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Abstract

XML is increasingly becoming the format of choice for information exchange, in such critical
areas such as government, finance, healthcare and law, where integrity is of the essence. As this
trend grows, one can expect that documents (or collections thereof) may get quite large, and
clients may wish to query for specific elements of these documents. In critical applications, clients
must be assured that they are getting complete and correct answers to their queries. Existing
approaches to signing XML documents don’t support the authentication of answers to queries.
Certainly, a server could process queries and certify answers by digitally signing them with an
on-line private key; however, the server, and its on-line private key, would be vulnerable to external
hacking and insider attacks. We propose a new approach to signing XML documents which allows
untrusted servers to answer certain types of path queries and selection queries over XML documents
without the need for trusted on-line signing keys. This approach enhances both the security and
scalability of publishing information in XML format over the internet. In addition, it provides
greater flexibility in authenticating parts of XML documents, in response to commercial or security
policy considerations.

1 Introduction

XML is increasingly becoming the format of choice for publication of information over the internet, in
such critical areas such as government, finance, healthcare and law, where integrity is of the essence.
As the volume of information available in XML format grows, one can expect that clients may wish
to query for specific elements of interest. In critical applications, clients must be assured that they
are getting complete and correct answers to their queries. Thus, for example, an employer seeking to
hire a driver might wish to query for all available information on traffic violations in all precincts with
the same social security number. A complete and correct listing of all violations would be critical.
Another example is servicing requests submitted under the Electronic Freedom of Information Act
Amendments (E-FOIA), which requires the US Government agencies to provide an online index, and
search for records by electronic means1. Other democracies have similar procedures that allow ad-
hoc oversight of governmental activities by concerned citizens. Traditional, paper-based processes
that have been used in the past to satisfy FOIA requests are haunted by the specter of “plausible
deniability”. Some may fear that governments might contrive to hide or destroy records, other than
through lawfully and procedurally sound means.

The focus of this paper is the following question: When an untrusted party returns a part of an XML
document claiming it be the complete and correct answer to a query, how can this claim be verified?

Existing approaches to signing XML documents [XMLDSIG] don’t support the authentication of
answers to queries. Certainly, a server could process queries and certify answers by digitally signing
each answer with an on-line private key; however, the server, and its on-line private key, would be

∗We gratefully acknowledge support from the NSF ITR Program, Grant No. 0085961
1See 44 U.S.C 3506(b)(4) and 5 U.S.C 552(a)(2) and (3)(C)
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vulnerable to external hacking and insider attacks. At any rate, if the server itself is untrusted, then
having it digitally sign answers serves no purpose. We propose a new approach to signing XML
documents which allows untrusted servers to answer certain types of path queries and selection queries
over XML documents without the need for trusted on-line signing keys. This approach enhances both
the security and scalability of publishing information in XML format over the internet. In addition, it
provides greater flexibility in authenticating parts of XML documents, in response to commercial or
security policy considerations. Our approach currently applies only to non-recursive DTD’s; however
in a random survey of 100 publicly available DTDs, we found that 64 were non-recursive. So we believe
our approach will be useful in many applications.

In Section 2, we present background information on related technologies assumed in this paper. In
Section 2.2, we present the related work. In Section 3, we present our basic approach for authenticating
answers to path queries. We conclude in Section 4.

2 Background

Suppose that a client C desires to process queries over a large XML document D held by a trusted
server S. The traditional model can be described thus:

1. C(Pk)
Q−→ S(D,Sk) (Client C, with a Public key Pk, asks server S, who has document D

and private key Sk for the answer to executing query Q over document D)

2. C(Pk)

eval(Q.D)

σSk(eval(Q,D))←− S(D,Sk) (Server returns answer and verifable digital signature to client).

In the above scenario, there is no way to pre-compute all possible signatures to all possible answers;
so the server needs to be trusted, and needs to securely maintain an on-line signing key. For the
reasons discussed above, we would like to have the queries processed by untrusted servers, without
the need for on-line signing keys. We use a scenario where an owner O computes a digest and signs it
once, and thenceforth all the query processing is done by an untrusted server U , who always provides
a certificate of correctness with every answer. This simplifies the key management burden; e.g., the
owner can relegate the signing key to a smart card that he keeps locked up in a safe between updates.

1. C1 . . . Cn(Pk)
sd(D),σSk(sd(D))←− O(D,Sk) (All clients recieve from the data owner O a signed,

specially computed digest of the data using a non-standard digesting algorithm sd, which relies
on a keyless one-way hash function h).

2. Ci(Pk, sd(D))
Q−→ U(D) (Client C, submits request to untrusted server U, who has the data,

but no private signing keys! Client, however, has the verified digest she got from O).

3. Ci(Pk, sd(D))

eval(Q,D)

cert(eval(Q,D))←− U(D) (Client C, receives back from U an answer, and a specially
computed certificate that lets her check that the answer is correct (next step). The certificate
uses only the keyless one-way hash function h).

4. Ci(Pk, sd(D)) : verify(cert(eval(Q,D)), sd(D)) (Client C runs a special verification procedure
that compares the digest received from O against the results of a particular hash calculation over
the certificate received from U . If the comparison succeeds, she accepts; otherwise she rejects).
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Various researchers have developed this approach [NN99, DGM00a, GTS01, BLL00]; we review these
in more detail in a subsequent section. We seek to adapt this approach to XML documents. Various
advantages have been reported in earlier literature: scalability, flexibility, security etc. We would like
to bring these advantages to the increasingly popular XML data model.

In this section, we present some background material. First, we introduce a simple data-model that
captures the essence of XML documents relevant to our purposes, and introduce DTDs, path queries
and selection queries. Then, we review the relevant background and related work in the area of certified
data publishing, and finally present the DOMHASH standard for securely hashing XML documents,
as well as the XML digital signature standard.

