

Security for Automated, Distributed Configuration
Management

P. Devanbu, M. Gertz, S. Stubblebine∗

Contact: devanbu,gertz@cs.ucdavis.edu
stu@cs.columbia.edu

April 25, 1999

Abstract

Installation, configuration, and administration of desktop software is a non-trivial process.
Even a simple application can have numerous dependencies on hardware, device drivers, op-
erating system versions, dynamically linked libraries, and even on other applications. These
dependencies can cause surprising failures during the normal process of installations, updates
and re-configurations. Diagnosing and resolving such failures involves detailed knowledge of
the hardware and software installed in the machine, configuration manifests of particular
applications, version incompatibilities, etc. This is usually too hard for end-users, and even
for technical support personnel, specially in small businesses. It may be necessary to involve
software vendors and outside consultants or laboratories. Employees working on sensitive,
proprietary projects may even have to resort to calling the help line of an application ven-
dor and discussing details of their desktop configuration. In order establish valid licensing,
the user may be forced to disclose additional details such as the user’s identity, machine
identification, software serial number, etc. This type of disclosure may reveal proprietary
information or (worse) security vulnerabilities, and increase the risk of attack by hackers or
cyber-criminals. An adequate solution to the distributed configuration management problem
needs to address the security concerns of users, administrators, software vendors and out-
side consultants: keeping details of installations private, authenticating licensed users and
software vendors, protecting the integrity of software, secure delegation across administra-
tive boundaries, and protecting proprietary information. Existing commercial and research
systems [12, 8] provide distributed configuration management by distributing configuration
information and software over local and wide-area networks. They provide flexible, auto-
mated, distributed configuration management. However, many or most of the security issues
listed above remain to be addressed. These issues are the central focus of our research.

∗Address for the first two authors: Dept. of Computer Science, Room 2063, Engineering Unit II, Davis,
CA 95616. Last author: CertCo Inc., 55 Broad St., Suite 22, New York City, NY 10004

1

1 Introduction

Traditionally, the installation of software was simple: an administrator received a tape,
unbundled the software off the tape, created a few initialization and profile files, and the
software was off and running. Later releases for the software would arrive likewise in magnetic
media and be handled likewise. With component-based distributed software running on a
networked computer, the process is simpler in some ways and more complex in others.
Rather than using cumbersome physical media, software can be dispatched over the network
(perhaps even automatically as agents or applets). However, there may be several constituent
components, from different vendors. The configuration and installation process for each of
these may be distinct, and there may be a nontrivial integration step. In addition, each
networked computer may have different resources and user requirements, and may require
customized software installation.

Configuration management continues to be an issue after initial installation: the configura-
tion of a machine may change, for example, due to the installation of a new device driver
or an upgrade to the operating system. A vendor may produce new releases of a software
product to fix faults or enhance functionality, thus leading to the installation of new files
that may have consequences beyond the specific product itself.

Papers from the University of Colorado Software Engineering Research Laboratory (UC
SERL) (See, for example [9]) have described a useful characterization of the software deploy-
ment lifecycle from the perspective of the software producer, and the software consumer:

• From the software producers point of view, there are two significant lifecyle events:
release, when the software (or a new version) is first introduced, and retire, when an
old version is deprecated by the vendor.

• From the software consumers point of view, there are four significant1:

1. Install: the first installation of the software product.

2. Reconfigure: Selects a new configuration (from the list available) of an installed
software in response to new requirements at the consumer’s site. E.g., the user
may require some a dictionary for a new language in a word processor.

3. Adapt: A change made in the consumer’s configuration requires a change to the
installation of a product. For example, a new printer may be installed, which
requires the installation of new fonts.

4. Update: A change made to a software product in response to a change initiated
by the software vendor.

We adopt the UC SERL view of the software deployment lifecycle. SERL has developed
an architecture (the Software Dock [8]) to address the needs of this lifecycle model. Ar-

1We present here only a simplified view of the deployment lifecycle. See [9] for full details.

2

chitectures for configuration management have also been devised by Marimba [12] and the
Desktop Management Task Force consortium [2].

Our goal in this paper is to consider the security problems that arise in software configuration
management.

2 Security Issues in Distributed Configuration Man-

agement

The most common situation is a distributed computer network where individual machines
have complex installations tuned to the needs of specific users. In this context, there are
various security goals, such as privacy, authentication, and delegation etc. We illustrate the
need for these security features with an example.

