Scalable Software Libraries 1

Don Batory, Vivek Singhal, Marty Sirkin, and Jeff Thomas
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188
{batory, singhal, marty, jthomas}@cs.utexas.edu

Abstract Most of these libraries include components that implement com-
mon data structures. The Booch C++ Components, for example,

Many software libraries (e.g., the Booch C++ Components, j,nlements over 400 distinct data structures such as stacks, lists,
libg++, NIHCL, COOL) provide components (classes) that imple- hash tables, queues, and trees. The large number of components

ment data structures. Each component is written by hand and "€P3rises from feature combinatorics; components are differentiated

resents a unigue combination of features (e.g. concurrency, dat%ccording to their support for concurrency (e.g., sequential,
structure, memory allocation algorithms) that distinguishes it from guarded, concurrent, multiple), basic data structures (list, queues,
other components. stacks, etc.), space management (bounded vs. unbounded, man-
aged vs. unmanaged), and features offered (iterator vs. noniterator,

We argue that this way of building data structure component librar- paking vs. nonbalking, etc.). Every legal combination of features
ies is inherently unscalable. Libraries should not enumerate COM-yields a distinct data structure. Because there are many possible
plex components with numerous features; rather, libraries shouldcompinations, it is not surprising that this library is indeed large.
take a minimalist approach: they should provide only primitive Feature combinatorics are inherent to all libraries [Kru92]. More-

building blocks and be accompanied by generators that can comqyer, all library components are written by hand, with occasional
bine these blocks to yield complex custom data structures. use of inheritance to minimize gross code replication.

In this paper, we describe a prototype data structure generator angie claim that today’s method of constructing libraries is inher-
t_he_ building bIc_Jcks that populate _its library. We also present pre- ently unscalable. Every time a new feature is added — such as
liminary experimental results which suggest that this approach cnoosing between persistent data structures and nonpersistent data
does not compromise programmer productivity nor the run-time gty ctures — the number of components in the library doubles. The
performance of generated data structures. number of features that are represented in contemporary libraries is
just a small fraction of those that are actually needed. In fact, most
data structures in database systems, operating systems, and com-
pilers are far more complicated than those offered in today’s librar-
Software libraries are a popular means of boosting programmeries. No library constructed by the current means could ever
productivity and reducing software development time and cost. possibly hope to encompass the enormous spectrum of data struc-
The Booch C++ Components [Boo87], libg++ [Lea88], NIHCL tures that arise in practice. Clearly, a new strategy for building data
[Gor90], and COOL [Fon90] are examples. These libraries provide structure libraries is needed.
C++ classes that implement a wide variety of common data struc-
ture, string, complex number, and graph classes that programmergo be scalable, libraries must offer much more primitive building
can instantiate. blocks and be accompanied by generators that compose blocks to
yield the data structures needed by application programmers. In
this paper, we propose a generative means for realizing scalable
data structure libraries. The composition techniques that we pro-
pose are based on the GenVoca model [Bat92b], a model for con-
1. This research was supported in part by Applied Research Labostructing hierarchical software systems from reusable components.
ratories at The University of Texas, Schlumberger, and Digital The techniques that we use do not rely on inheritance as offered by
Equipment Corporation. contemporary object-oriented languages. Instead, GenVoca models
system implementations as combinations of layered software com-
ponents.

1 Introduction

To appear ifProceedings of ACM SIGSOFT '93: Symposiunp on
the Foundations of Software Engineeringos Angeles
California, 7-10 December, 1993.

We begin by examining the designs of two component libraries
and identifying their limitations and weaknesses. We then explain
our generative approach that relies on a layered composition of

building blocks and describe a prototype system which is based ore

these ideas. Finally, we give preliminary experimental results
which suggest that our approach significantly improves the reus-
ability of library components without compromising performance

Standardized abstractions Component interchangeability

requires standardized abstractions. A key feature of software
component / software generator technologies is the ability to
swap different data structure implementations to address appli-

or programmer productivity. cation performance requirements without affecting program
correctness. We note that standardized data structure abstrac-
tions are already present in existing component libraries (e.g.,
Booch C++ Components, libg++, and COOL). Moreover, most
basic data structures (lists, trees, arrays, etc.) can even be
viewed as different implementations of tbentainerabstrac-

tion, i.e., a collection of objects.

