
GlueQoS: Middleware to Sweeten Quality-of-Service Policy
Interactions∗

Eric Wohlstadter†, Stefan Tai‡, Thomas Mikalsen‡, Isabelle Rouvellou‡, and Premkumar Devanbu†

†Center for Software Systems Research ‡IBM Watson Research Center
University of California, Davis, CA 95616 New York, USA

wohlstad,devanbu@cs.ucdavis.edu stai,tommi,rouvellou@us.ibm.com

Abstract

A holy grail of component-based software engineer-
ing is “write-once, reuse everywhere”. However, in
modern distributed, component-based systems support-
ing emerging application areas such as service-oriented
e-business (where web services are viewed as com-
ponents) and Peer-to-Peer computing, this is diffi-
cult. Non-functional requirements (related to quality-
of-service (QoS) issues such as security, reliability,
and performance) vary with deployment context, and
sometimes even at run-time, complicating the task of
re-using components. In this paper, we present a
middleware-based approach to managing dynamically
changing QoS requirements of components. Policies
are used to advertise non-functional capabilities and
vary at run-time with operating conditions. We also
provide middleware enhancements to match, interpret,
and mediate QoS requirements of clients and servers at
deployment time and/or runtime.

1 Introduction

Can component A safely inter-operate with compo-
nent B? This question is not easy to answer, even for a
pair of components within a single large project. How-
ever, connecting incompatible components may cause
havoc: application crashes or (even worse) subtle, se-
mantic errors. Now, consider the far worse problem
of two components, previously unacquainted with each
other, seeking to dynamically inter-operate in an open
network, such as the internet or an ad-hoc wireless
network. Even though it sounds daunting, this is ex-

∗Prem Devanbu and Eric Wohlstadter were supported by NSF
CISE grant No. 0204348. Wohlstadter was also supported by
IBM Summer Student Internship.

actly what is envisioned in emerging arenas, such as
service-oriented computing (SOC), Peer-to-Peer (P2P)
networks. This is the setting of our work: we’re spe-
cially concerned with dynamically reconciling QoS con-
flicts between components, at run-time.

The first line of defense against component mis-
match is a functional interface that allows for static
typing or contract/schema verification at connection
points to readily expose incompatibilities. Addition-
ally, components can be guarded by logical specifica-
tions of pre- and post- conditions governing interac-
tions between components. However, in distributed
applications, specially on wide-area-networks, software
engineers must also consider quality-of-service (QoS)
requirements such as security, performance, and relia-
bility when designing component connections. These
requirements must be supported by software on both
the client and server in order to operate properly. For
example, software that checks passwords on the server
side should be complemented by software that provides
passwords for the client. Security requirements, how-
ever, may vary with deployment context and even at
run-time. How can we then ensure that components
have compatible QoS features ? Extending compo-
nent interfaces directly with information about non-
functional concerns limits the reusability of the inter-
face and hence any components implementing it; fur-
thermore it also limits customizability, e.g., the ability
of local security officers to tailor the policies to suit
their settings. Thus, there has been a great deal of
interest recently in techniques to provide an effective
separation of concerns for end-to-end non-functional
requirements and the more stable functional require-
ments.

With such approaches, components only implement
a functional interface; QoS features such as security
are left unresolved until deployment time. A declara-

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

tive QoS specification, written by a deployment special-
ist, can be used to transform the original components
through the use of containers and generative program-
ming, aspect-oriented programming (AOP) [6, 26], or
software wrappers [8]. These approaches are not truly
dynamic: they force commitment to QoS features at
deployment time. In addition, these approaches are
server-centric, and do not consider the issue of match-
ing client-side QoS features to the deployment policy
on the server.

This inflexibility and “server-centricity” limits the
use of current approaches to QoS feature management
in new, emerging application areas such as SOC and
P2P computing. Here, we need a highly dynamic,
and symmetric (not server-centric) way of managing
end-to-end QoS requirements. In these settings, com-
ponents, deployed as autonomous software processes,
create and manage relationships with other processes
dynamically; processes can cross-dress, playing either
client or server role. Processes can exist in different ad-
ministrative domains, with different deployment con-
texts (which may also change dynamically) and thus
have different QoS requirements. A new approach is
needed, to provide dynamic and symmetric reconcili-
ation between the (potentially different) QoS features
of two communicating processes. However, QoS fea-
tures can interact in various ways, and this complicates
reconciliation. For example privacy requirements of the
client and billing or payment requirements of the server
may conflict. We use the term feature interaction[27]
to reflect how feature combinations affect each feature’s
ability to function as it would separately.

Feature interactions can be complex, subtle, and
very difficult to identify. Finding such interactions is
outside the scope of our research. In addition, fea-
ture preferences are a matter of deployment policy, and
can vary. In our work we assume a fixed ontology
of features, with all interactions explicitly identified
ahead of time. Our contribution is a mediation mecha-
nism to support the dynamic management of QoS fea-
tures between two components in a WAN setting that
encounter each other for the first time. We provide
a declarative language for specifying the QoS feature
preferences and conflicts, and a middleware-based res-
olution mechanism that reasons using these specifica-
tions to dynamically find a satisfying set of QoS fea-
tures that allow a pair of components to inter-operate.
The language for specifying QoS features, preferences
and conflicts, GlueQoS , is an extension of the WS-
Policy[3] language.

The remainder of the paper is organized as follows:
we start by motivating feature mediation in section 2,
then in section 3 we present current approaches and an

overview of our approach, a methodology to support
building policies is described in section 4, section 5 de-
scribes how we have extended WS-Policy to support
new problem areas, in section 6 we describe the details
of our implementation, we conclude in sections 7 and
8 with related work and conclusions.