Testing Lab

Vendor A

Administrator

Vendor BVendor*

1 2

3 4 5

6 7
8

Project
Member

Project
Specialist

Figure 1: An Example Distributed Configuration Management Scenario

2.1 An Example

Consider Figure 1. A project member signs up to work on a special project, and checks with
the departmental network administrator (edge 1) to find out what software is needed. The
overworked administrator tells the project member to consult with a project specialist (edge
2) (an outside consultant) for details on the software required. The administrator in a sense
here is “certifying” the project specialist as the responsible person for configuring software
for the project.

3

The project specialist identifies an application A∗ and vendor for the project member, who
contacts the vendor (4) to obtain the product. The vendor (Vendor*) uses components
CA, CB from two other vendors (Vendor A) and (Vendor B); CA and CB occasionally have
conflicts. To determine if such conflicts exist, the Vendor* always consults a testing lab (7)
which obtains versions (6,8) and tests them (or has already tested them in the past). The lab
informs Vendor* (7) of the compatible versions. The project member finds the right version
information from Vendor* (4) and obtains the right versions of the components (3,5).

We use the term “testing lab” advisedly; in practice, information such as this is obtained by
calling the tech-support line for Vendor*, which results in much wasted time, often without
any positive results. Another, more ad-hoc approach is to comb the web and usenet groups.
This process is unpredictable, time-consuming, and often also fruitless. Another (more ex-
pensive) approach is to hire a knowledgeable consultant, who plays the role of a “testing lab”
and makes it his/her business to be aware of incompatibilities. We envision a configuration
framework that supports this more directly, and thus use the term “testing lab” illustrate a
more systematic approach, which allows organizations with such capabilities to offer these
services for a (possibly electronically delivered) fee. This type of dialog with vendors of dif-
ferent components and testing labs could be repeated for all the different applications (both
work-related and personal) that the project member installs.

This scenario just covers the install part of the consumer side of the deployment lifecycle.
Now consider a reconfigure event. The project member decides to install a video camera
device for teleconferencing; in the process of installing the device driver, a new component is
loaded, which causes the installed application from Vendor* (described above) to fail. The
project member contacts the project specialist, who after much investigation, fails to resolve
the problem, and refers the project member to Vendor*. The project member contacts
Vendor* (4)’s support service; and identifies herself as a licensed user of A∗. Vendor*, after
obtaining an elaborate description of the problem, and the project member’s installation,
realizes that the driver uses a newer version of CB that conflicts with the version of CA that
is currently installed. Vendor* then contacts the testing lab, which identifies a newer version
of CA that is compatible with the newer version of CB. Again, as before, this situation is
somewhat idealized; in practice, the project member (or any user) spends many hours trying
to localize the problem, with or without the help of a voice at the other end of a support line;
more often than not, Vendor* is unable or unwiling to diagnose the problem. The situation
remains often unresolved, and the user is forced to abandon either the effort to reconfigure
his system, or the use of application A∗.
A similar scenario can be described for an update whereby a new version of A∗ is released.
Vendor* may inform the project member about a new update of A∗; if this new version
is authorized by the project specialist the project member may go ahead and obtain the
update from V endor∗. This update may have unintended effects on other software that
the project member has installed, which in turn may trigger additional dialogs between the
project member, vendors of other software, their testing labs etc. These dialogs will involve
description of hardware/software installed on the project member’s machine, proof of licenses

4

being held etc.

Many applications ship with a range of configuration options that can be adjusted to suit
the needs of a specific user’s hardware/software set up on a specific machine. Thus, without
adjusting the rest of the installation and contacting other vendors etc., it may be quite feasi-
ble to adjust the configuration/installation of an application to get it perform satisfactorily.
However, the tuning of these options, specially for complex applications such as business
process support, databases, and even word processing (with special needs for fonts, print
drivers etc) can be quite complex, and require skills and resources beyond the capabilities
of the systems administrator of a small organization. So even with flexible applications, the
best solution in often to simply outsource the configuration task to an external entity.

We hasten to emphasize that we do not claim to advance a solution for the configuration
management problem per se. Incompatibilities and other difficulties such as those defined
above may happen, and will often require human effort to diagnose and solve them. Our
goal rather is to ensure that if such information is available, it is promptly, reliably and
efficiently delivered to those who need it, subject to certain security requirements that we
shall discuss briefly now, and in more detail later.

