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Abstract

Software Configuration Management (SCM) suffers from tight coupling betweenSCM ver-
sioning models and the imposedSCMprocesses. In order to adaptSCMtools toSCMprocesses,
rather than vice versa, we propose a unified versioning model, theversion set model.Version
sets denote versions, components, and configurations byfeature terms,that is, boolean terms
over(feature: value)-attributions. Throughfeature logic,we deduce consistency of abstract con-
figurations as well as features of derived components and describe how features propagate in
theSCMprocess; usingfeature implications,we integrate change-oriented and version-oriented
SCM models. We have implemented the version set model in aSCM system calledICE for
Incremental Configuration Environment.ICE is based on afeatured file system(FFS), where
version sets are accessed as virtual files and directories. Using the well-known C Preprocessor
representation, users can view and edit multiple versions simultaneously, while still only the
differences between versions are stored. It turns out that all majorSCM models can be realized
and integrated efficiently on top of theFFS, demonstrating the flexible and unifying nature of
the version set model.

Categories and Subject Descriptors: D.2.6 [Software Engineering] Programming envi-
ronments; D.2.7 [Software Engineering] Distribution and Maintenance—version control;
D.2.9 [Software Engineering] Management—software configuration management; program-
ming teams;D.4.3 [Operating Systems] File Systems Management; I.2.3 [Artificial Intelli-
gence] Deduction and theorem proving; I.2.4 [Artificial Intelligence ] Knowledge representa-
tion formalisms and methods

General Terms: Management, Theory, Standardization

Additional Key Words and Phrases: Feature logic, Version sets

1 Introduction

Software Configuration Management, orSCMfor short, is the discipline for controlling the evolution
of software systems.SCM encompasses general configuration management procedures [21, 22] like
identificationof components and structures,control of changes and releases,status accounting,or
audit and review,as well as software-specific tasks [12] likemanufacture, process management,
andteam work. SCM is one of the basic prerequisites for process improvement, stipulated by the
ISO 9000 standard or theSEI capability maturity model, and thus attracts more and more attention
from professional software development.

∗This article is a revised and extended version of a paper [64] presented at the Fifth European Software Engineering
Conference, Sitges, September 1995. Early descriptions of the revision and workspace concepts (sections 4.1 and 4.3)
were presented in [60]. The featured file system (sections 5.2 and 5.3) was first discussed in [61].
This work was supported by the Deutsche Forschungsgemeinschaft, grants Sn11/1-2 and Sn11/2-2.
Authors’ address: Technische Universität Braunschweig, Abteilung Softwaretechnologie, Bültenweg 88, D-38092 Braun-
schweig, Germany; email:{zeller, snelting}@ips.cs.tu-bs.de; http://www.cs.tu-bs.de/softech/.
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Figure 1: A federatedSCM architecture, as proposed in [8] (left) and as realized inICE (right)

As all configuration items are accessible on-line,SCM is typically supported and enforced by
automatedSCM tools and systems. The early days ofSCM were characterized by dedicatedSCM
tools likeSCCS[43] or RCS[55] (revision and change control);CPP, the C preprocessor [23] (variant
control); or MAKE [17] (manufacture). These days, a new generation has emerged, represented
by SCM systems likeADELE [15], EPOS[19], or CLEARCASE[31]. These systems provide and
integrate support for allSCM aspects throughfederatedSCM system architectures [8], as illustrated
in figure 1: aprimitive layer provides basic versioning and access capabilities, aprotocol layer
realizesSCM tasks and procedures, and apolicy layer implements organization-specific standards.

Today, severalSCM vendors compete with each other by means of an ever-growing number of
product features. This has the benefit that users can choose between a large number ofSCMsystems,
each with an individual set of features [10]. Despite these advances,SCM systems still suffer from
three deficiencies:

Lack of ambiguity tolerance. SCM systems generally provide poor support for treating several
items at once. This includes lack of support for manipulating and identifying permanent vari-
ants [33], change propagation across several versions at once [36], or consistency checking in
abstract (ambiguous) configurations [47].

Lack of process flexibility. SCM systems are frequently used to enforce a specific software
process. Unfortunately, nearly everySCM system relies on its own predefined and inflexi-
ble product life cycle [14]; at least four divergingSCM models have been identified, each
imposing a differentSCM process [16]. This is pretty far away from the ideal that aSCM
system should adapt to an organization’s process.

Lack of system integration. Already at theSCM primitive layer, there is considerable disagree-
ment about versioning models [9]. Consequently, theSCM layers are not interchangeable,
resulting inSCM systems that neither interoperate nor integrate. Furthermore, the basic layers
constrain higher layers: flexibility decreases the higher the layer considered [56].

In this paper, we propose to resolve these deficiencies through a unifiedSCM versioning model
as commonSCM foundation. Ourversion set modelintegrates the commonSCM models, increases
flexibility at the protocol and policy layers, and tolerates ambiguity at all levels. Version sets are sets
of objects (typically software components), characterized by afeature term—a boolean expression
over(feature: value)-attributions denoting common and individual version properties, following the
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Figure 2: Exploring the configuration space with theICE file/configuration browser

SCM convention to characterize objects by their attributes. Version sets generalize well-known
SCM concepts such as components, repositories, workspaces, variant sets, or revision histories.
Using feature logic,intersection, union, and complement operations on version sets are realized
in order to express and generalize the semantics ofSCM models. Throughfeature unification,a
constraint-solving technique, we can determine whether version sets exist, ensuring consistency of
configurations and inferring necessary steps for their construction.

We have implemented the version set model in aSCMsystem, calledICE for Incremental Config-
uration Environment.ICE integrates within software development environments through itsfeatured
file system(FFS), where version sets are represented as files and directories. Arbitrary programs can
access version sets and realize version operations through file manipulations. Through specialized
configuration browsers, as shown in figure 2, users can incrementally explore the configuration
space and haveICE deduce consistency even for incomplete configurations. Using the well-known
CPPrepresentation, users can view and edit multiple versions simultaneously, while still only the
differences between version sets are stored. All four majorSCM models can be realized and inte-
grated on top of theFFS, demonstrating the unifying nature of the version set model.

This paper is organized like the federatedSCM architecture shown in figure 1. We begin at
the lowestSCM layer by motivating and presenting feature logic as a formalSCM foundation. Sec-
tion 3 introduces the version set model and shows how primitiveSCMconcepts are modeled through
version sets. In section 4, we discuss the modeling of advancedSCM concepts such as change im-
plications and workspaces, required for theSCM protocol layer. In section 5, we turn to practical
aspects and demonstrate how theFFSrealizes theSCM primitive layer through transparent version
set access. In section 6, we treat theSCM protocol layer and demonstrate the realization ofSCM
protocols on top of theFFS. Section 7 discusses performance and complexity issues, treating the in-
tegration ofSCM protocols. We close with a summary and suggestions for future work in section 8.
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2 Feature Logic

Most of the existingSCM literature is product-oriented, describing and evaluating a set ofSCM
concepts as realized in some specific implementation. We think that this view hinders a deeper
understanding ofSCM concepts, as the concept in question cannot be separated from its implemen-
tation. In order to support a large variety ofSCM versioning concepts, we must thus abstract from
specificSCM products and turn towards a more fundamental treatment—still keeping the higher
SCM layers in mind.

2.1 A SCM Foundation

The formal foundation we have chosen for capturingSCM versioning concepts is calledfeature
logic. Feature logic denotes sets of objects by their properties and provides elemental set operations
to manipulate these sets. In ourSCM domain, we use feature logic to denote sets of components by
their features and to describe the semantics ofSCM operations.

So, why did we use feature logic as a formal foundation? Relying on the threeSCM deficiencies
as stated in the introduction, we identified three key elements of such a foundation.

First foundation: Sets. Ambiguity tolerance imposes the necessity to treat sets of versions and
configurations as first-class objects.SCM procedures thus should be set-oriented rather than
item-oriented, as manipulating sets generalizes manipulating items. For instance, editing a
set of versions or checking a set of configurations for consistency subsumes editing a single
version or examining a single configuration.

Second foundation: Attributes. Attribution is one of the few techniques common to the whole
SCM area: all knownSCM models rely on that either versions or changes be tagged with
attributes. Identification and selection schemes should be attribute-based; attribution support
includes a description of how attributes propagate in theSCM process, such that composed
and derived objects can be identified.

Third foundation: Unification. The usual selection process inSCM systems consists of determin-
ing the objects whose attributes are consistent with those of a specific environment. Typically,
objects are described by a conjunction of attribute values and the environment by an attribute
expression; but the inverse scheme is also found, as inCPP. In order to encompass both
schemes, selection and identification should both rely on attribute expressions,unifying at-
tribute expressions instead of matching attribute expressions against a conjunction of attribute
values.

There are several formalisms that denote sets of objects by their attributes, subsumed under
the termdescription logicsor terminological logics.Their most important domains are the areas
of knowledge representation, whereconcept descriptions,also calledframes[7, 37, 38], are used
to represent sets of objects by attribute/value combinations, and the semantic analysis of natural
language [25, 27, 49].

In programming languages, attribute/value combinations are used in record structures. Aït-Kaci
was the first to study such structures mathematically, calling themψ-terms[2]. The resultingψ-
term calculusis the formal foundation of the programming languagesLOGIN [3] and LIFE [4],
which are similar toPROLOG, but usefeature unification[51] instead of syntactic unification. In
contrast to several description logics, attributes inψ-terms arefunctional: they can have only one
value. This is convenient, since objects can be identified by some unique attribute value.
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ψ-terms have been successfully applied in the context ofSCM, notably in theCAPITL sys-
tem [1]. CAPITL uses a variant ofLOGIN, calledCONGRESS, to denote the attributes of compo-
nents and tools and to describe how these attributes propagate from source components to derived
components. AsCAPITL is also among the most advanced and well-foundedSCM systems in terms
of building and attributing derived components, descriptions likeψ-terms seem ideal candidates for
a unifiedSCM versioning model—the more as they have been successfully used inSCM systems.
Unfortunately, inψ-terms, onlyconjunctionsof attribute/value combinations are allowed; negations
or disjunctions are not supported. This restriction would severely constrainSCM identification and
selection schemes.

There is an alternative candidate for aSCM foundation that does not suffer from these restric-
tions. Boolean operators fromfirst-order logicare used in severalSCM selection schemes [39, 15,
19, 58, 33]; first-order terms may also be used for identification purposes, using deduction tech-
niques such asboolean unification[34] to match identification and selection terms. The problem
with first-order logic is that it is far too general; it lacks the central property of being attribute-
oriented. This implies that allSCM functionality like selection through attributes, attribute propaga-
tion, or inheritance of abstract configurations requires explicit formalization using first-order axioms
and rules.

