Unified Versioning through Feature Logic

Andreas Zeller and Gregor Snelting

Informatik-Bericht No. 96-01
Uberarbeitete Fassung, 15. Februar 1997

Copyright®© 1997 Institut tir Programmiersprachen und Informationssysteme
Abteilung Softwaretechnologie
Technische Universit Braunschweig
Biltenweg 88
D-38092 Braunschweig/Germany

Distribution Notice

This paper has been submitted for publication elsewhere. It has been published as a technical report for early
dissemination of its contents. As a courtesy to the intended publisher, it should not be widely distributed until

after the date of outside publication.

To appear in ACM Transactions on Software Engineering and Methodology 6(3), July 1997

Unified Versioning through Feature Logic

Andreas Zeller and Gregor Snelting
Technische Universitat Braunschweig, Germany

Abstract

Software Configuration Managemet@M) suffers from tight coupling betweesCM ver-
sioning models and the impos8dM processes. In order to ad&itM tools toSCM processes,
rather than vice versa, we propose a unified versioning modeldlston set modeMersion
sets denote versions, components, and configuratiorfiediyre termsthat is, boolean terms
over(feature value-attributions. Througlfeature logicywe deduce consistency of abstract con-
figurations as well as features of derived components and describe how features propagate in
the SCM process; usindeature implicationsye integrate change-oriented and version-oriented
SCM models. We have implemented the version set model Tl system calledCE for
Incremental Configuration EnvironmencEe is based on deatured file systenfFFS), where
version sets are accessed as virtual files and directories. Using the well-known C Preprocessor
representation, users can view and edit multiple versions simultaneously, while still only the
differences between versions are stored. It turns out that all regj@mmodels can be realized
and integrated efficiently on top of tte/=S demonstrating the flexible and unifying nature of
the version set model.

Categories and Subject Descriptors: D.2%offware Engineerind Programming envi-
ronments; D.2.7 $oftware Engineering Distribution and Maintenance-+ersion control;
D.2.9 [Software Engineering Management-software configuration management; program-
ming teams,D.4.3 [Operating System$ File Systems Management; |.2.Aiificial Intelli-
gencé Deduction and theorem proving; |.2.Afificial Intelligence] Knowledge representa-
tion formalisms and methods

General Terms: Management, Theory, Standardization

Additional Key Words and Phrases: Feature logic, Version sets

1 Introduction

Software Configuration Management,SgEMfor short, is the discipline for controlling the evolution

of software systemssCM encompasses general configuration management procedures [21, 22] like
identificationof components and structurexntrol of changes and releasesatus accountingr

audit and reviewas well as software-specific tasks [12] likeanufacture, process management,
and team work. SCM is one of the basic prerequisites for process improvement, stipulated by the
ISO 9000 standard or th8El capability maturity model, and thus attracts more and more attention
from professional software development.

*This article is a revised and extended version of a paper [64] presented at the Fifth European Software Engineering
Conference, Sitges, September 1995. Early descriptions of the revision and workspace concepts (sections 4.1 and 4.3)
were presented in [60]. The featured file system (sections 5.2 and 5.3) was first discussed in [61].

This work was supported by the Deutsche Forschungsgemeinschaft, grants Sn11/1-2 and Sn11/2-2.
Authors’ address: Technische Universitat Braunschweig, Abteilung Softwaretechnologie, Biltenweg 88, D-38092 Braun-
schweig, Germany; emai{zeller, snelting@ips.cs.tu-bs.de; http://www.cs.tu-bs.de/softech/.

SCM Policy ICE Process Tools
Quiality assurance, SCM Process, etc. Realize specific SCM process
SCM Protocol ICE Task Tools
Transactions, Workspaces, etc. Realize specific SCM procedures
SCM Primitives Featured File System
Tool primitives, Operating system operations, etc. Transparent version set access

i Version Set Model

Unified SCM model Based on feature logic

Figure 1: A federate@CM architecture, as proposed in [8] (left) and as realizeii(right)

As all configuration items are accessible on-liBEM is typically supported and enforced by
automatedsCM tools and systems. The early daysS#M were characterized by dedicate@M
tools likeSCCS[43] or RCS[55] (revision and change controf}PR the C preprocessor [23] (variant
control); orMAKE [17] (manufacture). These days, a new generation has emerged, represented
by SCM systems likeADELE [15], EPOS[19], or CLEARCASE[31]. These systems provide and
integrate support for aBCM aspects througfederatedSCM system architectures [8], as illustrated
in figure 1. aprimitive layer provides basic versioning and access capabilitiegrodocol layer
realizesSCM tasks and procedures, angalicy layerimplements organization-specific standards.
Today, severaSCM vendors compete with each other by means of an ever-growing number of
product features. This has the benefit that users can choose between a large na@ahesyatems,
each with an individual set of features [10]. Despite these advaBcds systems still suffer from
three deficiencies:

Lack of ambiguity tolerance. SCM systems generally provide poor support for treating several
items at once. This includes lack of support for manipulating and identifying permanent vari-
ants [33], change propagation across several versions at once [36], or consistency checking in
abstract (ambiguous) configurations [47].

Lack of process flexibility. SCM systems are frequently used to enforce a specific software
process. Unfortunately, nearly eve®CM system relies on its own predefined and inflexi-
ble product life cycle [14]; at least four divergir§CM models have been identified, each
imposing a differentSCM process [16]. This is pretty far away from the ideal the8Gw
system should adapt to an organization’s process.

Lack of system integration. Already at theSCM primitive layer, there is considerable disagree-
ment about versioning models [9]. Consequently, $&M layers are not interchangeable,
resulting inSCM systems that neither interoperate nor integrate. Furthermore, the basic layers
constrain higher layers: flexibility decreases the higher the layer considered [56].

In this paper, we propose to resolve these deficiencies through a usifledersioning model
as commorsCM foundation. Ouwersion set modéahtegrates the commaBCM models, increases
flexibility at the protocol and policy layers, and tolerates ambiguity at all levels. Version sets are sets
of objects (typically software components), characterized fpature terra—a boolean expression
over (feature value)-attributions denoting common and individual version properties, following the

2

" e L -] # fccEm
| P [ey [u L
| Pali fig e 1A iyl m
ey = == | e e Tavout Bole o | ——
i | ¥t e | | e |
| . u]:.lll.'ll L RS I P L e el e ok e e
]D | - IR e[8 = =Unis, LISE Ri=zral ler]
| =g rw=r=-r-= babael student 338 tost layouttcl
- u
[e — (ML=} omdler a5 Uinic
| PWRF-dF-E Balsal b i 130250 Thica _I
: I:I Cian
== v 2 e = Uakx
I il lpaiEn e Lirein
!n-i_h.:ﬁmmmmmlmmmmm Wiy ibras

{skane{ &5 =i inis LSSE R=zeller Mot ==Y s MoIR2 0=V es]

LITER =ellpr
a3 Lmnc - RaLEr 0 YES —_—

T —== il
eyl Yan il oHEm 1 o il 1 - pih -

Fpaiy e

Figure 2: Exploring the configuration space with tB& file/configuration browser

SCM convention to characterize objects by their attributes. Version sets generalize well-known
SCM concepts such as components, repositories, workspaces, variant sets, or revision histories.
Using feature logic,intersection, union, and complement operations on version sets are realized
in order to express and generalize the semanticSGM models. Throughfeature unificationa
constraint-solving technique, we can determine whether version sets exist, ensuring consistency of
configurations and inferring necessary steps for their construction.

We have implemented the version set model®Ta system, callediCE for Incremental Config-
uration EnvironmentiCE integrates within software development environments throughatsired
file system(FF9), where version sets are represented as files and directories. Arbitrary programs can
access version sets and realize version operations through file manipulations. Through specialized
configuration browsers, as shown in figure 2, users can incrementally explore the configuration
space and haw€E deduce consistency even for incomplete configurations. Using the well-known
CPPrepresentation, users can view and edit multiple versions simultaneously, while still only the
differences between version sets are stored. All four n&§m models can be realized and inte-
grated on top of th€FS demonstrating the unifying nature of the version set model.

This paper is organized like the federate@M architecture shown in figure 1. We begin at
the lowestSCM layer by motivating and presenting feature logic as a for@@¥ foundation. Sec-
tion 3 introduces the version set model and shows how printisd concepts are modeled through
version sets. In section 4, we discuss the modeling of advasC&ticoncepts such as change im-
plications and workspaces, required for #@M protocol layer. In section 5, we turn to practical
aspects and demonstrate how BrSrealizes theSsCM primitive layer through transparent version
set access. In section 6, we treat 8@V protocol layer and demonstrate the realizatiorsciM
protocols on top of th€FS Section 7 discusses performance and complexity issues, treating the in-
tegration ofSCM protocols. We close with a summary and suggestions for future work in section 8.

3

2 Feature Logic

Most of the existingSCM literature is product-oriented, describing and evaluating a s&OM
concepts as realized in some specific implementation. We think that this view hinders a deeper
understanding aBCM concepts, as the concept in question cannot be separated from its implemen-
tation. In order to support a large variety ®EM versioning concepts, we must thus abstract from
specificSCM products and turn towards a more fundamental treatment—still keeping the higher
SCM layers in mind.

2.1 A SCM Foundation

The formal foundation we have chosen for capturB@M versioning concepts is callef@ature
logic. Feature logic denotes sets of objects by their properties and provides elemental set operations
to manipulate these sets. In €M domain, we use feature logic to denote sets of components by
their features and to describe the semantic3@¥ operations.

So, why did we use feature logic as a formal foundation? Relying on the $lialeficiencies
as stated in the introduction, we identified three key elements of such a foundation.

First foundation: Sets. Ambiguity tolerance imposes the necessity to treat sets of versions and
configurations as first-class objec®&CM procedures thus should be set-oriented rather than
item-oriented, as manipulating sets generalizes manipulating items. For instance, editing a
set of versions or checking a set of configurations for consistency subsumes editing a single
version or examining a single configuration.

Second foundation: Attributes. Attribution is one of the few techniques common to the whole
SCM area: all knownSCM models rely on that either versions or changes be tagged with
attributes. Identification and selection schemes should be attribute-based; attribution support
includes a description of how attributes propagate ingo# process, such that composed
and derived objects can be identified.

Third foundation: Unification. The usual selection process3gM systems consists of determin-
ing the objects whose attributes are consistent with those of a specific environment. Typically,
objects are described by a conjunction of attribute values and the environment by an attribute
expression; but the inverse scheme is also found, aPim In order to encompass both
schemes, selection and identification should both rely on attribute expressitfydng at-
tribute expressions instead of matching attribute expressions against a conjunction of attribute
values.

There are several formalisms that denote sets of objects by their attributes, subsumed under
the termdescription logicsor terminological logics.Their most important domains are the areas
of knowledge representation, wherencept descriptionglso calledframes|[7, 37, 38], are used
to represent sets of objects by attribute/value combinations, and the semantic analysis of natural
language [25, 27, 49].

In programming languages, attribute/value combinations are used in record structures. Ait-Kaci
was the first to study such structures mathematically, calling theterms[2]. The resultingy -
term calculusis the formal foundation of the programming languag€ssIN [3] and LIFE [4],
which are similar tacPROLOG but usefeature unificatior]51] instead of syntactic unification. In
contrast to several description logics, attributes/iterms arefunctional they can have only one
value. This is convenient, since objects can be identified by some unigue attribute value.

4

Y-terms have been successfully applied in the contex3@¥, notably in theCAPITL sys-
tem [1]. CAPITL uses a variant afOGIN, called CONGRESSto denote the attributes of compo-
nents and tools and to describe how these attributes propagate from source components to derived
components. A€APITL is also among the most advanced and well-foursiesh systems in terms
of building and attributing derived components, descriptionsiikeerms seem ideal candidates for
a unifiedSCM versioning model—the more as they have been successfully us&tiMrsystems.
Unfortunately, imy-terms, onlyconjunctionsof attribute/value combinations are allowed; negations
or disjunctions are not supported. This restriction would severely cong@inidentification and
selection schemes.

There is an alternative candidate fos&M foundation that does not suffer from these restric-
tions. Boolean operators frofirst-order logicare used in sever&CM selection schemes [39, 15,

19, 58, 33]; first-order terms may also be used for identification purposes, using deduction tech-
niques such aboolean unificatiorf34] to match identification and selection terms. The problem
with first-order logic is that it is far too general; it lacks the central property of being attribute-
oriented. This implies that aBCM functionality like selection through attributes, attribute propaga-
tion, or inheritance of abstract configurations requires explicit formalization using first-order axioms
and rules.

For a formalSCM foundation, we need the best of three worlds: the boolean operators and
guantifications of first-order logic, in order to express identification and selection schemes, the
attribute-oriented formalisms from description logics, denoting how attributes propagatesianhe
process, and the functional attributesieferms, as they uniquely identify objects by their attributes.
Such a logic does exisEeature logicas defined by Smolka [50], is a well-founded description logic
that includes quantification, disjunction, and negation over functional attribution terms, forming a
full boolean algebra.