2 Security Example

We consider a web services example where two secu-
rity QoS features are in play. This example illustrates
the issues that arise when features interact in a setting
where clients and servers have different polices with
regards to QoS features.

The first feature is authentication. Open distributed
services must protect themselves from unauthorized ac-
cess; so client requests must be preceded or accompa-
nied by an authentication step involving the presen-
tation of credentials. Credentials can be based on a
password, or on public-key signatures. In this case, a
QoS feature on the server side would be responsible for
checking credentials, and the corresponding QoS fea-
ture on the client-side would be required to present
the appropriate credentials.

The client-puzzle protocol (CPP) QoS feature [5]
defends against cpu-bound denial-of-service (DoS) at-
tacks. A DoS attack occurs when a malicious client
(or set of malicious clients) overloads a service with re-
quests, hindering timely response to legitimate clients.
CPP works by intercepting client requests and refusing
service until the client provides a solution to a small
mathematical problem. The time it takes to solve the
problems are predictable; fresh problem instances are
created for each request. The need to solve puzzles
throttles back the client, preventing it from overload-
ing the server. Typically the puzzle involves finding
a collision in a hash function, i.e., finding an input
string that hashes to a given n bit value modulo 2m,
for n > m. Such puzzles are very easy to generate
and require about 2m times as much effort to solve,
given a collision-resistant hash function. Further de-
tails are not relevant to our presentation, and can be
found in [5].

CPP and Authentication interact in interesting
ways. For example, suppose the server’s only QoS re-
quirement is to prevent DoS attacks. If we trust au-
thenticated clients not to mount DoS attacks, then the
authentication feature and client-puzzle are equivalent
and can be substituted one for the other; it would be
redundant to use both. However, sometimes authenti-
cation may not imply a decreased risk of DoS attacks,
so these features would be viewed as orthogonal. In
other situations, we may require both authentication

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

and DoS defense; here, the two features are viewed as
complementary, since an added benefit is gained by us-
ing them together.

Client-side preferences must also be considered when
selecting the QoS features that govern a client-server
interaction. A client may consider CPP and Authenti-
cation to be equivalent, and express a policy that it can
use either. A client with a performance requirement,
however, would naturally prefer to employ authentica-
tion to avoid computing puzzle solutions. A client who
values its privacy would prefer to expend CPU cycles
in order to not have to reveal their identity; this client
may prefer to use CPP rather than provide identity-
revealing credentials.

Existing policy languages such as WS-Policy can ex-
press these above possibilities. GlueQoS builds on such
previous work. GlueQoS takes into account both the
client’s and server’s QoS feature preferences, and pro-
vides a middleware that can determine a compatible
QoS feature composition, when possible, and other-
wise declare that the partner’s policies are incompati-
ble. This is done at runtime in an open dynamic envi-
ronment, thus liberating the deployment expert from
considering all possible client-server QoS pairings, and
certainly also liberating the application developer from
tangling application logic with QoS considerations.

Furthermore, GlueQoS supports policy resolution
in situations when QoS feature preferences are deter-
mined by run-time environmental conditions. For ex-
ample, a server might only require the CPP feature
when it has a high cpu load. Furthermore, a server
could continuously increase the difficulty of puzzles
as load increases (as advocated in [5]). These envi-
ronmental changes of the server can interact with a
client’s QoS features. For example, some clients may
be willing to use the CPP feature only for small puzzle
sizes. The GlueQoS policy language gives the system
deployer flexibility to make these sorts of tradeoffs be-
tween feature composition.

3 QoS Features for Middleware

We begin with an analysis of the handling of QoS
features in current middleware, and then present an
overview of our approach.

3.1 Current Approaches to QoS

Layered composition is a popular way to provide ex-
tensibility, when layers can be implemented as separate
components. There are many mechanisms that sup-
port layered composition, including mixin layers [21],
interceptors [17], micro-protocols [4] and Aspects [12].

We use it in GlueQoS to support the incremental ad-
dition of many types of QoS features for middleware
architectures. It is useful to distinguish this from the
Layered Architectural Style (See [20], Section 2.5). In
that style, each layer provides one set of interfaces, and
relies on a (usually) different set of interfaces from the
layer below it. The goal is to provide an increasing
level abstraction, and hide details from higher layers.
In our case, all layers essentially provide a similar inter-
face; higher layers may add more services, but typically
nothing is hidden from the topmost layer. In this sec-
tion we describe how QoS features have been added to
middleware using three variations of layered composi-
tion, decorators, interceptors, and advice.

A decorator layer, also called wrapper, exposes the
same interface to layers above as the interface onto
which it is composed. This allows client code (the
above layers) to remain unaffected by layer compo-
sition. Each layer may also extend the interface for
use by decorator-aware clients. Similar effects can be
achieved by mixin layers. A decorator approach is used
in Lasange [24] to provide client customizable remote
method invocations. Examples are given for client spe-
cific security and business rules. Quality of Objects [18]
(QuO) uses decorators that are dynamically chosen
based on runtime conditions. The choice of decorators
is driven by policies that take into account runtime
conditions called System Conditions (SysConds). This
allows QuO to provide QoS services relating to intru-
sion detection, network bandwidth management, and
fault-tolerance.

Interceptors also provide layered composition, but
they are completely generic, relying on reflection. In-
formation about other layers (including the original
application components) is gained dynamically via re-
flection, and used to monitor and modify application
behavior. This provides flexibility at the expense of
static type checking. Many CORBA based QoS fea-
tures are implemented using interceptors including se-
curity, fault-tolerance, transactions, and real-time fea-
tures.