For a formalSCM foundation, we need the best of three worlds: the boolean operators and
quantifications of first-order logic, in order to express identification and selection schemes, the
attribute-oriented formalisms from description logics, denoting how attributes propagate in theSCM
process, and the functional attributes ofψ-terms, as they uniquely identify objects by their attributes.
Such a logic does exist:Feature logic,as defined by Smolka [50], is a well-founded description logic
that includes quantification, disjunction, and negation over functional attribution terms, forming a
full boolean algebra.

2.2 Feature Logic in a Nutshell

We begin with an informal overview of feature logic. Afeature termdenotes a set of objects
characterized by certain features. Afeatureis a functional property or attribute of abstract objects.
In their simplest form, feature terms consist of a conjunction of(feature: value)-pairs, calledslots,
where each feature represents an attribute of an object. Feature values include literals, variables,
and (nested) feature terms.

As an example, consider the following feature termT , which expresses the linguistic properties
of a natural language fragment:

T =




tense: present,
predicate: [verb: sing,agent: x,what: y] ,
subject: [x,num: singular,person: third] ,
object: y




This term says that the language fragment is in present tense, third person singular, that the agent of
the predicate is equal to the subject, and so on:T denotes the sentence template “x singsy”.

The syntax of feature terms is summarized in table 1, where we denotevariablesby x, y, z;
featuresby f , g, h; constantsby a, b, c; and feature terms denoted byS andT .1 Feature terms
are constructed using the well-known boolean set operationsintersection, union,andcomplement.

1Smolka [50] writes∼Sas¬S, S = T asS ∼ T , andS v T asS4 T . Implications and equivalences do not occur
in [50]; they are simple syntactical extensions whose equivalence to simpler operators is shown in proposition 1.
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Notation Name Interpretation
> (also []) Top Universe
⊥ (also {}) Bottom Empty set; Inconsistency
a Atom Singleton set containinga
x Variable
f : S Selection The value off is in S
f : > Existence f is defined
f ↑ Divergence f is undefined
f ↓ g Agreement f andg have the same value
f ↑ g Disagreement f andg have different values
∼S Complement Sdoes not hold
Su T (also [S, T ]) Intersection Both SandT hold
St T (also {S, T}) Union Sor T holds
S→ T Implication If Sholds, thenT holds
S↔ T Equivalence Sholds if and only ifT holds
∃x(S) Quantification There is anx such thatSholds

Table 1: The syntax of feature terms

Each of these set operations may also be interpreted as logical constraint on the object features,
representing the set of objects satisfying this constraint. For instance, letS = [ f : a], the set of all
objects whose featuref has the valuea, andT = [g: b], the set of all objects whose featureg has
the valueb. Then,Su T = [ f : a, g: b] is the intersection of [f : a] and [g: b], namely the set of
objects whose featuref is a and whose featureg is b. Similarly, St T = { f : a, g: b} is the union
of [ f : a] and [g: b]—that is, the set of objects whose featuref is a or whose featureg is b. As
feature terms form a boolean algebra, all boolean transformations like distribution, de Morgan’s law
etc. hold for feature terms as well.

Sometimes it is necessary to specify that a feature exists (i.e. is defined, but without giving
any value), or that a feature does not exist in a feature term. This is writtenf : > resp.∼ f : >
(abbreviated asf ↑). The possibility to specify complements greatly increases the expressive power
of the logic. For example, the term∼[compiler: gcc] denotes all objects whose featurecompiler is
either undefined or has another value thangcc. The term [compiler: ∼gcc] denotes all objects whose
featurecompiler is defined, but with a value other thangcc.

A feature term can be interpreted as a representation of the infinite set of all ground (variable-
free) termsT ′ which aresubsumedby the original termT (that is, T w T ′). Subsumed terms
are obtained by substituting variables or adding more features. Feature terms thus always allow
for further specialization, like classes in object-oriented models. For instance,> w [fruit : x] w
[fruit : apple] w [fruit : apple, color: green] w [fruit : apple, color: green,wormy: no], and so on.

Atoms like apple, green, or gcc denote singleton sets containing some unique object without
any features; the equivalencesa u b = ⊥ anda u f : > = ⊥ hold for all atomsa, b and for any
feature f . This leads to a simpleconsistency notion: As feature logic assumes that each feature
can have only one value, the term [os: dos,os: unix] is equivalent to⊥, the empty set; formally,
[os: dos,os: unix] = [os: [dos,unix]] = [os: ⊥] = ⊥ holds. Terms which are equivalent to⊥ are
called inconsistent.Throughfeature unification[50], a constraint-solving technique, one can de-
termine consistence of arbitrary feature terms. For terms without unions and complements, feature
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unification works similar to classical unification of first-order terms; the only difference is that sub-
terms are not identified by position (as inPROLOG), but by feature name. Adding unions forces
unification to compute a (finite) union of unifiers as well, whereas complements are usually handled
by constraint solving (similar to negation as failure).

2.3 Properties of Feature Terms

We now give some properties of feature terms. Two feature termsS andT are calledequivalent
(written S =F T or S = T where unambiguous) if they denote the same set of objects for every
interpretation.2 Using equivalence, most of the introduced feature term forms are redundant and
may be reduced to six primitive forms.

Proposition 1 Every feature term can be rewritten in linear time to an equivalent feature term con-
taining only the formsa, x, f : S, Su T , ∼S, and∃x(S) by using the following equivalences[50]:

f ↑ = ∼( f : >) ⊥ = x u ∼x
f ↓ g = ∃x( f : x u g: x) > = ∼⊥
f ↑ g = ∃x( f : x u g: ∼x) St T = ∼(∼Su ∼T)

S→ T = ∼(Su ∼T) S ↔ T = ∼(Su ∼T) u ∼(T u ∼S)

A feature term is calledclosedif it has no free variables. A feature term isground if it has no
variables, agreements, or disagreements. A feature term isquantifier-freeif it contains no quantifi-
cations∃x(S). A feature term isbasicif it is quantifier-free, contains no implications, and contains
only complements of the from∼a or ∼x. A feature term issimple if it is basic and contains no
unions. A feature term is indisjunctive normal form(DNF) if it has the formS1 t · · · t Sn, where
all S1, . . . , Sn are simple feature terms. Two feature terms are calledorthogonalif have no common
features or variables.

Proposition 2 Every quantifier-free feature term can be rewritten in linear time to an equivalent
basic feature term by using the following equivalences[50]:

∼ f : S = f ↑ t f : ∼S ∼⊥ = >
∼ f ↑ = f : > ∼> = ⊥

∼ f ↑ g = f ↑ t g↑ t f ↓ g ∼(Su T) = ∼St ∼T
∼ f ↓ g = f ↑ t g↑ t f ↑ g ∼(St T) = ∼Su ∼T

∼∼S= S S→ T = ∼St T
S ↔ T = (∼St T) u (∼T t S)

A feature termS is said to be included orsubsumedby a feature termT (written S v T or
T w S) if the set denoted byS is a subset of the set denoted byT under every possible interpretation.

Proposition 3 LetF be the set of feature terms, as defined above. Then(F,t,u,∼,⊥,>)/=F is
a boolean algebra.F and subsumption constitute asubsumption lattice(F,v)/=F with a supre-
mum ofSt T and an infimum ofSu T for all S, T ∈ F .
Proof. As follows from definitions, all properties required for boolean algebras (commutativ-
ity, associativity, idempotency, absorption, distribution, etc.) apply under the equivalence=F .
(F,v)/=F being a subsumption lattice follows from(F,t,u,∼,⊥,>)/=F being a boolean al-
gebra [62]. 2

2The interpretation of feature terms is formally defined in [50].
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2.4 Consistency

We now discuss the notion ofconsistency,stating whether feature terms denote empty sets, and
devise algorithms that decide consistency. A feature termS is called coherent orconsistentif there
is an interpretation such that the denoted set is non-empty. A feature term is called incoherent or
inconsistentif it is not consistent.

Proposition 4 Consistency, subsumption, and equivalence of feature terms are linear-time re-
ducible to each other[50]:

S inconsistent⇔ S v ⊥ ⇔ S= ⊥
Sv T ⇔ Su ∼T inconsistent

S= T ⇔ S v T ∧ T v S

Proposition 5 Deciding inconsistency, subsumption, and equivalence of quantifier-free feature
terms are co-NP-complete problems[50].
Proof. Follows from the satisfiability problem of propositional logic, as shown in [50]. 2

For quantifier-free feature terms, Smolka has devised an algorithm that decides the inconsistency
of arbitrary quantifier-free feature terms. The basic idea behind this so-calledfeature unificationis
that the feature termS is transformed intoDNF S= S1tS2t· · ·tSn; consistency of each conjunctSi

can then be determined using a quadratic-time algorithm.

Proposition 6 Deciding inconsistency of simple feature terms is of quadratic time complexity[50].

As transformation of non-simple feature terms toDNF is NP-complete, time complexity of
Smolka’s algorithm is exponential in the worst case, complying with proposition 5. It is thus un-
suitable for practical problems as soon as the feature terms exceed a certain size.

By imposing certain conditions upon feature terms, time complexity of feature unification can
be dramatically reduced. In proposition 6, we have already seen that deciding consistency of a
simple feature term can be decided in quadratic time. The unification problem can be broken down
even more for terms of the formSu T . First, if S andT are orthogonal,Su T is consistent iffS
andT are consistent.

Proposition 7 Let SandT be orthogonal. Then,Su T = ⊥ ⇔ S= ⊥ ∨ T = ⊥ holds.
Proof. Via algebraic induction overS andT ; there can be no intersection of primitives that would
lead to inconsistency [62]. 2

Another efficient algorithm is obtained using principles ofpartial evaluation[24]. We observe
that the unification problemSu T = ⊥ is much simplified ifT is a simple feature term of the form
T = T1 u T2 u · · · u Tn: for each primitiveTi , we can check whetherSu Ti = ⊥ in linear time
by (syntactically) comparingTi with the primitives fromS and thus deduce inconsistency. This
proposition holds only ifSandT are variable-free.
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Proposition 8 Let SandT be consistent and variable-free feature terms; letT also be simple andS
be in basic form.Su T is inconsistent iffSu T can be rewritten to⊥ using the equivalences

Su (T1 u T2) = (Su T1) u T2 Su ⊥ = ⊥ f ↑ u f : T = ⊥
(S1 u S2) u T = (S1 u T) u (S2 u T) ⊥ u T = ⊥ f : Su f ↑ = ⊥
(S1 t S2) u T = (S1 t T) u (S2 t T) f : Su a = ⊥ a u b = ⊥

f : Su f : T = f : (Su T) a u f : T = ⊥ ∼a u a = ⊥
f : ⊥ = ⊥ a u ∼a = ⊥

(1)

Proof. The first four equivalences in (1) handle union, intersection, and selection operators; the
remaining equivalences identify all combinations of primitives that might lead to inconsistency.
Correctness follows from algebraic induction overSandT [62]. 2

Proposition 9 Let SandT be consistent and variable-free feature terms; letT also be simple. Then,
inconsistency ofSu T can be decided in time complexityO(s · log t), wheres is the number of
primitives inSandt is the number of primitives inT .
Proof. According to proposition 2, the termS can be rewritten to basic form in linear time, such
that proposition 8 applies. Complexity follows from the fact that in the worst case, every primitive
of Smust be (syntactically) searched inT , which can be done in logarithmic time [62]. 2

2.5 Simplification

Often, we are not only interested in deciding consistency ofSu T , but also insimplifying S with
respect to a givenT ; that is, to find aS′ w S which is (syntactically) smaller thanS, but for which
S′ u T = S u T holds. The basic idea is to replace all literal occurrences ofT in S by > and
simplify S afterwards. This can be done by adding a few more equivalences to the rewrite system
from proposition 8.