2.2 Feature Logic in a Nutshell

We begin with an informal overview of feature logic. #ature termdenotes a set of objects
characterized by certain features.fédatureis a functional property or attribute of abstract objects.
In their simplest form, feature terms consist of a conjunctiofediture value-pairs, calledslots,
where each feature represents an attribute of an object. Feature values include literals, variables,
and (nested) feature terms.

As an example, consider the following feature térmwhich expresses the linguistic properties
of a natural language fragment:

tense present

predicate [verlr sing, agent x, what y],
subject[x, numt singular, personthird] ,
objecty

This term says that the language fragment is in present tense, third person singular, that the agent of
the predicate is equal to the subject, and soTodenotes the sentence templaxesingsy”.

The syntax of feature terms is summarized in table 1, where we demagtblesby X, vy, z;
featuresby f, g, h; constantsby a, b, ¢; and feature terms denoted Byand T.! Feature terms
are constructed using the well-known boolean set operatitassection, unionand complement.

1smolka [50] writes~Sas—S, S=T asS~ T, andSC T asS < T. Implications and equivalences do not occur
in [50]; they are simple syntactical extensions whose equivalence to simpler operators is shown in proposition 1.

5

Notation Name Interpretation

T (also []) Top Universe

1 (also {}) Bottom Empty set; Inconsistency

a Atom Singleton set containing

X Variable

f:S Selection The value off isin S

f:T7 Existence f is defined

f1 Divergence f is undefined

flg Agreement f andg have the same value
f1g Disagreement| f andg have different values
~S Complement | Sdoes not hold

SnT (also [S, T]) | Intersection Both SandT hold

SuT (also {S, T}) | Union SorT holds

S—>T Implication If Sholds, thenT holds
ST Equivalence | Sholds if and only ifT holds
Ax(S) Quantification| There is arx such thatS holds

Table 1: The syntax of feature terms

Each of these set operations may also be interpreted as logical constraint on the object features,
representing the set of objects satisfying this constraint. For instanceHef f: a], the set of all

objects whose featuré has the valu@, andT = [g: b], the set of all objects whose featugehas

the valueb. Then,Sn1 T = [f:a, g:b] is the intersection of {:a] and [g: b], namely the set of
objects whose featuré is a andwhose featurey is b. Similarly, SUT = {f:a, g: b} is the union

of [f:a] and [g: b]—that is, the set of objects whose featufrds a or whose featurey is b. As

feature terms form a boolean algebra, all boolean transformations like distribution, de Morgan’s law
etc. hold for feature terms as well.

Sometimes it is necessary to specify that a feature exists (i.e. is defined, but without giving
any value), or that a feature does not exist in a feature term. This is wifitténresp.~f: T
(abbreviated ag 1). The possibility to specify complements greatly increases the expressive power
of the logic. For example, the term[compiler. gcd denotes all objects whose featurempileris
either undefined or has another value tbaa The term Eompiler. ~gcd denotes all objects whose
featurecompileris defined, but with a value other thgoc

A feature term can be interpreted as a representation of the infinite set of all ground (variable-
free) termsT’ which aresubsumedby the original termT (that is, T 3 T’). Subsumed terms
are obtained by substituting variables or adding more features. Feature terms thus always allow
for further specialization, like classes in object-oriented models. For instance,[fruit:x] 3
[fruit: appld 3 [fruit: apple color: greerj 3 [fruit: apple color: green wormy. nol, and so on.

Atoms like apple green or gcc denote singleton sets containing some unigue object without
any features; the equivalencasib = 1 andan f: T = L hold for all atomsa, b and for any
feature f. This leads to a simpleonsistency notionAs feature logic assumes that each feature
can have only one value, the terms][dos os unix] is equivalent toL, the empty set; formally,

[os dos os unix] = [os[dos uniX]] = [os 1] = L holds. Terms which are equivalent toare
called inconsistent. Through feature unificatior]50], a constraint-solving technique, one can de-
termine consistence of arbitrary feature terms. For terms without unions and complements, feature

6

unification works similar to classical unification of first-order terms; the only difference is that sub-
terms are not identified by position (asmROLOQG, but by feature name. Adding unions forces
unification to compute a (finite) union of unifiers as well, whereas complements are usually handled
by constraint solving (similar to negation as failure).

2.3 Properties of Feature Terms

We now give some properties of feature terms. Two feature tSmsd T are calledequivalent
(written S =7 T or S = T where unambiguous) if they denote the same set of objects for every
interpretatior?. Using equivalence, most of the introduced feature term forms are redundant and
may be reduced to six primitive forms.

Proposition 1 Every feature term can be rewritten in linear time to an equivalent feature term con-
taining only the forms, x, f:S, SN T, ~S, andax(S) by using the following equivalencgs0]:

fr=~(f:T) L =xn~x
flg=3ax(f:xmg:x) =~1
frg=3ax(f:xng:~x) SUT =~(~Sn~T)
S—T=~(Sn~T) SoT=~Sn~T)n~Tn~9

A feature term is calle@dlosedif it has no free variables. A feature termgsoundif it has no
variables, agreements, or disagreements. A feature tequaistifier-freef it contains no quantifi-
cationsax(S). A feature term isasicif it is quantifier-free, contains no implications, and contains
only complements of the fromra or ~x. A feature term issimpleif it is basic and contains no
unions. A feature term is inisjunctive normal form(DNF) if it has the formS, u --- U §,, where
all S, ..., S are simple feature terms. Two feature terms are caldtbgonalif have no common
features or variables.

Proposition 2 Every quantifier-free feature term can be rewritten in linear time to an equivalent
basic feature term by using the following equivaleni&€q:

~f:S=fruf:~S ~1=T
~f+=1:T ~T=1
~f1tg=frugtuflg ~(SNT)=~Su~T
~flg=frugtuftg ~(SuT)=~Sn~T
~~S=S§ S>T=~SuT
ST=CFSuT)n~Tuy

A feature termS is said to be included csubsumeddy a feature ternT (written ST T or
T 3 9)ifthe set denoted b$is a subset of the set denoted byinder every possible interpretation.

Proposition 3 Let F be the set of feature terms, as defined above. Then, n, ~, L, T)/=7"is
aboolean algebraF and subsumption constitutesabsumption latticéF, £)/=" with a supre-
mum of Su T and an infimum oSN T forall S, T € F.

Proof. As follows from definitions, all properties required for boolean algebras (commutativ-
ity, associativity, idempotency, absorption, distribution, etc.) apply under the equivaiehce
(F,E)/=" being a subsumption lattice follows frotF, U, r1, ~, L, T)/=" being a boolean al-
gebra [62]. O

2The interpretation of feature terms is formally defined in [50].

2.4 Consistency

We now discuss the notion afonsistencystating whether feature terms denote empty sets, and
devise algorithms that decide consistency. A feature 8iscalled coherent aronsistenif there

is an interpretation such that the denoted set is non-empty. A feature term is called incoherent or
inconsistentf it is not consistent.

Proposition 4 Consistency, subsumption, and equivalence of feature terms are linear-time re-
ducible to each othdB0]:

Sinconsistentss SC 1. & S= 1
SC T & Sn~T inconsistent
S=T&SCTATLCS

Proposition 5 Deciding inconsistency, subsumption, and equivalence of quantifier-free feature
terms are caNP-complete problemfb0].
Proof. Follows from the satisfiability problem of propositional logic, as shown in [50]. O

For quantifier-free feature terms, Smolka has devised an algorithm that decides the inconsistency
of arbitrary quantifier-free feature terms. The basic idea behind this so-daliare unificatioris
that the feature terr8is transformed int®NF S = S LS L - -1 S,; consistency of each conjungt
can then be determined using a quadratic-time algorithm.

Proposition 6 Deciding inconsistency of simple feature terms is of quadratic time compl&aty

As transformation of non-simple feature termsOdlF is NP-complete, time complexity of
Smolka’s algorithm is exponential in the worst case, complying with proposition 5. It is thus un-
suitable for practical problems as soon as the feature terms exceed a certain size.

By imposing certain conditions upon feature terms, time complexity of feature unification can
be dramatically reduced. In proposition 6, we have already seen that deciding consistency of a
simple feature term can be decided in quadratic time. The unification problem can be broken down
even more for terms of the forl8n T. First, if SandT are orthogonalSr T is consistent iffS
andT are consistent.

Proposition 7 Let SandT be orthogonal. Thern T =1 < S= 1 v T = 1 holds.
Proof. Via algebraic induction oves andT; there can be no intersection of primitives that would
lead to inconsistency [62]. O

Another efficient algorithm is obtained using principlespafrtial evaluatiorj24]. We observe
that the unification probler8n1 T = L is much simplified ifT is a simple feature term of the form
T=TnT,n---nT,: for each primitiveT;, we can check whetheé8n T; = L in linear time
by (syntactically) comparing; with the primitives fromS and thus deduce inconsistency. This
proposition holds only iSandT are variable-free.

Proposition 8 LetSandT be consistent and variable-free feature terms¥ latso be simple an8
be in basic formSn T is inconsistent iffSn T can be rewritten td_ using the equivalences

SN(MNT)=(SnT)nT, Snl=1 frmnf:T=_1
(SNS)NT=EGnNTHN(SNT) 1lnT=1 f:Smfr=1

(SUSNT=(GuT)N(SuT) f:Sma=1 anb=_1 Q)
f:Snf:T=f:(SNT) anf:T=1 ~ana= 1
frl=1 an~a=1

Proof. The first four equivalences in (1) handle union, intersection, and selection operators; the
remaining equivalences identify all combinations of primitives that might lead to inconsistency.
Correctness follows from algebraic induction o&andT [62]. a

Proposition 9 LetSandT be consistent and variable-free feature termst lalso be simple. Then,
inconsistency oSN T can be decided in time complexi@(s - logt), wheres is the number of
primitives inS andt is the number of primitives if .

Proof. According to proposition 2, the teri@ can be rewritten to basic form in linear time, such
that proposition 8 applies. Complexity follows from the fact that in the worst case, every primitive
of Smust be (syntactically) searchedlin which can be done in logarithmic time [62]. |

2.5 Simplification

Often, we are not only interested in deciding consistenc® ofT, but also insimplifying S with
respect to a giveim; that is, to find aS' I Swhich is (syntactically) smaller tha8, but for which

SnT = SnT holds. The basic idea is to replace all literal occurrence$ @f Sby T and
simplify S afterwards. This can be done by adding a few more equivalences to the rewrite system
from proposition 8.

Proposition 10 In ST T, the termS may be further reduced in size by expand(ay with

SnS=TnS ffma=Tna @)
~bna=Tna ~anf:T=Tnf:T
and subsequent simplification
Snl=_1 SnT=S SUT=T Sul=S ~T =1 3)
1lnS=1 TNnS=3S TUS=T 1lusS=S ~1 =T

The first equivalence in (251 S = T n S, is the essence of simplification: every literal occur-
rence inS of a primitive in T can be replaced by. The remaining equivalences in (2) eliminate
superfluous negations. The equivalences in (3) propagate thélnealues inS; complexity is
unaffected.

Let us illustrate inconsistency decision and simplification by an example. Consider the term
Sn T, whereS = [f:a, g: {b, ~c}] andT = g:d. We can decomposBto SN (S U S =
fran (g: bug: ~c). For each primitiveS, we check the consistency 8fr1 T and simplify § with
respect tal' . Beginning withS, = f: a, we find thatS, andT have no common features; th&nT
is consistent an&, cannot be simplified. Regardir§ = g: b, we haveS, 1 T = g:bmg: d, which
can berewrittent& N T = g:[b,d] = g: L = 1; SN T isinconsistent. Considering = g: ~c,
we haveS N T = g:~cng:.d = g:[~c,d] = g:d; the termS; can thus be replaced by, as

9

SNT =T = TAT. The original termSNT becomesSnT = SM(SUS)NT = SN(LuT)NT =
SnTnT=5nT=[f:anT =[f:a,g:d]. Hence,SN T # 1—thatis, theternBn T is
consistent. As a side effect, we find tiatan be simplified t&& = [f:a], sihceSN T =SnT
holds.

Our presentation of feature logic is now complete. In the remainder of this article, we always
interpret feature terms as sets of objects, unless otherwise specified. “Traditional” set notation will
not be required, with one single exception: We witBto express theardinality (the number of
elements) of a set denoted by the feature t&nmder a given interpretation. All other required
notation is already provided by feature logic, as introduced above.