2.1 XML Document Model, DTDs, and Path Queries

We employ an XML document model in which a document is represented as an ordered, node-labeled
tree. This conventional terminology for XML documents is also widely used in W3C proposals such
as, e.g., XML Information Set [Cow01] or XPath [CD99].

Assume a set Σ of element names and a set D of string values disjoint from Σ. In the XML document
model, an XML document X is a 4-tuple (V, r, label, elem) where

• V is a set of vertices with r being a distinguished element in V , called the root node,

• label is a mapping from vertices to element labels, i.e., a function V → Σ, and

• elem is a mapping from vertices to their children, i.e., a function V → List(V ∪D).

For the sake of simplicity and to motivate the basic concepts of our approach, we do not consider
entities, comments, processing instructions etc. that can occur in an XML document. In particular,
we do not consider element attributes since they can easily be included in our approach (as another
type of node).

A node v ∈ V is called a text-node if elem(v) ∈ D. Only leaf-nodes in a document tree can be text
nodes. Each node v different from r (the root node) has a parent node, denoted parent(v). For each
node v ∈ V , there is a unique node path in X, which consists of a sequence of nodes, starting with the
root node r and ending with the node v. Associating a label with each node in a node path results in
a so-called ancestor path, denoted path(v), which is a sequence of element names. Thus different node
paths can have the same ancestor path.

In order to allow for meaningful exchange of XML documents and to formally describe admissible
structures of XML documents, a document type definition (DTD) can be associated with a collection
of XML documents. A DTD includes declarations for elements, attributes, notations, and entities.
Most importantly, element declarations in a DTD specify the names of XML elements and their
content (aka content model). A DTD consists of ELEMENT rules that present an element, and (using an
extended BNF grammar), a description of the elements that can occur below it, with their cardinality.
An XML document is said to be valid if it conforms to a given DTD. Figure 1 shows an example of
an XML document in its linear form as well as an ordered, node-labeled tree. Figure 2 shows a DTD
the document conforms to. In this DTD, the element beneficiary has its subelements, name, ssno,
and address. The element will is not the subelement of any other element, and is referred to below
as the root element.

It should be noted that though DTDs are just one schema formalism for XML documents, it is the
most popular one and is also widely used in practice. Other schema formalisms, e.g., XML schema,
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<will>
<principal><name> Pete Princ </name></principal>
<preparer>

<name> Nolo Willmaker </name>
</preparer>
<witness> <name> Bob Witness </name></witness>
<witness> <name> Barb Witness </name></witness>
<filing> <town> Davis </town> <county> Yolo </county><state> CA </state></filing>}
<bequeath>

<item> W. Earth </item>
<beneficiary><name> T. Meek </name><ssno> 111-222-3333</ssno>

<address> 1 Main Street, anytown, CA 11111 </address>
</beneficiary>

</bequeath>
</will>

will

preparer witness witness filing bequaeth

name name name

town

county
state

item
beneficiary

addressname ssno

principal

“Pete Princ”
“Nolo
Willlmaker”

“Bob
 Witness”

“Barb
Witness”

“Yolo”
“CA”

“W. Earth”

“T. Meek” “111-222-
333”

“1 Main
Street
anytown CA
11111”

“Davis”

Figure 1: XML Document X in Linear and Tree Form

have been proposed and studied in the literature but have not yet reached the same level of usage as
DTDs (see [LC00] for a comparison of different schema proposals).

Besides providing a formal description of valid XML documents, a DTD also serves as a schema for
querying XML documents. In the past few years, several XML query languages have been proposed,
including XML-QL, Quilt, and XQL (see [BC00] for an overview). Although the languages differ in
terms of expressiveness, underlying formalism and data model, there is an important feature common
to all languages, namely path queries [AV97].

The primary purpose of a path query is to address subtree structures of an XML document using
regular expressions over XML element names. Path expressions also build the foundation of XPath
[CD99], which, in turn, builds the basis of the widely used XSL Transformation [Cla99]. Instead of
focusing on a specific XML query language, we base our XML document authentication framework
on path queries a client issues against a document maintained by a publisher. This framework is
sufficiently general to tailor it to more specific types of applications, e.g., XSLT.

Definition 2.1 (Path Query) Let Σ be a set of element names. Path queries over Σ are regular
expressions. The general syntax of a regular expression is

q := ε | e | q.q | q∗ | q+ | q? | q|q |
where e ranges over Σ, q over expressions, and ε is the empty expression. The expressions q.q and q|q
stand for the concatenation and alternative expressions, respectively. q∗ (Kleene Star) stands for 0 or
more repeats of q and q+ stands for at least one repeat of q. q? denotes zero or one occurrence of q.
The wildcard “ ” stands for any element of Σ. �
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<!ELEMENT will (principal preparer witness* filing bequeath*)>
<!ELEMENT principal name>
<!ELEMENT preparer name>
<!ELEMENT witness name>
<!ELEMENT filing (town county state)>
<!ELEMENT bequeath (item beneficiary)>
<!ELEMENT town (\#PCDATA)
<!ELEMENT ssno (\#PCDATA)
<!ELEMENT item (\#PCDATA)
<!ELEMENT county (\#PCDATA)
<!ELEMENT state (\#PCDATA)
<!ELEMENT address (\#PCDATA)
<!ELEMENT beneficiary (name ssno address)>
<!ELEMENT name (\#PCDATA)>
<!ELEMENT address (\#PCDATA)>

Figure 2: DTD associated with XML document X in Figure 1

beneficiary names1

s2 s3

(will | bequeath)*

Figure 3: Path Automaton for a given Path Query

In the following, we do not explicitly consider expressions of the type q+ since they can be expressed
as q.q∗. We also assume that the wildcard “ ” is only used in combination with Kleene Star as
“ ∗”, which is equivalent to ∗, meaning any number of elements from Σ. It should be noted that
concatenation “.” and Kleene Star “*” correspond to the widely used operators / and //, respectively,
in XPath.

