like to have the queries processed by untrusted
servers, without the need for on-line signing keys. We use
a scenario where an owner O computes a digest and signs
it once, and thenceforth all the query processing is done by
an untrusted publisher, who always provides a certificate of
correctness with every answer. This simplifies the key man-
agement burden; e.g., the owner can relegate the signing key
to a smart card that he keeps locked up in a safe between up-
dates. The detailed operation is presented in several steps,
corresponding to the steps shown in Figure 1:

(b

3,774

(dient ) (client ) ( clle: )

Figure 1: Authentic, third-party publication of
XML documents. Document is created by owner,
who uses a special approach to digesting it. clients
receive the digest through an authentic channel (1)
and the document itself to a publisher (2). In re-
sponse to a query from a client (3) the publisher
returns both an answer, and a verification object cer-
tifying the correctness of the answer (4).

1. All clients receive from the data owner a signed, spe-
cially computed digest of the data using a non-standard
digesting algorithm which relies on a keyless one-way
hash function. This digest is transmitted securely, per-
haps using a public-key signature. This is the only step
where a cryptographic signature is required.

2. The data itself is transmitted to the data publishers.

3. A client submits a request to an untrusted publisher .

4. Client receives back from publisher an answer, and a
specially computed certificate that lets her check that
the answer is correct. The certificate uses only the key-
less one-way hash function (no private signing keys!).

5. (Not shown in figure) The client runs a special verifica-
tion procedure that compares the digest received from
owner against the results of a particular hash calcula-
tion over the publisher’s certificate If the comparison
succeeds, she accepts; otherwise she rejects.

Various researchers have developed this approach [19, 10,
15, 4]; we review these in more detail in a subsequent sec-
tion. We seek to adapt this approach to XML documents.
Various advantages have been reported in earlier literature:
scalability, flexibility, security etc. We would like to bring
these advantages to the increasingly popular XML data ex-
change format.

In this section, we present some background material.
First, we introduce a simple data model that captures the
essence of XML documents relevant to our purposes, and
introduce DTDs, path queries and selection queries. Then,
we review the relevant background and related work in the
area of certified data publishing, and finally present the
DOMHASH standard for securely hashing XML documents,
as well as the XML digital signature standard.

2.1 XML Document Model and Path Queries

We employ an XML document model in which a docu-
ment is represented as an ordered, node-labeled tree. This
conventional terminology for XML documents is also widely
used in W3C proposals such as, e.g., XML Information Set
[6] or XPath [7].

Assume a set ¥ of element names (also known as tags)
and a set S of string values disjoint from ¥. In the XML
document model, an XML document D is node-labeled tree
described by a 4-tuple (V,r,label, elem) where

e V is a set of vertices with r being a distinguished ele-
ment in V, called the root node,

e Jabel is a mapping from vertices to element names, i.e.,
a function V — X, and

e clem is a mapping from vertices to their children, i.e.,
a function V — List(V U S).

For the sake of simplicity and to motivate the basic con-
cepts of our approach, we do not consider entities, com-
ments, processing instructions etc. that can occur in an XML
document. In particular, we do not consider element at-
tributes since they can easily be included in our approach
(as another type of node).

A node v € V is called a text-node if elem(v) € S. Only
leaf-nodes in a document tree can be text-nodes. Each node
v different from 7 (the root node) has a parent node, denoted
parent(v). For each node v € V, there is a unique node path
in D, which consists of a sequence of nodes, starting with
the root node r and ending with the node v. Associating
a label with each node in a node path results in a so-called
label path, denoted path(v), which is a sequence of element
names. Different node paths can have the same label path.

In order to allow for meaningful exchange of XML doc-
uments and to formally describe admissible structures of



XML documents, a document type definition (DTD) can be
associated with a collection of XML documents. A DTD in-
cludes declarations for elements, attributes, notations, and
entities. Most importantly, element declarations in a DTD
specify the names of XML elements and their content (aka
content model). A DTD consists of ELEMENT rules that present
an element, and (using an extended BNF grammar), a de-
scription of the elements that can occur below it, with their
cardinality. An XML document is said to be valid if it con-
forms to a given DTD. Figure 2 shows an example of an
XML document in its linear form as well as an ordered,
node-labeled tree. Figure 3 shows a DTD the document
conforms to. In this DTD, the element beneficiary has as
subelements name, ssno, and address. The element will is
not the subelement of any other element, and is referred to
below as the root element.

<will>
<principal><name> Pete Princ </name></principal>
<preparer>
<name> Nolo Willmaker </name>
</preparer>
<witness> <name> Bob Witness </name></witness>
<witness> <name> Barb Witness </name></witness>
<filing> <town> Davis </town> <county> Yolo </county>
<state> CA </state></filing>
<bequeath>
<item> W. Earth </item>
<beneficiary><name> T. Meek </name><ssno> 111-222-3333</ssno>
<address> 1 Main Street, anytown, CA 11111 </address>
</beneficiary>
</bequeath>
</will>

principal will

preperero T witness witness filing bequeath
name name @ name @ town O
iten @
beneficiary
name @*” ssno 0 address

Figure 2: XML Document D in Linear and Tree
Form. Text values omitted.