Aspect-Oriented approaches [12] can add incremen-
tal QoS features, as can methods based on multi-
dimensional separation of concerns [23]. These meth-
ods provide the benefits of both decorator and in-
terceptor based approaches. In some cases, composi-
tion can be statically checked. These approaches dif-
fer from decorator- and interceptor-based approaches
in that the effect of composition can be crosscutting.
DADO [26] exploits aspects to add security, perfor-
mance monitoring, and caching examples to CORBA
based applications. Duclos et. al. [6] shows how as-
pects can be used to provide security, transactional se-

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

mantics, and object persistence to applications using a
CORBA Component Model. It is also worth mention-
ing that the use of aspect-like mechanisms for security
and transactions, particularly, is not without contro-
versy [9, 14].

In this paper, we are primarily concerned with ac-
ceptable compositions of QoS layers, particularly in
a highly dynamic, distributed setting. However, we
do not address the exact ordering of features which
is mostly a local phenomenon. We want to consider
both client and server QoS requirements, expressed in
a declarative form (called policies in our work), and
use these in a well-founded manner to arrive at an ac-
ceptable set of layers that implement a set of policies
acceptable to both client and server. Other work as de-
scribed above has not addressed this issue. We believe
this to be increasingly important as new application
areas such as service-oriented computing and P2P ap-
plications require interoperation between autonomous
components. The focus is on flexibility between au-
tonomous client/server or peer interactions and not at
the architectural level such as the work on adaptive,
self-healing, or self organizing systems[10].

Handling QoS Negotiations As described above,
the layering of QoS features is currently used in var-
ious middleware settings. Figure 1 shows 3 QoS fea-
tures on a server-side component, and the correspond-
ing QoS features on the client side. For example,
there may be security layer, a fault-tolerance layer,
and a performance-related (e. g., caching) layer. In
a WAN setting, the QoS policies of two components
may be independently administered. For example, the
EJB framework [19] allows server administrators to
separately configure policies for transactions and secu-
rity, using separate specification elements. Clients and
servers thus will need co-ordinate at run-time to ensure
proper QoS inter-operation. In order to agree on op-
erating parameters, called attributes in our framework,
each layer may employ a meta-protocol.

In a standard (non-distributed) setting, the opera-
tion of a program can be modified by a reflective meta-
program. Thus, in a reflective programming environ-
ment, a meta-class can be written, that enforces access
control policies on the methods of a class. Likewise, in
a distributed setting, a meta-protocol is the reflective
counterpart of a protocol: i.e., a reflective exchange of
signals that modifies the run-time behavior of a proto-
col or communication layer. It is a kind of handshake
or setup protocol.

Existing QoS meta-protocols for middleware are
quite limited, and generally not applicable in WAN set-
tings. The policy for each QoS feature is specified sep-

arately, and each policy feature negotiates separately
with its counterpart to set run-time conditions. Specif-
ically, they cannot reason dynamically about relations
between QoS layers that arise when feature interactions
are unavoidable.

Figure 1. Policy Mediation Metaprotocol

This feature-by-feature configuration and negotia-
tion approach is ripe for trouble, in feature-rich systems
operating over dynamic WAN settings. Various types
of feature interactions will invariably arise in these sys-
tems, as illustrated earlier in § 2. The most obvious ap-
proach would be to make each feature implementation
sensitive to the presence of other features. However
this approach would produce tangled implementations
which would interleave the logic of different features,
thus violating the separation-of-concerns principle, and
making maintenance difficult. Our policy mediation
protocol can be of help.

3.2 GlueQoS Overview

GlueQoS separates out the task of handling feature
interactions into a GlueQoS policy mediator (GPM)
which is added to each component. The GPM on each
end oversees the configuration of QoS features at that
end; it communicates with its counterpart GPM at the
other end to select the right set of QoS features (figure
1). This is accomplished using the GlueQoS policy me-
diation meta-protocol (GPP). Existing systems such
as EJB let a deployer (only on the server side) config-
ure each feature separately, using a configuration file; in
GlueQoS, a deployment specialist (on both client and
server) uses a high-level abstract, declarative language,
writing polices that specify both feature interactions
and runtime tests. The GPM’s commence an end-to-
end interaction, using the GPP protocol, first evalu-
ating policy based on runtime conditions (this process
is called policy reduction), then exchanging policy in-
formation. They then compute an intersection of the
policies (called policy matching) to find a composition
agreeable to both ends.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

The policies are specified in the GlueQoS policy lan-
guage (GPL). The design goals of this language are to
provide an abstract, declarative, expressive means of
describing QoS features, their interactions, and their
sensitivity to operating conditions. The language pro-
vides a set of built in operators to specify feature in-
teractions, as well as the ability to extend the system
with functions to measure operating conditions (such
as load, available energy, bandwidth, etc, similar to the
SysConds of QuO as described above). We defer a de-
tailed description of the language to Section 5, until we
have presented an analysis of the feature interactions
handled by GlueQoS. The semantics of the language
are implemented by the GPL; and therefore the lan-
guage description is in fact a description of the GPL’s
internal function.

It now becomes a responsibility of deployment ex-
perts to describe acceptable feature combinations using
policies. In the next section we take the first steps at
providing a methodology to guide this task.