3 The Version Set Model

Having introduced feature logic, we can now return to #@&M domain. We begin with th&CMm
primitive layer, that is, basic versioning and access capabilities. We show how to captustates

by means ofrersion setshat is, sets of software components identified by their attributes. The basic
SCM operations of selecting a version and composing a consistent configurations are modeled by
means of set operations, as provided by feature logic.

3.1 \Versions and Components

According with theSCM standards [21, 22], we consider that the object of interesGM is a
family of software productsEach of these software products breaks down in seweralponents,
each of which may exist in severabmponent versionsA component version is an unbreakable,
unambiguous configuration item.

In the SCM domain, the common method for identifying component versioragtigbution, as
found in ADELE [15], the Context Model [39]EPOS[32], JASON [58], or SHAPE[33]. Using
attribution, every component version is identified by a conjunction of attribute/value pairs describ-
ing its features; version selection is done through a (boolean) attribute expression which must be
satisfied by the selected versions—similar to a classical selection in databases. In conditional inclu-
sion, as exemplified by the C preprocessoPR, this setting is reversed: versions are identified by
boolean attribute expressions and selected through a conjunction of attribute/value pairs describing
the features of the environment.

Our model usegeature termdor both version identification and version selection. Every com-
ponent version is assigned a feature term describing its features and uniquely identifying both ver-
sion and component; versions are also selected by feature terms. Besides encompassing and inte-
grating both the database and €rPscheme, this setting also has a number of advantag&Char
users:

Alternative properties. Using feature terms, we are not restricted to a pure enumeration of features
to identify versions. For instance, we can us@onslike {state proposed state tested to
identify alternatives. In the database setting, such alternatives can only be useseidoting
versions, but not to identify them. This ability to express alternative component properties is
essential for treating version sets as unique items.

Configuration constraints. Feature terms may also express component properties thatnmust
apply. For instance, we may use the texfoperating-systemunix] to identify a version that
mustnot be used under th@NIX operating system. Such a feature expressamatrainton

10

the environment, notably on other components in the configuratioBPRsuch constraints
are realized through théerror directive. But in contrast t€PP, we can still use arbitrary se-
lection terms—a selection term[operating-systermunix] would exclude allUNIX versions,
but still include the norWINDOWS version.

At the primitive layer, we do not impose specific requirements on the existence and the meaning
of features; but to associate the versions of a component with each other, we must have at least
one common feature across all component versions. We thus assume that each component can
be identified uniquely via almbject feature assigning each component a simple (unambiguous)
component identifier. Ouronfiguration universéhen becomes the set denoted bigject T]—the
set of all component versions.

We now define the notions of versions and componentgersion sets any selV C [object T].

A versionis a singleton version set; that is, a $€€ [object T] such that|V| = 1. A component
is a setk C [object k], wherek is a simple feature term uniquely identifying the component. A
component versiois both a component and a version; that is, aks&t [object k] with |[K| = 1.

The features of a component are modele@gkarnativesover the features of each component
version. So, if we have a compondftin n component version¥y, V,, ..., V,, the componenK
is determined as

K=ViuVau---uVe= | | Vi . 4)

1<i<n

Featured- of the component itself (a®bject k]) are the same across all component versions, and
hence can be factored out throughr V) L (F V) = Fn (Vo u Vs).
As a simple example, considepanter component occurring in two component versions:

printer; = [object printer, print-language postscripi
printer, = [object printer, print-language ascii] .

Theprinter component is then denoted as

printer = printer; U printer,
= [object printer, print-language {postscript ascii}] .

To retrieve a specific version, we specifyisalection termS giving the features of the desired
version. For any selection ter®and a version set, we can identify the versions satisfyirtgy
by calculatingT’ = T n S—that is, the version set that is a subsetSais well as a subset df.
If T = L, selection fails—F’ does not denote any existing version. In our example, selecting
S = [print-language postscrip} from printer returnsprinter;, sinceprinter m S = (printery U
printery) M S = (printer; 1 S) L (printer, ' S) = printer, LU L = printer;. Here,printer, M S= L
holds since th@rint-languagefeature may have only one value. ASis just another version set,
we may give a second selection teBrand select” = T' n S, give a third selection terr8’, and
S0 on, narrowing the choice set incrementally until a singleton set is selected, containing the desired
version.

3.2 Composing Consistent Configurations

A configuration,in our setting, is a set of components. In our model, as in several attribution-
orientedSCM versioning models, features of the components are propagated to the configurations;

11

5 * i

2 A

[]

2 [os d

[0s dos [os uni

= X

Q screen-t ega, tty,

8 concurreyrfﬁglsge] ¥ screen-type{x11, news, tiy}

@ / \ UL a~’ Teem

S

S |[screen-typeega [screen-typetty, [screen-typex11, [:grreegg_é);riznews

S | screen-databitmag | | screen-dataascii | | screen-databitmag] . .

A {postscript, bitmal
\K ________________________ 3 .-

§ [screen-devicedumb [screen-devige;;hostscrip

3 , data postscript

c data D,)

3 screen-dataD] screen-databitmap

3 concurrent true]

Figure 3: Consistent configurations in a text/graphic editor

one says that configurationsherit the features from their components. The crucial point when
composing configurations from components is to ensure that the configuration is well-formed or
consistent.

To determine the internal consistency of a configuration, rBG# tools rely on either separate
tools [40] or language-specific knowledge [54, 44]. Consistency with respect to an external speci-
fication is usually combined with configuration selection; each consistency constraint becomes part
of the selection term.

In the version set model, configuration constraints can be specified in the selection term, but
also occur in the features of a component. For this purpose, both inheritance and consistency are
realized by modeling the features of an configuratiorirdgrsectionof the component features,
excluding inconsistent combinations. For instance, we cannot build an configuration from two
components having the featurepgrating-systenwindows-n} and [operating-systerrunix], since
the operating-systenfieature can have only one value: formallgpgrating-systenwindows-nj r
[operating-systermuniX] = L. If we have a configuratio® composed oh components with the

featuresK,, Ko, ..., Ky, the configuratiorC has the features
C=KinKyn---nKy=[] Ki . (5)
1<i<n

As an example of configuration consistency, consider figure 3. We see three source components
of a text editor, where each component comes in several variants. We can choose between two
operating systemsipsandunix), four screen typesea tty, x11andnewg, and two screen device
drivers @umbandghostscripj. Thedumbdriver assumes that the screen type can handle the data
directly (expressed through the varialll®; the ghostscriptdriver is a separate process that can
convert postscript data into a bitmap. The component features imply that at most one version of
each component can be included in a bound configuration.

Let us now compose a consistent configuration from these three source components. We begin

12

by selecting the operating system, and choosaltsersion. This implies that we cannot choose
thex1lor newsscreen types, since (in our examplddsdoes not support them: Formally,

[os dos screen-type{ega tty}] m [screen-type{x11 newg]| = L

due to the differingscreen-typdeatures—we cannot ugd1or newsscreen types. We can, however,
chooseegaor tty screen types, as indicated by plain lines.

As final component, we must choose a screen device dghesstscriptcannot be chosen, since
it requiresconcurrentto be true, which is not the case undirs Thedumbdriver remains;D is
instantiated tdoitmapor ascii, depending on the screen type, making our choice compéetiéor
can be built in aegaand atty variants, inheriting the features of its source components. As an
alternative, consider the choiceq unix], as indicated by dashed lines. Again, each path stands for
a consistent configuration.

The ability of treating component features as configuration constraints allows for arlidgrary
calizationof configuration constraints: components can be tagged with constraints regarding their
usage, but global constraints regarding (sub-)systems are permitted as well. In short, every con-
straint usually expressed in version selection is also permissible as a component feature, and applies
to the configuration as soon as the component is included.

The benefit of localization is that one single language can be used to specify constraints, to spec-
ify the component features, and to select component versions. But this benefit is also a drawback:
the chosen language must be expressive enough to encompass &@iisglection schemes, yet
simple enough to keep mutual consistency of configuration constraints decidable. Checking con-
straint consistency can be a hard task; at least the exiS@mselection and identification schemes
should be handled efficiently. With feature logic, we hope having chosen a well-established foun-
dation which addresses all these issues.

3.3 Features of Configurations

Pure intersection is not appropriate for all features. For featuresalikieor or status it makes
perfect sense to differ across componentgjectfeatures differ by definition. Thesedependent
featuresmust depend on the specific component. A possible approach to do so is to prefix all
independent featurek with the component namie resulting in orthogonal features likiy-author

or screen-statugé4]. A far better alternative is to express this dependency explicitly in feature
logic, using implicationsgbject k] — T that enforce the versiol whenever the componektis
required.

To construct such implications, we define a speaggregation operatomhe operator #,” is
similar to “m”, but has a special handling of independent features: instead of unifying them, it makes
them dependent on the specific componebjectfeatures are stripped altogether.

Letl ={f: T, f2:T,..., fn: T} be a feature term denoting independent features, whege
objectholds forall 1<i < m, and letK4, ..., K, denote components. For each compori€ntet
ki, K| E I, andK/ Z | be chosen such that

Ki = [object ki] n K/ K/’

holds—that isk; is the unique component identifiek;” denotes the independent featureskof
and K/ denotes the ordinary (non-independent) featurel;ofThe aggregatiorof all K;, written
Kim Kom ---m Ky, is then defined as

Kimy Kom--m Kn= [+, Ki = [] Ki 1 ([objectk] — K{) .

1<i<n 1<i<n

13

Given an aggregatio@ = Sm, T, we can properly sele@andT by intersectingC with [object s]
and [object t], respectively:

Proposition 11 Let S C [object s] andT C [object t] denote components, ahddenote indepen-
dent features, as described above. Then,

[objects] m (Sm, T)C S (6)

holds?

Proof. Let T = [objectt] m T'n T”, as defined above. Thel, = [objects] n (Sm T) =
[object s]n(SNT'n([object s] — S’)m([objectt] — T”)). Butsince pbject s]n([object s] —
S’) = [object s] 1 (~[object s] U S’) = [objects] M S’ and pbject s] 1 ([objectt] — T") =
[object s]m(~[object t]uT”) = [object s], we havel = [object sjn(SNT'NS") = ([object s]n
Sns)nT' =SnT'CS O

Using the aggregation operator, we can extend (5) wiifect features and independent fea-
tures and formally define how features propagate from components to configurations. If we have a
configurationC composed ofi componentK,, Ko, ..., K, with K; C [object k], and a terml
denoting the independent features, the configuraiios identified by

C =[objectky ko i--- UKy MKy A Komy --- A Ky

:[Objectk]_Usz---l_lkn]l_l + IKi , (7)

1<i<n

that is,objectfeatures are united, independent features are made dependent on the respective com-
ponent, and all other features are unified.
As an example, consider two components

screen= [object screenauthor. lisa, resolution {high, mediurr)]
driver = [object driver, author. tom, resolution high] .

Let | = [author. T] be the set of independent features. According to (7), the configur&tion
containingscreeranddriver is

C= [object {screendriver}, resolution high,
(object screen— author. lisa), (object driver — author.tom)] .

Besides unifying the non-independent featuresaséenanddriver to resolutiorn high, the termC
properly selects Lisa'screenobject and Tom'sdriver object—that is,C n [object screefy C
[author. tom] and C 11 [object driver] C [author. lisa].

We close by defining somaropertiesof configurations, following (7). Formally, eonfiguration
is a setC C [object c], wherec is a feature term identifying the set of configuration components.
A configurationC is calledconsistentwith respect to its features @ # 1 —that is, if the number
of possible configurations is non-zero. A configurat©ns called unambiguous droundif it is
an aggregation of component versions; formallyis bound if it is a seC C [object c] such that
IC| = |c|. Ifitis not bound (C| > |c| holds), a configuratiol® is called ambiguous, dynamic, or
abstract.

3In [60], we gave an alternate definition of the aggregation operator, for which (6) did not hold.

14

3.4 Features of Derived Components

In the SCM context, we must not only describe how features propagate from components to config-
urations. An importanBCM topic is the identification oflerivedcomponents, constructed automat-
ically from a configuration of source components—using the well-kneMKE program or one of

its successors.

To determine the features of derived components, we use a variation of (7). Again, derived
components must be consistent, which implies that the source configuration be consistent as well.
To ensure consistency across multiple derivation stages, each derived component must inherit the
features of its source components, just as a configuration inherits the features of its components.

Formally, if we have a componerk C [objectk] derived fromn source components
K1, Ko, ..., Ky, and a ternl denoting the independent featurésjs identified by

K = [objectk] m Ky m; Komy -/ Ky
= [object k] N [+ , Ki , ®)

1<i<n

where the explicit setting of thabjectfeature removes all implications generated by the aggregation
operator—only non-independent features remain to be unified.