It should be noted that though DTDs are just one schema
formalism for XML documents, it is the most popular one
and is also widely used in practice. Other schema formalisms,
e.g., XML Schema, have been proposed and studied in the
literature but have not yet reached the same level of usage as
DTDs (see [12] for a comparison of some schema proposals).

Besides providing a formal description of valid XML doc-
uments, a DTD also serves as a schema for querying XML
documents. In the past few years, several XML query lan-
guages have been proposed, including XML-QL, Quilt, and
XQL (see [3] for an overview). Although the languages differ
in terms of expressiveness, underlying formalism and data
model, there is an important feature common to all lan-
guages, namely path queries [2].

The primary purpose of a path query is to address subtree
structures of an XML document using regular expressions
over XML element names. Path expressions also build on

<!ELEMENT will (principal preparer witness* filing bequeath*)>
<!ELEMENT principal name>

<!ELEMENT preparer name>

<!ELEMENT witness name>

<!ELEMENT filing (town county state)>
<!ELEMENT bequeath (item beneficiary)>
<!ELEMENT town (#PCDATA)

<!ELEMENT item (#PCDATA)

<!ELEMENT county (#PCDATA)

<!ELEMENT state (#PCDATA)

<!ELEMENT address (#PCDATA)

<!ELEMENT beneficiary (name ssno address)>
<!ELEMENT ssno (#PCDATA)

<!ELEMENT name (#PCDATA)>

<!ELEMENT address (#PCDATA)>

Figure 3: DTD associated with XML document D
in Figure 2

the foundation of XPath [7], which, in turn, forms the basis
of the widely used XSL Transformation [5]. Instead of fo-
cusing on a specific XML query language, we base our XML
document authentication framework on path queries a client
issues against a document maintained by a publisher. This
framework is sufficiently general to tailor it to more specific
types of applications.

Definition 2.1 (Path Query) Let ¥ be a set of element
names. Path queries over ¥ are regular expressions. The
general syntaz of a regular expression is
g:=clelqqlaxqt|q?[dql_

where e ranges over X, q over expressions, and £ is the
empty expression. The expressions q.q and q|q stand for
the concatenation and alternative expressions, respectively.
g+ (Kleene Star) stands for 0 or more repeats of q¢ and q+
stands for at least one repeat of q. q7 denotes zero or one

occurrence of q. The wildcard “_7 stands for any element
of X.

In the following, we do not explicitly consider expressions
of the type g+ since they can be expressed as q.gx. We also
assume that the wildcard “_” is only used in combination
with Kleene Star as “_«”, which is equivalent to %, meaning
any number of elements from ¥. It should be noted that
concatenation and Kleene Star “*” correspond to the
widely used operators / and //, respectively, in XPath.

Intuitively, given a document D, a path query p deter-
mines a (possibly empty) set of subtree structures in D
such that the label path of each root node of such a subtree
matches the expression p. For example, based on the XML
document shown in Figure 2, the path query *.(witness |
bequeath). * .name selects all subtree structures from D where
the root of the subtree has the label name and can be reached
from the root node of the document through a label path
that matches the expression *.(witness | bequeath).x. For
the document in Figure 2, there are several such subtree
structures, with the values ‘‘T. Meek’’. ‘‘Bob Witness’’,
and ‘‘Barb Witness’’. An interesting aspect and also im-
portant to our approach is that for a given path query, one
can construct an equivalent path automaton using the well-
known transformation from regular expressions to finite au-
tomata. For example, the path query (will | bequeath)*.
beneficiary.name can be represented by the finite automa-
ton shown in Figure 4.

We can formally define a path automaton P.A as a tuple
(%, Qp, o, Fp), where X is a set of element names, @, is the
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(will | bequeath)*
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O—r
s1 beneficiary name
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Figure 4: Path Automaton for a given Path Query

set of states, F}, C @), is the set of accepting states, and «
is the transition function a : ¥ x Qp — Qp.

Now consider the DTD shown in Figure 3. We can see
that the tag name occurs in several different places: un-
der principal, preparer, witness and under beneficiary.
Based on the DTD, it is evident that the answer to the
query shown in Figure 4 is the subtree that occurs under the
tag name which can be reached from the root labeled will
through the nodes labeled bequeath and beneficiary, (in
that order). On the other hand, consider the path query
(will.witness.name). Since there can be many witness
tags, the above path query can potentially retrieve a list
of subtrees. These two examples illustrate a central fact:
Given a path query and a document that conforms to a
DTD, we can make use of the DTD to constrain a priori
in which part of the document tree the answers to the path
query can arise. Our goal is to efficiently retrieve and au-
thenticate answers to path queries. To do this, we construct
a special data structure, called the xtrie, that condenses the
information in the DTD in a manner that helps process path
queries and which is discussed in detail in Section 3.

Path queries specify document structures based on label
paths. They do not, however, specify conditions on string
values associated with text-nodes. For example, several sub-
tree structures of a document may match a path query but
an application might be interested in only those structures
that also satisfy certain conditions on the values of text-
nodes. These two aspects resemble the same functionality
as projection and selection provided in, relational algebra.
In order to provide more expressive types of queries against
documents in our XML data authentication framework, we
introduce the concept of selection queries, which naturally
extend path queries. Obviously, a selection can only be ap-
plied to document leaf nodes where elem(v) = s,s € S. A
selection query against a document D is composed of two
parts: (1) a path query that determines subtrees in D, and
(2) a selection part that specifies a condition on the leaf
nodes in the selected subtrees.