Proposition 10 In Su T , the termSmay be further reduced in size by expanding(1) with

Su S= > u S f↑ u a = > u a
∼b u a = > u a ∼a u f : T = > u f : T

(2)

and subsequent simplification

Su ⊥ = ⊥ Su > = S St > = > St ⊥ = S ∼> = ⊥
⊥ u S= ⊥ > u S= S > t S = > ⊥ t S = S ∼⊥ = > (3)

The first equivalence in (2),Su S = > u S, is the essence of simplification: every literal occur-
rence inS of a primitive in T can be replaced by>. The remaining equivalences in (2) eliminate
superfluous negations. The equivalences in (3) propagate the new> values inS; complexity is
unaffected.

Let us illustrate inconsistency decision and simplification by an example. Consider the term
S u T , whereS = [

f : a, g: {b,∼c}] and T = g: d. We can decomposeS to S1 u (S2 t S3) =
f : au (

g: bt g: ∼c
)
. For each primitiveSi , we check the consistency ofSi u T and simplifySi with

respect toT . Beginning withS1 = f : a, we find thatS1 andT have no common features; thus,S1uT
is consistent andS1 cannot be simplified. RegardingS2 = g: b, we haveS2 u T = g: bu g: d, which
can be rewritten toS2 u T = g: [b,d] = g: ⊥ = ⊥; S2 u T is inconsistent. ConsideringS3 = g: ∼c,
we haveS3 u T = g: ∼c u g: d = g: [∼c,d] = g: d; the termS3 can thus be replaced by>, as
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S3uT = T = >uT . The original termSuT becomesSuT = S1u(S2tS3)uT = S1u(⊥t>)uT =
S1 u > u T = S1 u T = [ f : a] u T = [ f : a, g: d]. Hence,Su T 6= ⊥—that is, the termSu T is
consistent. As a side effect, we find thatS can be simplified toS′ = [ f : a], sinceSu T = S′ u T
holds.

Our presentation of feature logic is now complete. In the remainder of this article, we always
interpret feature terms as sets of objects, unless otherwise specified. “Traditional” set notation will
not be required, with one single exception: We write|S| to express thecardinality (the number of
elements) of a set denoted by the feature termS under a given interpretation. All other required
notation is already provided by feature logic, as introduced above.

3 The Version Set Model

Having introduced feature logic, we can now return to theSCM domain. We begin with theSCM
primitive layer, that is, basic versioning and access capabilities. We show how to captureSCMstates
by means ofversion sets,that is, sets of software components identified by their attributes. The basic
SCM operations of selecting a version and composing a consistent configurations are modeled by
means of set operations, as provided by feature logic.

3.1 Versions and Components

According with theSCM standards [21, 22], we consider that the object of interest inSCM is a
family of software products.Each of these software products breaks down in severalcomponents,
each of which may exist in severalcomponent versions.A component version is an unbreakable,
unambiguous configuration item.

In the SCM domain, the common method for identifying component versions isattribution,as
found in ADELE [15], the Context Model [39],EPOS[32], JASON [58], or SHAPE [33]. Using
attribution, every component version is identified by a conjunction of attribute/value pairs describ-
ing its features; version selection is done through a (boolean) attribute expression which must be
satisfied by the selected versions—similar to a classical selection in databases. In conditional inclu-
sion, as exemplified by the C preprocessor (CPP), this setting is reversed: versions are identified by
boolean attribute expressions and selected through a conjunction of attribute/value pairs describing
the features of the environment.

Our model usesfeature termsfor both version identification and version selection. Every com-
ponent version is assigned a feature term describing its features and uniquely identifying both ver-
sion and component; versions are also selected by feature terms. Besides encompassing and inte-
grating both the database and theCPPscheme, this setting also has a number of advantages forSCM
users:

Alternative properties. Using feature terms, we are not restricted to a pure enumeration of features
to identify versions. For instance, we can useunions like {state: proposed, state: tested} to
identify alternatives. In the database setting, such alternatives can only be used whenselecting
versions, but not to identify them. This ability to express alternative component properties is
essential for treating version sets as unique items.

Configuration constraints. Feature terms may also express component properties that mustnot
apply. For instance, we may use the term∼[operating-system: unix] to identify a version that
mustnot be used under theUNIX operating system. Such a feature expresses aconstrainton
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the environment, notably on other components in the configuration. InCPP, such constraints
are realized through the#error directive. But in contrast toCPP, we can still use arbitrary se-
lection terms—a selection term∼[operating-system: unix] would exclude allUNIX versions,
but still include the non-WINDOWS version.

At the primitive layer, we do not impose specific requirements on the existence and the meaning
of features; but to associate the versions of a component with each other, we must have at least
one common feature across all component versions. We thus assume that each component can
be identified uniquely via anobject feature assigning each component a simple (unambiguous)
component identifier. Ourconfiguration universethen becomes the set denoted by [object: >]—the
set of all component versions.

We now define the notions of versions and components. Aversion setis any setV v [object: >].
A versionis a singleton version set; that is, a setV v [object: >] such that|V | = 1. A component
is a setK v [object: k], wherek is a simple feature term uniquely identifying the component. A
component versionis both a component and a version; that is, a setK v [object: k] with |K | = 1.

The features of a component are modeled asalternativesover the features of each component
version. So, if we have a componentK in n component versionsV1,V2, . . . ,Vn, the componentK
is determined as

K = V1 t V2 t · · · t Vn =
⊔

1≤i≤n

Vi . (4)

FeaturesF of the component itself (as [object: k]) are the same across all component versions, and
hence can be factored out through(F u V1) t (F u V2) = F u (V1 t V2).

As a simple example, consider aprinter component occurring in two component versions:

printer1 = [object: printer,print-language: postscript]

printer2 = [object: printer,print-language: ascii] .

Theprinter component is then denoted as

printer = printer1 t printer2

= [
object: printer,print-language: {postscript,ascii}] .

To retrieve a specific version, we specify aselection termS giving the features of the desired
version. For any selection termS and a version setT , we can identify the versions satisfyingS
by calculatingT ′ = T u S—that is, the version set that is a subset ofS as well as a subset ofT .
If T ′ = ⊥, selection fails—T ′ does not denote any existing version. In our example, selecting
S = [print-language: postscript] from printer returnsprinter1, sinceprinter u S = (printer1 t
printer2) u S= (printer1 u S) t (printer2 u S) = printer1 t ⊥ = printer1. Here,printer2 u S= ⊥
holds since theprint-languagefeature may have only one value. AsT ′ is just another version set,
we may give a second selection termS′ and selectT ′′ = T ′ u S′, give a third selection termS′′, and
so on, narrowing the choice set incrementally until a singleton set is selected, containing the desired
version.

3.2 Composing Consistent Configurations

A configuration,in our setting, is a set of components. In our model, as in several attribution-
orientedSCM versioning models, features of the components are propagated to the configurations;
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[os: dos,
 screen-type: {ega, tty},
 concurrent: false]

[os: unix,
 screen-type: {x11, news, tty}]

[screen-type: ega,
 screen-data: bitmap]

[screen-type: tty,
 screen-data: ascii]

[screen-type: x11,
 screen-data: bitmap]

[screen-type: news,
 screen-data: 
   {postscript, bitmap}]

[screen-device: dumb,
 data: D,
 screen-data: D]

[screen-device: ghostscript,
 data: postscript,
 screen-data: bitmap,
 concurrent: true]
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Figure 3: Consistent configurations in a text/graphic editor

one says that configurationsinherit the features from their components. The crucial point when
composing configurations from components is to ensure that the configuration is well-formed or
consistent.

To determine the internal consistency of a configuration, mostSCM tools rely on either separate
tools [40] or language-specific knowledge [54, 44]. Consistency with respect to an external speci-
fication is usually combined with configuration selection; each consistency constraint becomes part
of the selection term.

In the version set model, configuration constraints can be specified in the selection term, but
also occur in the features of a component. For this purpose, both inheritance and consistency are
realized by modeling the features of an configuration asintersectionof the component features,
excluding inconsistent combinations. For instance, we cannot build an configuration from two
components having the features [operating-system: windows-nt] and [operating-system: unix], since
theoperating-systemfeature can have only one value: formally, [operating-system: windows-nt] u
[operating-system: unix] = ⊥. If we have a configurationC composed ofn components with the
featuresK1, K2, . . . , Kn, the configurationC has the features

C = K1 u K2 u · · · u Kn = ⊔

1≤i≤n

Ki . (5)

As an example of configuration consistency, consider figure 3. We see three source components
of a text editor, where each component comes in several variants. We can choose between two
operating systems (dosandunix), four screen types (ega, tty, x11andnews), and two screen device
drivers (dumbandghostscript). Thedumbdriver assumes that the screen type can handle the data
directly (expressed through the variableD); the ghostscriptdriver is a separate process that can
convert postscript data into a bitmap. The component features imply that at most one version of
each component can be included in a bound configuration.

Let us now compose a consistent configuration from these three source components. We begin
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by selecting the operating system, and choose thedosversion. This implies that we cannot choose
thex11or newsscreen types, since (in our example),dosdoes not support them: Formally,[

os: dos, screen-type: {ega, tty}] u [
screen-type: {x11,news}] = ⊥

due to the differingscreen-typefeatures—we cannot usex11or newsscreen types. We can, however,
chooseegaor tty screen types, as indicated by plain lines.

As final component, we must choose a screen device driver.ghostscriptcannot be chosen, since
it requiresconcurrentto be true, which is not the case underdos. Thedumbdriver remains;D is
instantiated tobitmapor ascii, depending on the screen type, making our choice complete:editor
can be built in aega and atty variants, inheriting the features of its source components. As an
alternative, consider the choice [os: unix], as indicated by dashed lines. Again, each path stands for
a consistent configuration.

The ability of treating component features as configuration constraints allows for arbitrarylo-
calizationof configuration constraints: components can be tagged with constraints regarding their
usage, but global constraints regarding (sub-)systems are permitted as well. In short, every con-
straint usually expressed in version selection is also permissible as a component feature, and applies
to the configuration as soon as the component is included.