As an example of derivation, consider the editor example from figure 3. Let us denote the
three components operating system, screen type, and screen devigbjdnt ¢s, author. ton,
[object st, author. lisa], and [object sd, author: john], respectively; let the independent features be
| = [author. T]. If we derive aneditor component from @OSEGA configuration, it is identified

by

K = [object editor]
n ([object 0s, author. tom screen-type{ega tty}, concurrent falsg
M, [object st, author. lisa, screen-typeega screen-databitmagy
R, [object sd, author. john, screen-devicedumh data D, screen-dataD])
= [object editor, screen-typeega concurrent false
screen-databitmap screen-devicadumbh data bitmag ,

that is, theobjectfeatures and independent features of the source components are stripped, and all
other features are unified. In [63], we discusdAKE extension using this mechanism to create and
re-use derived components from consistent source configurations.

4 Versioning Dimensions

We now turn to theSCM protocol layer, introducing specifieersioning dimensionsSCM liter-

ature distinguishes four versioning dimensions: historic (revisions), logic (variance), cooperative
(workspaces), composition (configurations) [42, 14]. It is a well-known goa@¥ to inte-

grate these dimensions: the conceptodhogonal versioning42], and three-dimensional ver-
sioning [14], for instance, each integrate three of these four dimensions. The problem is that these
models use different sets of queries and services due to the differing motivations, which results in a
lack of orthogonality.

15

Ro s Ry %, Rs

36 Rs

Figure 4: A revision history

In this section, we show that each of these versioning dimensions can be realized in the version
set model. The underlying foundation, feature logicuisform: all versions are identified with
their features, regardless of their versioning dimension; s primitive layer makes no such
distinction as well. At the protocol level, however, we can introddaersity: by giving special
meanings to features, we distinguishing versioning dimensions. We have already seen how to handle
variance and composition dimensions; in this section, we turn to the more specific historic and
cooperative dimensions.

4.1 Revisions and Changes

As initial concepts, we show how to realizangesandrevisions.A revision is a version intended
to supersede another version (in contrast teadan) [59]. Typically, a revision is the product
of a changeapplied to an existing revision. In traditionglCM, these changes are controlled by
version-oriented versioningVersion-oriented versioning controls the impact of changesdiy-
alizing them—one change is applied after the other, forming\dsion history. As an example,
consider the revision history in figure 4, where individual revisions of a version set are denoted by
Ry, Ri, Ry, ... and so on. Each revisidR is created by applying a change (denotedhyo some
originating revisionsR;, ..., R.. As an example, consider revisid®, which was created from
R, and R4 by applying the changés.

In version-oriented versioning, each change implies several previous changes. In our example,
having the changé, applied requires the previous application of chasgelikewise, §s implies
all other changes except. As several configurations are excluded—there simply is no way to
include the changés without also having, applied—, it is quite easy to analyse the impact of a
single change. However, version-oriented versioning becomes a problem when changes are largely
independent of each other—i.e., when one wants a configuration with certain changes applied, but
other excluded. These weaknesses are addressgthhge-oriented versioningo, 19, 36], where
versions are merely the product of applying a changeeitato a baseline,an already existing
version set.

In the version set model, we have adopted change-oriented versioning. Each revision is identi-
fied by a conjunction oflelta featurestanding for the change application. A revisiBns a subset
of Aj = [§i:T], if the changes; has been appliedR is a subset oV, = ~A; = [§1] if the
changes; hasnot been applied. The revisioR, in figure 4, for instance, would be identified by

R4=A1|_IV2|_|A3I_IA4I_IV5I_IV6, (9)

that is, only the changes, 83, andé,4 have been applied. Again, revisions are identified and selected
just like any other versions, using features.

While a selection scheme enumerating the applied changes is convenient for changes that can
be applied independently from each other, it becomes a pain when, say, revision 211 must be se-
lected by enumerating 211 changes to be applied. A unified versioning model thus must find a
way to accommodate both the convenience of version-oriented versioning as well as the freedom of

16

change-oriented versioning. The idea is to exclude certain change combinations trewis@in
constraints.

Mutual exclusions. As an example, consider a version setvhere selecting an arbitrary change
combinationS should result in a consistent produiRt1 S—except forR M (As M Ag), which
should be inconsistent (“The changisanddg do not integrate”). This can be achieved by
making R a subset of-(As5 M Ag) = Vs U Vg; itis easyto see thdRm ST (VsU V) M S
becomes inconsistent wheh T (As 1 Ag) holds. Generally, to exclude the combination
of two changes; ands;j in a version seR, it suffices to makeR a subset of the revision
constraintV; U V;.

Change implications. Another problem is how to make changes rely on each other. Let us assume
that R contains no version where the chantiehas been applied, but nét—we would
say, the changéy implies the change;. This implication becomes explicit by makirig a
subset ofAg — Az;inthiscaseRM (AgmMV7) C (Ag = A7) M (AgMn V7)) = (Ag —
A7) M ~(Ag M A7) = L holds, effectively excluding the change application. Generally, to
ensure that a change implies a changé; in a version seR, it suffices to makeR a subset
of the revision constrainh; — A;.

A simple example of revision constraints is a linear revision history, where each change implies
all previous changes. As an example, let a revisiorRskeé a subset afAz11 — A1) M (A0 —>
Asg9) M-+- M (As — A7). We can easily select revision 211 just by selectig A,q,: all other
changes are automatically implied by the revision constraints. We see how revision constraints
effectively control the application of changes and inhibit inconsistent change combinations—simply
by assigning appropriate features to version sets.

4.2 Constraints and Histories

By specifying appropriate revision constraints, it is even possible to capture arbitrary revision histo-
ries, realizing full version-oriented versioning. As an example, consider the versiBrteataining

Ro, ..., Re created through the changés ..., &, as shown in figure 4. Following (4R could

be represented &8 = Ry U --- U Rs, where eachR; is a conjunction of included and excluded
changes, a8, in (9). A far more elegant representation is obtained through revision constraints.
For instanceR must be a subset giA», — A1), sinced, relies ond;, and R must also be a subset

of V, U Vg, as the change anddg are mutually exclusive. In facR can be entirely represented
through revision constraints, denoting the complete revision history:

R=(A; > A)DN(Az3—> A1) M (As— A3) M (As — A) M (As — Ay) M (Ag — Ay)
M (Az M A3 — A5) M (Vz L Vﬁ) . (10)

How are these constraints obtained? Formally, for any two revidipred R;, let R-7 be their
lowest common ancestor in the revision history, andRgt be their highest common descendant.
Let us denote the changes leading uiRIoR;, Ri7, andﬁi by &i, 8j, &;7, andé; j, respectively;
the version seta\j = [§i: T], Aj = [§;: T], Ay = [§7: T], and Aij = [8i,;: T] are defined
as usual. ShouldR; ; not exist, themA; ; = L holds. Let nowC; ; be aformal revision constraint
defined as - -

Ci,j =(AiI_IAj —)AW)I_I(AiI_IAj%Au) (ll)

17

If a changes; implies a change;j, the revision constrainC; j becomesC;; = (Aj U Aj —
A (AN A; — Aj) = Aj — Ay, if 6 and§; are mutually exclusiveC; ; E (Aj M Aj —
Ai,j) = (A I_IAj — 1))=YV, IJVJ' holds.

It now turns out that the intersection of al ; is equivalent toR:

Proposition 12 A revision setR can be represented as union of all revisi®seach identified by
an intersection of included and excluded changes, or as an intersection of revision corS{raints
as defined ir{11). Both representations are equivalent.

R=[]Ci=]]R. (12)

l<i<n 0<i<n
1<j<i

Proof. See [62]. O

In our example, the representation in (10) is obtained via (12) and removing superfluous constraints,
following the general schem@; — Aj)M(Aj — Ax) E (Aj — Ag). We see how proposition 12
realizes version-oriented versioning on top of change-oriented versioning, using appropriate con-
straints.

The maintenance of these implications is the duty of3fa#1 protocol layer, hiding them from
the end user; in section 6.1, we discuss a simple check-in/check-out protocol realized through revi-
sion constraints. OUCM primitive layer has no notion of revisions—all it knows about are com-
ponents identified by features, and it does not distinguish between specific feature types. Hence,
revision constraints may also be used to express implications between delta features and other fea-
tures.

In CLEARCASE, for example, users can assign names to edges in the revision history and se-
lect revisions through a disjunction of name patterns; such naming of changes is easily expressed
through an implication between the name and the appropriate delta features. Another example is
currency:we cannot simply devise some revision as “current”, because currency may differ across
variants. Hence, currency constitutes a part of36# protocol, expressed through means of the
SCM primitive layer. A simple scheme to denote currency is to use ecseignt T] that contains
the current variants by implying certain revisions. An implicat(({)ourrent T,0sunix] — Vs)
ensures that whenever the curranix variant is requested, the changigis excluded, possibly ex-
cluding subsequent changes through further revision constraints. The maintenance of currency is
also illustrated in section 6.1.

By dropping any distinction between delta features and variant- or process-specific features,
and by unifying the concepts of attribution and revision histories S@M primitive layer allows to
create, select, and revise arbitrary revision/variant/component combinations as in orthogonal version
management [42], still while allowing refinement and inheritance as in object-orieated58].

4.3 Cooperation through Locks and Workspaces

Besides components, variants, and revisi@®@@M literature distinguishes a fourth versioning di-
mension. Team functionalityenables a team of developers to develop and maintain the software
product. The most basic team functionality is a cooperation strategy that ensures that the changes
of an individual developer are not accidently superseded by another developer.

Using aconservative cooperation strategievelopers muskock each component version or
configuration they wish to change. Locks are exclusive: While a version or configuration is locked,
other developers are excluded from creating new revisions. Using version sets, locks are managed

18

like currency: The setigcked T] contains all locked versionsy[locked T] = [lockedt] the un-
locked versions. ArsCM system locking a component versidéh would do so by changing its
features such tha C [locked T]; any selection oK from [lockedt] would fail. As locking is
orthogonal to all other features, arbitrary version sets can be locked.

The second generation &CM systems introducedptimistic cooperation strategids, 11].
Rather than preventing concurrent changes, they rather attempt to integrate changes later. The cen-
tral concept here is the notion oleorkspacethe individual area of a developer, isolating him from
changes made by other developers, and isolating others from his changes.

In our model, a user’'s workspace is just a variant identified by a featureiemm[user. T]—
that is, user lisa] denotes Lisa’s workspace, andsgrton] is Tom’s workspace. As theser
feature may have only one value, all workspaces are disjoint; that is, developer Lisa in her
workspace (iser. lisa] will not see any changes from theider. tom] workspace. Tom may cre-
ate new revisiong\; in his workspace, or change currency; as his changes are always subsumed by
[user tom], Lisa’'s workspace will remain unaffected. To apply Tom’s changes in her workspace,
Lisa must integrate Tom’s changes and her own changes. Lisa’s changes can be identified by com-
paring the contents of her workspaaesér. lisa] with the contents of the originating version set
~[user {lisa, tom}]; Tom’s changes can be identified likewise.

In our setting, locks and workspaces are part of3a® protocol, as are currency and revisions.
As they are realized through dedicated features, they can be freely integrated with other features in
selections and constraints. Tom may declare his workspaagsastpm, os unix], thus confining
all changes to his workspace and thgiX version. Lisa may wish to work on the current revision
only, but including all variants, thus choosing her workspaceuastflisa, current T]. Further
dedicated features may be used for modeling teams or geographically distributed sites, ensuring
orthogonality and uniformity at the interface between $@M primitive andSCM protocol layers.

4.4 Practical Extensions

Although our versioning model subsumes all common identification and selection schemes as found
in SCM systems, it may prove useful to support additional selection schemes in practiceSShme
systems select component versions through a set of configuration rulesPesih@Glike syntax
as inSHAPE[30] or pattern matching rules as @LEARCASE[31]. The basic idea is that the first
matching rule is applied. An alternate scheme is realized in preference clauses [29], where each con-
figuration rule refines the results of the previous one, until an unambiguous version is selected. Such
schemes cannot be expressed in feature logic directly, since a v&biing unambiguous means
that |S| = 1 holds, and checking the cardinality depends on a specific interpretation. However,
the semantics of such selection schemes can be described on top of feature logiprefsirence
operators:
S, and-thers, = 51 it S is pound, S, or-elseS, = S TS #_L’
S NS otherwise S otherwise
with the equivalence3 m (S and-thers;) = (T 1 S and-therl N S) and T 1 (S, or-elseS;) =
(TS or-elseT M'S). Using “and-then” and “or-else”, we can exprgseferences our selection
terms. For instances = ([current T]or-else fixed true]) first selects the current version, and, if
there is none, a “fixed” versiors = ([Az, Vs] and-then s unix]) selects revision 2 and, should
this choice be ambiguous, thiNIX variant.
Another practical extension are additional constraints, expressing properties whose mutual con-
sistency cannot be decided in feature logic alone. Useful examples include arithmetic constraints

19

(date < 1997) or function interfacegi¢d int x int — int). Such constraints can be handled as addi-
tional constraints in Smolka'’s feature unification algorithm when deciding about the inconsistency
of simple feature terms; they can be evaluated as soon as their variables (features) are instanti-
ated [52].