2 Current Library Construction Methods

A component library consists of a number of related data structure
families. A family consists of several variations of a basic data
structure, where each variation provides a slightly different combi-

nation of features. * Layered abstractions. Experience has shown that many soft-

ware systems have hierarchical designs; the layering of abstrac-
tions (and their implementations) provides a powerful way to
design, build, and understand complex software. Layering is an
important form of encapsulation; by partitioning complexity
into layers, system design is greatly simplified. Though it may
not be immediately obvious, even simple data structures can be
decomposed into many layers.

Consider libg++. This library offers several implementations of
bags, including unordered XPlexes (a dynamically resizeable
array), ordered XPlexes, unordered linked lists, ordered linked
lists, unordered hash tables, and chained hash tables. Similarly,
libg++ has multiple implementations of sets, including unordered
XPlexes, ordered XPlexes, etc. (i.e., the same variations as bags).
Although these implementations are remarkably similar, libg++
does not use inheritance (or any other software organization techthough each is an important design technique in its own right,
nigue) to capture the common algorithms. the combination of high-level, standardized, and layered abstrac-
tions provides a particularly powerful paradigm that can serve as
We see a similar situation in the Booch C++ Components. This the basis for scalable data structure libraries. We show in the fol-
library offers 18 varieties of deques: a deque may be either sequentowing subsections how a typical data structure can be decom-
tial, guarded, or synchronized (concurrency control algorithms); posed into the composition of primitive layers, where each layer
bounded, unbounded, or dynamic (memory allocation algorithms); exports a standardized, high-level interface. We use an example
and ordered or unordered (ordering algorithms). Because thefrom the Booch C++ Components [Boo87].
library provides a different deque implementation for every per-
mutation of features, the result is 18 variations of the same basic
data structure (i.e. 83x 2 = 18). 3.1 An Example of Data Structure Decomposition

. A dequeis a queue from which objects can be added and removed
Although the Booch library does use inheritance, inheritance is at either end. It isnboundedf there is no fixed limit to the num-

unable to consolidate most of the common algorithms of similar ber of objects that it can contain. Isinchronizedf all operations

data structures. For example, even thoggarded_bounde-) on the deque are atomic. Itrisanagedf freed objects are stored
d_ordered_deque has the same concurrency control algorithm on a free-list for possible use later.

as guarded_unbounded_unordered_queue , both classes
share only one superclasteque . The component writer must
repeat the code for the guarded algorithm in both classes. Multiple

inheritance would not help because what is needed is a Carefuandelement (the objects linked by the queue). We will refer to

:r:igr?stlr?gt c;fﬁ?;i\?s?gr?ir?tzd r%ltjiirdfr?eaell?oonrti?hnr:wss; g}uslﬂpfré?:se;g; these classes as tB&Qinterface. Objects from tHeEQinterface
9 9 9 P ‘are shown in Figure 1. A programmer interacts wittegue

As a consequence, code repetition is rampant in existing libraries. object by invoking its methods (e.gcreate deque()

. . add_front() , pop() ,is_empty() , etc.). In the following
To resolve these issues, we advocate a generative method for Corb‘aragraphs we will decompose an unbounded, synchronized
structing library components. managed deque into six independently defined layers.

Consider an unbounded, synchronized, managed deque. The
Flasses available to the programmerdgque (the queue itself)

The deque_sync layerf all operations on a deque are to be exe-
cuted atomically, it is a simple matter to surround the body of each
Our approach to generating complex data structures from primitivedeque operation with wait(sem) and signal(sem) pair,
components requires the interplay of three fundamental and indewheresem is the semaphore that is associated with ecjue
pendent ideas: high-level, standardized, and layered abstractions: ghject. This is accomplished by a layer/mapping (or a view

; . . 2
® High-level abstractions It is well-known that using high-level [Nov92]). We denote this layer tjeq_sync[x:DEQ]:DEQ .

abstractions makes programs easier to write and debug. It is
essential for component interfaces to hide the complex details .
of their encapsulated data structures; not doing so would make2- We use the notation in [Bat92a]. The notation means layer

components difficult to use and virtually impossible to d exports interfac®; e[x:Y] ~means layee imports interfacey.
combine. deque_sync[x:DEQ]:DEQ both imports and exports tiEQ

interface.

3 A Generative Approach to Data Structures

ao:

| o1 | | E1 | | E2 | | E3 |
deque elements
Figure 1: The abstract objects of the DEQinterface.