4 Methodology

The GlueQoS methodology introduces three new
roles (see Figure 2). A feature engineer analyzes
application-independent QoS requirements to docu-
ment the QoS requirements addressed by each QoS fea-
ture, and the interaction between QoS features. Fea-
ture builders construct features; features can be param-
eterized by so-called attributes that allow QoS features
to be tuned by middleware at runtime. The deploy-
ment expert chooses compositions of features (called
feature combinations), possibly based on runtime tests
of the environment, suitable for specific application de-
pendent requirements. Now we describe the tasks per-
formed by these three roles in more detail.

4.1 Feature Engineering

The feature engineer is tasked with identifying, and
standardizing end-to-end QoS features. Feature En-
gineers begin the process (an example is shown in
figure 2) by analyzing application-independent non-
functional requirements, relevant features, and feature
interactions.

Feature engineers also identify feature components
that implement QoS feature requirements. The map-
ping from QoS non-functional requirements to fea-
ture components may not be simple and one-to-one.
Figure 2 illustrates four requirements: Access Con-
trol, Availability, Performance, and Privacy. Two are
mapped to components: Access control is realized via
Authentication and Availability as the CPP (Recall

Figure 2. High Level Process: Feature Engineers ana-

lyze application independent QoS requirements to deter-

mine features, attributes, and interactions. Deployment

experts choose combinations and attribute values based

on application dependent requirements and runtime tests.

Feature Builders implements features parameterized by

attributes. Middleware mediates policies and adjust fea-

tures through attributes.

that the CPP protocol can defend components from
denial-of-service attacks, thus promoting availability).
As we saw earlier, in Section 2, the other two require-
ments are accounted for through feature composition
and runtime feature parameterization. In GlueQoS a
feature composition is a logical combination of feature
names that is used to express how features may be
combined for a particular situation. In each situation,
specific non-functional requirements are indicated by
deployment-time and runtime conditions. These non-
functional requirements determine the applicable fea-
ture combinations and feature attributes. Feature en-
gineers must a-priori consider various possible circum-
stances, and identify for each the applicable combina-
tions of QoS features, and QoS feature parameteriza-
tions. We recommend that the feature engineer pro-
duces a “Feature Interactions Document”, describing
this information. Our model for feature interactions is
described next.

For our purposes, a feature interaction is the effect
that two QoS features have on each other. Figure 3
shows our ontology for various kinds of feature interac-
tions. In this table, we denote the qualitative effect on
a particular requirement as the function E(A) where A
is some feature. This notation is only meant to provide
an intuition as to the meaning of the various categories
of interactions in our ontology, and does not imply the
use of formal analysis. The interaction of features A
and B is denoted as E(A,B), the combined effect of fea-

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

tures A and B. We call the effect positive (> 0) when it
acts to satisfy some non-functional requirement, nega-
tive (< 0) when it prevents other components from sat-
isfying functional or non-functional requirements and
zero (0) when there is no observable change. The table
also shows sets of possible feature deployments that are
induced by these interactions.

Here we briefly describe each interaction:
Orthogonal: Two features A, B are orthogonal if their
combined contribution to requirements fulfillment is
exactly equal to the sum of their individual contribu-
tions. These features could reasonably be combined
together or individually.
Complements: Two features are complementary if
their combined contribution is greater than the sum
of their individual contributions. It is advantageous
to combine these features together but they may be
deployed individually.
Dependent: A feature A is dependent on feature B
if their combined effect is positive but the individual
effect of A is non-positive. Feature A should only be
deployed with feature B.
Conflicts: Two features conflict if their combination
has a negative effect on the behavior of the entire appli-
cation. The deployment of one feature should exclude
(XOR) the deployment of the other. The decision that
an effect is negative is arbitrary but may includes ef-
fects such as introducing deadlock or putting sensitive
data in inconsistent states.
Prevents: A feature A prevents feature B if their com-
bined effect is equal to the individual effect of A. The
deployment of A excludes B from effecting the system
regardless of policy. This is different from conflicting
because the effect is confined to the features them-
selves.
Equivalent: Two features are equivalent if their indi-
vidual effects are qualitatively the same. There is no
need to deploy these features together but remote part-
ners might only support one of them, using an XOR or
OR combination yields greater flexibility in the face of
heterogeneity.

Feature Possible E(A,B)
interaction Combinations Interaction

Effect
Orthogonal {A, B} , {A} , {B} E(A) + E(B)
Complements {A, B} , {A} , {B} E(A, B) >

E(A)+E(B)
Dependent {A , B} E(A, B)>0,

E(A) ≤ 0
Conflicts {A}, {B} E(A,B)<0
Prevents {A}, {B} E(A)
Equivalent {A, B} , {A} , {B} E(A) == E(B)

E(A,B) == E(B)

Figure 3. Feature interactions

4.2 Deploying Features

The deployment expert considers local require-
ments, and the feature interactions document provided
by the feature engineer to design his QoS Policy. Per-
haps a client is interested in privacy, but also in per-
formance. CPP and Authentication are features rele-
vant to both privacy, and performance, which interact
(as described in §2); this information would be avail-
able from the Feature Interactions Document. Suppose
a client values privacy in most cases, but is willing to
give away his privacy if it requires too much of a perfor-
mance sacrifice. Using the information in the Feature
Interactions Document, the deployment expert can for-
mulate this as a policy in terms of feature combinations
and feature parameters. Combinations are determined
by the feature engineer through use of the logical and,
or, and xor operators provided by the policy language.