When using such extended constraints, users should be aware that the inconsistency of a con-
junction of extended constraints cannot always be determined. In practice, one would use well-
known constraint solving systems like the Simplex Method or language-specific consistency check-
ers to determine most inconsistencies.

5 The Featured File System

To find out how the version set model works in practice, we have realized the version set model in
an experimentabCM system, calledCE for Incremental Configuration EnvironmemCE provides
access uses to version sets through a virtual file system ¢a@led he FFSrepresents version sets

in the well-known#if ... #endif format, which identifies differences between versions. Using the
FFSas example, we explore the feasibility of a repository based on version sets; by defining the
effects of basic file operations, we provide a means to describe operationsaMhmotocol layer.

5.1 Representing Version Sets

Upon designindCE, the first problem that arose was the representation and efficient storage of ver-
sion sets at th&8CM primitive layer. As it was our aim to make ambiguity transparent to developers,
we wanted to represent version sets in a format suitable for human readers.

The by far most common representation of multiple versions in a single source is the C pre-
processor@PP representation. Code pieces relevant for certain versions only are enclgse€in
... #endif, whereC expresses the condition under which the code piece is to be included. Upon
compilation,CPPselects a single version out of this set, feeding it to the comp&P¢ additional
functionality, such as macro expansion and file inclusion, is of no interest here.)

Using conditional compilation, the programmer may perform changes simultaneously on the
whole set of versions. Unfortunatel@PPtechnology does not scale up: as the number of versions
grows, the representation can become so strewn®@®trdirectives that it is hard to understand, yet
harder to change. Except for a small amount of variag&®usage is thus deprecated in theMm
community. But as this rejection applies to the tool, not the technique, we could represent version
sets inCPPformat, giving the user a familiar, well-understood representation.

ICE uses theCPPformat to represent version sets and it us&Pterms (i.e. boolean C ex-
pressions) to represent feature terms. In@mPrepresentation, feature names are expressed as

Feature Term CPPEXxpr Feature Term CPPEXxpr Feature Term CPPEXxpr
T 1 f:~0 f ~S -S

1 0 f:S —/— SnT SAT

a —/— f:T defined) SuT SvT

X —/— f1 —defined f) S—>T -SvT
f:a f= flg f=g Ax(S) —/—
f:~a f£a f1g f#£g9

Table 2: Translating feature terms ind®Pexpressions

20

get_load.¢os uniX

‘{’O'd InitL.oadPoint) get_load.gos unix, hcxt]
extern voidnlist(); . void InitLoadPoint)
#if definedAIXV3) A —definedhcy get_load.gos unix hex T] {
nlist(namelist 1, ...) void InitLoadPoint) extern voidnlist();
#else { #if definedAIXV3
nlistt KERNEL_FILE namelisj; extern voidnlist(); nlist(namelist 1, ...)
#endif nlistt KERNEL_FILE namelisj; #else
#if definedhcx) = if (namelisf...].n_type=0 A U nlist(KERNEL_FILE namelisy;
if (namelisf...].n_type=0 A namelisf...].n_value= 0) { #endif
#else xload_error. . .); if (namelisf...].n_type=0v
if (namelisf...].n_type=0v exit(-1); namelisf. . .].n_value= 0) {
#endif } xload_errox...);
namelisf...].n_value= 0) { exit(-1);
xload_erron.. .); }
exit(-1);

}

Figure 5: Version sets representedc@s>files

CPPsymbols. In table 2, we have summarized the mapping from feature ter@iPExpressions;
for better readability, the C tokens, !=, && || , and! are represented as, #, A, Vv, and—,
respectively.

For nearly every feature term, there is an equivatePP expression. Exceptions (denoted by
“-/-") include atoms (unless occurring as feature values), variables, and composed feature values.
All of these can be used iDPPexpressions by enclosing them in square brackets. Vice versa, every
CPPexpression has an equivalent feature term representation, with the exception of arittimetic
expressions, which are treated as atoms in feature termsCHIPprogram itself is never used by
ICE; only the syntax and semantics ©PPfiles and expressions are used.

We will now show how to realize selection and union on version sets representiPéites.
Let F be aCPPfile representing all source code versions; that is, a version S&tPnepresentation.
To select a subset df using a selection terr8, that is, the seE n S, we proceed as follows. For
each code piece enclosed#ii C ... #endif,the governing feature ter@ is intersected with the
selection terns. If C1S= 1, the code piece is removed frofn If Cn S = S, the#if directive is
removed, because C C. OtherwiseC is simplified with respect t&, according to proposition 10.
The new (smallerCPPfile can be characterized by and is writtenF[S] = F 11 S (obviously,
F =F[T).

Figure 5 shows the constrainedPP file get load.ctaken from xload, a tool displaying
the system load for several architectures. It shows two subsegetofoad.¢os unix]: a
hcx version get_load.¢os uniX][hcx T] = get_load.¢os unix, hcx T] and a nonhcx version
get_load.¢os uniX][hcext] = get_load.§os unix, hcxt] (note the simplifiedCPPexpressions). Fur-
ther selection and refinement is possible until a singleton version set is obtained—that is, a source
file without #if directives.

The union of twoCPPfiles F[S] and F[T] can be computed through[S]u F[T] = F[Su T].

A compactCPPrepresentation oF[Su T] can also be constructed evenHfdoes not exist. The
idea is to compare the two files textually, using#rF algorithm [35] initially ignoring allCPP

directives. In the resulting fil&[Su T], text parts occurring only ifF[S] or F[T] are governed
by Sm~T or~Sn T, respectively; common parts are governeday T. Read from right to left,

21

figure 5 demonstrates that

get_load.¢os unix, hcx T] i get_load.§os unix, hext]
= get_load.§[os unix, hext] U [os unix, hex T1]
= get_load.¢os uniy ,

where theDIFF algorithm determines a compact representation for the generated version set
get_load.¢os unix]; all governing expressions are simplified with respectds (inix]. We see

that feature terms, introduced as a syntactic device for the denotation of version sets, how have a
precise semantics in terms ©OPPfiles.

5.2 Transparent Version Set Access

For integration with software development environments,36#& primitive layer must make its
configuration items accessible in some way. The least common denominator for today’s environ-
ments is dile system,;and we know of naCM tool that would not provide a file system interface.

Most of today’sSCM tools realize item access by explicit copying of source components from
repositories (databases) to individual file systems and vice versa. This approach has the advan-
tage that database technology like transaction safety or advanced query services are available for
the repository; workspaces may be realized as (possibly ambiguous) sub-databases of the reposi-
tory [15]. The drawback is that configuration items are no more usdat control, once copied to
the individual file system.

Recent approaches thus allow configurations and workspaces to be selected and manipulated
as virtual file systems, representing individual views of the repository. Typical examples include
NSE [11], n-DFS[18], andCLEARCASE[31]. In these systems, user workspaces are made part of
some classical repository; the actual repository is either hard-wired (dSErand CLEARCASE)
or generic (as im-DFS). The entire repository is then made accessible as virtual file system. While
being convenient for users, this technigque also givesSiel system direct control over user’'s
workspaces. It allows for space savings throwgipy-on-writetechniques (also known agew-
pathing, sharing common files between several developers.

We have chosen thePPrepresentation, as introduced above, as base for a virtual file system in
ICE, calledFFSfor featured file systenand realizing an examplgCM primitive layer. In theFFS
all files occurring in multiple versions can be accessed by appending a version specification to the
file name—just as in our notation abo¥/@he following basic operations are supported byRR&

Read. Read access t&[S] is accomplished by selection, as shown; opening the virtual file
tty.duser. ton gives access to the version sasgr ton] from the filetty.c.

Write. SinceF = F[~Su § = F[~9] u F[9], write access td-[S—that is, changing=[S] to
F'[S—is implemented by generating’ = F[~S] u F'[S].

In practice, this means that any version sulisg$] of some multi-version document can be edited
and changed by invoking an ordinary text editorPdirectives indicate the common and differing
parts between versions. Upon each writeF§f5], the FFSre-determines the differences a@gP
directives in the original fild=. This is very similar to using a multi-version editor [46], except that
the maintenance of multiple versions is done at the file system level.

4The currenFFSimplementation uses thePPrepresentation in version specifications.

22

T :
Juser. tom] [~user. tom|
1024 ./

H 1024 . 0 1024 ./ I 1024 .7
[usertom] 16233 newtty.c |= 0 1024 ../ ! 1024 ../

0 78654 screen.c [l 16233 newtty.c I 78654 screen.c
[userlisa] 1024 test ' [l 78654 screen.c [userlisa] 1024 test

0 ' 15969 tty.c [l 15969 tty.c 0 15969 tty.c

Figure 6: Versioned directories

To express that a file be existent in some configuration only, we useRRéerror directive.
The#error directive stands for a non-existent file: easdrror directive inF governed by a feature
term Sindicates thaF[S] is non-existent. We thus add the followiRgSoperations:

Create. Creating a fileF[S], where F was non-existent before, creatEscontaining ar#error
directive governed by-S—that is, F[~ 5] is still considered non-existent.

Remove. Removing a fileF[S] augments= with an#error directive governed by, such that only
F[~9] is accessible.

As an example, consider the creation of a fitinter./data: postscript. After creation,printer.c
will contain the lines#if —(data = postscripy ... #error ... #endif—any attempt to read
printer.d ~data postscript will fail.

An alternate interpretation of “a fil& exists in some specific configuratidghonly” is “the
features ofF are~S’. Hence, creation and removal can be used to set and manipulate the features
of a file F: To set the features of a file to S, removeF[~S]. This operation is calledenaming

Rename. Renaming a filé= to F[S] is equivalent to removingdr[~S].

This taggingtechnique is further illustrated when discussing the composition protocol in section 6.2.

5.3 A Versioned File System

Besides versioned files, théd=S providesversioned directories;overing state and changes of the
entire file system—that is, the whole configuration universe. Basically, a versioned directory has
the same format like an ordinary directory, except that each directory entry is associated with a
governing feature term.

A directory entry governed by the feature te@nis visible only if C is a subset of the selection
termS, or C C S. If Tom creates a new fileewtty.dn his workspaceuser. tom], the newtty.centry
in the current directory " is governed by the termufser. torr], as illustrated in figure 6; in Lisa’s
workspace, that is, thduser, lisa] directory versionnewtty.cs non-existent.

If a versioned directoryD[T] is part of the current path, the directory versibraffects all con-
tents of the directory, including subdirectories and all files contained therein; any file v&isghn
in D[T] will be implicitly read asF[Sm1 T]. Hence, opening a directory{os unix] selects the
UNIX variants of all files and subdirectories; all changes applied [ager. tom)] directory or below
affects Tom’s workspace only.

By changing the current directory, users can switch between workspaces and versions. Entering
cd .[current T]/.[os ~dog (or, shorter,cd [current T]/[os ~dog) makes sure all subsequent
changes apply to the current revision in the DS variants only. As illustrated in figure 7, such

23

./ . /[os ~dog/ ./[os unix/

|+
|+

1 1 1

. /[user. tom]/ . /[user. tom] /[os ~dog/ . /[user. tom] /[0S uniX]/

|+
|+

Figure 7: Narrowing the configuration space in BFES

directory changes may be also be performed incrementally, subsequently narrowing the configu-
ration space as more and more features are specified. Each workspace, variant, or revision is an
individual view on the configuration space.

The features of a directory are set like the features of individual files, by removing the com-
plement. Removing the directory versioftested'] makes the current directory and all contained
items available in thetgsted T] version only. This is convenient for setting the features of all files
in one directory or file system subset.

Besides accepting version specifications as parts of the file path, all other features of file sys-
tems still apply. The “.” directory refers to the second last component from the current path; that
is, testdir/[user. ~tom]/. . is equivalent taestdir. File modes, times, and access restrictions are
versioned as well; a file may occur several times in a (versioned) directory, each time with different
attributes and a different governing feature térm.

Technically, theFFSis realized through a modifiedFS server [45], making th&FSavailable
in the network. Version sets are stored as ordir@Ppfiles, allowing for simple recovery using
CPP a special format is available for binary files [61]. TIRESServer keeps version sets in a cache
once they are read; changed version sets are also kept in the cache until a superset is requested.
Second and later version set accesses are served in constant time. In practice, this means that once
a directory version is entered, tRESserver has the same performance as an ordiNag/server.

Should this still be considered too slow, alternBESrealizations like dynamic system libraries as

in N-DFS[18] or virtual device drivers as iBLEARCASE[31] could bypass tha&lFSbottleneck on

local file systems and show virtually no difference from direct file access. But still, all fles common
to several version sets are cached only once, showing the space-saving effects of copy-on-write
techniques.