D1 er | | e2 | | E3 |

sem
deque elements
Figure 2a and 2b: The deq_sync[x:DEQ]:DEQ mapping.

D1 er | | e2 | | E3 |

sem
container elements
Figure 3a and 3b: The deque2c[x:CONT]:DEQ mapping.

D1 E1 E2 E3
sem prev|next <—=prev|nextf<—={prev|next
head
tail

container elements

Figure 4a and 4b: The dlistix:CONT]:CONT mapping.

D1 E1 E2 E3 E4
sem prev|next <—=prev|nextf<—={prev|next prev|next
head next_free next_free next_free next_free
tail

free_list
container elements

Figure 5a and 5b: The avail[x:CONT]:CONT mapping.

D1 aly El1 |a2: E2 33: E3 at: E4
sem prev|next <—=|prev|next{<—=prev|next prev|next
head next_free next_free next_free next_free
tall

free_list
container elements

Figure 6a and 6b: The heap[x:MEM]:CONT mapping.

add_front (deque d, element e)

{
wait (d.sem);
x::add_front (d, e);
signal (d.sem);

}

add_front (d, e)
{

}

x:insert_front (d, e);

insert_front (d, e)
{
element *g;
g = x:insert_front (d, e);
g->prev = NULL;
if ((g->next = d.head) != NULL)
g->next->prev = g;
if (d.head == NULL)
d.tail = g;
d.head = g;
return (9);

}

insert_front (d, e)
{
element *g;
if (d.free_list)
{
g = d.free_list;
d.free_list = g->next_free;
g->data = e;
}
else
g = x:insert_front (d, e);
return (9);

insert_front (d, e)
{
element *g;
g = allocate (sizeof (e));
g->data = e;
return (9);

}

Figure 2a shows the result of mapping degue andelement Recap.We have expressed the implementation of unbounded, syn-
objects of Figure 1; the definition of theque class is augmented chronized, managed dequesdeque_usm) as the hierarchical
with thesem variable, but the definition of thdement class is composition of plug-compatible layers:

not modified. Figure 2b shows the mapping ofatié_front()
operation. Note that:add_front() denotes a call to treeld
operation of the less abstraftque class®

deque_usm = deq_sync[deque2c[dlist
[avail[heap[transient]]]]]

. Note that th | h the following i tant ties:
The deque2c layerA deque can be modelled as a container of ote that these layers have Ihe Tolowing important properties

elements . One can easily define a laydeque2c or “deque to ® Each layer is independently defined. That is, a layer's field
container”) which translatedeque operations int@ontainer additions and rewrite operations do not depend on the specific
operations. As shown in Figure 3a, there is an identity mapping of algorithms of other layers.

a deque and its elements to the container and its
elements . Figure 3b shows the mapping of ttheque opera-
tion add_front() to the container operation
x::iinsert_front() . Otherdeque operations are mapped in
a similar manner.

* A component from a conventional library (e.g., Booch, libg++)
is really a composition of many primitive layers. The result of
an obvious inline expansion of tlaeld_front() operation
through these layers is shown in Figure 7. Note that this is the
code that one might have written in a monolithic implementa-
tion of this component. In principle, the same strategy holds for

The dlist layer. The elements of an unbounded deque are repre- otherdeque operations.

sented as members of a doubly-linked list. The layer
dlist(x:CONT]: CONT adds a pair of pointerprev , next)

to the definition ofelement , and adds another pair of pointers 3,2 Scalability
(head, tail) to the definition otontainer . Figure 4a shows

the transformed objects of Figure 3a, and Figure 4b shows theAs mentioned earlier, hierarchical decompositions and high-level
mapping of thensert_front() operation. standardized interfaces are key to scalable libraries. We explain the

scalability of our approach through a series of examples.