The benefit of localization is that one single language can be used to specify constraints, to spec-
ify the component features, and to select component versions. But this benefit is also a drawback:
the chosen language must be expressive enough to encompass existingSCM selection schemes, yet
simple enough to keep mutual consistency of configuration constraints decidable. Checking con-
straint consistency can be a hard task; at least the existingSCM selection and identification schemes
should be handled efficiently. With feature logic, we hope having chosen a well-established foun-
dation which addresses all these issues.

3.3 Features of Configurations

Pure intersection is not appropriate for all features. For features likeauthor or status, it makes
perfect sense to differ across components;object features differ by definition. Theseindependent
featuresmust depend on the specific component. A possible approach to do so is to prefix all
independent featuresf with the component namek, resulting in orthogonal features liketty-author
or screen-status[64]. A far better alternative is to express this dependency explicitly in feature
logic, using implications [object: k] → T that enforce the versionT whenever the componentk is
required.

To construct such implications, we define a specialaggregation operator.The operator “+uI ” is
similar to “u”, but has a special handling of independent features: instead of unifying them, it makes
them dependent on the specific component;objectfeatures are stripped altogether.

Let I = { f1: >, f2: >, . . . , fm: >} be a feature term denoting independent features, wherefi 6=
objectholds for all 1≤ i ≤ m, and letK1, . . . , Kn denote components. For each componentKi , let
ki , K ′

i v I , andK ′′
i 6v I be chosen such that

Ki = [object: ki ] u K ′
i u K ′′

i

holds—that is,ki is the unique component identifier,K ′′
i denotes the independent features ofKi ,

and K ′
i denotes the ordinary (non-independent) features ofKi . Theaggregationof all Ki , written

K1 +uI K2 +uI · · · +uI Kn, is then defined as

K1 +uI K2 +uI · · · +uI Kn = + ⊔

1≤i≤n
I

Ki = ⊔

1≤i≤n

K ′
i u (

[object: ki ] → K ′′
i

)
.
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Given an aggregationC = S+uI T , we can properly selectSandT by intersectingC with [object: s]
and [object: t ], respectively:

Proposition 11 Let S v [object: s] andT v [object: t ] denote components, andI denote indepen-
dent features, as described above. Then,

[object: s] u (S +uI T) v S (6)

holds.3

Proof. Let T = [object: t ] u T ′ u T ′′, as defined above. Then,U = [object: s] u (S +uI T) =
[object: s]u(

S′uT ′u(
[object: s] → S′′)u(

[object: t ] → T ′′)). But since [object: s]u(
[object: s] →

S′′) = [object: s] u (∼[object: s] t S′′) = [object: s] u S′′ and [object: s] u (
[object: t ] → T ′′) =

[object: s]u(∼[object: t ]tT ′′) = [object: s], we haveU = [object: s]u(S′uT ′uS′′) = (
[object: s]u

S′ u S′′) u T ′ = Su T ′ v S. 2

Using the aggregation operator, we can extend (5) withobject features and independent fea-
tures and formally define how features propagate from components to configurations. If we have a
configurationC composed ofn componentsK1, K2, . . . , Kn with Ki v [object: ki ], and a termI
denoting the independent features, the configurationC is identified by

C = [object: k1 t k2 t · · · t kn] u K1 +uI K2 +uI · · · +uI Kn

= [object: k1 t k2 t · · · t kn] u + ⊔
1≤i≤n

I
Ki ,

(7)

that is,objectfeatures are united, independent features are made dependent on the respective com-
ponent, and all other features are unified.

As an example, consider two components

screen= [
object: screen,author: lisa, resolution: {high,medium}]

driver = [object: driver,author: tom, resolution: high] .

Let I = [author: >] be the set of independent features. According to (7), the configurationC
containingscreenanddriver is

C = [
object: {screen,driver}, resolution: high,

(object: screen→ author: lisa), (object: driver → author: tom)
]
.

Besides unifying the non-independent features ofscreenanddriver to resolution: high, the termC
properly selects Lisa’sscreenobject and Tom’sdriver object—that is,C u [object: screen] v
[author: tom] andC u [object: driver] v [author: lisa].

We close by defining somepropertiesof configurations, following (7). Formally, aconfiguration
is a setC v [object: c], wherec is a feature term identifying the set of configuration components.
A configurationC is calledconsistentwith respect to its features ifC 6= ⊥—that is, if the number
of possible configurations is non-zero. A configurationC is called unambiguous orbound if it is
an aggregation of component versions; formally,C is bound if it is a setC v [object: c] such that
|C| = |c|. If it is not bound (|C| > |c| holds), a configurationC is called ambiguous, dynamic, or
abstract.

3In [60], we gave an alternate definition of the aggregation operator, for which (6) did not hold.

14



3.4 Features of Derived Components

In theSCM context, we must not only describe how features propagate from components to config-
urations. An importantSCM topic is the identification ofderivedcomponents, constructed automat-
ically from a configuration of source components—using the well-knownMAKE program or one of
its successors.

To determine the features of derived components, we use a variation of (7). Again, derived
components must be consistent, which implies that the source configuration be consistent as well.
To ensure consistency across multiple derivation stages, each derived component must inherit the
features of its source components, just as a configuration inherits the features of its components.

Formally, if we have a componentK v [object: k] derived from n source components
K1, K2, . . . , Kn, and a termI denoting the independent features,K is identified by

K = [object: k] u K1 +uI K2 +uI · · · +uI Kn

= [object: k] u + ⊔

1≤i≤n
I

Ki ,
(8)

where the explicit setting of theobjectfeature removes all implications generated by the aggregation
operator—only non-independent features remain to be unified.

As an example of derivation, consider the editor example from figure 3. Let us denote the
three components operating system, screen type, and screen device by [object: os,author: tom],
[object: st,author: lisa], and [object: sd,author: john], respectively; let the independent features be
I = [author: >]. If we derive aneditor component from aDOS/EGA configuration, it is identified
by

K = [object: editor]

u (
[object: os,author: tom, screen-type: {ega, tty}, concurrent: false]

+uI [object: st,author: lisa, screen-type: ega, screen-data: bitmap]

+uI [object: sd,author: john, screen-device: dumb,data: D, screen-data: D]
)

= [object: editor, screen-type: ega, concurrent: false,

screen-data: bitmap, screen-device: dumb,data: bitmap] ,

that is, theobject features and independent features of the source components are stripped, and all
other features are unified. In [63], we discuss aMAKE extension using this mechanism to create and
re-use derived components from consistent source configurations.

4 Versioning Dimensions

We now turn to theSCM protocol layer, introducing specificversioning dimensions.SCM liter-
ature distinguishes four versioning dimensions: historic (revisions), logic (variance), cooperative
(workspaces), composition (configurations) [42, 14]. It is a well-known goal ofSCM to inte-
grate these dimensions: the concepts oforthogonal versioning[42], and three-dimensional ver-
sioning [14], for instance, each integrate three of these four dimensions. The problem is that these
models use different sets of queries and services due to the differing motivations, which results in a
lack of orthogonality.
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Figure 4: A revision history

In this section, we show that each of these versioning dimensions can be realized in the version
set model. The underlying foundation, feature logic, isuniform: all versions are identified with
their features, regardless of their versioning dimension; theSCM primitive layer makes no such
distinction as well. At the protocol level, however, we can introducediversity: by giving special
meanings to features, we distinguishing versioning dimensions. We have already seen how to handle
variance and composition dimensions; in this section, we turn to the more specific historic and
cooperative dimensions.

4.1 Revisions and Changes

As initial concepts, we show how to realizechangesandrevisions.A revision is a version intended
to supersede another version (in contrast to avariant) [59]. Typically, a revision is the product
of a changeapplied to an existing revision. In traditionalSCM, these changes are controlled by
version-oriented versioning.Version-oriented versioning controls the impact of changes byseri-
alizing them—one change is applied after the other, forming arevision history. As an example,
consider the revision history in figure 4, where individual revisions of a version set are denoted by
R0, R1, R2, . . . and so on. Each revisionRi is created by applying a change (denoted byδi ) to some
originating revisionsRj , . . . , Rk. As an example, consider revisionR5, which was created from
R2 andR4 by applying the changeδ5.

In version-oriented versioning, each change implies several previous changes. In our example,
having the changeδ4 applied requires the previous application of changeδ3; likewise, δ5 implies
all other changes exceptδ6. As several configurations are excluded—there simply is no way to
include the changeδ5 without also havingδ2 applied—, it is quite easy to analyse the impact of a
single change. However, version-oriented versioning becomes a problem when changes are largely
independent of each other—i.e., when one wants a configuration with certain changes applied, but
other excluded. These weaknesses are addressed bychange-oriented versioning[20, 19, 36], where
versions are merely the product of applying a change ordelta to a baseline,an already existing
version set.

In the version set model, we have adopted change-oriented versioning. Each revision is identi-
fied by a conjunction ofdelta featuresstanding for the change application. A revisionR is a subset
of 1i = [δi : >], if the changeδi has been applied;R is a subset of∇i = ∼1i = [δi ↑] if the
changeδi hasnot been applied. The revisionR4 in figure 4, for instance, would be identified by

R4 = 11 u ∇2 u13 u14 u ∇5 u ∇6 , (9)

that is, only the changesδ1, δ3, andδ4 have been applied. Again, revisions are identified and selected
just like any other versions, using features.

While a selection scheme enumerating the applied changes is convenient for changes that can
be applied independently from each other, it becomes a pain when, say, revision 211 must be se-
lected by enumerating 211 changes to be applied. A unified versioning model thus must find a
way to accommodate both the convenience of version-oriented versioning as well as the freedom of
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change-oriented versioning. The idea is to exclude certain change combinations throughrevision
constraints.

Mutual exclusions. As an example, consider a version setR where selecting an arbitrary change
combinationSshould result in a consistent productRu S—except forRu (15 u16), which
should be inconsistent (“The changesδ5 andδ6 do not integrate”). This can be achieved by
making R a subset of∼(15 u 16) = ∇5 t ∇6; it is easy to see thatR u S v (∇5 t ∇6) u S
becomes inconsistent whenS v (15 u 16) holds. Generally, to exclude the combination
of two changesδi andδ j in a version setR, it suffices to makeR a subset of the revision
constraint∇i t ∇j .

Change implications. Another problem is how to make changes rely on each other. Let us assume
that R contains no version where the changeδ9 has been applied, but notδ7—we would
say, the changeδ9 implies the changeδ7. This implication becomes explicit by makingR a
subset of19 → 17; in this case,R u (19 u ∇7) v (19 → 17) u (19 u ∇7) = (19 →
17) u ∼(19 u 17) = ⊥ holds, effectively excluding the change application. Generally, to
ensure that a changeδi implies a changeδ j in a version setR, it suffices to makeR a subset
of the revision constraint1i → 1 j .