5In the current implementation, a file is uniquely identified by its name. While versioning contents and modes of
a file exploits a maximum of commonality through tB®P representationrenaminga file inhibits a commorcpPpP
representation; futureFSimplementations should add an extra indirection level here.

24

In contrast to the virtual file systems realizeNiBE or CLEARCASE, the FFSdoes not enforce a
specificSCM policy. Instead, it provides the basic mechanisms for arbitrary version set access. The
specificSCM policy must be realized on top of tH&Sby SCM tools that manipulate the version
sets. This is in contrast to-DFS, where theSCM tools are located at the lowest level, realizing
repository access as well as baSeM policies. In practice, we do not expect developers to interact
directly with theFFSexcept for most unusual circumstances. Rather, each developer will work in
some private workspace likguser. lisa, current T] and useSCM tools that realize specifiECM
policies by changing the contents afufrent T]. This issue is explored further when discussing
SCM protocols in section 6.

6 Unified Versioning

In this section, we use th&=Sto describe the semantics of the four megaM protocols taken from
Feiler's survey on configuration management models in commercial environments [16]. We show
how to implement these protocols on top of #i€S and we give some ideas on how these protocols
can be integrated. The numberEM protocols arSCM system supports is still an indicator of its
flexibility both below and above the protocol layer; it turns out that all four protocols can be realized
on top of theFFS demonstrating the unifying nature of the version set model.

6.1 The Checkin/Checkout Protocol

We begin with thecheckin/checkout protocads realized in the well-knowRCSandSCCStools. As
sketched in section 5.2, theSEM tools provide operations to copy revisions from a file system to a
repository(check in)and retrieve them back agafoheck out)as illustrated in figure 8. Individual
developers cafock branches of the revision history against further changes.

We now show how to realize the checkin/checkout protocol on top offigelLet each reposi-
tory be realized through a filE[R], whereR is a conjunction of revision constraints as discussed
in section 4.2. In order to select an individual revisiBn we introduce a special featurgsuch
that [ri: T] includes all changes leading up R and excludes all later changes. The teRithen
contains additional constraints in the form:[T] — A; NV n--- NV, whereR;, ..., R¢ are the
revisions immediately derived frofR; ; obviously,Rri[ri: T] = R A;nV;m---nVi = R holds.
The current revision is maintained by a currency constraumtrént T] — [ri: T]in R.

The operations of the checkin/checkout protocol are described below.

Check in. To add a new current revision file’ to the repositoryR, leti be some unique identifier
such thatF[Aj] = F[Vi] holds; in other words, is a yet unused revision number.

1. Check locks. IfF[current T mlockedt] does not exist, theurrent revision is locked;
abort the operation.

2. Store new revision. OverwritE[A;] with F’. The new revision is how selected by
F[Aj]; the old revision set can be accessed§5;].

3. Maintain revision constraints. We require a constr@int= (Aj — A n--- 1 Ay),
whereAj, ..., A¢ are the ancestor revisions. This way, including shehange will
automatically include all earlier changes. This is done by renarking F[C], such
thatC becomes a feature &f.

4. Maintain revision selector. Renarketo F[[ri:‘l'] — Ai], such that accessirg[r;: T]
returnsF[A;].

25

Check out

Check out

]

- Check in
Repositories Workspace

Figure 8: The checkin/checkout protocol

5. Maintain currency. The old currency is invalidated by renankng F[currentt]. The
new currency is established by renamifdo F[[current T] — A;].

To add a revision with multiple ancestors, or to add a non-current revisidmagech), the
constraints are maintained according to (11).

Check out. To check out the current revision, coffcurrent T] to some fileF’. To check out
some earlier revisiofr;, copy F[ri: T] to some fileF’.

Lock. To lock any revisionR; by a use, first check whether the revision is locked by someone
else; If F[ri: T n locked ~u] exists, abort the operation. Otherwise, renaRie;: T] to
F[ri: T nlocked u], such that~[r;: T] exists only in a [ocked u] version.

Unlock. To unlock any revisiorR, locked by a useu, renameF[r;: T rlocked u] to F[ri: T].

The check inoperation is quite complex here, so let us illustrate it by an example F L
a repository of revision®y, ..., Rs, as shown in figure 4; leRs be the current revision. Hence,
the file F exists asF[R m (current T — Ag)], whereR is defined according to (10). Let us now
check in a new revisioR;. After step 2, the new version is accessed ;]; the “old” repository
is accessible aB[V4]; the differences are enclosed#if A; ... #endif or #if V7 ... #endif But
now, selecting an older revisidR returns a non-singleton version set, asT] implies neitherA;
nor V7. This is handled in step 3: By changilRito R = R (A7 — Ag) n[r7: T], selecting
F[rs: T] excludes theA; change, becaude E ([rs: T] — Vs) and henceR' n [rs5: T] C (A7 —
Ag) M Vg C V7 holds. The remaining steps 4 and 5 ensure that Bgth: T] and F[current T]
return F[A-].

6.2 The Composition Protocol

The composition protocoéxtends the checkin/checkout protocol with the notions of configurations
and consistency. First, a set of components is composed; then, for each component, a version is
selected, resulting in a bound consistent configuration, as shown in figure 9. After composition
and selection have taken place, the selected components are maintained as in the checkin/checkout
protocol; each component has its individual repository.

The composition is usually no more than a simple enumeration of components, obtained by
refining dependency relationshpghe selection and identification schemes are mostly subsumed

6see [63] for a discussion of how to represent and version relationships.

26

Composg Select

Repository Composition Configuration

Figure 9: The composition protocol

by feature logic.
To realize the composition protocol, the configurations are maintained in the current directory.
The current directory " records which versions of which components are part of the configuration.
Here are the operations of the composition protocol:

Tag. To assign an attribut& to a file F, renameF to F[T] (or removeF[~T]). To remove the
attribute, make sure th&[~T] does not exist, and then renarR€T] to F.

Compose. To compose a set of components, Tebe a feature term identifying the composition.
If the composition already exists, just enter the directory versjdn. Otherwise, select an
originating version.[S] with S O T. In the subset[S]/[T], set up the configuration by
adding or removing files as required.

Select. To make the configuration iff T] bound, refinelT until each component occurs in one ver-
sion only (unles§ was already chosen such that the configuration is bound). This refinement
process is best done by an interactive tool that also ensures configuration consistency [61].

Composition and selection are realized most efficierit i a simple feature term, as stated
in proposition 9; a disjunction of configuration rules, as in exis&@M systems, is also handled
efficiently.

The single difficult point is to check consistency for ambiguous configurations, as discussed in
section 3.2. In theory, we can easily construct examples where each possible configuration must be
separately checked for consistency, resulting in a combinatorical explosion and exponential com-
plexity. In practice, we do not expect this to be a problem, due to the principlesvafouplingand
high cohesion.Low coupling confines changes to some function or module, leaving the interface
intact. This means that the ambiguity has no effect on other components and can thus be factorized
out in consistency checking.

On the other hand, high cohesion between functions or modules means that each change im-
plies several other changes: choosing one component version determines the versions of all other
components, narrowing the configuration space such that only few configurations remain. Whether
these properties apply to today’s software systems and how they affect their configurability is an
open issue.

6.3 The Long Transaction Protocol

The long transaction protocdk centered around the notion ofveorkspaceas discussed in sec-
tion 4.3 and realized in SunNetwork Software Environmer{NSE) [11].

27

Update

Commit

Project workspace User workspace

Figure 10: The long transaction protocol

To realize the long transaction protocol on top of BH&S we use the following setting. Each
useru is assigned an individual variant of the project top-level directory, identifiedliser. u].

The common project state is identified bjyser. projecf], such that it is disjoint from any user’s
workspace; we call it thproject workspaceAs shown in figure 10, users synchronize their work
by propagating changes through the project workspace.

Each workspace has its own revision history. This is realized as in the checkin/checkout pro-
tocol, with the current revision being accessed directly throughFB® Hence, each user usu-
ally works in his workspace on the current revision(s) by enteringser. u, current T]. Entire
workspaces can also be versioned.

Some realizations of the long transaction protocol use a conservative strategy and thus rely on
component or workspace locking [16]. Our setting assumes an optimistic cooperation strategy and
thus the existence afhange integratiomools. Several change integration algorithms are known,
either text-based [5], syntax-based [57], or semantic-based [6]; for our purposes, these algorithms
must be extended to handle version sets [61].

The operations of the long transaction protocol are as follows:

Originate. To create a new workspace for a userename [user. project] to . [user. {project, u}],
thus (virtually) copying the project workspace to the user’s workspace and making it accessi-
ble tou.

Update. To propagate changes from the project workspdoser. projecf] to a user's workspace
.[user. u], determine the; such thatU = .[useru,r;: T] = .[user projectr;: T]is the
common origin of both workspaces. Integrate the changes between the two workspaces, us-
ing U as base, and store the result in the workspace ofwser

Commit. To commit all changes from a user workspace to the project workspace, first update
the user workspace, as described above. Then create a new current revision of the project
workspace containing a (virtual) copy of the user’s workspace.

Here is an example of using the long transaction protocol. Let Tom and Lisa each work in
their individual workspaces[user.tom] and. [user. lisa]. Both have made changes to the current
revisionr of file tty.c. Lisa is the first to commit her changes. As no other changdty.towere
made since her last update, a new revisigof the project workspace is created, containing Lisa’s
changes taty.c. When Tom updates his workspace before his next commit, he must integrate Lisa’s
changes with his changes, using revisioms a base. The integration is then committed, creating a
new revisiorrg of the project workspace incorporating both Lisa’s and Tom’s changes.

28

Apply

61 64 65
5, 5

Baselines and Changes Configuration

Figure 11: The change set protocol

6.4 The Change Set Protocol

In section 4.1, we have already discussed the difference between version-oriented and change-
oriented versioning. In thehange set protocolpgical changesare the primary objects of inter-

est; versions are merely the product of applyattange set$o a baseline, as shown in figure 11.
Change-oriented versioning provides a natural linichange requestss they originate from the

SCM process; each configuration can be identified by the incorporated changes.

Our revision concept, as discussed in section 4.1, already assumes that revisions are created
by applying changes to an ancestor revision; through appropriate revision constraints, users can
denote revisions by specifying change sets as well as by giving revision numbers, as discussed in
section 6.1.

Here are the operations of the change set protocol:

Change. To create a changk of a file F, create a new versioR[A;] and change it as desired. The
file F may also be a file system subset, such that changes to several files becom&part of
If & implies other change, ..., 8, renameF[Aj] to F[A; M A M- -- 1T Ag].

Apply. To apply achange sét, ..., §; to an arbitrary baselinE[Vi], access=[A;m-- - M A 1V].
If this version does not exist (because some of the changes are mutually exclusive), create it
by integrating the changes, as discussed in section 6.3.

In contrast to the version-oriented protocols, the change-oriented protocol makes extensive use
of change integration. Version repositories are thus structured by mutual exclusion rather than
implication: conflicting changes; andé; are indicated by a constraii¥; U Vj). Just like in
version-oriented protocols, arbitrary sets of changes, variants, and components can be specified and
examined.

7 Performance and Complexity

Having shown how individual protocols are realized on top ofRR§ we can now discuss their
complexity issues. At first, this may sound surprising: Obviously, each individual protocol has
already be realized efficiently in some existi@gM system, so why bother? First, we must show
that this efficiency is not endangered by our formal base—in fact, the efficiency is due to a number
of constraints on the organization of features, which we must identify. Second, having understood
how these constraints mak&M protocols efficient, we can turn to the problemifegratingSCm
protocols.

29

7.1 Whatis it that Makes Today’s SCM Protocols so Efficient?

In proposition 5, we have stated that deciding the inconsistency of a feature term (i.e., deciding
whetherS = L holds) is arNP-complete problem. Several of 08CM principles rely on deciding
inconsistency, which should result in exponential complexity. So, why isn'’t this so in ex&tiNg
systems? Basically, there are three causes, each reducing complexity by imposing constraints on the
general problem.

Simplification. In existingSCM systems, components are either identified or selected using simple
feature terms; the general case of having non-simple feature terms for both identification and
selection never occurs. Hence, the preconditions for proposition 9 apply—whether a version
is member of the selection or not can simply be decided by evaluating the selection term
with the values furnished in the identification term, or vice versa. This makes the selection
operations in section 6 very efficient.

Implication chains. A second issue is specific to revision handling. Applying the revision con-
straint scheme from section 4.1, revisions are identified by long chains of implications like
(Ag2 — Ag) M (Ag1 — Ago) M A simple method to decide consistency of such an
implication chainR with a selection terns works as follows: for eaclkh; 3 S, replace all
(Ai — Aj) by A; and repeat the process fav;. Likewise, for eachv; 3 S, replace all
(Aj — A) = (Vi = Vj) by Vj and repeat the process f&. This scheme allows for
efficient selection from “classical” revision histories, as realized in toda@®! systems.