Intuitively, given a document X, a path query p determines a (possibly empty) set of subtree structures
in X such the ancestor path of each root node of such a subtree matches the expression p. For exam-
ple, based on the XML document shown in Figure 1, the path query ∗.(witness | bequeath). ∗ .name
selects all subtree structures from X where the root of the subtree has the label name and can
be reached from the root node of the document through a label path that matches the expression
∗.(witness | bequeath).∗. For the above document, there are three such subtree structures.

An interesting aspect and also important to our approach is that for a given path query, one can
construct an equivalent finite path automaton using the well-known transformation from regular ex-
pressions to finite automata. For example, the path query (will | bequeath). ∗ .beneficiary.name
can be represented by the finite automaton shown in Figure 3.

We can define a path automaton PA as a tuple 〈Σ, Qp, α, Fp〉, where Σ is set of element names
(tags), Qp is the set of states, Fp ⊆ Qp is the set of accepting states, and α is the transition function
α : Σ×Qp → Qp.

Now consider the DTD shown in Figure 2. We can see that the tag name occurs in several different
places: under principal, preparer, witness and under beneficiary. Based on the DTD, it is
evident that the answer to the query shown in Figure 3 is the subtree that occurs under the tag
name which can be reached from the root labeled will through the nodes labeled bequeath and
beneficiary, (in that order). On the other hand, consider the path query (will.witness.name).
Since there can be many witness tags, the above path query can potentially retrieve a list of subtrees.
These two examples illustrate a central fact: Given a path query and a document that conforms to
a DTD, we can make use of the DTD to constrain, a priori in which part of the document tree the
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answers to the path query will arise. Our goal is to efficiently retrieve and authenticate answers to
path queries. To do this, we construct a special data structure, called the xtrie, that condenses the
information in the DTD in a manner that helps process path queries and which is discussed in detail
in Section 3.

Path queries specify document structures based on ancestor paths. They do not, however, specify
conditions on string values associated with text-nodes. For example, several subtree structures of a
document may match a path query but an application might be interested in only those structures
that furthermore satisfy certain condition on the values of text-nodes. These two aspects resemble the
same functionality as projection and selection provided in, e.g., relational algebra. In order to provide
more expressive types of queries against documents in our XML data authentication framework, we
introduce the concept of selection queries, which naturally extend path queries. Obviously, a selection
can only be applied to document leaf nodes where elem(v) = s, s ∈ Σ. A selection query against a
document X is composed of two parts: (1) a path query that determines subtrees in X, and (2) a
selection part that specifies a condition on the leaf nodes in the selected subtrees.

Definition 2.2 (Selection Query) Given a path query q and a comparison p ≡ eΘc where Θ ∈ {=
, <>,<, >,≤,≥}, c ∈ D is a string constant, and e ∈ Σ. A selection query, denoted select(D, q, s, p),
determines all subtree structures T1, . . . , Tn in a document X such that for each Ti

1. Ti is a correct answer to the path query q, and

2. there exists a leaf node, reached by path s starting at the root of Ti such that the string value at
that leaf satisfies the predicate Θ regarding c. �

Note that we only require that a text-node satisfies the predicate p at the path selected by s under
the answer subtrees. Also, since we do not assume some kind of typed schema underlying XML
documents (e.g., XML Schema [Fal01]), all values associated with leaf nodes are assumed to be strings.
Consider, for example, the selection query select(will.witness, name, name = ”BarbWitness”) on the
XML document shown in Figure 1. There are two subtree structures rooted with a node labeled
witness. Among these two, only the second one is selected as the result to the query since only this
subtree has a leaf-node with the text Barb Witness.

2.2 Certified Query Processing

Our work on certifying answers to queries over XML documents follows several other efforts aimed at
producing certified answers to queries in other contexts. Most of these efforts are based on Merkle
hash tree constructions, as illustrated in figure 4. Such hash trees enable certified query processing
over some types of recursive data-structures. A trusted party computes a systematic hash digest of
a data-structure, progressively digesting it from the leaves to the root, using a secure hash function.
The trusted party then signs the root hash, which is distributed to clients. In response to a query from
a client, an untrusted party can traverse the data-structure, and provide an answer. The certificate
accompanying this answer would consist of the part of the tree traversed during the search, and enough
other hash values so that the root hash value can be recomputed and checked by the client.

To our knowledge, this approach was first used in [NN99] for proving the presence or absence of
certificates on revocation lists. For example, in figure 4 suppose the root hash value has been already
obtained by a client. Now, an untrusted party can show that the value 23 occurs at a leaf of the tree,
by providing the values h(34), h(h(312) || h(1123)) and the value hl. With these values, the client
recompute the root hash, and thus be sure (subject to the security of the hash function) that the value
23 did occur in the list. Likewise, a pair of consecutive values, 312, and 1123, along with the necessary
intervening hash values to compute the root hash, can establish that they were indeed consecutive
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3 5 8 11 23 312 1123

h(1123)

h(h(312) || h(1123))

hl = h( h(h(23)||h(34)) || h(h(312) || h(1123)))hr = .......

h(hl || hr)

34

Figure 4: A Merkle hash tree associates hash values with nodes in a tree, in this case a binary tree. The leafs
are sorted values in the binary tree. The leaves get the hash of the values, and each interior node gets the hash
of the appended values of all its children. The root digest is signed by a trusted party. Now any untrusted party
can certify answers to queries, using only the hash values to provide evidence of a correctly conducted search

values, and thus that (e.g.) the value 650 does not occur in the tree. Range queries, which ask for all
values in a range (e.g., between 30 and 400) can also be handled. This line of work has been extended
to some limited forms of querying over relational databases [DGM00a], used over skip lists [GTS01]
and in other, related settings [BLL00]. When used with hierarchical “divide-and-conquer” type search
datastructures, this approach provides answer certificates whose size is on the order of | A | log | D |
where | A | is the size of the answer and | D | is the size of the data set used in constructing the
search datastructure. In the XML context (details in Section 3.2), to answer selection queries over leaf
values, we sort the leaf values and build an index datastructure over these values. This index structure
gets Merkle-hashed. Once a client has a secure way of obtaining the root hash of this structure, it is
possible for untrusted publishers to provide credible evidence of complete answers to selection queries.