4.3 Implementing Features

The feature builder is responsible for implementing
the feature components. This may require opening up
some of the details of the implementation[13] for con-
figuration or introspection so that middleware may me-
diate attribute values acceptable to both parties. For
example, the puzzle feature is required to expose the
bit length of puzzles so that policies can configure the
puzzle feature based on the observed server load and so
clients can express performance requirements in terms
of puzzle length. This decision of what attributes a
feature builder must export is made by the feature en-
gineer in the analysis stage and should be provided in
the feature interactions documentation. The method-
ology described in this section is motivated by the need
to provide detailed feature interaction information to
the deployment expert. Now a site specific policy can
be constructed based on this knowledge using the Glue-
QoS policy language.

5 GlueQoS Policies

Our policy based approach to feature composition
is inspired by emerging standards in the web services
industry known as WS-Policy [3]. The WS-Policy spec-
ification provides a standard XML syntax for web ser-
vices to advertise their non-functional capabilities and
requirements. We extend the language here for pur-
poses of mediating policies between remote hosts and to
consider dynamic effects of deployment environments.
In this section we describe the elements of our GlueQoS
policy language which uses a superset of the WS-Policy
syntax for interoperability.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

For our purposes WS-Policy is a syntax for express-
ing logical combinations of XML data. The data, called
assertions, can be arbitrary but is intended to describe
relevant non-functional characteristics of a web service.
WS-Policy provides three n-ary operators for compo-
sition of assertions. They are the All, ExactlyOne,
and OneOrMore operators. We restrict these to binary
composition and our middleware algorithms interpret
them as and, xor, and or operators. These operators
are associative so there is no loss in expressive power.

The GlueQoS policy mediation protocol uses a su-
perset of WS-Policy, called WS-Policy+, to exchange
client and server policy information. Each feature is
represented as one XML element identifying the fea-
ture’s unique name. The attributes of features are ex-
pressed as the element’s attributes (XML terminology
for parameterization). Agreement of feature attribute
values is an important part of feature agreement es-
pecially when feature’s attributes are affected by the
dynamic runtime environment. WS-Policy only accom-
modates constant attribute values, our WS-Policy+ ex-
tends WS-Policy with attribute constraints (such as in-
equalities).

Feature attributes are used by remote hosts to agree
on configuration of features. In the security example,
hosts needed to agree on the puzzle size of the CPP
feature, in order to resolve the client’s performance re-
quirement and the server’s DoS defense requirement.
We currently support integer, string, and floating point
attribute data types. Integer and floating point values
can be constrained to a single continuous range using
the greater than, less than, and range operators. String
values can be constrained using regular expressions.
When our policy matching algorithm finds matching
feature elements in client and server policies, it com-
pares all the attributes to ensure none of the values or
constraints of attributes are in conflict.

The grammar of our complete GlueQoS language
can be seen in the EBNF of figure 4. GlueQoS provides
a syntactic sugar on top of WS-Policy+ and accommo-
dates consideration of runtime data. Policies make use
of QoS Conditions (similar in spirit to QuO SysConds),
to include runtime data in the mediation of policies.
This is represented in our language by using the object
oriented dot notation for static field access anywhere in
a policy where a value is expected. The middleware will
invoke a no-argument method with the same name on
the singleton object managed for the particular class
of QuO Conditions identified in the expression. The
values returned can be used for the calculation of at-
tribute values or to further refine polices through tests.

Tests are boolean expressions using arithmetic com-
parisons or string regular expressions (using the infix

operator matches). The and and xor operators are over-
loaded to allow combining feature assertions and tests.
In these cases, when a test fails (evaluates to false) the
feature assertion is removed from the policy to be me-
diated by the middleware. This is achieved through a
policy reduction step that occurs before policies from
client and server are matched. A test is exploited in
our security example as presented below.

Expr:: LetEnv |
Assertion (AssertionOp Expr)?

LetEnv:: "let" Assignment* "in" Expr
Assignment:: Var "=" ValueExpr
Assertion:: FeatureName ("[" AttrAssertion* "]")?

| Test | "(" Expr ")"
AssertionOp:: "and" | "or" | "xor"
AttrAssertion::Var AttrOp ValueExpr
AttrOp:: "=" | ">" | "<" | ">=" | "<=" | "matches"
Test:: ValueExpr TestOp ValueExpr

| Boolean
TestOp:: "==" | ">" | "<" | ">=" | "<="
ValueExpr:: ValueExpr ValueOp ValueExpr

| Atom
| "(" Test ")"

ValueOp:: "+" | "-" | "/" | "%" | ""̂
Atom:: FieldAccess | Var | integer | float

| regex | "(" ValueExpr ")"
FieldAccess:: uppercase id "." lowercase id
FeatureName:: uppercase id
Var:: lowercase id

Figure 4. GlueQoS Language EBNF: Policies

consist of feature assertions and runtime tests combined

with logical operators. Feature assertions can be qualified

through open point values or functions.

5.1 Security Revisited

(1) Server:
(2) let cpu = SystemMonitor.cpuUsage,

(3) puzzleMax = 16

(4) in

(5) ((CPP[size = cpu*puzzleMax/2] and Authentication)

(6) xor (Authentication and (cpu < .5))

(7) xor CPP[size = cpu*puzzleMax])

(8)

(9) Client1:
(10) (Authentication)

(11)

(12) Client2:
(13) (CPP[size <= 4] xor

(14) (CPP[size <= 4] and Authentication))

Here we see a possible realization of the security
example as expressed in GlueQoS. The first policy is
shown for the server. A variable cpu is declared (line 2)
and bound to the current cpu usage (between 0 and 1)
using a QoS Condition Object. A constant puzzleMax
is bound (line 3) to the integer 16 to represent the max-
imum size of puzzles. Then come lines 4,5, and 6, each
representing an alternative QoS combination for the
server. An and combination of the CPP and Authenti-
cation features (line 5) states that with Authentication,

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

the size of puzzles varies linearly from 0 to 16 depend-
ing on cpu load. Another combination (line 6) uses a
test (cpu < .5) to determine whether this combina-
tion will be allowable. When cpu load is less than 0.5,
the server allows Authentication to be used without the
CPP; otherwise just CPP, with the largest puzzle size,
can be used. This shows how runtime conditions can
dynamically adapt the feature combinations expressed
by hosts.