2.2 Security Issues in this example

There are several security issues that arise here. First, the project member ends up revealing
a great deal of information about the configuration of her machine to the project specialist,
vendors, and testing labs. Certainly, there is a strong threat to the privacy of the project
member (e.g., the project member may have personal applications or software on the ma-
chine, and my unwittingly reveal this information by simply disclosing the existence of a
particular DLL or component). In addition, detailed knowledge of the configuration of the
project member’s machine is made available to a number of outsiders, who may be now be
able to attack known vulnerabilities in the machine, and gain proprietary secrets or engage
in cyber-crime or cyber-terrorism.

Second, there are a number of authentication issues. The vendor needs to know that the
project member is a licensed user of the relevant software. In addition, the project member
needs to know that versions of the software that are installed have not been tampered with
and modified, and are actually the right versions prescribed by the project specialist, the
vendors, the testings labs etc.

Finally, there are delegation issues. The administrator delegates configuration authority to
the project specialist, and the project specialist in turn delegates some authority to vendors
and testing labs. These delegations may have associated time-periods of validity. These
delegations need to be handled in a secure and timely fashion.

These issues are discussed in greater detail in Section 4.

5

3 Current Approaches

Architectures such as Marimba [12] and the Colorado Software Dock [8] deal explicitly with
this problem. All architectures consist of these elements

1. A language for describing sites, configurations and updates. This language has facil-
ities for explicit hierarchical descriptions of configurations, listing the various required
elements for a software installation, as well as implicit constraints on software (such
as requirements for certain types of functionality, without explicitly identifying the
component).

2. An Event Messaging mechanism, for notifying events relating to the deployment
lifecycle to vendors, customers, etc.

3. An agency on the customer side and on the vendor side for making use of the config-
uration descriptions, site descriptions, and the event notifications to derive consistent
configurations and download the necessary software.

While the different approaches [2, 12, 8] have different advantages and disadvantages (See [1]
for a survey), we primarily concerned here with security issues. In the following section, we
identify the security issues that are of concern in the networked configuration management
context.

4 Research Issues

We identify several critical security needs in systems that perform distributed software con-
figuration. Some of these are handled by existing systems; others are not adequately dealt
with. We are currently developing a flexible, retargetable architecture that addresses the
security needs; this paper lays out the requirements and issues that must be addressed by
such an architecture.

Integrity is the property that a data item (software, data, etc) is intact, and has not been
tampered with. In the context of software configuration, integrity requirements arise
in different contexts:

Software Integrity Software that is shipped from the vendor must arrive intact at the
installation site. For example software from Vendor* that arrives to the student’s
PC (link 4, Figure 1) must be checked for integrity and completeness.

Configuration Integrity The configuration of a machine at a user’s site must not
be tampered with by unauthorized personnel.

Message Integrity Messages describing configurations (both correct ones and inop-
erable ones) must arrive correctly at the needed sites.

6

Cryptographically, integrity is established using message authentication codes [13]
(MACs) or signatures. These techniques can be used in this context. Current sys-
tems such as Marimba implement this requirement via digital signatures.

Authentication It is often necessary to establish the authenticity of a message or a data
item, e.g., to make sure that the message really did originate where it claims to have.

Authenticating Software Vendors We need to verify that the originator or source
of the software is indeed who it is claimed to me. For example, in figure 1 we
need to establish that the delivered component CA in step 3 really did originate
with Vendor A and was not subject to tampering.

Authenticating Software Users During the reconfigure or update scenarios, when
a customer contacts a vendor for help, the vendor needs to establish that the caller
is actually a licensed user.

Cryptographically, authentication is established using signatures [13] within a public-
key system. Other issues arise in this context, such as securely associating an entity
or a role with a public-key, which is dealt with below under “delegation”.

Privacy refers to the goal of keeping certain information secret. There are different types
of privacy goals in the software configuration context.

Privacy of Content Software configuration activities involve the exchange of several
valuable pieces of intellectual property, some of which may have commercial im-
plications. Thus, certainly software vendors may want to encrypt the software
prior to shipping it to paying customers. It may also be desirable to insert water-
marks into software binaries to identify the origin of illegal copies. Testing labs or
consultants obtain configuration rules (such as incompatibility of CA with certain
versions of CB) at great expense, and may wish to keep this information private,
and only reveal it to paying customers.