Although these techniques are useful in the XML context (particularly for doing selections, we make
use of divide-and-conquer index structures), the much less structured nature of the XML data model
requires some additional machinery to certify answers to queries.

2.3 Hashing and Signing XML Documents—Standards

As described earlier, XML documents have a simple data model based on trees. DOM [DH00] is a
standard interface (API) that defines how XML documents are to be accessed by programs. DOM is
naturally a tree-like representation; as such, it admits a hashing procedure very similar to the Merkle-
hashing procedure describe above, and illustrated in figure 4. One-way hash functions are used for
security. The procedure basically hashes the leaves of the document, and recursively proceeds up the
document tree, hashing both the element types as well as the order of occurrence of the elements within
the document. The full details of DOMHASH are available elsewhere [DH00]. For our purposes, we
note some important properties of the DOMHASH process.

If the root hash of an entire document D is known to a party a, it is possible to provide evidence to
a that any subtree τ of the document occurs under D without revealing all of D. First, note that a
can DOMHASH the subtree τ to get the root hash of τ . Now, a can be given just the hash values of
the siblings of τ and the siblings of all it’s parents, and a can recompute the root hash of D. Since
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the hash function is assumed to be one-way, a can be reasonably sure the hash values could not have
been forged, and that τ really did occur under D. The same process can be used to prove that one
subtree τ1 occurred under another subtree τ2 within the same document, by just using the hash values
along the path from τ1 to τ2, without revealing any of the other subtrees of τ2. Furthermore, since
DOMHASH includes information about the order of occurrences of elements within a document D, it
can be used to provide evidence about the relative order of occurrence of subtrees.

The XML Digital signature standard [XMLDSIG] essentially computes a signature over digesting
procedure such as DOMHASH. The standard allows a great deal of flexibility in the digesting and
signature process, in terms of algorithms used, transformations applied, parts selected etc. However,
it has a central limitation: only fixed parts of a document can be signed. It is not possible to certify
answers to selection and path queries based on a single signature over the entire document. For our
purposes, we assume an XML document digital signature based on DOMHASH.

3 Certifying answers to path queries

The central goal in this paper is to allow certification of answers to a wide range of queries over XML
documents, without requiring a trusted party to sign the answer to each query. We would like to
certify an XML document in one shot, with a digital signature, and literally lock up the secret key in
a drawer. Now, we want to certify answers to a wide range of queries over that document, without
the need for any additional digital signatures. Unfortunately, there are no a priori limits on size and
variety of XML documents, even on those that conform to a given DTD. Given this, how can this be
done? We exploit a key property of non-recursive DTD’s: although the documents that conform to
such DTDs can be infinitely varied, and arbitrarily long, there are only a finite number of semantically
different path queries that apply to such documents.

We describe our approach in several steps. First, we argue that there are only finitely many different
path queries over any document conforming to a non-recursive DTD. Second, we show a naive approach
that uses this property, to sign a document only once and use this signature to certify answers to all
the possible different queries over this document, and show that this naive approach is secure subject
to cryptographic assumptions. Third, we describe an improvement to the naive approach using the
structure of the DTD itself to build an optimized data structure, an xtrie, to store the different possible
answers to path queries. We illustrate the improvements provided by this datastructure using some
empirical data. Finally, we describe how to use the xtrie, in conjunction with auxiliary data structures,
to perform selection queries that use paths.

Our work currently focuses on non-recursive DTDs. In a survey of 100 different DTDs found on a
public XML DTD site2 we identified 64 non-recursive DTD’s. We present the non-recursive DTDs
in Appendix 1: it can be seen that this class captures a wide range of applications from different
domains.

3.1 Step 1: Path Queries in non-recursive DTD’s

Given a non-recursive DTD, we argue that there are only finitely many different meanings for path
queries (irrespective of infinitely many syntactically different path queries). If this seems surprising,
we remind the reader that path queries are analogous to projections in relational databases; there,
once the schema is fixed, there are only finitely many different projections. Likewise, given a DTD,
there are only finitely many different ways to carve it up with path queries. We argue this below:

2Please see http://www.oasis-open.org.
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Definition 3.1 Two path queries q1 and q2 are semantically distinct with respect to a DTD if there
can be constructed a document D that conforms to that DTD, and for which q1 and q2 give different
answers.

Lemma 3.2 Given a non-recursive DTD, there are only finite number of semantically distinct path
queries.

Proof Sketch: Without loss of generality, consider an arbitrary XML document D conformant to a
given non-recursive DTD dtd. Clearly the maximum depth of D conforming to dtd is bounded. Now
given any node n in D, the number of different possible tags that can occur as children of that node
is bounded. Certainly a node may have any number of children (i.e., if the corresponding ELEMENT)
statement includes a Kleene closure; however, the number of different tags that can occur below
any node is given by the (finite) number of different tags that appear in the corresponding ELEMENT

statement. Since the depth is bounded, and the “fan-out” of each different type of node is bounded,
there are only a finite number of different paths that can occur in documents conforming to dtd. Call
this number Ndtd. Thus an arbitrary path query would have to select from the finite number of subsets
of these finite number of paths. Thus the maximum number of semantically different path queries
over documents conforming to a non-recursive DTD is 2Ndtd . 2

Thus all possible path queries fall into one of a finite number of groups of equivalence classes. This
number (2Ndtd) will be quite large for non-trivial DTD’s. As can be seen from table in figure 6, there
often can be thousands of different paths in documents conforming to practical DTDs. Considering
a table with on the order of 21000 entries, each representing an equivalence class, we can quickly see
that it would not be feasible to store answers to each equivalence class in a table and simply retrieve
it. We present a better approach first, in the following subsection, and then improve it even further.