A simple example of revision constraints is a linear revision history, where each change implies
all previous changes. As an example, let a revision setR be a subset of(1211 → 1210) u (1210 →
1209) u · · · u (12 → 11). We can easily select revision 211 just by selectingR u 1211: all other
changes are automatically implied by the revision constraints. We see how revision constraints
effectively control the application of changes and inhibit inconsistent change combinations—simply
by assigning appropriate features to version sets.

4.2 Constraints and Histories

By specifying appropriate revision constraints, it is even possible to capture arbitrary revision histo-
ries, realizing full version-oriented versioning. As an example, consider the version setR containing
R0, . . . , R6 created through the changesδ1, . . . , δ6, as shown in figure 4. Following (4),R could
be represented asR = R0 t · · · t R6, where eachRi is a conjunction of included and excluded
changes, asR4 in (9). A far more elegant representation is obtained through revision constraints.
For instance,R must be a subset of(12 → 11), sinceδ2 relies onδ1, andR must also be a subset
of ∇2 t ∇6, as the changesδ2 andδ6 are mutually exclusive. In fact,R can be entirely represented
through revision constraints, denoting the complete revision history:

R = (12 → 11) u (13 → 11) u (14 → 13) u (15 → 12) u (15 → 14) u (16 → 14)

u (12 u13 → 15) u (∇2 t ∇6) . (10)

How are these constraints obtained? Formally, for any two revisionsRi andRj , let Ri, j be their
lowest common ancestor in the revision history, and letRi, j be their highest common descendant.
Let us denote the changes leading up toRi , Rj , Ri, j , andRi, j by δi , δ j , δi, j , andδi, j , respectively;
the version sets1i = [δi : >], 1 j = [δ j : >], 1i, j = [δi, j : >], and1i, j = [δi, j : >] are defined
as usual. ShouldRi, j not exist, then1i, j = ⊥ holds. Let nowCi, j be aformal revision constraint
defined as

Ci, j = (1i t1 j → 1i, j ) u (1i u1 j → 1i, j ) (11)
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If a changeδi implies a changeδ j , the revision constraintCi, j becomesCi, j = (1i t 1 j →
1i ) u (1i u 1 j → 1 j ) = 1 j → 1i ; if δi andδ j are mutually exclusive,Ci, j v (1i u 1 j →
1i, j ) = (1i u1 j → ⊥) = ∇i t ∇j holds.

It now turns out that the intersection of allCi, j is equivalent toR:

Proposition 12 A revision setR can be represented as union of all revisionsRi , each identified by
an intersection of included and excluded changes, or as an intersection of revision constraintsCi, j ,
as defined in(11). Both representations are equivalent.

R = ⊔

1≤i≤n
1< j<i

Ci, j =
⊔

0≤i≤n

Ri . (12)

Proof. See [62]. 2

In our example, the representation in (10) is obtained via (12) and removing superfluous constraints,
following the general scheme(1i → 1 j )u (1 j → 1k) v (1i → 1k). We see how proposition 12
realizes version-oriented versioning on top of change-oriented versioning, using appropriate con-
straints.

The maintenance of these implications is the duty of theSCM protocol layer, hiding them from
the end user; in section 6.1, we discuss a simple check-in/check-out protocol realized through revi-
sion constraints. OurSCM primitive layer has no notion of revisions—all it knows about are com-
ponents identified by features, and it does not distinguish between specific feature types. Hence,
revision constraints may also be used to express implications between delta features and other fea-
tures.

In CLEARCASE, for example, users can assign names to edges in the revision history and se-
lect revisions through a disjunction of name patterns; such naming of changes is easily expressed
through an implication between the name and the appropriate delta features. Another example is
currency:we cannot simply devise some revision as “current”, because currency may differ across
variants. Hence, currency constitutes a part of theSCM protocol, expressed through means of the
SCM primitive layer. A simple scheme to denote currency is to use a set [current: >] that contains
the current variants by implying certain revisions. An implication

(
[current: >,os: unix] → ∇5)

ensures that whenever the currentunix variant is requested, the changeδ5 is excluded, possibly ex-
cluding subsequent changes through further revision constraints. The maintenance of currency is
also illustrated in section 6.1.

By dropping any distinction between delta features and variant- or process-specific features,
and by unifying the concepts of attribution and revision histories, ourSCM primitive layer allows to
create, select, and revise arbitrary revision/variant/component combinations as in orthogonal version
management [42], still while allowing refinement and inheritance as in object-orientedSCM [58].

4.3 Cooperation through Locks and Workspaces

Besides components, variants, and revisions,SCM literature distinguishes a fourth versioning di-
mension. Team functionalityenables a team of developers to develop and maintain the software
product. The most basic team functionality is a cooperation strategy that ensures that the changes
of an individual developer are not accidently superseded by another developer.

Using aconservative cooperation strategy,developers mustlock each component version or
configuration they wish to change. Locks are exclusive: While a version or configuration is locked,
other developers are excluded from creating new revisions. Using version sets, locks are managed
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like currency: The set [locked: >] contains all locked versions,∼[locked: >] = [locked↑] the un-
locked versions. AnSCM system locking a component versionK would do so by changing its
features such thatK v [locked: >]; any selection ofK from [locked↑] would fail. As locking is
orthogonal to all other features, arbitrary version sets can be locked.

The second generation ofSCM systems introducedoptimistic cooperation strategies[5, 11].
Rather than preventing concurrent changes, they rather attempt to integrate changes later. The cen-
tral concept here is the notion of aworkspace,the individual area of a developer, isolating him from
changes made by other developers, and isolating others from his changes.

In our model, a user’s workspace is just a variant identified by a feature termW v [user: >]—
that is, [user: lisa] denotes Lisa’s workspace, and [user: tom] is Tom’s workspace. As theuser
feature may have only one value, all workspaces are disjoint; that is, developer Lisa in her
workspace [user: lisa] will not see any changes from the [user: tom] workspace. Tom may cre-
ate new revisions1i in his workspace, or change currency; as his changes are always subsumed by
[user: tom], Lisa’s workspace will remain unaffected. To apply Tom’s changes in her workspace,
Lisa must integrate Tom’s changes and her own changes. Lisa’s changes can be identified by com-
paring the contents of her workspace [user: lisa] with the contents of the originating version set
∼[

user: {lisa, tom}]; Tom’s changes can be identified likewise.
In our setting, locks and workspaces are part of theSCM protocol, as are currency and revisions.

As they are realized through dedicated features, they can be freely integrated with other features in
selections and constraints. Tom may declare his workspace as [user: tom,os: unix], thus confining
all changes to his workspace and theUNIX version. Lisa may wish to work on the current revision
only, but including all variants, thus choosing her workspace as [user: lisa, current: >]. Further
dedicated features may be used for modeling teams or geographically distributed sites, ensuring
orthogonality and uniformity at the interface between theSCM primitive andSCM protocol layers.

4.4 Practical Extensions

Although our versioning model subsumes all common identification and selection schemes as found
in SCM systems, it may prove useful to support additional selection schemes in practice. SomeSCM
systems select component versions through a set of configuration rules, usingPROLOG-like syntax
as inSHAPE[30] or pattern matching rules as inCLEARCASE[31]. The basic idea is that the first
matching rule is applied. An alternate scheme is realized in preference clauses [29], where each con-
figuration rule refines the results of the previous one, until an unambiguous version is selected. Such
schemes cannot be expressed in feature logic directly, since a versionS being unambiguous means
that |S| = 1 holds, and checking the cardinality depends on a specific interpretation. However,
the semantics of such selection schemes can be described on top of feature logic, usingpreference
operators:

S1 and-thenS2 =
{

S1 if S1 is bound,

S1 u S2 otherwise
S1 or-elseS2 =

{
S1 if S1 6= ⊥,

S2 otherwise

with the equivalencesT u (S1 and-thenS2) = (T u S1 and-thenT u S2) andT u (S1 or-elseS2) =
(T u S1 or-elseT u S2). Using “and-then” and “or-else”, we can expresspreferencesin our selection
terms. For instance,S = (

[current: >] or-else [fixed: true]
)

first selects the current version, and, if
there is none, a “fixed” version;S = (

[12,∇3] and-then [os: unix]
)

selects revision 2 and, should
this choice be ambiguous, theUNIX variant.

Another practical extension are additional constraints, expressing properties whose mutual con-
sistency cannot be decided in feature logic alone. Useful examples include arithmetic constraints
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(date< 1997) or function interfaces (gcd: int× int → int). Such constraints can be handled as addi-
tional constraints in Smolka’s feature unification algorithm when deciding about the inconsistency
of simple feature terms; they can be evaluated as soon as their variables (features) are instanti-
ated [52].

When using such extended constraints, users should be aware that the inconsistency of a con-
junction of extended constraints cannot always be determined. In practice, one would use well-
known constraint solving systems like the Simplex Method or language-specific consistency check-
ers to determine most inconsistencies.

5 The Featured File System

To find out how the version set model works in practice, we have realized the version set model in
an experimentalSCM system, calledICE for Incremental Configuration Environment.ICE provides
access uses to version sets through a virtual file system calledFFS. TheFFSrepresents version sets
in the well-known#if . . . #endif format, which identifies differences between versions. Using the
FFS as example, we explore the feasibility of a repository based on version sets; by defining the
effects of basic file operations, we provide a means to describe operations at theSCM protocol layer.

5.1 Representing Version Sets

Upon designingICE, the first problem that arose was the representation and efficient storage of ver-
sion sets at theSCM primitive layer. As it was our aim to make ambiguity transparent to developers,
we wanted to represent version sets in a format suitable for human readers.

The by far most common representation of multiple versions in a single source is the C pre-
processor (CPP) representation. Code pieces relevant for certain versions only are enclosed in#if C
. . . #endif,whereC expresses the condition under which the code piece is to be included. Upon
compilation,CPPselects a single version out of this set, feeding it to the compiler. (CPP’s additional
functionality, such as macro expansion and file inclusion, is of no interest here.)

Using conditional compilation, the programmer may perform changes simultaneously on the
whole set of versions. Unfortunately,CPPtechnology does not scale up: as the number of versions
grows, the representation can become so strewn withCPPdirectives that it is hard to understand, yet
harder to change. Except for a small amount of variance,CPPusage is thus deprecated in theSCM
community. But as this rejection applies to the tool, not the technique, we could represent version
sets inCPPformat, giving the user a familiar, well-understood representation.