Orthogonality. As stated in proposition 7, if two feature terr8&ndT are consistent and have no
common features or variables, their intersection is consistent as well—which can be checked
in linear time. This property makes the creation of new versions efficient, since they are iden-
tified by new features which are orthogonal to all existing ones. Furthermore, orthogonality
simplifies the separation of concerns. For instance, maintenance of revisions and variants is
dramatically simplified as soon as revision features and variant features do not interact with
each other—for example, by placingc&Pfile underRCScontrol.

To conclude: as long as all versions are identified by simple feature terms, as long as we stick to
revision histories, as long as we keep revisions, workspaces, and variants separated from each other,
we can realize efficien8CM protocols. This is the status quo. But does our common foundation
also realize them efficiently?

7.2 A Case Study

To see howlCE handles the majo8CM protocols, we have implemented the three methods stated
above as deductive shortcuts besides full-fledged feature unification. As a case study, we have
chosen the&sNU MAKE program, which is publicly available in 17 revisions named 3.55 to 3.74.
From theGNU MAKE distribution, we have considered a single file namsechmands;cthis file
happened to be modified in each revision. We wanted to know Ilk@yperforms in creating a
repository from the 17 revisions cbmmands.,accompared to well-known tools likRCSandSCCS

to see the effects of the deductive shortcuts, we also n@#leun without deductive shortcuts and

rely on feature unification alone.

"The recentsNU MAKE distribution as well as differences to earlier revisions are available frorg kteFTPserver
ftp://prep.ai.mit.edu/pub/gnu/

30

commands.]
for (d = enter_filg".SUFFIXES")—depsd # 0; d = d—nex}
{

#if d370
unsigned inslen= strlen(dep_name));
#else
unsigned inten = strlen(file—~name;
#endif
#if d374
if (len > slenA —strncmpgdep_named), name+ (len— slen, slen)
#elif d370
if (len > slenA —strncmpgdep_named), name+ len — slen slen)
#else
if (len > slenn streqdep_nam@), file—>name+ len— slen)
#endif
{
#if d370
file—stem= savestringname len — slen);
#else
file—stem= savestringfile—~name len — slen);
#endif
break;
}
}
if (d=0)
file>stem="";

Figure 12: A multi-revision file

In figure 12, we see an excerpt of the versions®hmands.cincorporating all 17 revisions.
We see that the changi@70replacedile—nameby dep_naméd) and that changd374introduced
a parenthesized subexpression. In this excerpt, there is a maximum number of two features that
govern code pieces, making the excerpt quite readablec@umands.also contains code pieces
governed by four features, which is a little harder to understand—»but still an alternative to a set of
mutual DIFF runs. From the version seommands.dCE can extract individual revisions in linear
time—due to the efficiency of simplification, selecting a specific revision does not take more time
than running the appropriaRCS SCCS or CPPcommand. All results would apply just as well, had
we chosen features for identifying workspaces or variants instead of changes.

While reading individual versions easily competes with exis@M systems, the creation of
the repository showed up some unexpected problems. In figure 13, we have listed the execution
times for each checkin processICE, as well as the checkin times fRCSandSCCS Initially, we
had no deductive shortcuts IQE, relying onNP-complete feature unification alone, and execution
time grew beyond all limits, as shown in figure 13. But even with deductive shortcuts enitied,
checkin time still grows with the number of revisions, while R@SandSCCScheckin times remain
fairly constant. The difference witlCE is thatICE compares entire version sets when determining
a new compact representation, as discussed in section 5.1; in our example, each new revision is
compared with the entire repository, and tB& inference engine must determine more and more
governing feature terms as the number of revisions grows. This is in contre§iSand SCCS

31

ICE with deductive shortcuts ——
ICE with feature unification alone -+--
; RCS :8--

SCCS i~

Figure 13: Revision checkin times (in seconds)IftE, RCS andSCCS

which compare the new revision with the previous revision only.

The checkin problem could easily be solved by realizingR6&'SCCSapproach and comparing
only the latest revisions. The data above shows ibatis quite efficient when comparing small
revision sets; hence, the use of feature logic as a cons@nfoundation and the feasibility of a
commonSCM primitive layer is unquestioned. But if we have multiple variants in multiple revisions,
all sharing some common code, which are the “latest” revisioBshould compare? And to which

extent should variants be compared?

The central problem here is the integrationvafiancewith other SCM concepts. Workspaces
that imply certain variants, variants that imply certain revisions, changes that apply to certain vari-
ants only, introduce disjunctions into revision constraints and thus make the deduction process
overly complex. Such interferences are indicators of poor structure of the configuration space, show-
ing low coherence and strong coupling between configuration threads. Although these interferences
can be uncovered by mathematical concept analysis of configuration structures [28], restructuring
software in order to eliminate them is still at its beginning [53]. Future research and experience
will show how far non-orthogonal variance can be allowed to interfere with &astconcepts and
how much of the resulting complexity is tolerable in practice. We see that while the realization of
an existingSCM protocol imposes no special problems, the integratioBGM concepts remains an

open issue.

32

8 Conclusion

The future of automate8CM lies in a clear separation of primitives, protocol, and policy, based
on a clear semantic foundation. We have proposed feature logic and version sets assSith a
foundation. Version sets integrate and unify currd@M versioning models and provide a well-
defined semantics for defining high®€M layers. Feature logic is powerful enough not to endanger
flexibility at higherSCM layers, and yet sufficiently specialized to describe how features propagate
in the SCM process.

Our implementation of the version set model@k has shown that this foundation has numer-
ous user-visible benefits. Through the feature deduction mechanisms, ambiguity is tolerated at all
SCM layers; sets rather than objects are the primary items of interestS@kgrocess is not con-
strained by process-specific decisions in lo&€M layers. All majorSCM protocols can be realized
efficiently on top of aSCM primitive layer like theFFS These features mak€E an environment
adapting to its users and their process, instead of vice versa.

Besides refining, extending, and evaluating KbE implementation, especially at the protocol
and policy levels, our future work will focus on three subjects.

Efficient integration of SCM concepts. We have seen that each of the four m&g@M models can
be realized efficiently on top of the version set model. We also have identified complexity
problems with non-orthogon&8CM concepts, especially variance. Based on further expe-
rience with theFFS and the underlying deduction engine, we want to investigate how far
integration ofSCM concepts can go without endangering efficiency. Furthermore, we want to
see which integrate8CM protocols are feasible, how they can be realized on top of s
and how far thesSCM process is determined by these protocols.

Versioned component relations. While our model supports versioned components, it has no no-
tions on relationships between these components. What is required is a means to model ver-
sioned component relations—or relations between component versions. Generally, we plan to
extend the version set model such that features represent relationships between version sets.
1:m and 1:n relationships are modeled through non-functional features catlked [50].

This extension will introduce and unify versioning concepts in graph-structured applications
such as computer-aided desigbAD) [26], or graph-based software development environ-
ments [13, 48]; first results are given in [63].

Support of the SCM process. On the conceptual level, we must find out if and e@M processes
might be formalized using the version set model and whe#i@™ tool behaviour may be
verified against th&€CM process. We imagine organizing tREM process entirely by manip-
ulating component features—changing their state fppoposedvia testedto releaseqg SCM
procedures might be modeled by pre- and post-conditions specified as feature terms. Unfor-
tunately, there is no true methodology yet how components and versions should be attributed
with feature terms; experiences from other attribute-orietet systems or faceted classi-
fication [41] might help here. Eventually, we hope to model the esit® process through
operations on version sets denoted by feature logic, providing a uniform semantic foundation
for all SCM layers.

ICE and theFFSwere developed as part of theORA project which aims at utilizing inference
technology in software tooldCE and theFFSas well as related technical reports can be accessed

8NORA s a figure in Henrik Ibsen’s play “A Dollhouse”. HendepRA is noreal aronym.

33

through thel CE WWW page,http://www.cs.tu-bs.de/softech/ice/ , and via anonymous
FTPfrom ftp://ftp.ips.cs.tu-bs.de/pub/local/softech/ice/

Acknowledgments

Many thanks to all who have madieE possible through contributing to th€E implementation or

by making program sources and tools available. Lars Dining implementetPthepresentation
using GNU DIFF. Olaf Pfohl built theFFS server on top of a public domaiNFS server. Marc
Ziehmann implemented Smolka’s feature unification algorithm. Dirk Babel, Michael Brandes, and
Andreas Mende realized the higher layerd@#. Finally, we thank the anonymous reviewers for
their useful and constructive comments.

References

[1] Adams, P., and Solomon, M. An overview of the CAPITL software development environment. Software
Configuration Management: selected papers / ICSE SCM-4 and SCM-5 workébegtile, Washington, Oct.
1995), J. Estublier, Ed., vol. 1005 bécture Notes in Computer Scien&pringer-Verlag, pp. 1-34.

[2] Ait-Kaci, H. An algebraic semantics approach to the effective resolution of type equalibasretical Computer
Science 451986), 293-351.

[3] Ait-Kaci, H., and Nasr, R. Login: A logic programming language with built-in inheritancdournal of Logic
Programming 19863 (1986), 186—215.

[4] Ait-Kaci, H., and Podelski, A. Towards a meaning of LIFE. IRroc. 3rd International Symposium on Pro-
gramming Language Implementation and Logic Programr{ffassau, Germany, Aug. 1991), J. Malusski and
M. Wirsing, Eds., vol. 528 of.ecture Notes in Computer Scien&pringer-Verlag, pp. 255-274.

[5] Berliner, B. CVS IlI: Parallelizing software development. Rroc. of the 1990 Winter USENIX Conference
(Washington, D.C., 1990).

[6] Binkley, D., Horwitz, S., and Reps, T. Program integration for languages with procedure callSM Transac-
tions on Software Engineering and Methodologyt 4Jan. 1995), 3-35.

[7] Brachman, R. J., and Levesque, H. J. The tractability of subsumption in frame-based description languages. In
Proc. of the 4th National Conference of the American Association for Artificial Intelligéfuastin, Texas, Aug.
1984), pp. 34-37.

[8] Brown, A, Dart, S., Feiler, P.,and Wal Inau, K. The state of automated configuration management. Tech. Rep.
CMU/SEI-ATR-91, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, Sept. 1991.

[9] Conradi, R., and Tryggeseth, E. Versioning models. IiSoftware Configuration Management: selected papers /
ICSE SCM-4 and SCM-5 workshogSeattle, Washington, Oct. 1995), J. Estublier, Ed., vol. 10Q%oture Notes
in Computer Sciengéspringer-Verlag, p. 80.

[10] Conradi, R., and Westfechtel, B. Version models for software configuration management. Tech. Rep. AIB
96-10, RWTH Aachen, Germany, Oct. 1996.

[11] Courington, W. The Network Software Environment. Tech. Rep. FE 197-0, Sun Microsystems, Inc., Feb. 1989.

[12] Dart, S. Concepts in configuration management systemsRrbrc. 3rd International Workshop on Software Con-
figuration Managemer(fTrondheim, Norway, June 1991), P. H. Feiler, Ed., ACM Press, pp. 1-18.

[13] Engels, G,, Lewerentz, C., Nagl, M., Schafer, W., and Schurr, A. Building integrated software development
environments—Part 1: Tool specificatio’ACM Transactions on Software Engineering and Methodolog® 1
(1992), 135-167.

[14] Estublier, J. Process session. Boftware Configuration Management: selected papers / ICSE SCM-4 and SCM-5
workshops(Seattle, Washington, Oct. 1995), J. Estublier, Ed., vol. 100beafure Notes in Computer Science
Springer-Verlag, pp. 136-137.

[15] Estublier, J., and Casallas, R. The Adele configuration manager. @onfiguration ManagementV. F. Tichy,
Ed., vol. 2 of Trends in SoftwareJohn Wiley & Sons, Chichester, UK, 1994, ch. 4, pp. 99-133.

34

[16] Feiler, P. H. Configuration management models in commercial environments. Tech. Rep. CMU/SEI-91-TR-7,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, Mar. 1991.

[17] Feldman,S. 1. Make—A program for maintaining computer prograreftware—Practice and Experiencé/r.
1979), 255-265.

[18] Fowler, G., Korn, D., and Rao, H. n-DFS: The multiple dimensional file system. Gonfiguration Management
W. F. Tichy, Ed., vol. 2 ofTrends in Softwarelohn Wiley & Sons, Chichester, UK, 1994, ch. 5, pp. 135-154.

[19] Gulla, B, Karlsson, E.-A., and Yeh, D. Change-oriented version descriptions in EP@8ftware Engineering
Journal 66 (Nov. 1991), 378-386.

[20] Harter, R. Version management and change control; systematic approaches to keeping track of source code and
support files.Unix World 6, 6 (June 1989).