Definition 2.2 (Selection Query) Given path queries q,s
and a comparison p = eOc where © € {=,<>,<,>,<, >},
c € S is a string constant, and e € 3. A selection query,
denoted select(D,q, s,p), determines all subtree structures
Ti,..., T, in a document D such that for each T;

1. T; is a correct answer to the path query q, and

2. there exists a leaf node, reached by path s starting at
the root of T; such that the string value at that leaf e
satisfies the comparison predicate p.

Note that we only require that a text-node satisfies the
predicate p at the path selected by s under the answer sub-
trees. Also, since we do not assume a typed schema underly-
ing XML documents (e.g., XML Schema [14]), all values as-

sociated with leaf nodes are assumed to be strings. Consider,
for example, the selection query select(will.witness, name,
name = "Barb Witness”) on the XML document shown in
Figure 2. There are two subtree structures rooted with a
node labeled witness. Among these two, only the second
one is selected as the result to the query since only this
subtree has a leaf-node with the text Barb Witness.

2.2 Certified Query Processing

Our work on certifying answers to queries over XML doc-
uments follows several other efforts aimed at producing cer-
tified answers to queries in other contexts. Most of these
efforts are based on Merkle hash tree constructions [18], as il-
lustrated in Figure 5. Such hash trees enable certified query
processing over some types of recursive data-structures. A
trusted party computes a systematic hash digest of a data-
structure, progressively digesting it from the leaves to the
root, using a secure hash function. The trusted party then
securely distributes the root hash to clients. In response to
a query from a client, an untrusted party can traverse the
data-structure, and provide an answer. The certificate ac-
companying this answer would consist of the part of the tree
traversed during the search, and enough other hash values
so that the root hash value can be recomputed and checked
by the client.

O h(hl , hr)

hi= ... 5 hr = h( h(h(23),h(34)) , h(h(312) , h(1123)))

h(1123)

312

Figure 5: A Merkle hash tree associates hash values
with nodes in a tree, in this case a binary tree. The leafs
are sorted values in the binary tree. The leaves get the
hash of the values, and each interior node gets the hash
of all the values of all its children, combined in a suitable
way. Once the root digest is authenticated by a trusted
party, anyone can certify answers to queries, using only
the hash values to provide evidence of a correctly con-
ducted search

Merkle trees were used in this way in [19] for proving the
presence or absence of certificates on revocation lists. For
example, in figure 5 suppose the root hash value has been
already obtained by a client. Now, an untrusted party can
show that the value 23 occurs at a leaf of the tree, by pro-
viding the values (34), h(h(312),h(1128)) and the value hl.
With these values, the client can recompute the root hash,
and thus be sure (subject to the security of the hash func-
tion) that the value 23 did occur in the tree. Likewise, a pair
of consecutive values, 312, and 1123, along with the neces-
sary intervening hash values to compute the root hash, can
establish that they were indeed consecutive values, and thus
that (e.g.) the value 650 does not occur in the tree. Range
queries, which ask for all values in a range, e.g., between 30
and 400, can also be handled. We extended this line of work,



and introduced the notion of authentic publication, begining
with some forms of querying over relational databases [10].
The same idea has been used over skip lists [15] and in
other, related settings [4]. When used with hierarchical
“divide-and-conquer” type search data-structures, this ap-
proach provides answer certificates whose size is in the order
of A+ log(D) where A is the size of the answer and D is
the size of the data set used in constructing the search data
structure. Recently [17] we present a general result show-
ing that data structures admitting efficient search proce-
dures can usually be adapted to authenticated versions with
similar overheads. To answer selection queries in the XML
context (details in Section 3.2) we sort the leaf values and
build an index data structure over these values. This index
structure gets Merkle-hashed. Once a client has a secure
way of obtaining the root hash of this structure, it is possi-
ble for untrusted publishers to provide credible evidence of
complete answers to selection queries.

These techniques are useful in the context of XML doc-
uments (particularly for doing selections, we make use of
divide-and-conquer index structures). However, XML data
is not as structured, and requires some additional machin-
ery to certify answers to queries. In this sense, our work can
be viewed as building an index to answer path queries, and
then certifying this index.

2.3 Hashing and Signing XML Documents

As described earlier, XML documents have a simple data
model based on trees. DOM [11] is a standard interface
(API) that defines how XML documents are to be accessed
by programs. DOM is naturally a tree-like representation;
as such, it admits a hashing procedure very similar to the
Merkle-hashing procedure describe above, and illustrated in
Figure 5. One-way hash functions are used for security. The
procedure basically hashes the leaves of the document, and
recursively proceeds up the document tree, hashing both the
element types as well as the elements within the document.
The full details of DOMHASH are available elsewhere [11].
For our purposes, we note some important properties of the
DOMHASH process.