The avail layer. A container is managed if its elements are placed)))
on a free list when no longer needed. The Example 1 Consider the implementation of a managed,

avail[x:CONT]:CONT layer accomplishes this mapping. It unbounded (non-synchronized) dequizque_um. The algo-
adds dree_list field tocontainer (to point to the free ele- fithms for (a) mapping deque operations to containers, (b) imple-
ments list) and aext_free pointer toelement (to point to the menting containers as lists, (c) managing unused nodes through
next unused element). Figure 5a shows how objects of Figure 4¢ avail” lists, and (d) allocating nodes dynamically in a transient

are transformed. This figure also shows one previously deletedn®@p would indeed be the same as thoselégue_usm. We
object on the free list; this object is not visible to higher layers. Would express this implementation simply by dropping the

Figure 5b shows the mapping of timsert_front() opera- deq_sync[] layer from thedeque_usm expression:
tion. deque_um = deque2c[dlist[avalil
heap[transient]]]]

The heap layer. The heap[x: MEM]:CONT layer allocates

blocks of heap storage fetement objects. Figure 6a shows the The effect of droppingdeq_sync would be to omit the
mapping of objects (which assigns physical (heap) addresses tqait(sem) andsignal(sem) operations that surround each
each element), and Figure 6b shows the mapping of the deque operation.

insert_front() operation. Note thaheap translates con-

tainer operations and objects into memory allocation operationsExamme 2.Consider how to implement persistent deques. Rather

and objects, which we informally define as M&Minterface. than allocating memory from transient storage, one could use a
Memory objects are simply a contiguous string of bytes; the Mem-persistent: MEM component that exportlocate() and

ory operations arallocate() anddeallocate() . deallocate() functions which allocate space from persistent
) _) _ memory. Creating an unbounded, synchronized, managed, persis-
The transient layer. Thetransient: MEM layer is a terminal tent deque deque _usmp) would require substituting the

layer; it does not depend on other layers for servicassient transient layer with thepersistent layer:

just manages pages of transient memory for use by other date)

structures (e.g., a heap). A mapping of aliecate() opera- deque_usmp = deq_sync[deque2c[dlist

tion is: [avail[heap[persistent]]]]]

allocate (int i) Example 3.A priority deque orders its elements according to the

{ return (malloc (i)); } value of a field. An implementation of this data structure could use
an ordered list layeoflist(x:CONT]:CONT), almost identi-
cal to dlist[] except for the mapping/implementation of

3. The code examples in Figures 2b-6b are written using a C++-insert_front() . A priority, unbounded, synchronized, man-

like syntax; although this syntax differs somewhat from P2’s syn- aged dequedeque_pusm) could be built frondeque_usm by

tax (described in Section 4), we used it in these examples to avoicswapping thallist[] layer with theodlist[] layer:

some of the complexities of P2's syntax.

add_front (d: deque, e: element)
{
element *g;
wait (d.sem); /l from deq_sync
if (d.free_list) /I from avail
{ / from avail
g =d.free_list; // from avail
d.free_list= g->next_free; /I from avail
g->data = e; I from avail
} // from avail
else /I from avall
/l from heap
g = malloc (sizeof (e)); /I from transient
g->data = e; I from heap
} /l from heap
g->prev = NULL; /I from dlist
if ((g->next = d.head) != NULL) /I from dlist
g->next->prev = g; /I from dlist
if (d.head == NULL) /I from dlist
d.tail = g; /I from dlist
d.head = g; / from dlist
signal (d.sem); // from deg_sync
}
Figure 7: The Composed Mapping of add_front()
deque_pusm = deq_sync[deque2c[odlist In principle, the technique of building complex data structures
[avail[heap[transient]]]]] from layer combinations is simple; however, certain subtle design

issues must be addressed to ensure that layer combinations always
Example 4.Suppose objects of a container need to be retrieved inproduce valid data structure implementations. Experience has
several different orders, based on the values of different fields. Oneshown that some syntactically legal layer combinations actually
way to accomplish this would be to retrieve the objects (in any yield invalid data structures. For example, suppose we were to
order) and then sort them. A more efficient alternative would be to switch thedlist andavail layers in theleque_usm example
link objects of a container onto multiple ordered lists, where each (Section 3.1). The resulting deque implementation would not work
list maintains a different sort order. To implement a data structure correctly, because objects that are recycled byattadl layer
(o2list) that maintains two orders (and stores its elements in awould never be added to the linked list by dist layer.
managed transient heap), we would use two instances of the
odlist layer, one for each sort order: This example demonstrates that the interface of a layer is not suffi-
cient to specify semantically correct composition orderings with
other layers. Additional information is needed to capture the
assumptions of a layer’s implementation and to ensure that these
conditions are not violated by layers beneath it.

oZ2list = odlist[odlist[avall
[heap[transient]]]]