[21] The Institute of Electrical and Electronics Engineers, Inc. IEEE Guide to Software Configuration Man-
agementNew York, 1988. ANSI/IEEE Standard 1042-1987.

[22] The Institute of Electrical and Electronics Engineers, Inc. IEEE Guide to Software Configuration Man-
agement PlandNew York, 1990. ANSI/IEEE Standard 828-1990.

[23] The International Organization for Standardization and The International Electrotechnical Com-
mission. Programming Languages—-Dec. 1990. ISO/IEC International Standard 9899:1990 (E).

[24] Jones, N. D., Gomard, C. K., and Sestoft, P. Partial Evaluation and Automatic Program GeneratiBmentice
Hall, 1993.

[25] Kaplan, R. M., and Bresnan, J. Lexical-functional grammar: A formal system for grammatical representation.
In The Mental Representation of Grammatical RelatighsBresnan, Ed. MIT Press, Cambridge, Mass., 1982,
pp. 173-381.

[26] Katz, R. H. Toward a unified framework for version modeling in engineering databa€&®. Computing Surveys
22 4 (Dec. 1990), 375-408.

[27] Kay, M. Functional unification grammar: A formalism for machine translationPtac. 10th International Joint
Conference on Atrtificial IntelligencéStanford, 1984), pp. 75—78.

[28] Krone, M., and Snelting, G. On the inference of configuration structures from source codBrada. 16th Interna-
tional Conference on Software Engineerig@prrento, Italy, May 1994), IEEE Computer Society Press, pp. 49-57.

[29] Lacroix, M., and Lavency, P. Preferences: Putting more knowledge into querie®rrc. of the 13th International
Conference on Very Large Data BagBsighton, 1987), P. M. Stocker and W. Kent, Eds., pp. 217-225.

[30] Lampen, A., and Mahler, A. An object base for attributed software objects. Aroc. of the Fall '88 EUUG
ConferencgCascais, Oct. 1988), pp. 95-105.

[31] Leblang, D. B. The CM challenge: Configuration management that worksCdnfiguration Managemeniv. F.
Tichy, Ed., vol. 2 ofTrends in Softwarelohn Wiley & Sons, Chichester, UK, 1994, ch. 1, pp. 1-37.

[32] Lie, A, Conradi,R., Didriksen, T. M., Karlsson, E.-A., Hal Isteinsen, S. O., and Holager, P. Change oriented
versioning in a software engineering database.Ptac. 2nd International Workshop on Software Configuration
Managemen(Princeton, New Jersey, Oct. 1989), W. F. Tichy, Ed., ACM Press, pp. 56—65.

[33] Mahler, A. Variants: Keeping things together and telling them aparCdnfiguration ManagemendV. F. Tichy,
Ed., vol. 2 of Trends in SoftwareJohn Wiley & Sons, Chichester, UK, 1994, ch. 3, pp. 39-69.

[34] Martin, U., and Nipkow, T. Boolean unification—The story so far. Winification C. Kirchner, Ed. Academic
Press, London, 1990, pp. 437-455.

[35] Miller, W., and Myers, E. A file comparison programSoftware—Practice and Experience 1% (1985), 1025.

[36] Munch, B. P, Larsen, J.-O., Gulla, B., Conradi, R., and Karlsson, E. A. Uniform versioning: The change-
oriented model. IProc. 4th International Workshop on Software Configuration Management (Pre@attimore,
Maryland, May 1993), S. Feldman, Ed., pp. 188-196.

[37] Nebel, B. Reasoning and Revision in Hybrid Representation Systewils 422 of Lecture Notes in Atrtificial
Intelligence Springer-Verlag, 1990.

[38] Nebel, B., and Smolka, G. Representation and reasoning with attributive descriptionsSdris and Types in
Artificial Intelligence (Eringerfeld, Apr. 1989), K. H. Blasius, U. Hedstlick, and C.-R. Rollinger, Eds., vol. 256 of
Lecture Notes in Atrtificial IntelligenceSpringer-Verlag, pp. 112-139.

35

(39]

[40]

[41]

[42]

(43]

(44]

[45]

[46]

[47]

(48]

[49]

(50]
(51]

[52]
(53]

(54]

[55]

[56]

[57]

(58]

[59]

(60]

Nicklin, P. Managing multi-variant software configurations. Mmmoc. 3rd International Workshop on Software
Configuration ManagemeifTrondheim, Norway, June 1991), P. H. Feiler, Ed., ACM Press, pp. 53-57.

Ploedereder, E., and Fergany, A. The data model of the configuration management assistaRtoln 2nd Inter-
national Workshop on Software Configuration ManagentBminceton, New Jersey, Oct. 1989), W. F. Tichy, Ed.,
ACM Press, pp. 5-13.

Prieto-Diaz, R. Classifying software for reusabilityEEE Software 41 (Jan. 1987).

Reichenberger, C. Orthogonal version management. Prnoc. 2nd International Workshop on Software Configu-
ration ManagemenPrinceton, New Jersey, Oct. 1989), W. F. Tichy, Ed., ACM Press, pp. 137-140.

Rochkind, M. J. The source code control systetBEE Transactions on Software Engineering SB(Dec. 1975),
364-370.

Sachweh, S., and Schafer, W. Version management for tightly integrated software engineering environments. In
Proc. of the 7th international Conference on Software Engineering Environigdesdwijkerhout, Netherlands,
Apr. 1995), IEEE Computer Society Press.

Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., and Lyon, B. Design and implementation of the Sun
Network filesystem. IrProc. of the Summer 1985 USENIX conferer{@rtland, Oregon, June 1985), pp. 119-
130.

Sarnak, N., Bernstein, R., and Kruskal, V. Creation and maintenance of multiple versions. Ploc. of the
International Workshop on Software Version and Configuration Cof@adssau, Jan. 1988), J. F. H. Winkler, Ed.,
Teubner Verlag, Stuttgart, pp. 264—-275.

Schmerl, B. D., and Marlin, C. D. Designing configuration management facilities for dynamically bound sys-
tems. InSoftware Configuration Management: selected papers / ICSE SCM-4 and SCM-5 workSkayte,
Washington, Oct. 1995), J. Estublier, Ed., vol. 1005 e€ture Notes in Computer Scien&pringer-Verlag, pp. 88—
100.

Schurr, A., Winter, A.J., and Zindorf, A. Graph grammar engineering with PROGRESPhoc. 5th European
Software Engineering Conferen®itges, Spain, Sept. 1995), W. Schéfer and P. Botella, Eds., vol. 988ctire
Notes in Computer Scienc8pringer-Verlag, pp. 219-234.

Shieber, S., Uszkorzeit, H., Pereira, F., Robinson, J., and Tyson, M. The formalism and implementation of
PATR-1I. In Research on Interactive Acquisition and Use of KnowledgB8resnan, Ed. SRI International, 1983.

Smolka, G. Feature-constrained logics for unification grammdairnal of Logic Programming 12992), 51-87.

Smolka, G., and Ait-Kaci, H. Inheritance hierarchies: Semantics and unificatiorUnfication C. Kirchner, Ed.
Academic Press, London, 1990, pp. 489-516.

Snelting, G. The calculus of context relationg\cta Informatica 28 May 1991), 411-445.

Snelting, G. Reengineering of configurations based on mathematical concept anah\GId. Transactions on
Software Engineering and Methodology25Apr. 1996), 146-189.

Snelting, G., Grosch, F.-J., and Schroeder, U. Inference-based support for programming in the largeProc.
3rd European Software Engineering Conferefiddano, Italy, Oct. 1991), A. van Lamsweerde and A. Fugetta,
Eds., vol. 550 of_ecture Notes in Computer Scien&pringer-Verlag, pp. 396-408.

Tichy, W. F. RCS—A system for version controBoftware—Practice and Experience T8July 1985), 637—-654.

van der Hoek, A., Heimbigner, D., and Wolf, A. L. A generic, peer-to-peer repository for distributed configura-
tion management. IRroc. 18th International Conference on Software EnginedBeglin, Germany, Mar. 1996),
IEEE Computer Society Press, pp. 308-317.

Westfechtel, B. Structure-oriented merging of revisions of software document&rde. 3rd. SCMTrondheim,
Norway, June 1991), P. H. Feiler, Ed., ACM Press, pp. 86—79.

Wiebe, D. Object-oriented software configuration managementProc. 4th International Workshop on Software
Configuration Management (PreprirgBaltimore, Maryland, May 1993), S. Feldman, Ed., pp. 241-252.
Winkler, J. F. H. Version control in families of large programs. Rroc. 9th International Conference on Software
Engineering(Monterey, California, Mar. 1987), E. Riddle, Ed., IEEE Computer Society Press, pp. 91-105.

Zeller, A. A unified version model for configuration management. Pioc. 3rd ACM SIGSOFT Symposium
on the Foundations of Software Engineeriyashington, DC, Oct. 1995), G. Kaiser, Ed., vol. 20 (4)AGEM
Software Engineering NoteCM Press, pp. 151-160.

36

[61] zeller, A. Smooth operations with square operators—The version set model in ICBrom 6th International
Workshop on Software Configuration Managemébrlin, Germany, Mar. 1996), I. Sommerville, Ed., vol. 1167
of Lecture Notes in Computer Scien&pringer-Verlag, pp. 8-30.

[62] zeller, A. Configuration Management with Version Se8hD thesis, Technical University of Braunschweig,
Germany, Apr. 1997.

[63] Zeller, A. Versioning software systems through concept descriptions. Computer Science Report 97-01, Technical
University of Braunschweig, Germany, Jan. 1997. Submitted for publication.

[64] zeller, A., and Snelting, G. Handling version sets through feature logic. Mnoc. 5th European Software
Engineering Conferencgitges, Spain, Sept. 1995), W. Schéfer and P. Botella, Eds., vol. 988ctdire Notes in
Computer Sciengépringer-Verlag, pp. 191-204.

37

93-10
93-11
94-01
94-02

94-03

94-04

94-05

94-06

94-07

94-08

95-01

95-02

95-03
95-04
95-05

95-06

95-07

95-08

95-09

96-01
96-02

96-03

96-04

96-05
96-06

97-01

Technische Universitat Braunschweig
Informatik-Berichte ab Nr. 93-10

C. Lindig

H.-D. Ehrich

A. Zeller

J. Schonwalder, H. Langendorfer

T. Hartmann, G. Saake,

R. Jungclaus, P. Hartel, J. Kusch

A. Zeller, G. Snelting
S. Conrad

M. Gogolla, N. Vlachantonis,
R. Herzig, G. Denker, S. Conrad,
H.-D. Ehrich

C. Lindig

B. Fischer, M. Kievernagel,
W. Struckmann

V. S. Cherniavsky
G. Snelting

A. Zeller
H. Bickel, W. Struckmann
F.-J. Grosch

V. S. Cherniavsky

A. Zeller, D. Liitkehaus
A. Zeller
P. Funk, A. Lewien, G. Snelting

A. Zeller, G. Snelting

M. Goldapp, U. Grottker,
G. Snelting

C. Lindig, G. Snelting

J. Adamek, J. Koslowski,
V. Pollara, W. Struckmann

F.-J. Grosch

E. H. A. Gerbracht,
W. Struckmann

A. Zeller

STYLE — A Practical Type Checker for SCHEME
Beitrage zu KORSO- und TROLL light-Fallstudien
Configuration Management with Feature Logics

Netzwerkmanagement — Beschreibung des Exponats
auf der CeBIT’94

Revised Version of the Modelling Language TROLL
(Version 2. 0)

Incremental Configuration Management Based on
Feature Unification

A Basic Calculus for Verifying Properties of
Synchronously Interacting Objects

The KORSO Approach to the Development of Reliable
Information Systems

Inkrementelle, ruckgekoppelte Suche in
Software-Bibliotheken

VCR: A VDM-based software component retrieval tool

Philosophische Aspekte des Unvollstindigkeitstheorems
von Godel

Reengineering of Configurations Based on Mathematical
Concept Analysis

A Unified Configuration Management Model
The Hoare Logic of Data Types

No Type Stamps and No Structure Stamps —

a Referentially-Transparent Higher-Order Module
Language

Uber semantische und formalistische Beweismethoden in
den exakten Wissenschaften

DDD - A Free Graphical Front-End for UNIX
Debuggers

Smooth Operations with Square Operators —
The Version Set Model in ICE

Algorithms for Concept Lattice Decomposition and
their Application

Unified Versioning Through Feature Logic

Validierung softwaregesteuerter Meflsysteme durch
Program Slicing und Constraint Solving

Modularization of Legacy Code Based on Mathematical
Concept Analysis

Workshop Domains II (Proceedings)

A Syntactic Approach to Structure Generativity

Zur Diskussion elementarer Funktionen aus
algorithmischer Sicht

Versioning Software Systems through Concept
Descriptions