The first client policy is shown on line 10. This
client will only use the Authentication feature (per-
haps because of software unavailability, or because it
is too performance-limited for CPP). Therefore, this
client can only create a session with the server when
the server’s load is less than 0.5.

The second client policy (lines 13 and 14) uses at-
tribute constraints to choose between two feature com-
binations. Recall that the xor semantics in our language
implicitly implies a preference for the first (left) alter-
native. Consider a situation where this client wishes
to maintain its anonymity by not using the Authenti-
cation feature. However, it also has a performance re-
quirement that takes precedence. Perhaps the client is
on a mobile device with low computing power. Line 13
expresses the client’s preference to maintain anonymity
by agreeing to the CPP only. However, in order to keep
performance at a certain threshold the client will also
use Authentication if it will keep the puzzle size low.
By comparing to the sample server’s policy (lines 5 and
7 in particular) if this client contacts the server when
the servers cpu load is 25 percent or lower the client can
maintain its anonymity by using CPP only. However,
if it contacts the server and the servers cpu load is be-
tween 25 percent and 50 percent it will agree to reveal
its identity to maintain higher performance. When the
servers load passes 50 percent the client will be unable
to mediate a satisfactory feature composition with the
server.

We have tested this example using our policy me-
diation middleware to assure that the correct feature
combinations were resolved in a variety of situations,
however, these policies have not been used to drive ac-
tual CPP and Authentication implementations, which
are currently only available for DADO [26], whereas
GlueQoS currently works in a web-services setting.

5.2 Policy Matching

Policies of client and server must be considered to-
gether to find mutually acceptable features and at-
tribute values. The GlueQoS Policy Mediator does
this by policy matching. First, we describe the pol-
icy matching algorithm, assuming information for both
client and server is available at one host. In section 6.1

we detail the policy mediation protocol that facilitates
the actual exchange of policy data. Policy matching
involves three steps: reduction of policies through run-
time tests, calculating acceptable assertion sets, and
finding compatible assertion sets.

5.2.1 Policy Reduction

In the reduction step, feature assertions are treated
as unknown boolean variables, and the entire policy
is simplified as much as possible. This allows hosts to
express different policies based on runtime conditions.
Tests are combined with feature assertions or other
tests using the and and xor operators. The effect of
combining a feature assertion, A and a test which
evaluates to a boolean value in the reduction step is
defined below (the operators are symmetric for this
purpose):
A and True = A
A and False = False
A xor True = True
A xor False = A

As a simple example, consider line 6 in Section 5.2, with
the cpu load returned by the SystemMonitor greater
than 0.5. Thus this would be reduced as follows:
Authentication and False =⇒ False

In this way, more complex expressions are reduced.
On their own, True and False can be used as feature as-
sertions: True matches any feature and False matches
no features. Thus, cpu < 0.99 on its own can be used
by a server to simply refuse service if the cpu load ex-
ceeds 0.99.

5.2.2 Calculating Acceptable Assertion Sets

We describe the calculation of acceptable assertion sets
in terms of boolean algebra 1. Each feature assertion
is interpreted as a unique boolean variable. Matching
begins by enumerating the acceptable feature sets of
both client and server policies: we calculate all unique
sets of feature assertions (interpreted as boolean vari-
ables) which, when set to true, would reduce the entire
policy to true. For example, the policy of Client2 in
Section 5.1 is interpreted as two acceptable feature sets
(with attributes removed) [[CPP],[CPP,Authentication]].
The operators are order preserving, to capture the
client’s preferences for the matching algorithm. The
time complexity of And and Or operations is n*m
where n and m are the sizes of the list operands because
they involve finding the cross product of two lists. The
other operations are constant time.

1A similar interpretation for the single host policy case given
in the original WS-Policy specification.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

5.2.3 Finding Compatible Assertion Sets

Now that the acceptable assertion sets of both par-
ties have been calculated we need to find sets be-
tween both that are compatible. This is achieved
by an exhaustive comparison between sets in both
lists. Sets may not necessarily be exactly equiva-
lent to be compatible because attributes may involve
constraints that could be satisfied by multiple values
or unconflicting constraints. For example,matching
[[Puzzle(size < 4)]] and [[Puzzle(size > 2)]] would re-
solve into [[Puzzle(size=range(2,4))]] (Note that all op-
erations are over the real numbers). Assuming set
membership and attribute comparison can be imple-
mented in constant time; the matching itself takes
O(n*a+n*m) where a is the total number of attributes
from feature assertions in the first list, m is the number
of assertions in the first list, and n is the number of sets
in the second list. The intuition is that each set in the
first list must be compared to each set in the second
list which may involve comparing all the attributes of
the sets.

Once the matching sets from both parties have been
found one of the sets must be chosen to drive the mid-
dleware’s configuration of features. If more than one
such set exists, the first one in the list is chosen in order
to comply with any arbitrary preferences of the client.
In our current implementation, if no sets match, an ex-
ception is thrown. It can be caught and handled by
policy aware client code otherwise the exception must
be handled as a generic remote exception.