Privacy of Configurations Currently, users seeking to diagnose configuration prob-
lems are forced to reveal not only their identities (to establish proper licensing)
but also details about the configuration on their site. In general, a user may
not wish to reveal this information. Consider the situation where an employee of
Microsoft is forced to reveal information about the configuration of her PC to a
Lotus Technical support person to help diagnose a configuration problem. In the
context of automated configuration management engine, this information would
be asked for and transmitted without user intervention, thus leading to the risk
of unwanted and unknown disclosures.

There is only one known technique for inquiring about subscription information without
revealing the identity of the inquirer yet insuring that the entity doing the inquiring is
authorized to access this information. It is called, Unlinkable Serial Transactions (UST)
[16]. However, UST must be used in conjunction with some form of network anonymity

7

mechanisms such as the Anonymizer[17]. 2 Although UST doesn’t inherently enable
the server to profile the client. Application data can very well do this. For example,
two queries having the same unusual subsets of components are likely to be queries
from the same client.

Secure Delegation aims to selectively enable certain entities to perform certain actions.
For example, delegating certain entities to take on certain roles [15] such as administrator
or specalist or ProjectX Configurator or Testing Lab. The scenarios described above
illustrate different types of delegation. The student has some limited authority of his
workstation. Also the system administrator has other authority. Each can delegate
authority they possess to others. The student may delegate to the support staff the
authority to a) add files to user space that are needed for the application at hand,
and 2) to distribute some information about the user space configuration to an entity
trusted by the system administrator . This is one type of delegation.

The support staff in turn delegates software configuration for one specific course to
the teaching assistant; this amounts to “delegation of delegation”. In another type
of delegation, V* delegates to the testing lab to find out which version of CA is com-
patible with which version of CB. This amounts to delegation not of where to obtain
software, but where to obtain configuration rules. In a fully automated configuration
management architecture, these delegations, need to be authenticated through the use
of certificates (some elements of the needed functionality have been described in [5])

Marimba [12] allows certain limited types of delegation through the use of channels and
sub-channels. However, none of the systems allow fully certified delegations, delegations
of delegations, delegations of configuration management rules etc.

5 Research Plans

We are interested in exploring several key issues that would underly a secure architecture for
distributed software configuration over the internet. In this section, we give a list of issues
that arise in this context, and are central to our research.

Languages Automatic configuration management hinges on an expressive description lan-
guage. Current configuration management languages (CML) [11, 18, 2] are adequate
for describing manifests and configuration rules. But they completely ignore secu-
rity requirements such as authentication, delegation, etc. Our goal is to introduce
such security features into CMLs. We take an approach to CMLs as being based on an
object-oriented data model (OODM), as used in object-oriented database systems [14].

2Other techniques such as the Anonymizer [17] do not, alone, address the issue of whether the end user
is authorized to query the end server. This is why UST is needed.

8

Modeling configuration, querying configurations and messaging among communications
will all be based on this OODM. Security features such as delegation and privacy, can
be implemented as view definitions on the configuration data. Constraints on valid
configurations can be expressed as constraints on the data. The data, constraints and
the view definitions are certified and protected using public-key cryptography. De-
termining the correct configuration at a site (for installation or for update) will be
implemented as a query evaluation procedure, which collects data from the available
views and attempts to find a satisficing answer. This will be implemented by extend-
ing the set-based cryptographic certificate distribution techniques described in [7] to
an object-oriented model.

Cryptographic Techniques underly many of the goals described in the previous section.
Some currently available techniques are quite relevant to the privacy and authentication
goals outlined above (for example, UST [16] and Anonymizer [17] for protecting the
privacy of the user while providing authentication to the software vendor). Our goal
is to adapt these techniques for use in software configuration management. For the
delegation goals described above, we will use the view definition approach outlined
above, where the views are defined using cryptographically signed certificates [7].

Messaging Infrastructure Current approaches (See Section 3) all include a messaging
infrastructure. Marimba [12] favours a “push” model; the software dock [8] has a
hybrid model. In a situation where security goals are given a high priority, the use
of either “push” or “pull” carries risk. For example, a “pull” system may give rise to
unwanted disclosures: the query processing entity being “pulled” with configuration-
related queries may be able to chain queries together and derive information about
the querying entity. By the same token, “push” models may unintentionally reveal
valuable information to unauthorized entities if the “push” channels are not carefully
managed and connected. In our view of configuration derivation as query evaluation,
the problem becomes one of optimizing the distributed evaluation of a database query
over a database distributed over several sites, subject to security constraints, where
certain sites may not have access to certain data.