ICE uses theCPPformat to represent version sets and it usesCPPterms (i.e. boolean C ex-
pressions) to represent feature terms. In theCPPrepresentation, feature names are expressed as

Feature Term CPPExpr
> 1
⊥ 0
a −/−
x −/−
f : a f ≡ a
f : ∼a f 6≡ a

Feature Term CPPExpr
f : ∼0 f
f : S −/−
f : > defined( f )
f ↑ ¬defined( f )
f ↓ g f ≡ g
f ↑ g f 6≡ g

Feature Term CPPExpr
∼S ¬S
Su T S∧ T
St T S∨ T
S → T ¬S∨ T
∃x(S) −/−

Table 2: Translating feature terms intoCPPexpressions
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get_load.c[os: unix]
void InitLoadPoint()
{

extern voidnlist();
#if defined(AIXV3) ∧ ¬defined(hcx)

nlist(namelist, 1, . . . )
#else

nlist(KERNEL_FILE,namelist);
#endif
#if defined(hcx)

if (namelist[. . . ].n_type≡ 0 ∧
#else

if (namelist[. . . ].n_type≡ 0 ∨
#endif

namelist[. . . ].n_value≡ 0) {
xload_error(. . . );
exit(-1);

}

=

get_load.c[os: unix,hcx: >]
void InitLoadPoint()
{

extern voidnlist();
nlist(KERNEL_FILE,namelist);
if (namelist[. . . ].n_type≡ 0 ∧

namelist[. . . ].n_value≡ 0) {
xload_error(. . . );
exit(-1);

}

t

get_load.c[os: unix,hcx↑]
void InitLoadPoint()
{

extern voidnlist();
#if defined(AIXV3)

nlist(namelist,1, . . . )
#else

nlist(KERNEL_FILE,namelist);
#endif

if (namelist[. . . ].n_type≡ 0 ∨
namelist[. . . ].n_value≡ 0) {
xload_error(. . . );
exit(-1);

}

Figure 5: Version sets represented asCPPfiles

CPPsymbols. In table 2, we have summarized the mapping from feature terms toCPPexpressions;
for better readability, the C tokens==, != , &&, || , and ! are represented as≡, 6≡, ∧, ∨, and¬,
respectively.

For nearly every feature term, there is an equivalentCPPexpression. Exceptions (denoted by
“-/-”) include atoms (unless occurring as feature values), variables, and composed feature values.
All of these can be used inCPPexpressions by enclosing them in square brackets. Vice versa, every
CPPexpression has an equivalent feature term representation, with the exception of arithmeticCPP
expressions, which are treated as atoms in feature terms. TheCPPprogram itself is never used by
ICE; only the syntax and semantics ofCPPfiles and expressions are used.

We will now show how to realize selection and union on version sets represented asCPPfiles.
Let F be aCPPfile representing all source code versions; that is, a version set inCPPrepresentation.
To select a subset ofF using a selection termS, that is, the setF u S, we proceed as follows. For
each code piece enclosed in#if C . . . #endif,the governing feature termC is intersected with the
selection termS. If C u S= ⊥, the code piece is removed fromF . If C u S = S, the#if directive is
removed, becauseSv C. Otherwise,C is simplified with respect toS, according to proposition 10.
The new (smaller)CPPfile can be characterized byS and is writtenF [S] = F u S (obviously,
F = F [>]).

Figure 5 shows the constrainedCPP file get_load.c taken from xload, a tool displaying
the system load for several architectures. It shows two subsets ofget_load.c[os: unix]: a
hcx version get_load.c[os: unix][hcx: >] = get_load.c[os: unix,hcx: >] and a non-hcx version
get_load.c[os: unix][hcx↑] = get_load.c[os: unix,hcx↑] (note the simplifiedCPPexpressions). Fur-
ther selection and refinement is possible until a singleton version set is obtained—that is, a source
file without #if directives.

The union of twoCPPfiles F [S] andF [T ] can be computed throughF [S] t F [T ] = F [St T ].
A compactCPPrepresentation ofF [St T ] can also be constructed even ifF does not exist. The
idea is to compare the two files textually, using aDIFF algorithm [35] initially ignoring allCPP
directives. In the resulting fileF [St T ], text parts occurring only inF [S] or F [T ] are governed
by Su ∼T or ∼Su T , respectively; common parts are governed bySt T . Read from right to left,
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figure 5 demonstrates that

get_load.c[os: unix,hcx: >] t get_load.c[os: unix,hcx↑]

= get_load.c
[
[os: unix,hcx↑] t [os: unix,hcx: >]

]
= get_load.c[os: unix] ,

where theDIFF algorithm determines a compact representation for the generated version set
get_load.c[os: unix]; all governing expressions are simplified with respect to [os: unix]. We see
that feature terms, introduced as a syntactic device for the denotation of version sets, now have a
precise semantics in terms ofCPPfiles.

5.2 Transparent Version Set Access

For integration with software development environments, theSCM primitive layer must make its
configuration items accessible in some way. The least common denominator for today’s environ-
ments is afile system;and we know of noSCM tool that would not provide a file system interface.

Most of today’sSCM tools realize item access by explicit copying of source components from
repositories (databases) to individual file systems and vice versa. This approach has the advan-
tage that database technology like transaction safety or advanced query services are available for
the repository; workspaces may be realized as (possibly ambiguous) sub-databases of the reposi-
tory [15]. The drawback is that configuration items are no more underSCM control, once copied to
the individual file system.

Recent approaches thus allow configurations and workspaces to be selected and manipulated
as virtual file systems, representing individual views of the repository. Typical examples include
NSE [11], n-DFS [18], andCLEARCASE[31]. In these systems, user workspaces are made part of
some classical repository; the actual repository is either hard-wired (as inNSE andCLEARCASE)
or generic (as inn-DFS). The entire repository is then made accessible as virtual file system. While
being convenient for users, this technique also gives theSCM system direct control over user’s
workspaces. It allows for space savings throughcopy-on-write techniques (also known asview-
pathing), sharing common files between several developers.

We have chosen theCPPrepresentation, as introduced above, as base for a virtual file system in
ICE, calledFFSfor featured file system,and realizing an exampleSCM primitive layer. In theFFS,
all files occurring in multiple versions can be accessed by appending a version specification to the
file name—just as in our notation above.4 The following basic operations are supported by theFFS:

Read. Read access toF [S] is accomplished by selection, as shown; opening the virtual file
tty.c[user: tom] gives access to the version set [user: tom] from the filetty.c.

Write. SinceF = F [∼St S] = F [∼S] t F [S], write access toF [S]—that is, changingF [S] to
F ′[S]—is implemented by generatingF ′ = F [∼S] t F ′[S].

In practice, this means that any version subsetF [S] of some multi-version document can be edited
and changed by invoking an ordinary text editor.CPPdirectives indicate the common and differing
parts between versions. Upon each write ofF [S], the FFSre-determines the differences andCPP
directives in the original fileF . This is very similar to using a multi-version editor [46], except that
the maintenance of multiple versions is done at the file system level.

4The currentFFSimplementation uses theCPPrepresentation in version specifications.
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.[]
[] 1024 . /
[] 1024 . ./
[user: tom] 16233 newtty.c
[] 78654 screen.c
[user: lisa] 1024 test/
[] 15969 tty.c

=

.[user: tom]
[] 1024 . /
[] 1024 . ./
[] 16233 newtty.c
[] 78654 screen.c
[] 15969 tty.c

t

.[∼user: tom]
[] 1024 . /
[] 1024 . . /
[] 78654 screen.c
[user: lisa] 1024 test/
[] 15969 tty.c

Figure 6: Versioned directories

To express that a file be existent in some configuration only, we use theCPP#error directive.
The#error directive stands for a non-existent file: each#error directive inF governed by a feature
term S indicates thatF [S] is non-existent. We thus add the followingFFSoperations:

Create. Creating a fileF [S], where F was non-existent before, createsF containing an#error
directive governed by∼S—that is,F [∼S] is still considered non-existent.

Remove. Removing a fileF [S] augmentsF with an#error directive governed byS, such that only
F [∼S] is accessible.

As an example, consider the creation of a fileprinter.c[data: postscript]. After creation,printer.c
will contain the lines#if ¬(data ≡ postscript) . . . #error . . . #endif—any attempt to read
printer.c[∼data: postscript] will fail.

An alternate interpretation of “a fileF exists in some specific configurationS only” is “the
features ofF are∼S”. Hence, creation and removal can be used to set and manipulate the features
of a file F : To set the features of a fileF to S, removeF [∼S]. This operation is calledrenaming:

Rename. Renaming a fileF to F [S] is equivalent to removingF [∼S].

Thistaggingtechnique is further illustrated when discussing the composition protocol in section 6.2.

5.3 A Versioned File System

Besides versioned files, theFFSprovidesversioned directories,covering state and changes of the
entire file system—that is, the whole configuration universe. Basically, a versioned directory has
the same format like an ordinary directory, except that each directory entry is associated with a
governing feature term.

A directory entry governed by the feature termC is visible only ifC is a subset of the selection
termS, or C v S. If Tom creates a new filenewtty.cin his workspace [user: tom], thenewtty.centry
in the current directory “. ” is governed by the term [user: tom], as illustrated in figure 6; in Lisa’s
workspace, that is, the. [user: lisa] directory version,newtty.cis non-existent.

If a versioned directoryD[T ] is part of the current path, the directory versionT affects all con-
tents of the directory, including subdirectories and all files contained therein; any file versionF [S]
in D[T ] will be implicitly read asF [S u T ]. Hence, opening a directory. [os: unix] selects the
UNIX variants of all files and subdirectories; all changes applied in a. [user: tom] directory or below
affects Tom’s workspace only.

By changing the current directory, users can switch between workspaces and versions. Entering
cd . [current: >]/. [os: ∼dos] (or, shorter,cd [current: >]/[os: ∼dos]) makes sure all subsequent
changes apply to the current revision in the non-DOS variants only. As illustrated in figure 7, such
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. /

w
------------------→

. /[os: ∼dos]/

w
------------------→

. /[os: unix]/

w
y w

y w
y

. /[user: tom]/

w
------------------→

. /[user: tom]/[os: ∼dos]/

w
------------------→

. /[user: tom]/[os: unix]/

Figure 7: Narrowing the configuration space in theFFS

directory changes may be also be performed incrementally, subsequently narrowing the configu-
ration space as more and more features are specified. Each workspace, variant, or revision is an
individual view on the configuration space.

The features of a directory are set like the features of individual files, by removing the com-
plement. Removing the directory version. [tested↑] makes the current directory and all contained
items available in the [tested: >] version only. This is convenient for setting the features of all files
in one directory or file system subset.

Besides accepting version specifications as parts of the file path, all other features of file sys-
tems still apply. The “. .” directory refers to the second last component from the current path; that
is, testdir/[user: ∼tom]/. . is equivalent totestdir. File modes, times, and access restrictions are
versioned as well; a file may occur several times in a (versioned) directory, each time with different
attributes and a different governing feature term.5

Technically, theFFSis realized through a modifiedNFS server [45], making theFFSavailable
in the network. Version sets are stored as ordinaryCPPfiles, allowing for simple recovery using
CPP; a special format is available for binary files [61]. TheFFSserver keeps version sets in a cache
once they are read; changed version sets are also kept in the cache until a superset is requested.
Second and later version set accesses are served in constant time. In practice, this means that once
a directory version is entered, theFFSserver has the same performance as an ordinaryNFS server.
Should this still be considered too slow, alternateFFSrealizations like dynamic system libraries as
in n-DFS[18] or virtual device drivers as inCLEARCASE[31] could bypass theNFSbottleneck on
local file systems and show virtually no difference from direct file access. But still, all files common
to several version sets are cached only once, showing the space-saving effects of copy-on-write
techniques.