6 Implementation

6.1 GlueQoS Policy Mediation Meta-Protocol
(GPP)

The GlueQoS policy mediators at each end of an in-
teraction determine an applicable composition of QoS
features for each application session. These features
and their operating parameters remain fixed for the
lifetime of the application session. The GPP proto-
col is primarily active during the initial negotiation
phase Figure (5) shows the state diagram of the pro-
tocol. Transitions are triggered by either client mes-
sages (dashed lines), server messages (solid lines), or
server internal events (dotted lines). Each protocol
state represents the global state of both participants
with respect to the protocol. Client and server start out
disconnected. When a client locates a server (through
a directory service or another third party) it sends a
policy request to the server to initiate a session. The
server creates a session for the client and evaluates any

Figure 5. GlueQoS Policy Mediation Protocol State Di-

agram: Circles represent the two party state of the proto-

col. Dashed transitions are triggered by client messages.

Solid transitions are triggered by server messages. Dotted

transitions are triggered by server internal events.

applicable environmental tests (e.g. to measure load,
collision rate of packets, etc) in its policies, to final-
ize its current reduced policy. The current policy is
considered guaranteed by the server for the lifetime of
the session. The server saves this policy, associates
it with the current session, and sends the policy to
the client through a PolicyPromise message. Now, the
client must match its own policies with the server and
choose a feature combination acceptable to both. A
client matches policies by carrying out the three pol-
icy matching steps detailed in section 5.2. The fea-
ture assertion set chosen by the client is then sent to
the server through a PolicyConfimation message. This
message may piggyback on a real request to the server
in order to reduce message traffic. Next, the server
verifies that the client’s choice of features is compati-
ble with the policy promised. If so, the server removes
the promised policy and associates the feature set with
the client session where the protocol remains in the
SessionActive state until the session is terminated.

6.2 Implementation

Our prototype implementation is built around the
Apache Axis web service middleware. The functional
interfaces of web services can be described using an
interface definition language known as WSDL[2]. Poli-
cies are attached to WSDL elements (port types, opera-
tions, bindings) as metadata. We follow a standardized
approach specified by WS-Policy. Our policy mediators
on clients and servers process WSDL with attachments
in order to determine policies for specific web services

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

interactions. Our implementation currently mediates
policy only at the operation granularity. Invocation of
operations with different policies requires a new policy
mediation step per session.

All the examples reported in the paper have been
tested in prototype form. This was done to ensure
that GlueQoS worked as designed. However, it is im-
portant to note that the main contribution is not the
feature implementations, but the GlueQoS policy lan-
guage, policy mediator, and the policy mediation pro-
tocol that are used to select the correct set of QoS fea-
tures and QoS feature parameters. This is in the same
spirit as [22], where the goal was to select a transaction
protocol for a client-server interaction.

7 Related Work

7.1 Electronic Contracts and SLAs

Our work on QoS feature composition relates to
work on electronic contracts[11] and (formal represen-
tations of) service-level agreements (SLAs), in par-
ticular those that address nonfunctional requirements
such as WSLA (Web SLA)[15]. Such contracts de-
fine agreed-upon, non-functional (and possibly other)
characteristics of (Web) services and a model for mea-
suring, evaluating, and managing the compliance of
these characteristics. Their representation involves as-
sertions comparable to our policies, and algorithms for
assertion match-making and negotiation have been de-
veloped in the context of self-managing systems (sys-
tems management) and dynamic e-business.

However, SLAs such as those described using WSLA
focus on performance characteristics only, and on lo-
cally (nondistributed) measurable phenomena as seen
by the client. The service provider’s performance offer-
ings are matched with a client’s specified expectations
to determine a binding contract. Adherence to this
contract can be monitored. GlueQoS feature policies
address a wider range of end-to-end quality-of-service
requirements, such as transactions, security, etc. In ad-
dition, GlueQoS has been designed to support policy-
driven configuration of client and server middleware to
ensure interoperability. SLAs can be used to model
contracts that can still be violated. With GlueQoS,
an interaction is only executed if a compatible feature
composition has been determined, and where no viola-
tion should be possible.

7.2 AOP

Research in aspect-oriented software development
(AOSD) explores non-traditional software composition

approaches to provide flexible extension, adaptation
and integration of components. Multi-dimensional sep-
aration of concerns (MDSOC) [23] or AspectJ [12] are
examples of those compositional approaches. AOSD
techniques were first mostly explored in the context of
programming languages, they are currently being ex-
tended to support aspect-oriented software engineering
across the full software lifecycle [1].

Most of the current work in AOSD, however focuses
on building services/component with a given set of fea-
tures. While our work clearly adopts the principle of
separation of concerns, it focuses on matching (some-
times conflicting) QoS feature requirements and/or
capabilities of interacting distributed QoS components.
The middleware mediates between the various require-
ments/capabilities of the different QoS components to
establish and maintain an overall set of potentially
context-dependent QoS features (e.g., concerns depen-
dent on deployment, runtime conditions, etc).

7.3 Requirements Engineering

As described in section 4 we envision our middle-
ware to be part of a larger software process. Work on
managing conflicts between requirements or features is
especially relevant.

The KAOS [25] methodology uses formal specifi-
cation to detect conflicting requirements using goals
which can be identified using a temporal logic.
Feather [7] extends the approach for monitoring of ac-
tual runtime behavior. Their work is concerned with
functional requirements as opposed to mediation of
conflicting QoS requirements between software in a dis-
tributed setting. Mylopoulos [16] considers the repre-
sentation of non-functional requirements.