It should be clear from these examples how a small set of layers
can be composed in different ways to yield the various data struc- o
tures provided by contemporary software libraries. For example,A promising strategy for dealing with this caveat is to define a sep-

we estimate that only 20 to 30 primitive layers underlie all of the arate tool that recognizes and satisfies the semantic restrictions of
400+ Booch data structure components; the actual count dependeach layer. An example of such a tool (for the domain of database

upon subjective implementation preferences. (In any case, all of'@nagement systems) is DaTE — which captures semantic infor-

the layers define rather simple mappings). The size of the Boochmation about each database component to ensure that only legal
library simply reflects the combinatorics of how layers can be SYStems may be constructed [Bat91].

composed. Not only is there a big win in terms of easing mainte- . .

nance and reducing library complexity, but for a given set of layers Note that many details about layers have not been discussed (e.g.,

it is possible to generate many specialized data structures that arhow sort fields are conveyed to the appropriate layer, etc.). In the
indeed useful but are unlikely to ever find their way into contem- Next section, we discuss the solutions to these problems that we are

porary libraries. using now in a prototype_ data structurg gene_rator. Notice that
many data structures besides ordered linked lists could also be
used to maintain ordering: an AVL tree layer, a binary tree layer,
etc. could replace any instanceoalflist in the above specifica-

tion. This is, in fact, a capability of the prototype generator
4. In Section 4.1, we show how numerical tags are used to differ-gescribed in the next section.

entiate between the two instance®dlist

4 The P2 Generator struct employee

The Predator project seeks to provide programming tools for{ int empno;
implementing and reusing software components, a la the GenVoce char first_name[20];
model. Predator is an outgrowth of Genesis, the first extensible char last_name[20];
DBMS that showed that customized database management sys int age;

tems could be assembled from prefabricated components [Bat88] int class_no;

Predator differs from Genesis in that (a) the performance of Preda-} employee; I/l employee record type
tor-generated code is highly optimized, and (b) the target domain
of Predator is data structures, rather than database systems. container <employee> stored_as list2 with

Currently there are three Predator subprojects. Our first prototype °dlistl key is empno; // layer annotations

system, P1, augments a subset of ANSI C with declarations for OdliSt2 key is age;

specifying data structure implementations; P1's goal is to evaluate, a7y size is 100; , ,

the potential of data structure generators [Bat92b, Sir93]. P2 is} el ez il instance declaration

more extensible: it supports extensions to ANSI C within a more] o]
modular and maintainable architecture. P++ introduces domain-Cursorsare used to reference objects within a container [Kor91,
independent language extensions to ANSI C++ to support Iarge-ACMgl]- Here is the decla}ratlon of a cursoIrs which iterates
scale reuse. Specific instances of these extensions are used by tOVer only those@mployee instances withirel that are less than
P1 and P2 systems; once P++ is completed, we envision that it will3® Y&ars old and whose first namélsn” :

be the platform for all future development of the Predator project cyrsor <e1> curs where age>35 &&

[Sin93]. In this section, we review the P2 prototype. first_name=="Don";

4.1 P2 Source Files To iterate over gach qualifieemployee a_nd i'ncrer_nent his/her
class_no attribute, we use a special iteration construct,

A P2 source file is an ANSI C program with P2 declarations: foreach

typex ,container , andcursor . Thetypex statement allows

users to define named compositions of predefined layers. For

example, the statement below defines two such compositions,

foreach (curs)

curs.class_no++;

listl andlist2 : }

typex

{ In general, P2 presents an interface to containers that is similar to
listl = dlistfheap[persistent]]; embedded relational languages or persistent data manipulation lan-
list2 = odlist1[odlist2[array[transient]]; guages [ACM91].

}

listl defines a doubly-linked list whose nodes are allocated 4.2 The P2 Architecture

from a heap in persistent storagst2 defines a data structure py js an extensible language. Whenever a new layer is added to P2,
that maintains objects on two different ordered lists, and whose e lexical tokens and grammar rules may be needed to parse the
nodes are allocated sequentially from an array in transient storageh,jlyer-S annotation. We found the grammar for ANSI C to be too

The numerical tags that adoodlistl ~ andodlist2 are used complicated to modify when new annotations were added. Instead,

to differentiate the two instances of the same laydist . we chose to organize P2 as a pipeline of precompilersddhe
precompiler is defined by a simple grammar that paygeex
Layers have additional parameters, caietiotations which are andcontainer declarations into an “internal” syntax that can be
not shown intypex statements. For exampladlist needs a easily parsed by an ANSI C grammar (teckend). If a new
sort-key to define the ordering of its recordsiay needs to |ayer is added to P2, tiell precompiler is automatically regener-

know the size of array to allocate, aperrsistent ~ needs the ated; thebackend compiler remains unchanged. The pipeline of
name of a file in which to store objects. Annotations are specifiedddl andbackend preprocessors is shown in Figure 8.

as part of P2’sontainer declaration.