If the root hash of an entire document D is known to
a party a, it is possible to provide evidence to a that any
subtree 7 of the document occurs under D without revealing
all of D. First, note that a can DOMHASH the subtree T
to get the root hash of 7. Now, a can be given just the hash
values of the siblings of 7 and the siblings of all its parents,
and a can recompute the root hash of D. Since the hash
function is assumed to be one-way, a can be reasonably sure
that the hash values could not have been forged, and that
7 really did occur in D. The same process can be used to
prove that one subtree 71 occurred under another subtree
7o within the same document, using the hash values along
the path from 71 to 7, without revealing any of the other
subtrees under 72; we can then hash to the root value, as
before.

The XML Digital signature standard [13] essentially com-
putes a signature over a digesting procedure such as DOM-
HASH. The standard allows a great deal of flexibility in the
digesting and signature process, in terms of algorithms used,
transformations applied, parts selected etc. However, it has
a central limitation: only fixed parts of a document can be
signed. It is not possible to certify answers to selection and
path queries based on a single signature over the entire doc-

ument. While the XML signature standard allows the use of
a single signature over an entire document to authenticate
any given part of that document, it cannot be used to cer-
tify that the answer to a path query is complete (e.g., is this
really the entire set of traffic violations in all precincts by
drivers who have the social security number 555-55-55557).
The goal of this paper is eliminate this limitation: we intro-
duce an auxiliary structure, the ztrie, that is based on the
DTD, and enables a publisher to certify completeness of an
answer to a query. For our purposes, we assume an XML
document digital signature based on DOMHASH.

3. CERTIFYING ANSWERS

The central goal in this paper is to allow certification of
answers to a wide range of queries over XML documents,
without requiring a trusted party to sign the answer to each
query. We would like to certify an XML document in one
shot, with a digital signature, and literally lock up the secret
key in a drawer. Now, we want to certify answers to a wide
range of queries over that document, without the need for
any additional digital signatures. Unfortunately, there are
no a priori limits on size and variety of XML documents,
even on those that conform to a given DTD. Given this,
how can this be done? We exploit a vital property of non-
recursive DTDs: although the documents that conform to
such DTDs can be infinitely varied, and arbitrarily long,
there are only a finite number of semantically different path
queries that apply to such documents.

We describe our approach in several steps, beginning with
pure path queries. First, we argue that there are only finitely
many different path queries over any document conforming
to a non-recursive DTD. Second, we show a naive approach
that uses this property to sign a document only once and use
this signature to certify answers to all the possible different
queries over this document. We show show that this naive
approach is secure subject to cryptographic assumptions.
Third, we describe an improvement to the naive approach
using the structure of the DTD itself to build an optimized
data structure, an ztrie, to store the different possible an-
swers to path queries. We illustrate the improvements pro-
vided by this data structure using some empirical data. Af-
ter describing the handling of pure path queries, we finally
describe how to use the xtrie, in conjunction with auxiliary
data structures, to perform selection queries.

Some of the above steps are dependent only on the DTD,
and can be carried out once per DTD; the results can then be
reused for every document conforming to that DTD. In this
paper, we mainly focus on non-recursive DTDs. In a sur-
vey of 100 different publicly available DTDs at www.oasis-
open.org we identified 63 non-recursive DTDs. However, our
approach easily extends to recursive DTDs. In this case, we
simply use the existing XML documents to enumerate all
paths that occur in the documents rather than by enumer-
ating possible paths from a given DTD.

3.1 Path Queries in non-recursive DTDs

Given a non-recursive DTD, we argue that there are only
finitely many different meanings for path queries (though
there are infinitely many syntactically different path queries).
If this seems surprising, we remind the reader that path
queries are analogous to projections in relational databases;
there, once the schema is fixed, there are only finitely many
different projections. Likewise, given a DTD, there are only



finitely many different ways to carve it up with path queries.

Definition 3.1 Two path queries ql and q2 are semanti-
cally distinct with respect to a DTD if there exists a docu-
ment D that conforms to that DTD, and for which ql and
q2 give different answers.

Lemma 3.2 Given a non-recursive DTD, there are only a
finite number of semantically distinct path queries.

Proof Sketch: Without loss of generality, consider an arbi-
trary XML document D conformant to a given non-recursive
DTD dtd. Clearly the maximum depth of D is bounded.
Now given any node n in D, the number of different possi-
ble tags that can occur as children of that node is bounded.
Certainly a node may have any number of children (i.e., if
the corresponding ELEMENT content model includes a Kleene
Star). However, the number of different elements that can
occur below any node is bounded by the (finite) number of
different elements that appear in the corresponding ELEMENT
content model. Since the depth is bounded and the “fan-
out” of each different type of node is bounded, there are only
a finite number of different label paths that can occur in doc-
uments conforming to dtd. Call this number Ng:q. Thus an
arbitrary path query would have to select from the finite
number of subsets of these finite number of paths. Thus the
maximum number of semantically distinct path queries over
documents conforming to a non-recursive DTD is 2Mdte, O

Thus all possible path queries fall into one of a finite num-
ber of groups of equivalence classes. This number (2Vdtd)
will be quite large for non-trivial DTDs. As it can be seen
from the table in Figure 7, there often can be thousands of
different paths in documents conforming to practical DTDs.
Considering a table with on the order of 2'°°° entries, each
representing an equivalence class, we can quickly see that it
would not be feasible to store answers to each equivalence
class in a table and simply retrieve it. We present a better
approach first, in the following subsection, and then improve
it even further.