3.2 Step 2: A naive approach to Flexible certification

We now consider a naive approach to storing potential answers to path queries in a table, and certifying
this table. We also show that this approach is secure, subject to the use of a one-way hash function.
There are three algorithms that constitute our approach: the first that signs the data, the second
that processes queries, and builds certifiers that establish that the answers are correct, and third, an
algorithm that checks an answer and its certifier to ensure that the answer is correct. The certifier is
a cryptographic object that uses no digital signatures, only hash computations; the second algorithm
could thus be executed by an untrusted adversary.

The details of the algorithms are shown below. These algorithms rely upon several facts; first, that
there are only a finite number of different paths in a non-recursive DTD, second, that an XML
document, and subtrees there-of, can be securely hashed using DOMHASHes, which cannot be forged;
and third, that groups of hashes can be securely and verifiably linked into a single digital signature
using Merkle hash trees. The central security result here (Theorem 3.3) is that the client will always
reject an incorrect answer and certifier unless the adversarial party that built the certifier managed to
break the one-way hash function.

We begin with Algorithm 1, which is executed by the owner. It is given a DTD, a document conforming
to the DTD, and a table τ with a finite number of (empty) entries, one for each possible path in the
DTD. It first processes the document, associating each subtree the path from the subtree to the root.
It also builds a DOMHASH, associating a secure hash value with each subtree. It then associates the
subtree and the hash thereof with the entry in the path table, based on reaching path. There could
be many subtrees associated with each entry in the path table. These are digested together, using a
Merkle hash-tree, to give a digest per table entry. Finally the set of all the table entries are digested
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together using another Markle hash tree. This final digest is the specially computed digest sd(D)
mentioned in Section 2. We note that the Merkle hash construction allows us to show that an entry
occurred in a path table, and that a subtree occurred in a path table entry.

Algorithm 1 (Data certification):
Inputs: a non-recursive DTD, a table τ of all paths associated with the DTD, an XML document, D
and a signing key k−1

1. Process the document D, associating each sub-tree of D with an element label from the DTD.

2. Build DOMHASH of the document.

3. For each subtree of the document, find the associated entry in the path table, and enter the subtree
identifier, and the DOMHASH for that subtree. The entries should be in the order of occurrence in
the document.

4. The entries in a table entry are digested together using a Merkle Hash tree; the root hash of this
tree is associated with the table entry.

5. All the entries in the table are digested together using another Merkle Hash tree.

6. The root hash of this tree is signed with the signing key, producing a root signature sd(D).

Once the owner has produced the digest as specified above, and clients have received and checked
the digest, the untrusted server can process queries from clients, using Algorithm 2. First, the path
query is matched against every entry in the path table (this is slow, but we improve this later). The
matching entries are the paths that match the path query, and they contain all the subtrees reached
by those paths. The server can return just the subtrees in those path table entries. Using these the
client can compute the DOMHASH of each subtree and then can recompute the digests for those path
table entries. If also given the hash paths required to verify that the digests really belong under the
Merkle hash tree leading to the overall document digest computed in Algorithm 1, the client can trust
the returned values.

Algorithm 2 (Answer certification):
Inputs:The table τ with entries produced by algorithm 1, a path query Q from a client.

1. Match Q against each entry in τ .

2. If Q matches the entry, retrieve (1) the path, (2) the hash path from that entry to the root signature
σ(δ), and (3) all the subtrees that are associated with that table entry. Build this certifier pair for
each matching entry in τ

3. Return this list of triples, containing both the answer to the query and the certifier, to the client

Algorithm 3 simply verifies the certificate (the list of triples) produced above by recomputing the
document digest.

Algorithm 3 (Answer verification):
Inputs: The list of certifier triples above, the table τ , and the query Q.

1. Match Q against each entry in τ .

2. For each matching entry, there should be a corresponding certifier triple. If there is no corresponding
certifier triple, reject.

3. In each triple, first DOMHASH each returned subtree

4. Build a Merkle tree out of the DOMHASHes and compute the root hash.

5. Use the hash path provided, beginning with the entry digest, to the root table digest, and check
that the root digest matches. If not reject. Otherwise, accept.
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Theorem 3.3 Assume that (given a DTD and a conforming XML document D) Algorithm 1 is exe-
cuted correctly by data signer, and the sd(D) received intact by the client. Assume that given a query
Q from a client, that a set of certifier triples are claimed to have been constructed (possibly by an un-
trusted party) as described in Algorithm 2. Now a client, who has received sd(D), and runs Algorithm
3 will always reject an incorrect answer, and accept a correct one, unless the party running Algorithm
2 has succeeded in engineering a collision in the hash function used in Algorithm 1.

Proof Sketch: We assume here that the client correctly computes a set of table entries, using the
algorithm, and asks the publisher for the set of subtrees in each of those table entries. The argument
that the client will accept a correct answer is straightforward, based on the fact that he simply repeats
the computation done by the Algorithm 1 & 2 and comes up with the same resulting sd(D) value.
We now argue that the client will reject incorrect answers and certificates. Its sufficient to establish
that the client will not accept a wrong set of subtrees from the publisher for any table entry. If an
adversarial publisher returns an incorrect subtree, then the corresponding DOMHASH will be different
from that used in the process of computing the digest for that table entry. So the adversary has to
have found a second pre-image that hashes to the same value in some step in the process of computing
the digest for entry; alternately the adversary has to have found a hash collision in some step of the
process of computing the digest for the entire table. In either case, the publisher has to engineer
collisions in the hash functions that produce a specific output. 2

3.3 Step 3: Efficient path storage using an xtrie

In a DTD, we find that several different element tags can occur under one single element. For example,
under beneficiary, in our running example, we have name, ssno and address. This leads to a lot of
shared prefixes among paths; thus, all of the above elements occur under the shared path prefix
will.bequeath. The naive table that stores all paths wastes space; in addition, matching a path query
automaton against each entry in the table wastes repeated effort matching identical, repeated prefixes.
Below, we present a more compact and efficient datastructure, an xtrie, for storing the set of possible
paths in a DTD.