Automatic detection of interacting features in com-
munication systems is an area of active research. Much
of the work focuses on reconciling customer features in
a telephony setting such as call-waiting and voice mail.
Zave [27] views features as modular components con-
nected in a pipeline architecture similar to our layered
feature architecture. She identifies an ontology of fea-
ture interactions and provides techniques for automatic
detection of interactions.

We have not developed any formal techniques for
identifying requirements level phenomenon. This paper
presents a middleware to be used for mediating policies
between QoS features once possible feature interactions
have been elucidated.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

8 Conclusion

GlueQoS is middleware mediation software to sup-
port dynamic adjustment of QoS features between
clients and servers. QoS feature preferences are spec-
ified in the GlueQoS policy language. These policies
are exchanged at binding time between systems inter-
acting in an ad-hoc setting, using the GlueQoS media-
tion meta-protocol. The polices are then matched up,
and resolved by the GlueQoS mediator. The result-
ing policy resolutions are deployed and executed. In
this paper, we have described GlueQoS and provided
some illustrative applications. GlueQoS has been im-
plemented in the context of Apache Axis. We have
built some sample QoS features and tested that they
are deployed according to some sample policies.

References

[1] Concern Manipulation Environment,
http://www.research.ibm.com/cme.

[2] Ariba, IBM, and Microsoft. Web services definition
language (WSDL), March 2001.

[3] BEA, IBM, Microsoft, and S. AG. Web services policy
framework (WS-Policy), May 2003.

[4] W.-K. Chen, M. Hiltunen, and R. Schlichting. Con-
structing adaptive software in distributed systems. In
International Conference on Distributed Computing
Systems, 2001.

[5] D. Dean and A. Stubblefield. Using client puzzles to
protect tls. In USENIX Security Symposium, 2001.

[6] F. Duclos, J. Estublier, and P. Morat. Describing and
using non functional aspects in component based ap-
plications. In AOSD, 2002.

[7] M. Feather, S. Fickas, A. van Lamsweerde, and
C. Ponsard. Reconciling system requirements and run-
time behavior. In IWSSD, 1998.

[8] T. Fraser, L. Badger, and M. Feldman. Hardening
COTS software with generic software wrappers. In
IEEE Symposium on Security and Privacy, pages 2–
16, 1999.

[9] T. Garfinkel. Traps and pitfalls: Practical problems
in in system call interposition based security tools. In
Proc. Network and Distributed Systems Security Sym-
posium, February 2003.

[10] I. Georgiadis, J. Magee, and J. Kramer. Self-
organising software architectures for distributed sys-
tems. In Workshop on Self-Healing Systems, 2002.

[11] Y. Hoffner, S. Field, P. Grefen, and H. Ludwig.
Contract-driven creation and operation of virtual en-
terprises. Computer Networks 37(2), 2001.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. Griswold. An overview of aspectj.
In ECOOP, 2001.

[13] G. Kiczales, J. Lamping, C. V. Lopes, C. Maeda,
A. Mendhekar, and G. C. Murphy. Open implemen-
tation design guidelines. In International Conference
on Software Engineering, pages 481–490, 1997.

[14] J. Kienzle and R. Guerraoui. Aop: Does it make sense?
- the case of concurrency and failures. In ECOOP,
2002.

[15] H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck.
A service level agreement language for dynamic elec-
tronic services. Journal of Electronic Commerce Re-
search, Vol. 3, Issue 1,2, 2003.

[16] J. Mylopoulos, L. Chung, and B. A. Nixon. Represent-
ing and using nonfunctional requirements: A process-
oriented approach. Software Engineering, 18(6):483–
497, 1992.

[17] P. Narasimhan, L. Moser, and P. Mellior-Smith. Using
interceptors to enhance CORBA. IEEE Computer,
July 1999.

[18] P. Pal, J. Loyall, R. Schantz, J. Zinky, R. Shapiro,
and J. Megquier. Using qdl to specify qos aware dis-
tributed (quo) application configuration. In Interna-
tional Symposium on Object-Oriented Real-time Dis-
tributed Computing, 2000.

[19] E. Roman, S. Ambler, and T. Jewell. Mastering En-
terprise JavaBeans. Wiley, 2001.

[20] M. Shaw and D. Garlan. Software Architecture: Per-
spectives on an Emerging Discipline.

[21] Y. Smaragdakis and D. Batory. Implementing lay-
ered designs with mixin layers. In Proceedings of
the European Conference on Object-Oriented Pro-
gramming (ECOOP), pages 550–570. Springer-Verlag
LNCS 1445, 1998.

[22] S. Tai, T. Mikalsen, E. Wohlstadter, N. Desai, and
I. Rouvellou. Transaction policies for service-oriented
computing. In Data and Knowledge Engineering Jour-
nal: Special Issue on Contract-based Coordination and
Collaboration, 2004.

[23] P. Tarr, H. Ossher, W. Harrison, and S. Sutton. N
degrees of separation: Multi-dimensional separation
of concerns. In Proceeding of the 21st International
Conference on Software Engineering, 1999.

[24] E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten,
and B. N. Jorgensen. Dynamic and selective combi-
nation of extensions in component-based applications.
In International Conference on Software Engineering,
2001.

[25] A. van Lamsweerde, R. Darimont, and E. Letier. Man-
aging conflicts in goal-driven requirements engineer-
ing. IEEE Transactions on Software Engineering,
1998.

[26] E. Wohlstadter, S. Jackson, and P. Devanbu. Dado:
Enhancing middleware to support cross-cutting fea-
tures in distributed, heterogeneous systems. In ICSE,
2003.

[27] P. Zave. An experiment in feature engineering. Pro-
gramming Methodology, 2003.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