3.2 ANaive Approachto Flexible Certification

We now consider a naive approach to storing potential
answers to path queries in a table, called a path table, and
certifying this table. We also show that this approach is se-
cure, subject to the use of a one-way hash function. There
are three algorithms that constitute our approach: the first
that signs the data, the second that processes queries and
builds certifiers that establish that the answers are correct,
and third, an algorithm that checks an answer and its cer-
tifier to ensure that the answer is correct. The certifier is
a cryptographic object that uses no digital signatures, only
hash computations; the second algorithm could thus be ex-
ecuted by an untrusted adversary.

The details of the algorithms are shown below. These al-
gorithms rely upon several facts; first, that there are only
a finite number of distinct paths in a non-recursive DTD,
second, that an XML document and subtrees thereof can be
securely hashed using DOMHASHes which are hard to forge;
and third, that groups of hashes can be securely and verifi-
ably linked into a single digital signature using Merkle hash
trees. The central security result here (Theorem 3.3) is that
the client will always reject an incorrect answer and certifier
(and accept correct ones) unless the adversarial party that

built the certifier managed to find a collision in the one-way
hash function.

We begin with Algorithm 1, which is executed by the
owner. It is given a DTD, a document conforming to the
DTD, and a table 7 with a finite number of (empty) entries,
one for each possible path in the DTD?2. It first processes
the document, associating with each subtree the label path
from the subtree to the root. It also builds a DOMHASH,
associating a secure hash value with each subtree. It then
associates the subtree and the hash thereof with the entry
in the path table, based on the label path. There could be
many subtrees associated with each entry in the path ta-
ble. These are digested together, using a Merkle hash-tree,
to give a digest per table entry. | the set of all the ta-
ble entries are digested together using another Merkle hash
tree. This final digest is the specially computed digest sd(D)
mentioned in Section 2. We note that the Merkle hash con-
struction allows us to show that an entry occurred in a path
table, and that a subtree occurred in a path table entry.
Algorithm 1 (Data certification):

Inputs: a non-recursive DTD, a table 7 of all paths associ-
ated with the DTD, an XML document D, and a signing
key k~*

1. Process the document D, associating each root node
of a subtree in D with an element name. Give each sub-
tree a number, using an ordered (e.g., DFS) traversal that
guarantees that earlier parts of the document get a lower
number.

2. Build DOMHASH of the document.

3. For each subtree of the document, find the associated
entry in the path table, and enter the subtree identifier, and
the DOMHASH for that subtree. The entries should be in
the order of occurrence in the document.

4. The entries in a table entry are digested together using
a Merkle Hash tree; the root hash of this tree is associated
with the table entry.

5. All the entries in the table are digested together using
another Merkle Hash tree.

6. The root hash of this tree is signed with the signing
key, producing a root signature sd(D).

Once the owner has produced the digest as specified above
and correctly transmitted it to clients, the untrusted server
can process path queries from clients using Algorithm 2.
First, the path query is matched against every entry in the
path table (this is slow, but we improve this later). The
matching entries are the paths that match the path query,
and they contain all the subtrees reached by those paths.
The server can return just the subtrees in those path table
entries. Using these the client can compute the DOMHASH
of each subtree and then can recompute the digests for those
path table entries. If also given the hash paths required
to verify that the digests really belong under the Merkle
hash tree leading to the overall document digest computed
in Algorithm 1, the client can trust the returned values.
Algorithm 2 (Answer certification):

Inputs: the table 7 with entries produced by Algorithm 1, a
path query ¢ from a client.

1. Match g against each entry in 7.

2. If ¢ matches the entry, retrieve (1) the label path, (2)
the hash path from that entry to the table digest for 7, and
(3) all the subtrees that are associated with that table entry.

2We note here that this table can be produced independently
by each party from the DTD.



Build this certifier for each matching entry in 7

3. Return this list of triples, containing both the answer
to the query and the certifier, to the client

Algorithm 3 now simply verifies the certificate (the list
of triples) produced above by recomputing the document
digest.
Algorithm 3 (Answer verification:)

Inputs: the list of certifier triples above, the (empty, document-

independent) table 7 and the query q.

1. Match ¢ against each entry in 7.

2. For each matching entry, there should be a correspond-
ing certifier triple. If there is no corresponding certifier
triple, reject.

3. For each triple, (a) first DOMHASH each returned
subtree, (b) build a Merkle tree out of the DOMHASHes
and compute the root hash for the subtrees in the triple,
(c) use the hash path provided, beginning with the entry
digest computed in step 3(b), to the root table digest and
check that the root digest matches. If not reject. Otherwise,
accept.

Theorem 3.3 Assume that (given a DTD and a conform-
ing XML document D) Algorithm 1 is executed correctly by
data signer and the sd(D) received intact by the client. As-
sume that given a query q from a client, a set o of returned
certifier triples is claimed to have been constructed (possibly
by an untrusted party) as described in Algorithm 2. Now
the client, who has received sd(D), and o, and runs Algo-
rithm 8 will always reject an incorrect answer and accept a
correct one, unless the party running Algorithm 2 has suc-
ceeded in engineering a collision in the hash function used
in Algorithm 1.