3.3.1 Constructing the xtrie

We first present Algorithm 3.4, which builds an xtrie from a given DTD. We later show that it correctly
captures all the paths in a non-recursive DTD, and provide empirical evidence of its compactness. The
xtrie has at least one node for each element in the DTD, and has an edge from an element to all the
subelements that can occur below it. The edge is labeled with the “tag” of the subelement. Thus,
in our running example, there would be a node corresponding to the witness element, and an edge
named name from it to a node corresponding to the name element. Different occurrences of an element
are represented by different nodes. Algorithm 3.4 begins at the root element (which cannot occur
under any other elements) in a DTD, and systematically explores the ELEMENT rules, finding all the
possible paths that can exist. Intuitively, it “grows” a tree representation of all the different paths,
producing a branch in the tree everytime a path prefix is shared among several different paths. Since
DTDs allow the same element to occur under several distinct elements, there may be many paths that
can reach a given element. This is handled by using an array of counters ci, one for each element,
which track the number of times an element has been encountered; each distinct encounter bumps the
counter, and creates a new copy of the “path tree” associated with that element3.

3It is possible to further optimize the xtrie to some extent, to eliminate this copying, but we omit this step here for
simplicity.
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Algorithm 3.4 An xtrie corresponding to a DTD is a directed tree 〈Nta, Eta〉, with labeled nodes and
edges. The construction of this graph is described below:

Initialize 1. Let Σ be the complete set of distinct element tags that occur in the given DTD. Ini-
tialize a table of counters, ct ← 0, for each t ∈ Σ.

2. For each root element, with element label s in the DTD, add a node ns, labeled (s, 0), to
Nta, and bump the associated counter, cs ← cs + 1.

3. For each root element tag f ∈ Σ, we add a specially labeled top-level node f̂ ∈ Nta, labeled
(f̂ , 0); we also add an edge (f̂ , nf ), from f̂ to the node nf ∈ Nta. This edge is labeled with
the tag f .

4. Initialize an agenda list A to the list of labels of root nodes in Nta (not the top-levell nodes).

Iterate While labels remain in A, remove a label, say (a, i), associated with a node n. For each
ELEMENT rule associated with the tag a, if the BNF expression in this rule mentions a tag t, then
we add a new node n′ labeled (t, ct) to Nta; we add this new label to the agenda A to be processed
later; we increment ct ← ct + 1; and add an edge (n, n′), labeled with the tag t to Eta.

Terminate If A is empty, terminate.

The initialization steps initialize the set of counters, add one node for each element in the DTD to
the xtrie, and extra “top-level” nodes for each root element; we also add an edge from the top-level
nodes to the root element’s nodes. The counters associated with each element get initialized at this
point, and the agenda is initialized with the list of root element nodes. At this point, the maximum
path length (l) encountered is 1. As each step of the ensuing iteration the xtrie represents all paths
of length 1 . . . l, from the “top-level” node to elements whose labels are in A. The iteration step now
looks at elements in the agenda, and grows the paths by 1, and adds the nodes newly reached to the
node set Nta of the xtrie, and adds the appropriately labeled edges. It’s easy to see that the algorithm
terminates for non-recursive DTD’s: there can only be a finite number of elements ever added to the
Agenda. Elements (rather, element labels) get added to the agenda when they occur under another
element. Each element can occur only a finite number of times in under different other elements in
a DTD. Since there are only a finite number of copies of a finite number of elements that can ever
be added to the Agenda, and each time through the agenda we remove an element, it will eventually
empty out.

A sample xtrie is shown in figure 5. We note that redundancy is avoided in storing the three paths
beginning with the common prefix will filling. We also note that the element name can occur
in different places, under witness, preparer, etc, and so there are several copies of name, reachable
through the different possible “super” elements. Xtries, as we have described them, resemble in some
ways schema graphs [ABS200] that have been used in semi-structured databases, primarily for type
computations; however, we use them here for certified query processing. We return to the central
property of an xtrie: it captures exactly all the possible paths through a DTD.

Definition 3.5 The sequence of labels f . . . s on the edges leading to a node ns from a top-level node
is called the reaching path for the node ns

We can now state the main “completeness and correctness” property of the xtrie:

Lemma 3.6 Corresponding to the reaching paths for each node in an xtrie, one can construct an
XML document conforming to the corresponding DTD that contains that path. In addtion, the set
of all reaching paths to all nodes in an xtrie corresponds to all possible paths that can occur in any
document conformant to that DTD.

12



will

preparer witness filing bequeath

name town county state item

beneficiary

addressssno

principal

name name

will,0

principal,0

preparer,0

name,1

witness,0 filing,0

county,0town,0
state,0

bequeath,0

beneficiary,0
item,0

Sss,0 Sad,0

name,0

name,3

name,2

  
) 
f ,0

Figure 5: An xtrie constructed from the DTD shown in Figure 2

Proof Sketch: We show this by induction on the length of the path. The initialization step explores
all paths of length 1, and inserts them into the xtrie; at this point, the agenda contains all the labels
associated with elements reachable by paths of length 1. Now for the induction step, assume that the
agenda contains labels of all the elements reachable by paths of length l, and the trie includes all those
paths. For each such label, the iteration step explores paths of length l+1, inserts them into the xtrie,
and adds the newly encountered elements into the agenda. The algorithm eventually terminates when
no additional path lengthening is possible.

3.3.2 Using the xtrie

Given a DTD, we can pre-construct the xtrie. Now given a document D conforming to the DTD, we
can find the subtrees of D associated with each path stored in the xtrie, and the rest of the process
proceeds exactly as described in Algorithm 1 in Section 3.2. Since this algorithm is agnostic about
the actual implementation of the table, it works exactly as before.