P2 employs a third precompilexp() for translating high-level
As an example declaration, suppose instances cérttpoyee layer specifications into ANSI C. One of the lessons learned from
record type are stored @mpno order on one listage order on the Genesis project was that layer implementors had to know far
the second |iSt, and the resulting nodes in an array of size 100. TW(tOO many details about Genesis to write new |ayersl A Simp|e spec-
different instances of this data structure — each with their own setsification language was needed to write the translation rules for data
of employee objects — arel ande2: types and operations; the compiler for this language would expand
these rules and mechanically generate boilerplate information
(e.g., standard type declarations, type definitions, code templates,
standard error checking) that is common to all components.

component Xp component
Xp source precompiler C source
Y
Predator _ ddl = backend C
source precompiler precompiler source

The P2 Precompiler
Figure 8: The P2 Architecture

As an example of this component specification language, considemwhich layer would perform the retrieval most efficiently. P2 asso-
the upd() operation which updates fiefd of the object refer- ciates with each layer a cost function which estimates the cost of
enced by cursar with the valuev. For theodlist layer, iff is processing the query. P2 polls each layer and selects the layer that
the sort field, then the object to be updated must be unlinked fromreturns the lowest cost estimate. In this way, the cheapest plan
the list, updated, and then relinked into its new position. Other- (data structure traversal) for processing a query is selected. Even-
wise, the update is passed directly to the next lower layer as ittually, P2 will support multi-container predicates and thus will
would have no effect on this list data structure. This rewrite would need a relational-database-style optimizer to determine the manner
be specified as: in which joins are processed.

upd (c, f, v)
{ Il'if f == sort field
if (stremp (f, %a.sort_field) == 0)

/l abstract update
5 Performance Results

% The primary motivations for programmers to use a software library
unlink (c); /I unlink object from list are to increase productivity (by avoiding algorithm reinvention,
upd (c,fv); // update at lower levels coding, and debugging) and to be assured of good performance (by
link (c); /I now relink using tuned algorithms). A generative approach to libraries will

%} succeed only if programmer productivity and performance are not

else compromised.

%{

%}“pd (cfv); /lupdate at lower levels We know of no commonly-used benchmark suites that can evalu-

ate libraries in terms of programmer productivity and performance.
} As an initial step, we devised a simple benchmark that spell-
checks a document against a dictionary of 25,000 words. The main
activities were inserting randomly ordered words of the dictionary
. . into a container, inserting words of the target document into a sec-
fragment that is to be generated; statements outsitig.0b6} ond container and eliminating duplicates, and printing those words
are to be executed by the P2 compiler. T@symbol refers toaC ot the document container that do not appear in the dictionary con-

structure that contains the information about the layers annota-isiner. The document that we used was the Declaration of Indepen-
tions. The%asymbol is expanded byp into the C expression that yance (~1600 words).

references this structure.

Note thatxp generates all data type declarations for this specifica-
tion. Furthermore, all text enclosed witHin{...%} is a code

))) We used the Booch C++ Components, libg++, P1, and P2 to imple-
P2 works by having theackend recognize an operation on @ ment this benchmark using four different container implementa-

container. P2 replaces this code fragment with the fragment that isijons: unordered linked lists, unordered arrays, sorted arrays, and
generated for this operation by the first layer of that containers pinary trees. The benchmarks were executed on a SPARCstation
typex expression. Calls to lower level operations are replaced, 14 \with 24 MB of memory, running SunOS 4.1.2. Three observa-

recursively, with their implementing fragments until a terminal g regarding productivity were immediately apparent:
layer is reached. Note that data structure specific optimizations in

the form of partial evaluations are part of this expansion process.1. The size of the P1 and P2 programs were the same or smaller