Proof Sketch: We assume here that the client uses the
DTD to compute the precise set of table entries which match
his query, and expects from the publisher the set of subtrees
in each of those table entries. The argument that the client
will accept a correct answer is straightforward, based on the
fact that he simply repeats the computation done by Algo-
rithms 1 and 2 and comes up with the same root signature
sd(D). We now argue that the client will reject incorrect an-
swers and certifiers. Its sufficient to establish that the client
will not accept a wrong set of subtrees from the publisher
for any table entry. If an adversarial publisher returns an
incorrect subtree, then the corresponding DOMHASH will
be different from that used in the process of computing the
digest for that table entry. So the adversary has to have
found a second pre-image that hashes to the same value
in some step in the process of computing the digest for an
entry; alternately the adversary has to have found a hash
collision in some step of the process of computing the digest
for the entire table. In either case, the publisher has to engi-
neer collisions in the hash functions that produce a specific
output. O

Note that 7 contains entries for all possible paths based
on a given DTD. For a specific document D conforming to
the DTD, there may be many fewer paths which actually
occur in D. We could construct a path table specialized to
D but then we would need to securely transmit this list of
paths to clients for each document D. Also note that this
approach also works with non-recursive DTDs since we base
the table construction on the document and not on a DTD.

3.3 Efficient path storage using an xtrie

In a DTD, we find that several different element tags
can occur under one single element. For example, under
beneficiary, in our running example, we have name, ssno, and
address. This leads to a lot of shared prefixes among paths;
thus, all of the above elements occur under the shared path
prefix will.bequeath. The naive table that stores all paths
wastes space; in addition, matching a path query against
each entry in the table wastes repeated effort matching iden-
tical, repeated prefixes. Below, we present a more compact
and efficient data structure, an xtrie, for storing the set of
possible paths based on a DTD.

3.3.1 Constructing the xtrie

We first present Algorithm 3.4, which builds an xtrie from
a given DTD. We later show that it correctly captures all
the paths that can be determined from a non-recursive DTD,
and provide empirical evidence of its compactness. The xtrie
has at least one node for each element in the DTD, and has
an edge from an element to all the subelements that can
occur below it. The edge is labeled with the name of the
subelement. Thus, in our running example, there would be
a node corresponding to the witness element, and an edge
named name from it to a node corresponding to the name el-
ement. Different occurrences of an element are represented
by different nodes. Algorithm 3.4 begins at the root ele-
ment (which cannot occur under any other elements) in a
DTD, and systematically explores the ELEMENT rules, finding
all the possible paths that can exist. Intuitively, it “grows”
a tree representation of all the different paths, producing a
branch in the tree every time a path prefix is shared among
several different paths. Since DTDs allow the same element
to occur under different elements, there may be many paths
that can reach a given element. This is handled by using
an array of counters c;, one for each element, which track
the number of times an element has been encountered; each
distinct occurrence bumps the counter, and creates a new
copy of that element in the xtrie.

Algorithm 3.4 An xtrie corresponding to a DTD is a di-
rected node and edge labeled tree (N, E) and is constructed
as follows:

Initialize

1. Let ¥ be the set of element names (tags) that oc-
cur in the given DTD. Initialize a table of coun-
ters, cc < 0, for each e € 3.

2. For the document root element with label s in the
DTD, add a node labeled (s,0) to N.

3. Add an extra top-level node labeled (f,0) to N;
for the element s € X that is the document root
element, we add an edge from (f,0) to the node
(s,0). This edge is labeled s and added to E.

4. Initialize an agenda list A containing (s,0).

Iterate

While nodes remain in A, remove a node, say (a,1).

For each ELEMENT rule associated with the element named
a, if the content model mentions an element t, then we

add a new node labeled (t,c:) to N; we add this new

node to the agenda A to be processed later; we add an

edge from (a,i) to (t,ct), labeled with the name t to F,

increment ¢t «— ¢t + 1.



principal,0

bequeath,0
Q sate0 @ eneficiary
name,0 county,0
item0, beneficiary,0
o gddress
name,3 Sss0 Osad0

Figure 6: An xtrie constructed from the DTD shown in
Figure 3

Terminate If A is empty, terminate.

The initialization steps initialize the set of counters, add
one node for each element in the DTD to the xtrie, and
an extra “top-level” node. This top-level node has an edge
(labeled with the root element name) to the root element
node. The counters associated with each element get ini-
tialized at this point, and the agenda is initialized with the
root element node. At this point, the maximum path length
[ encountered is 1. At each step of the ensuing iteration
the xtrie represents all paths of length 1...1, from the “top-
level” node to nodes in A. The iteration step now looks at
nodes in the agenda, and grows the paths by 1, and adds
the nodes newly reached to the node set N of the xtrie, and
adds the appropriately labeled edges. It is easy to see that
the algorithm terminates for non-recursive DTDs: there can
only be a finite number of nodes (element names) ever added
to the agenda. Elements (rather, element names) get added
to the agenda when they occur under another element. Each
element can occur only a finite number of times under differ-
ent elements in a DTD. Since there are only a finite number
of copies of a finite number of elements that can ever be
added to the Agenda, and each time through the agenda we
remove an element, it will eventually empty out.