Algorithms 2 and 3 in Section 3.2 to match a query Q against the possible paths. We construct a
path automaton corresponding to Q, and match it against the xtrie. This is a simple process, which
we describe informally. The matching process marks nodes in the xtrie with states from the path
automaton. Initially, the top-level nodes in the xtrie are marked with the initial states of the path
automaton. We then match transition labels in the path automaton against edge labels in the xtrie.
Whenever the labels match, the automaton “advances”, and the other edge of the xtrie is marked with
“destination state” of the corresponding transition. This process eventually terminates, since there
are only a finite number of ways to mark xtrie nodes with path automaton labels. At any point, this
process guarantees that the path automaton state will label a node if and only if the path automaton
would be in that state when processing the path reaching that node. Upon termination, the xtrie will
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have accepting labels on some nodes. These nodes correspond to the desired reaching paths.

Of all the parties involved in our approach, the client is most likely to be resource-limited; so she
would benefit most from using the xtrie to match query automata against path queries. We note that
she does not have to compute the xtrie herself; any trusted party could compute the xtrie from the
DTD, and send it the client in an integrity-preserving manner.

With the naive approach, if the total length of all possible paths is N , and there are m states in the
path automata, the matching process requires atmost N ∗m comparisons. If there are n edges in the
trie, the above process requires atmost n ∗m comparisons. In the following section, we provide some
empirical data concerning the relative sizes of n and N for published DTDs.

3.3.3 Xtries in practice

We empirically analyzed several published DTDs, to determine the number of elements the DTDs,
the total length of all the possible paths through the DTD, and the size of the xtrie representation.
The naive approach would require one to store all the paths explicitly in a table, and match a query
against these paths; the xtrie is a more compressed representation. Our goal in doing this analysis
was to determine the degree of compression actually achieved in practical, standards-based DTDs. We
collected 100 separate DTDs from the OASIS DTD repository4. Out of these 37 were recursive. For
the other 63, we enumerated all the paths, and counted the total length thereof; we also implemented
our approach, and measured the total size of the xtries in each case. The results are shown in figure 6.
We found that xtries always produce a smaller representation. This leads to a proportionate reduction
in the effort required to evaluate queries, since fewer string comparisons are required.

Generally, however, one can expects that documents will be very large as compared to the DTDs; so
the work done by the client with Algorithm 3 will be quite a bit less compared to with the work done
by the owner and the query processor.

3.4 Certifying answers to selection queries

We now consider the selection queries as presented in Definition 2.2. To recapitulate: given a document
D, and a query select(d,q,r, p), where p is a Θ predicate, query select(d,q,r, p), where p is a Θ predicate,
we seek to return a set of subtrees T1, . . . , Tn such that

1. Ti is a correct answer to the path query q, and

2. there exists a leaf node, reached by path s starting at the root of Ti such that the string value c
at that leaf satisfies the predicate p regarding c.

We seek to provide a certified answer to this query. Such queries would be extremely useful with
documents that contain many repeated elements, as in, say an XML document C which is a collection
of traffic violation reports:

<!ELEMENT records (trafvio∗) >

There may be millions of traffic-violations; somewhere under the violation, there would appear a drlic

(driver’s license) subtree, containing a social-security number in leaf element such as ssno. Clearly, an
4Please see http://www.oasis-open.org.
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Figure 6: A plot showing the relative sizes of the naive approach (a table of all paths) versus the xtrie approach.
The xtrie approach always has significantly lower storage requirements (on the average, by a factor of 5), and
proportionately reduces query processing effort, particularly for larger, more complex DTDs; however, we note
that there are few DTDs with over 500 elements. This graph includes 62 data-points; one outlier with a very
large number of paths, and very high compression, was removed for clarity.

employer considering an applicant would like a complete list of all the violations in which the candidate
had been involved, and could well desire a certified, complete and answer to a query such as:

select(C, records.trafvio, ∗.drlic. ∗ .ssn, ssn = 11111111)

To answer this query we need to first locate the collection leaf nodes corresponding to the following
path:

(records.trafvio. ∗ .drlic ∗ .ssn)

Once we’ve located this collection of leaf nodes, we need to search through this list to find the leaves
with the string value identical to 111111111. If we had an efficient index over these leaves (e.g., a binary
or B-tree) we could search this list quickly. Once the leaves are found we need to find the subtrees of
these leaves that are reached by the path records.travfio from the root element.

To answer such queries quickly, and provide compact certificates, we need only slightly modify the
algorithms shown in Section 3.2. First we note that an efficient index structure over the leaves can
support efficient searching. In addition, an index structure such as binary tree can be Merkle-hashed
as shown in figure 4 to provide compact certificates for correct search procedures.

First, in Algorithm 1, step 4, if the current table entry corresponds to a leaf node, we build a search
tree over the set of leaves, and Merkle-hash this search tree to give a root hash. This root hash gets
associated with the table entry as before.
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Second, when evaluating the query select(D,q,r,p), we compute the table entries T1 for the path query
q.r and the entries T2 for the path query q. First, we search the index tree for the T1 (which must be
leaves) and retrieve the set of leaf values satisfying p, and build a certificate for this search procedure.
This part of the process uses known methods for answer certification, from existing literature, as
described in Section 2.2. Next, we search up from the answer leaves in the document tree to find
the subtrees S reached by the path query q. DOMHASH values can be used to certify for each leaf
value L that it occurs under an element of S; the use of DOMHASH for this purpose was reviewed in
Section 2.2. Next, we can use the entry digests for the entries in T2 to certify that all these entires in
S are reached path satisfying the query q.

Finally, Algorithm 3 is modified slightly to check the certificates described above. The selection process
using the Merkle-hashed search tree for the leaves reached by paths satisfying q.r guarantees that we
retrieved all the leaves that satisfy the answer; the DOMHASH guarantees that these leaves occur
under sub-trees in S, and finally, the hash digest for entries satisfying the q path query guarantee that
the subtrees in S are indeed reached by paths satisfying q.