Formal Underpinnings Configuration management is key to proper functioning and se-
curity of a system, and can thus be viewed as part of the critical infrastructure of an
organization. In this context, we believe that formal verification of the correctness of
a configuration management approach is well worth the costs. We are interested in
developing formal underpinnings of our approach. Important properties to establish
include:

Correctness : derived configurations at a site do not violate any rules or manifests
as provided for within the applicable delegations and authentications.

Completeness : derived configurations have all required elements as per application
delegations.

9

Minimality : derived configurations do not have unnecessary elements or versions
thereof.

Timeliness : derived configurations are updated as soon as needed information is
available from applicable delegations.

Security : Applicable goals of privacy (items that should be kept secret are available
only to individuals who are allowed to know about them) and authentication
(entities that are legitimate licensees are allowed to perform actions allowable to
licensees) are met [10].

Retargetability A key architectural concern in our work is the level of effort required to
integrate our approach with existing approaches to configuration management [11, 12,
8, 2] (that do not consider security to the same level that we do). We are interested in
generative [3] or object-oriented [6, 4] approaches to retargetability.

6 Conclusion

In this paper, we have described the difficult security issues that arise in distributed soft-
ware configuration management, using an example. Existing systems solve some of these
problems; many issues remain. The goal of our research effort is to develop a retargetable,
customizable security framework that can be crafted on to existing configuration manage-
ment architectures.

References

[1] Reidar Conradi and Bernahrd Westfechtel. Version models for software configuration
management. ACM Computing Surveys, 30(2), June 1998.

[2] Desktop Management Task Force. Software Standard Groups Definition, Version 2.0,
Mar 1996. http://www.dmtf.org/tech/apps.html.

[3] P. Devanbu. Genoa - a customizable, front-end retargetable source code analysis frame-
work. ACM Transactions on Software Engineering and Methodology, (accepted, to ap-
pear), 1999.

[4] P. Devanbu, R. Chen, E. Gansner, H. Muller, and A. Martin. Chime: Customizable
hyperlink insertion and maintenance engine for software engineering environments. In
International Conference on Software Enginering (to appear), 1999.

[5] P. Devanbu, P.W. Fong, and S. Stubblebine. Techniques for trusted software engineering.
In Proceedings of the 20th International Conference on Software Engineering, 1998.

10

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, 1994.

[7] Carl Gunter and Trevor Jim. Policy-directed certificate retrieval, 1999.
http://www.cis.upenn.edu/papers/qcm.ps.gz.

[8] Richard S. Hall, Dennis Heimbigner, Andre van der Hoek, and Alexander L. Wolf. An
architecture for post-development configuration management in a wide-area network.
In 17th International Conference on Distributed Computing Systems, May 1997.

[9] Richard S. Hall, Dennis Heimbigner, and Alexander L. Wolf. A cooperative approach
to support software deployment using the software dock. In International Conference
on Software Enginering, May 1999.

[10] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in distributed
systems. ACM Transactions on Computer Systems, 10(4), 1997.

[11] Marimba, Microsoft, Tivoli, and Novell. OSD: Overview of the Open Software
Description Standard, 1998. http://www.microsoft.com/workshop/delivery/download-
/overview/osd overview.asp.

[12] Marimba, Inc. Castanet product family, 1998. http://www.marimba.com/datasheets/-
castanet-3 0-ds.html.

[13] Alfred J. Menezes, Paul C. van Oorschot, Scott, and A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

[14] Object Database Management Group (ODMG). Object Database Standard
ODMG 2.0. Morgan-Kaufmann, 1997.

[15] Ravi Sandhu, Edward Coyne, Hal Feinstein, and Charles Youman. Role-based access
control models. IEEE Computer, February 1996.

[16] P. Syverson, S. Stubblebine, and D. Goldschlag. Unlinkable serial transactions. In
Financial Cryptography, volume 1318 of Lecture Notes in Computer Science. Springer-
Verlag, 1997.

[17] The Anonymizer website. http://www.anonymizer.com.

[18] Andreas Zeller and Gregor Snelting. Unified versioning through feature logic. ACM
Transactions on Software Engineering and Methodology, July 1997.

11