A sample xtrie is shown in Figure 6. We note that re-
dundancy is avoided in storing the three paths beginning
with the common prefix will filing. We also note that the
element name can occur in different places, under witness,
preparer, etc, and so there are several copies of name, reach-
able through the different possible parent elements®. Xtries,
as we have described them, resemble in some ways schema
graphs and Dataguides [1] that have been used in semi-
structured databases, primarily for type computations; how-
ever, we use them here for certified query processing. We
return to the central property of an xtrie: it captures exactly
all the possible paths through a DTD.

3We note here that an element W can occur several times
under an element X, as per the DTD, but the xtrie will show
only a single node, labeled (W, n) under the node (X,m)
(for some m and n)

Definition 3.5 The sequence of labels s1 ... sy on the edges
leading to a node (ns,,, ct,, ) from the top-level node (f,0) is
called the reaching path for the node (ns,,ct,, ) in the ztrie.

We can now state the main “completeness and correct-
ness” property of the xtrie:

Lemma 3.6 Corresponding to the reaching path for each
node in an xtrie, one can construct an XML document con-
forming to the corresponding DTD that contains that path.
In addition, the set of all reaching paths to all nodes in an
xtrie corresponds to all possible paths that can occur in any
document conformant to that DTD.

Proof Sketch: We show this by induction on the length of
the path. The initialization step explores all paths of length
1, and inserts them into the xtrie; at this point, the agenda
contains all the labels associated with elements reachable by
paths of length 1. Now for the induction step, assume that
the agenda contains labels of all the elements reachable by
paths of length [, and the xtrie includes all those paths. For
each such label, the iteration step explores paths of length
{41, inserts them into the xtrie, and adds the newly encoun-
tered elements into the agenda. The algorithm eventually
terminates when no additional path lengthening is possible.

3.3.2 Using the xtrie

Given a DTD, we can pre-construct the xtrie. Now given
a document D conforming to the DTD, we can find the
subtrees of D associated with each path stored in the xtrie,
and the rest of the process proceeds in a manner analogous
to Section 3.2.

First, we must securely digest the xtrie. The digesting al-
gorithm is a special case of the algorithm described in [17] for
digesting generalized search dags. Each node of the xtrie has
associated with it 1) a set of pairs of document subtree iden-
tifiers reached by that path and either their DOMHASHes
(if the subtree is not a leaf) or their values (if the subtree is
a leaf), and 2) the digests of all the xtrie nodes under this
node. These two should be in the order they occur in the
document. These two sets are hashed together to give the
digest associated with that xtrie node.

Algorithms 2 and 3 in Section 3.2 match a query ¢ against
the possible paths. We construct a path automaton corre-
sponding to ¢, and match it against the xtrie. This is a
simple process, which we describe informally. The match-
ing process marks nodes in the xtrie with states from the
path automaton. Initially, the top-level nodes in the xtrie
are marked with the initial states of the path automaton.
We then match transition labels in the path automaton
against edge labels in the xtrie. Whenever the labels match,
the automaton “advances” and the next node the xtrie is
marked with “destination state” of the corresponding tran-
sition. This process eventually terminates since there are
only a finite number of ways to mark xtrie nodes with path
automaton labels. At any point, this process guarantees that
the path automaton state will label a node if and only if the
path automaton would be in that state when processing the
path reaching that node. Upon termination, the xtrie will
have accepting labels on some nodes. These nodes corre-
spond to the desired reaching paths. A similar approach is
used for string-matching in computational biology applica-
tions [16].



Of all the parties involved in our approach, the client is
most likely to be resource-limited; so she would benefit most
from using the xtrie to match query automata against path
queries. We note that she does not have to compute the xtrie
herself; any trusted party could compute the xtrie from the
DTD, and send it to the client in an integrity-preserving
manner.

With the naive approach, if the total length of all possible
paths is N, and there are m states in the path automata,
the matching process requires at most N % m comparisons.
If there are n edges in the xtrie, the above process requires
at most n * m comparisons. In the following section, we
provide some empirical data concerning the relative sizes of
n and N for published DTDs.

3.3.3 Xtries in practice

We empirically analyzed several published DTDs, to de-
termine the number of elements in the DTDs, the total
length of all the possible paths through the DTD, and the
size of the xtrie representation. The naive approach would
require one to store all the paths explicitly in a table, and
match a query against these paths; the xtrie is a more com-
pressed representation. Our goal in doing this analysis was
to determine the degree of compression actually achieved in
practical, standards-based DTDs. We collected 100 separate
DTDs from the OASIS repository at www.oasis-open.org.
Out of these 37 were recursive. For the other 63, we enu-
merated all the paths, and counted the total length thereof;
we also implemented our approach, and measured the to-
tal size of the xtries in each case. The results are shown in
Figure 7. We found that xtries always produce a smaller
representation. This leads to a proportionate reduction in
the effort required to evaluate queries, since fewer string
comparisons are required.

Generally, however, we expect that documents will be very
large as compared to the DTDs; so the work done by the
client with Algorithm 3 will be quite a bit less than the work
done by the owner and the query processor.

3.4 Certifying Answers to Selection Queries

We now consider the selection queries as presented in Def-
inition 2.2. To recapitulate: given a document D, and a
query select(D,q,s,p), where p is a comparison predicate, we
seek to return a set of subtrees 11, ..., T, such that

1. T; is a correct answer to the path query ¢, and

2. there exists a leaf node, reached by label path s start-
ing at the root of T; such that the string value c at
that leaf satisfies predicate p.