How large are these certificates? Clearly, they are proportional to the size of the answer | A |. In
addition, the search Merkle-hashed index tree induces a certificate of size O(logS) where S is the
number of leaves indexed in the tree. Clearly, S is bounded by the size of the document | D |. In
addition, each leaf carries a DOMHASH chains certifying that the leaves occur under the desired
subtree are of height O(H), where H is the total height of the document tree. Thus, we end up with
a certificate of size O(| A | Hlog(| D |)). We note that the entire document (e.g., the list of all traffic
violations) are likely to be very large relative to the size of the answer, or the height (level of nesting)
of the document.

4 Conclusion

XML is rapidly gaining in strength as the data model of choice for information on the Internet.
Certifying the correctness of XML documents is clearly an important problem. The current draft
XML signature standard only allows the certification of pre-determined pieces of XML documents. To
certify parts of XML documents selected by content, it would be necessary to use an on-line signing
key. To our knowledge, there has so far been no way to use one digital signature over an XML
document to certify answers to arbitrary selection queries over such documents. We support just this
functionality. Our approach currently works on non-recursive DTDs only. However empirical analysis
indicates that a majority of published DTDs are non-recursive, and we believe our approach will be
quite useful in a variety of contexts. We are also pursuing the elimination of this limitation.
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Appendix
Table of XML DTDs we analyzed. Note that a wide range of application domains are included. The
table incldues the number of elements in the DTD, and whether the DTD was recursive. The table

continues on into the next page.

name #elements recursion? 

Interactive Financial Exchange (IFX) 689 no 

Extensible Financial Reporting Markup Language (XFRML)  143 no 

Open Financial Exchange (OFX/OFE)  1004 no 

National Library of Medicine (NLM) XML Data Formats  100 no 

Financial Products Markup Language (FpML)  73 no 

Digital Signatures for Internet Open Trading Protocol (IOTP)  58 no 

Investment Research Markup Language (IRML)  323 no 

Market Data Markup Language (MDML)  48 no 

Mortgage Bankers Association of America MISMO Standard 424 no 

Data Link for Intermediaries Markup Language (daliML)  95 no 

ACORD - XML for the Insurance Industry  1423 no 

Real Estate Transaction Markup Language (RETML)  153 no 

Active Digital Profile  303 no 

Intrusion Detection Message Exchange Format 52 no 

Customer Identity / Name and Address Markup Language (CIML, NAML)  315 no 

History Event Markup and Linking 13 no 

AND Global Address XML Definition  44 no 

Marketplace XML (mpXML)  73 no 

SMBXML: An Open Standard for Small to Medium Sized Businesses  78 no 

EDGARspace Portal  51 no 

Open eBook Initiative  29 no 

HRML (Human Resources Markup Language) 62 no 

Vocabulary Markup Language (VocML)  47 no 

XML Encoding for SMS (Short Message Service) Messages  48 no 

Molecular Dynamics [Markup] Language (MoDL)  15 no 

Open Philanthropy Exchange (OPX)  65 no 

Weather Markup Language (WeatherML)  45 no 

XMLPay Specification  103 no 

XML-MP: XML Mortgage Partners Framework  486 no 

XML-MP: XML Mortgage Partners Framework  224 no 

Trading Partner Agreement Markup Language (tpaML)  120 no 

International Development Markup Language (DML) 72 no 

adXML.org: XML for Advertising  35 no 

Rosetta Group XML Résumé Library 58 no 

ISIS European XML/EDI Healthcare Pilot Project (XMLEPR)  264 no 

Clinical Data Interchange Standards Consortium 86 no 

The CISTERN Project - Standard XML Templates for Healthcare 328 no 

Marine Trading Markup Language (MTML)  25 no 

VISA XML Invoice Specification  99 no 

Guideline XML (gXML)  66 no 

Printing Industry Markup Language (PrintML)  113 no 

Schools Interoperability Framework (SIF)  224 no 

bibteXML: XML for BibTeX 47 no 

European Visual Archive Project (EVA) 16 no 

Digital Property Rights Language (DPRL) 79 no 

Microarray Markup Language (MAML) 88 no 

Electronic Commerce Modeling Language (ECML) 28 no 

Taxonomic Markup Language 31 no 

Image Metadata Aggregation for Enhanced Searching (IMAGES) 43 no 

XML Messaging Specification (XMSG) 9 no 
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name #elements recursion? 

XML-Based 'Chem eStandard' for the Chemical Industry 203 no 

Jabber XML Protocol 13 no 

Common Profile for Instant Messaging (CPIM) 8 no 

STEPml XML Specifications 67 no 

Materials Property Data Markup Language (MatML) 39 no 

XML for Multiple Sequence Alignments (MSAML) 11 no 

Product Data Markup Language (PDML) 594 no 

ECIX QuickData Specifications 16 no 

Platform for Privacy Preferences (P3P) Project 82 no 

IPDR.org Network Data Management Usage Specification 22 no 

Point of Interest Exchange Language Specification (POIX) 33 no 

Navigation Markup Language (NVML) 30 no 

Petrotechnical Open Software Corporation (POSC) XML Related Projects 113 no 

Navy CALS Initiatives XML  107 yes 

COSCA/NACM JTC XML Court Filing Project 136 yes 

W3C XML Specification  157 yes 

FinXML - 'The Digital Language for Capital Markets'  175 yes 

Open Catalog Protocol (OCP)  11 yes 

eCatalog XML (eCX)  32 yes 

Portal Markup Language (PML) 46 yes 

XML for the Automotive Industry - SAE J2008  149 yes 

NISO Digital Talking Books (DTB)  89 yes 

Human Resource Management Markup Language (HRMML) 133 yes 

US Patent and Trademark Office Electronic Filing System 323 yes 

OMG Common Warehouse Metadata Interchange (CWMI) Specification 856 yes 

BiblioML - XML for UNIMARC Bibliographic Records  225 yes 

authoritiesML 79 yes 

Alexandria Digital Library Project 83 yes 

Bioinformatic Sequence Markup Language (BSML) 34 yes 

Gene Expression Markup Language (GEML) 89 yes 

19