5In the current implementation, a file is uniquely identified by its name. While versioning contents and modes of
a file exploits a maximum of commonality through theCPP representation,renaminga file inhibits a commonCPP
representation; futureFFSimplementations should add an extra indirection level here.
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In contrast to the virtual file systems realizes inNSEor CLEARCASE, theFFSdoes not enforce a
specificSCM policy. Instead, it provides the basic mechanisms for arbitrary version set access. The
specificSCM policy must be realized on top of theFFSby SCM tools that manipulate the version
sets. This is in contrast ton-DFS, where theSCM tools are located at the lowest level, realizing
repository access as well as basicSCM policies. In practice, we do not expect developers to interact
directly with theFFSexcept for most unusual circumstances. Rather, each developer will work in
some private workspace like. [user: lisa, current: >] and useSCM tools that realize specificSCM
policies by changing the contents of [current: >]. This issue is explored further when discussing
SCM protocols in section 6.

6 Unified Versioning

In this section, we use theFFSto describe the semantics of the four majorSCMprotocols,taken from
Feiler’s survey on configuration management models in commercial environments [16]. We show
how to implement these protocols on top of theFFS, and we give some ideas on how these protocols
can be integrated. The number ofSCM protocols anSCM system supports is still an indicator of its
flexibility both below and above the protocol layer; it turns out that all four protocols can be realized
on top of theFFS, demonstrating the unifying nature of the version set model.

6.1 The Checkin/Checkout Protocol

We begin with thecheckin/checkout protocol,as realized in the well-knownRCSandSCCStools. As
sketched in section 5.2, theseSCM tools provide operations to copy revisions from a file system to a
repository(check in)and retrieve them back again(check out),as illustrated in figure 8. Individual
developers canlock branches of the revision history against further changes.

We now show how to realize the checkin/checkout protocol on top of theFFS. Let each reposi-
tory be realized through a fileF [R], whereR is a conjunction of revision constraints as discussed
in section 4.2. In order to select an individual revisionRi , we introduce a special featurer i such
that [r i : >] includes all changes leading up toRi and excludes all later changes. The termR then
contains additional constraints in the form [r i : >] → 1i u ∇j u · · · u ∇k, whereRj , . . . , Rk are the
revisions immediately derived fromRi ; obviously,Ru [r i : >] = Ru1i u∇j u · · · u∇k = Ri holds.
The current revision is maintained by a currency constraint [current: >] → [r i : >] in R.

The operations of the checkin/checkout protocol are described below.

Check in. To add a new current revision fileF ′ to the repositoryR, let i be some unique identifier
such thatF [1i ] = F [∇i ] holds; in other words,i is a yet unused revision number.

1. Check locks. IfF [current: > u locked↑] does not exist, thecurrent revision is locked;
abort the operation.

2. Store new revision. OverwriteF [1i ] with F ′. The new revision is now selected by
F [1i ]; the old revision set can be accessed asF [∇i ].

3. Maintain revision constraints. We require a constraintC = (1i → 1 j u · · · u 1k),
where1 j , . . . ,1k are the ancestor revisions. This way, including theδi change will
automatically include all earlier changes. This is done by renamingF to F [C], such
thatC becomes a feature ofF .

4. Maintain revision selector. RenameF to F
[
[r i : >] → 1i

]
, such that accessingF [r i : >]

returnsF [1i ].
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Figure 8: The checkin/checkout protocol

5. Maintain currency. The old currency is invalidated by renamingF to F [current↑]. The
new currency is established by renamingF to F

[
[current: >] → 1i

]
.

To add a revision with multiple ancestors, or to add a non-current revision (abranch), the
constraints are maintained according to (11).

Check out. To check out the current revision, copyF [current: >] to some fileF ′. To check out
some earlier revisionRi , copyF [r i : >] to some fileF ′.

Lock. To lock any revisionRi by a useru, first check whether the revision is locked by someone
else; If F [r i : > u locked: ∼u] exists, abort the operation. Otherwise, renameF [r i : >] to
F [r i : > u locked: u], such thatF [r i : >] exists only in a [locked: u] version.

Unlock. To unlock any revisionRi locked by a useru, renameF [r i : > u locked: u] to F [r i : >].

The check inoperation is quite complex here, so let us illustrate it by an example. LetF be
a repository of revisionsR0, . . . , R6, as shown in figure 4; letR5 be the current revision. Hence,
the file F exists asF [R u (current: > → 16)], whereR is defined according to (10). Let us now
check in a new revisionR7. After step 2, the new version is accessed byF [17]; the “old” repository
is accessible asF [∇7]; the differences are enclosed in#if 17 . . . #endif or #if ∇7 . . . #endif. But
now, selecting an older revisionRi returns a non-singleton version set, as [r i : >] implies neither17

nor ∇7. This is handled in step 3: By changingR to R′ = R u (17 → 16) u [r7: >], selecting
F [r5: >] excludes the17 change, becauseR v ([r5: >] → ∇6) and henceR′ u [r5: >] v (17 →
16) u ∇6 v ∇7 holds. The remaining steps 4 and 5 ensure that bothF [r7: >] and F [current: >]
returnF [17].

6.2 The Composition Protocol

Thecomposition protocolextends the checkin/checkout protocol with the notions of configurations
and consistency. First, a set of components is composed; then, for each component, a version is
selected, resulting in a bound consistent configuration, as shown in figure 9. After composition
and selection have taken place, the selected components are maintained as in the checkin/checkout
protocol; each component has its individual repository.

The composition is usually no more than a simple enumeration of components, obtained by
refining dependency relationships6; the selection and identification schemes are mostly subsumed

6See [63] for a discussion of how to represent and version relationships.
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Figure 9: The composition protocol

by feature logic.
To realize the composition protocol, the configurations are maintained in the current directory.

The current directory “. ” records which versions of which components are part of the configuration.
Here are the operations of the composition protocol:

Tag. To assign an attributeT to a file F , renameF to F [T ] (or removeF [∼T ]). To remove the
attribute, make sure thatF [∼T ] does not exist, and then renameF [T ] to F .

Compose. To compose a set of components, letT be a feature term identifying the composition.
If the composition already exists, just enter the directory version. [T ]. Otherwise, select an
originating version. [S] with S w T . In the subset. [S]/[T ], set up the configuration by
adding or removing files as required.

Select. To make the configuration in. [T ] bound, refineT until each component occurs in one ver-
sion only (unlessT was already chosen such that the configuration is bound). This refinement
process is best done by an interactive tool that also ensures configuration consistency [61].

Composition and selection are realized most efficient ifT is a simple feature term, as stated
in proposition 9; a disjunction of configuration rules, as in existingSCM systems, is also handled
efficiently.

The single difficult point is to check consistency for ambiguous configurations, as discussed in
section 3.2. In theory, we can easily construct examples where each possible configuration must be
separately checked for consistency, resulting in a combinatorical explosion and exponential com-
plexity. In practice, we do not expect this to be a problem, due to the principles oflow couplingand
high cohesion.Low coupling confines changes to some function or module, leaving the interface
intact. This means that the ambiguity has no effect on other components and can thus be factorized
out in consistency checking.

On the other hand, high cohesion between functions or modules means that each change im-
plies several other changes: choosing one component version determines the versions of all other
components, narrowing the configuration space such that only few configurations remain. Whether
these properties apply to today’s software systems and how they affect their configurability is an
open issue.

6.3 The Long Transaction Protocol

The long transaction protocolis centered around the notion of aworkspace,as discussed in sec-
tion 4.3 and realized in Sun’sNetwork Software Environment(NSE) [11].
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Figure 10: The long transaction protocol

To realize the long transaction protocol on top of theFFS, we use the following setting. Each
useru is assigned an individual variant of the project top-level directory, identified by. [user: u].
The common project state is identified by. [user: project], such that it is disjoint from any user’s
workspace; we call it theproject workspace.As shown in figure 10, users synchronize their work
by propagating changes through the project workspace.

Each workspace has its own revision history. This is realized as in the checkin/checkout pro-
tocol, with the current revision being accessed directly through theFFS. Hence, each useru usu-
ally works in his workspace on the current revision(s) by entering. [user: u, current: >]. Entire
workspaces can also be versioned.

Some realizations of the long transaction protocol use a conservative strategy and thus rely on
component or workspace locking [16]. Our setting assumes an optimistic cooperation strategy and
thus the existence ofchange integrationtools. Several change integration algorithms are known,
either text-based [5], syntax-based [57], or semantic-based [6]; for our purposes, these algorithms
must be extended to handle version sets [61].

The operations of the long transaction protocol are as follows:

Originate. To create a new workspace for a useru, rename. [user: project] to . [user: {project,u}],
thus (virtually) copying the project workspace to the user’s workspace and making it accessi-
ble tou.

Update. To propagate changes from the project workspace. [user: project] to a user’s workspace
. [user: u], determine ther i such thatU = . [user: u, r i : >] = . [user: project, r i : >] is the
common origin of both workspaces. Integrate the changes between the two workspaces, us-
ing U as base, and store the result in the workspace of useru.

Commit. To commit all changes from a user workspace to the project workspace, first update
the user workspace, as described above. Then create a new current revision of the project
workspace containing a (virtual) copy of the user’s workspace.

Here is an example of using the long transaction protocol. Let Tom and Lisa each work in
their individual workspaces. [user: tom] and . [user: lisa]. Both have made changes to the current
revisionr7 of file tty.c. Lisa is the first to commit her changes. As no other changes totty.c were
made since her last update, a new revisionr8 of the project workspace is created, containing Lisa’s
changes totty.c. When Tom updates his workspace before his next commit, he must integrate Lisa’s
changes with his changes, using revisionr7 as a base. The integration is then committed, creating a
new revisionr9 of the project workspace incorporating both Lisa’s and Tom’s changes.
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Figure 11: The change set protocol

6.4 The Change Set Protocol

In section 4.1, we have already discussed the difference between version-oriented and change-
oriented versioning. In thechange set protocol,logical changesare the primary objects of inter-
est; versions are merely the product of applyingchange setsto a baseline, as shown in figure 11.
Change-oriented versioning provides a natural link tochange requests,as they originate from the
SCM process; each configuration can be identified by the incorporated changes.

Our revision concept, as discussed in section 4.1, already assumes that revisions are created
by applying changes to an ancestor revision; through appropriate revision constraints, users can
denote revisions by specifying change sets as well as by giving revision numbers, as discussed in
section 6.1.