We seek to provide a certified answer to this query. Such
queries would be extremely useful with documents that con-
tain many repeated elements, as in, say an XML document
C' which is a collection of traffic violation reports:

<!ELEMENT records (trafviox) >

There may be millions of traffic-violations; somewhere un-
der the violation, there would appear a drlic (driver’s li-
cense) subtree, containing a social-security number in a leaf
element such as ssno. Clearly, an employer considering an
applicant would like a complete list of all the violations in
which the candidate had been involved, and could well desire
a certified, complete answer to a query such as:

select(C, records.trafvio, x.drlic. * .ssn,ssn = 11111111)
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Figure 7: A log plot showing the relative sizes of the
naive approach (a table of all paths) versus the xtrie
approach. The xtrie approach always has significantly
lower storage requirements (on the average, by a factor of
5), and proportionately reduces query processing effort,
particularly for larger, more complex DTDs; however, we
note that there are few DTDs with over 500 elements.
This graph includes 62 data-points. One outlier, with
over 3 million paths, and a compression factor of over
15, was omitted.

To answer this query we need to first locate the collection
leaf nodes corresponding to the following path:

(records.trafvio. * .drlic * .ssn)

Once we’ve located this collection of leaf nodes, we need to
search through this list to find the leaves with the string
value identical to 111111111, If we had an efficient index
over these leaves (e.g., a binary or B-tree) we could search
this list quickly. Once the leaves are found we need to find
the subtrees of these leaves that are reached by the path
records.travfio from the root element.

To answer such queries quickly, and provide compact cer-
tifiers, we need only slightly modify the algorithms shown in
Section 3.2. First, we note that an efficient index structure
over the leaves can support efficient searching. In addition,
an index structure such as a binary tree can be Merkle-
hashed as shown in figure 5 to provide compact certifiers for
correct search procedures.

First, in Algorithm 1, step 4, if the current table entry
corresponds to any leaf nodes, we build a search tree (See
[10]) over the set of leaves, lexicographically ordered, and
Merkle-hash the resulting search tree to give a root hash.
This root hash gets associated with the table entry as before.

Second, when evaluating the query select(D,q,s,p), we com-
pute the table entries T for the path query ¢.s. First, for
each element of Ts we search the index tree for its leaves,
retrieve the set of leaf values satisfying p, and build a certi-
fier for this search procedure. This part of the process uses
known methods for answer certification, from existing liter-
ature, as described in Section 2.2. Next, we search up from
the answer leaves in the document tree to find the subtrees



S reached by the path query q. DOMHASH values can be
used to certify for each leaf value that it occurs under an
element of S; the use of DOMHASH for this purpose was
reviewed in Section 2.2.

Finally, Algorithm 3 is modified slightly to check the certi-
fiers described above. The selection process using the Merkle-
hashed search tree for the leaves reached by paths satisfying
q.s guarantees that we retrieved all the leaves that satisfy
the answer; the DOMHASH guarantees that these leaves
occur under sub-trees rooted at paths that match q.

There are several factors that contribute to the size of
the certifier. First, the number of subtrees satisfying the
query (which is | S |). Second, the number of entries in the
xtrie matching ¢.s (call this 7', which is the same as | T |).
Third, the total number of leaves satisifying the selection
criterion (call this M). Each entry in T has a merkle-hashed
index tree over the leaves, which is searched. This induces a
certifier of size O(M; + Hy +1og L), where M; is the number
of leaves matching the selection in this particular entry, H,
is the height of the xtrie, and L is the number of leaves
indexed in the tree under this entry. Clearly, L is bounded
by the size of the document | D |. In addition, each leaf
carries a DOMHASH chain of height O(Hg) certifying that
the leaf occurs under the desired subtree, where Hy is the
total height of the document tree. So we get a certifier of
size O(Hgx | S | +M + T x (Hy +1og | D |)). We note that
the entire document (e.g., the list of all traffic violations) is
likely to be very large relative to the size of the answer | S |
or the height Hy (level of nesting) of the document.

We note in conclusion that there are two parts to authen-
ticating an answer: correctness (i.e., is the answer really con-
tained in the original document ?) and completeness (i.e.,
does the answer include every part of the document satis-
fying the query 7). As noted earlier, DOMHASH already
enables correctness verification. We introduce the xtrie for
completeness verification. In practice, it possible use the
xtrie alone (with a suitable hashing regimen) to establish
both correctness and completeness, or (as we have) use it in
combination with the DOMHASH tree. The relative merit
of each approach depends on the DTD and the document,
and is a subject of current study.

4. CONCLUSION

XML is rapidly gaining in strength as the data model of
choice for information on the Internet. Certifying the cor-
rectness of XML documents is clearly an important problem.
The current draft XML signature standard only allows the
certification of pre-determined pieces of XML documents.
To certify parts of XML documents selected by content, it
would be necessary to use an on-line signing key. Thus far,
there has so far been no way to use one digital signature over
an XML document to certify answers to arbitrary selection
queries over such documents. We support just this func-
tionality. Our approach works best on non-recursive DTDs.
However empirical analysis indicates that a majority of pub-
lished DTDs are non-recursive, and we believe our approach
will be quite useful in a variety of contexts.
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