This can be seen in thpd() specification above, where depend- than corresponding implementations for the Booch C++ Com-

ing on the field input tapd() , different code fragments are gen- ponents and libg++ (see Table 1). The reason is that both P1 and

erated. Thus, embodied in layers are domain-specific optimizations P2 offer high-level container abstractions that make programs

that no general-purpose compiler could offer. compact and quicker to write. (The code size for each program
was obtained by removing comments and using the Wix

P2 also has a query optimizer. Given a retrieval predicate, severa Utility to count the words.)
layers in a data structure could process the query; P2 determine

Unordered Unordered
Component library linked list array Sorted array | Binary tree

320 words 360 words 398 words 481 words

Booch C++ Components 2.0-beta

libg++ 2.4 336 words 386 words 474 words 336 words
P1 281 words 281 words 287 words 285 words
P2 308 words 310 words 316 words 310 words

Table 1: Code size of dictionary benchmark programs (in words of code).

Unordered Unordered
Component library linked list array Sorted array | Binary tree
Booch C++ Components 2.0-beta 70.9 sec 54.6 sec 11.1 sec 15.4 sec
(compiled with Sun CC 3.0.1 -0O4)
libg++ 2.4 41.9 sec 34.3 sec 5.4 sec 4.1 sec
(compiled with G++ 2.4.5 -02)
P1 40.2 sec 33.3 sec 6.3 sec 3.0 sec
(compiled with GCC 2.4.5 -02)
p2 40.3 sec 33.3 sec 6.2 sec 3.2sec

(compiled with GCC 2.4.5 -02)
Table 2: Running times of dictionary benchmark programs (combined user and system time).

2. It was trivial to alter container implementations in P1 and P2 Cohen’s components are not layered, and therefore suffer the

programs. In general, only a few lines of declaratityysek aforementioned problems of scalability.
and annotations) needed to be changed; no executable line
were modified. In Novak’s GLISP system, a data structure’s implementation is

3. Programs that used the Booch C++ Component and Iibg++represented as a series of view transformations [Nov92]. A view
' describes the abstract interface of a container. A transformation

libraries required more extensive modifications when con'[ainerdescribes the computation steps necessarv to convert from one
implementations were altered. Different data structures either ", P P y

. . . . view to another. The Programmer’s Apprentice takes a similar
had different interfaces or different names for semantically approach to qenerating code: data structures are implemented b
equivalent functions. pp g 9 - p y

successively applying program transformations, called cliches
[Ric90]. A cliche encodes in a language independent representa-
tion the actions needed to transform a data structure from one state
to another. Although GLISP and Programmer’s Apprentice pro-
vide powerful facilities for decomposing complex components into
primitive ones, decomposition alone cannot solve the scalability

Clearly many more experiments are needed. We. have no illusionsy opiem. Components must also be designed with high-level, stan-
that this simple example is sufficient in any way; our goal at th's.dardized, and layered abstractions.

early stage of research is to demonstrate the feasibility and plausi
bility of a data structure generator approach. We believe that the
results presented here have indeed accomplished our initial goals.

Table 2 lists the execution times for each program. Note that the
performance of P1 and P2 code is comparable to the performanc
of the other programs.

Many of the concepts and techniques used in Predator have also
appeared in other research projects. For example, the concept of
parameterization is fundamental to the design of P2 components.
6 Related Work Unlike components from current software libraries, P2 compo-

nents are highly parameterized. A typical P2 component is defined
in terms of the interface of its lower layer component, and it is

parameterized by the type of objects stored in the data structure.

describes a set of language extensions which permit the elementG09uen has formalized these aspects of component design in a

of a container to be accessed via relational operations. This systerm°de! called parameterized programming [Gog86]. This model
also provides a set of pre-written data structure components whictdentifies two kinds of parameters: vertical parameters (which
all share the same relational interface. Unlike Predator, however,

Several other research projects have provided tools that alleviate
the drudgery of writing data structure implementations. [Coh93]

specify lower layer components) and horizontal parameters (which8 References

correspond to type and constant values). [ACMO1]
The concept of software templates is also related to the design o
P2 components. As described in [Vol85], a software template pro-
vides a generic representation for data types and algorithms; this
representation can be used to declare only the abstract interface ¢
a software component without revealing its implementation. When
the software template is instantiated, the implementation details of
the template are resolved by binding values to the parameters o
the template. Although software templates are clearly related to
Predator, software templates do not address the concept of vertice
parameters (i.e. layered components), which is an essential ingre
dient for scalable software libraries.