Here are the operations of the change set protocol:

Change. To create a changeδi of a file F , create a new versionF [1i ] and change it as desired. The
file F may also be a file system subset, such that changes to several files become part ofδi .
If δi implies other changesδ j , . . . , δk, renameF [1i ] to F [1i u1 j u · · · u1k].

Apply. To apply a change setδi , . . . , δ j to an arbitrary baselineF [∇k], accessF [1i u· · ·u1 j u∇k].
If this version does not exist (because some of the changes are mutually exclusive), create it
by integrating the changes, as discussed in section 6.3.

In contrast to the version-oriented protocols, the change-oriented protocol makes extensive use
of change integration. Version repositories are thus structured by mutual exclusion rather than
implication: conflicting changesδi and δ j are indicated by a constraint(∇i t ∇j ). Just like in
version-oriented protocols, arbitrary sets of changes, variants, and components can be specified and
examined.

7 Performance and Complexity

Having shown how individual protocols are realized on top of theFFS, we can now discuss their
complexity issues. At first, this may sound surprising: Obviously, each individual protocol has
already be realized efficiently in some existingSCM system, so why bother? First, we must show
that this efficiency is not endangered by our formal base—in fact, the efficiency is due to a number
of constraints on the organization of features, which we must identify. Second, having understood
how these constraints makeSCM protocols efficient, we can turn to the problem ofintegratingSCM
protocols.
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7.1 What is it that Makes Today’s SCM Protocols so Efficient?

In proposition 5, we have stated that deciding the inconsistency of a feature term (i.e., deciding
whetherS = ⊥ holds) is anNP-complete problem. Several of ourSCM principles rely on deciding
inconsistency, which should result in exponential complexity. So, why isn’t this so in existingSCM
systems? Basically, there are three causes, each reducing complexity by imposing constraints on the
general problem.

Simplification. In existingSCM systems, components are either identified or selected using simple
feature terms; the general case of having non-simple feature terms for both identification and
selection never occurs. Hence, the preconditions for proposition 9 apply—whether a version
is member of the selection or not can simply be decided by evaluating the selection term
with the values furnished in the identification term, or vice versa. This makes the selection
operations in section 6 very efficient.

Implication chains. A second issue is specific to revision handling. Applying the revision con-
straint scheme from section 4.1, revisions are identified by long chains of implications like
(142 → 141) u (141 → 140) u . . . . A simple method to decide consistency of such an
implication chainR with a selection termS works as follows: for each1i w S, replace all
(1i → 1 j ) by 1 j and repeat the process for1 j . Likewise, for each∇i w S, replace all
(1 j → 1i ) = (∇i → ∇j ) by ∇j and repeat the process for∇j . This scheme allows for
efficient selection from “classical” revision histories, as realized in today’sSCM systems.

Orthogonality. As stated in proposition 7, if two feature termsSandT are consistent and have no
common features or variables, their intersection is consistent as well—which can be checked
in linear time. This property makes the creation of new versions efficient, since they are iden-
tified by new features which are orthogonal to all existing ones. Furthermore, orthogonality
simplifies the separation of concerns. For instance, maintenance of revisions and variants is
dramatically simplified as soon as revision features and variant features do not interact with
each other—for example, by placing aCPPfile underRCScontrol.

To conclude: as long as all versions are identified by simple feature terms, as long as we stick to
revision histories, as long as we keep revisions, workspaces, and variants separated from each other,
we can realize efficientSCM protocols. This is the status quo. But does our common foundation
also realize them efficiently?

7.2 A Case Study

To see howICE handles the majorSCM protocols, we have implemented the three methods stated
above as deductive shortcuts besides full-fledged feature unification. As a case study, we have
chosen theGNU MAKE program, which is publicly available in 17 revisions named 3.55 to 3.74.7

From theGNU MAKE distribution, we have considered a single file namedcommands.c; this file
happened to be modified in each revision. We wanted to know howICE performs in creating a
repository from the 17 revisions ofcommands.c, compared to well-known tools likeRCSandSCCS;
to see the effects of the deductive shortcuts, we also madeICE run without deductive shortcuts and
rely on feature unification alone.

7The recentGNU MAKE distribution as well as differences to earlier revisions are available from theGNU FTPserver
ftp://prep.ai.mit.edu/pub/gnu/ .
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commands.c[]
for

(
d = enter_file(".SUFFIXES" )→deps; d 6≡ 0; d = d→next

)
{

#if d370
unsigned intslen= strlen

(
dep_name(d)

);
#else

unsigned intlen = strlen(file→name);
#endif
#if d374

if
(
len> slen∧ ¬strncmp(dep_name(d),name+ (len− slen), slen)

)
#elif d370

if
(
len> slen∧ ¬strncmp(dep_name(d),name+ len− slen, slen)

)
#else

if
(
len> slen∧ streq(dep_name(d), file→name+ len− slen)

)
#endif

{
#if d370

file→stem= savestring(name, len− slen);
#else

file→stem= savestring(file→name, len− slen);
#endif

break;
}

}
if (d ≡ 0)

file→stem= "" ;

Figure 12: A multi-revision file

In figure 12, we see an excerpt of the version setcommands.c, incorporating all 17 revisions.
We see that the changed370replacedfile→nameby dep_name(d) and that changed374introduced
a parenthesized subexpression. In this excerpt, there is a maximum number of two features that
govern code pieces, making the excerpt quite readable. Butcommands.calso contains code pieces
governed by four features, which is a little harder to understand—but still an alternative to a set of
mutualDIFF runs. From the version setcommands.c, ICE can extract individual revisions in linear
time—due to the efficiency of simplification, selecting a specific revision does not take more time
than running the appropriateRCS, SCCS, or CPPcommand. All results would apply just as well, had
we chosen features for identifying workspaces or variants instead of changes.

While reading individual versions easily competes with existingSCM systems, the creation of
the repository showed up some unexpected problems. In figure 13, we have listed the execution
times for each checkin process inICE, as well as the checkin times forRCSandSCCS. Initially, we
had no deductive shortcuts inICE, relying onNP-complete feature unification alone, and execution
time grew beyond all limits, as shown in figure 13. But even with deductive shortcuts enabled,ICE
checkin time still grows with the number of revisions, while theRCSandSCCScheckin times remain
fairly constant. The difference withICE is thatICE compares entire version sets when determining
a new compact representation, as discussed in section 5.1; in our example, each new revision is
compared with the entire repository, and theICE inference engine must determine more and more
governing feature terms as the number of revisions grows. This is in contrast toRCS andSCCS,
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Figure 13: Revision checkin times (in seconds) forICE, RCS, andSCCS

which compare the new revision with the previous revision only.

The checkin problem could easily be solved by realizing theRCS/SCCSapproach and comparing
only the latest revisions. The data above shows thatICE is quite efficient when comparing small
revision sets; hence, the use of feature logic as a commonSCM foundation and the feasibility of a
commonSCMprimitive layer is unquestioned. But if we have multiple variants in multiple revisions,
all sharing some common code, which are the “latest” revisionsICE should compare? And to which
extent should variants be compared?

The central problem here is the integration ofvariancewith otherSCM concepts. Workspaces
that imply certain variants, variants that imply certain revisions, changes that apply to certain vari-
ants only, introduce disjunctions into revision constraints and thus make the deduction process
overly complex. Such interferences are indicators of poor structure of the configuration space, show-
ing low coherence and strong coupling between configuration threads. Although these interferences
can be uncovered by mathematical concept analysis of configuration structures [28], restructuring
software in order to eliminate them is still at its beginning [53]. Future research and experience
will show how far non-orthogonal variance can be allowed to interfere with otherSCM concepts and
how much of the resulting complexity is tolerable in practice. We see that while the realization of
an existingSCM protocol imposes no special problems, the integration ofSCM concepts remains an
open issue.
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8 Conclusion

The future of automatedSCM lies in a clear separation of primitives, protocol, and policy, based
on a clear semantic foundation. We have proposed feature logic and version sets as such aSCM
foundation. Version sets integrate and unify currentSCM versioning models and provide a well-
defined semantics for defining higherSCM layers. Feature logic is powerful enough not to endanger
flexibility at higherSCM layers, and yet sufficiently specialized to describe how features propagate
in theSCM process.

Our implementation of the version set model inICE has shown that this foundation has numer-
ous user-visible benefits. Through the feature deduction mechanisms, ambiguity is tolerated at all
SCM layers; sets rather than objects are the primary items of interest. TheSCM process is not con-
strained by process-specific decisions in lowerSCMlayers. All majorSCMprotocols can be realized
efficiently on top of aSCM primitive layer like theFFS. These features makeICE an environment
adapting to its users and their process, instead of vice versa.

Besides refining, extending, and evaluating theICE implementation, especially at the protocol
and policy levels, our future work will focus on three subjects.

Efficient integration of SCM concepts. We have seen that each of the four majorSCM models can
be realized efficiently on top of the version set model. We also have identified complexity
problems with non-orthogonalSCM concepts, especially variance. Based on further expe-
rience with theFFS and the underlying deduction engine, we want to investigate how far
integration ofSCM concepts can go without endangering efficiency. Furthermore, we want to
see which integratedSCM protocols are feasible, how they can be realized on top of theFFS,
and how far theSCM process is determined by these protocols.

Versioned component relations.While our model supports versioned components, it has no no-
tions on relationships between these components. What is required is a means to model ver-
sioned component relations—or relations between component versions. Generally, we plan to
extend the version set model such that features represent relationships between version sets.
1:m and 1:n relationships are modeled through non-functional features calledroles [50].
This extension will introduce and unify versioning concepts in graph-structured applications
such as computer-aided design (CAD) [26], or graph-based software development environ-
ments [13, 48]; first results are given in [63].

Support of the SCM process. On the conceptual level, we must find out if and howSCM processes
might be formalized using the version set model and whetherSCM tool behaviour may be
verified against theSCM process. We imagine organizing theSCM process entirely by manip-
ulating component features—changing their state fromproposedvia testedto released; SCM
procedures might be modeled by pre- and post-conditions specified as feature terms. Unfor-
tunately, there is no true methodology yet how components and versions should be attributed
with feature terms; experiences from other attribute-orientedSCM systems or faceted classi-
fication [41] might help here. Eventually, we hope to model the entireSCM process through
operations on version sets denoted by feature logic, providing a uniform semantic foundation
for all SCM layers.

ICE and theFFSwere developed as part of theNORA project8 which aims at utilizing inference
technology in software tools.ICE and theFFSas well as related technical reports can be accessed

8NORA is a figure in Henrik Ibsen’s play “A Dollhouse”. Hence,NORA is noreal acronym.
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through theICE WWW page,http://www.cs.tu-bs.de/softech/ice/ , and via anonymous
FTPfrom ftp://ftp.ips.cs.tu-bs.de/pub/local/softech/ice/ .
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