[Bat88]

[Bat91]

[Bat92a]

7 Conclusions [Bat92b]

Contemporary software (template) libraries are populated with
families of data structure components that implement the same
abstraction. Each component is unique in that it implements a dis{g087)
tinct combination of data structure “features” (e.g., type of data
structure, storage management, concurrency). Every component i"[Bra93]
written by hand and utilities that are shared by many components
are factored into separate modules to minimize gross code replica
tion. [Coh93]
We have argued that this method of library construction is inher-

ently unscalable. Every time a new feature is added, the number o[Fon9(]
components in the library doubles. The number of data structure
“features” that one finds in today’s libraries is woefully inadequate [Gogg6]
to address the needs most applications; the data structures found i
operating systems, compilers, and database systems are far moi
complex than those available in today'’s libraries. [Gor90]
We believe that a generative approach, rather than an enumerativ
approach, is required to address the needs of applications. Librar[Kor91]
ies should offer only primitive building blocks, accompanied by
generators that can combine these blocks into complex and custor[Kru92]
data structures. We described a prototype, P2, that has demor
strated great potential in realizing the generative approach. Prelim-[Lea88]
inary experimental evidence presented here and in [Sir93] show

that P2 does not compromise programmer productivity nor the per-[Nov92]
formance of generated code.

Much more work remains. We are in the process of re-engineering[Ric90]
the OPS5c production system compiler [Bra93], which uses
highly-customized data structures to realize a high-performance[Sin93]
active database application. We believe that if success can be den
onstrated in generating complex data structures for such sophisti-

cated applications, we will have established that the generative
approach can play an important role in the future of software com-[Sir93]
ponent libraries.

Acknowledgments We are grateful to Grady Booch for making

his component library available to us. [Vol85]

ACM. Next (generation database systems.
Communications of the AGN84(10), October 1991.

D. S. Batory, J. R. Barnett, J. F. Garza, K. P. Smith, K.
Tsukuda, B. C. Twichell, and T. E. Wise. GENESIS:
An extensible database management syst&RE
Trans. on Software Engineeringovember 1988.

D. S. Batory and J. R. Barnett. DaTE: The Genesis
DBMS software layout editor. In R. Zicari, editor,
Conceptual Modelling, Databases, and CASE
McGraw-Hill, 1991.

D. Batory, V. Singhal, and M. Sirkin. Implementing a
domain model for data structuresnternational
Journal of Software Engineering and Knowledge
Engineering 2(3):375-402, September 1992.

D. Batory and S. O'Malley. The design and
implementation of hierarchical software systems with
reusable componentdCM Transactions on Software
Engineering and Methodolog@ctober 1992.

G. BoochSoftware Components with Ad&aenjamin/
Cummings, 1987.

D. A. Brant and D. P. Miranker. Index support for rule
activation. InProceedings of 1993 ACM SIGMQD
May 1993.

D. Cohen and N. Campbell. Automating relational
operations on data structuredEEE Software
10(3):53-60, May 1993.

M. Fontana, L. Oren, and M. Neath. COOL — C++
object-oriented library. Texas Instruments, 1990.

J. Goguen. Reusing and interconnecting software
componentslEEE Computer 19(2):16-28, February
1986.

K. Gorlen, S. Orlow, and P. Plexiddata Abstraction
and Object-Oriented Programming in C++John
Wiley, New York, 1990.

H. F. Korth and A. SilberschatDatabase System
ConceptsMcGraw-Hill, 1991.

C. W. Krueger, “Software ReuseACM Computing
SurveysJune 1992.

D. Lea. libg++, the GNU C++ library. Proceedings

of the USENIX C++ Conferenc&988.

G. Novak. Software Reuse through View Type
Clusters. InProceedings of the 7th Knowledge-Based
Software Engineering Conference (KBSE;94392.

C. Rich and R. Water$he Programmer’s Apprentice
ACM Press, New York, 1990.

V. Singhal and D. Batory. P++: a language for large-
scale reusable software components. Department of
Computer Sciences, Univ. of Texas at Austin, April
1993.

M. Sirkin, D. Batory, and V. Singhal. Software
components in a data structure precompiler. In
Proceedings of the 15th International Conference on
Software Engineeringviay 1993.

D. Wlpano and R. Kieburtz. Software templates, In
Proceedings of the 8th International Conference on
Software Engineeringl985.

