
An Introduction to Partial Evaluation
NEIL D. JONES

University of Copenhagen

Partial evaluation provides a unifying paradigm for a broad spectrum of work in
program optimization, compiling, interpretation and the generation of automatic
program generators [Bjørner et al. 1987; Ershov 1992; and Jones et al. 1993]. It is a
program optimization technique, perhaps better called program specialization, closely
related to but different from Jørring and Scherlis’ staging transformations [1986]. It
emphasizes, in comparison with Burstall and Darlington [1977] and Jørring and
Scherlis [1986] and other program transformation work, full automation and the
generation of program generators as well as transforming single programs.
Much partial evaluation work to date has concerned automatic compiler generation
from an interpretive definition of a programming language, but it also has
important applications to scientific computing, logic programming,
metaprogramming, and expert systems; some pointers are given later.

Categories and Subject Descriptors: D.2.M [Software Engineering]:
Miscellaneous—rapid prototyping; D.3.4 [Programming Languages]: Processors

General Terms: Experimentation, Performance, Verification

Additional Key Words and Phrases: Compilers, compiler generators, interpreters,
partial evaluation, program specialization

1. INTRODUCTION

1.1 Partial Evaluation 5 Program
Specialization

In Figure 1 a partial evaluator mix is
given a subject program p together with
part of its input data in1 . Its effect is to
construct a new program pin1 which,
when given p’s remaining input in2 ,
will yield the same result that p would
have produced given both inputs.1

Correctness of pin1 can be described
equationally: for this p, in1 , and all
in2

vpb [in1, in2] 5 vpin1 b in2

In other words a partial evaluator is a
program specializer.
Intuitively, specialization is done by

performing those of p’s calculations that
depend only on in1 , and by generating
code for those calculations that depend

1 Notation: data values are in ovals and programs
are in boxes. The specialized program pin1 is first
considered as data and then considered as code,

whence it is enclosed in both. Further, single
arrows indicate program input data and double
arrows indicate outputs. Thus mix has two inputs
while pin1 has only one; pin1 is the output of mix .

This work was partly supported by the Danish Natural Sciences Research Council and ESPRIT Basic
Research Action 3124, “Semantique.”
Author’s address: DIKU, Dept. of Computer Science., Univ. of Copenhagen Universitetsparken 1,
DK-2100 Copenhagen East, Denmark. ^email:neil@diku.dk&.
Permission to make digital /hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and / or a fee.
© 1996 ACM 0360-0300/96/0900–0480 $03.50

ACM Computing Surveys, Vol. 28, No. 3, September 1996

on the as yet unavailable input in2 .
Figure 2 shows a program to compute
xn, and a faster program p5 resulting
from specializing p to n 5 5 (ignore the
underlines for now).
The technique is to precompute all

expressions involving n, to unfold the
recursive calls to function f , and to re-
duce x*1 to x . This optimization was
possible because the program’s control
is completely determined by n. If on the
other hand x 5 5 but n is unknown,
then specialization gives no significant
speedup.
A partial evaluator performs a mix-

ture of execution and code generation
actions—surely why Ershov called the
process “mixed computation” [Ershov
1982], hence the name mix .
An equational description. Programs

are both input to and output from other
programs. We will discuss several lan-
guages and so assume given a fixed set
D of data values including all program
texts. A suitable choice of D is the set of
Lisp’s “list” data as defined by D 5
LispAtom 1 D*, e.g., (1 (2 3) 4) is a list
of three elements, whose second ele-
ment is also a list.
We use the typewriter font for pro-

grams and for their input and output. If

p is a program in language L, then vpbL
denotes its meaning—typically a func-
tion from several inputs to an output.
The subscript L indicates how p is to be
interpreted. When only one language is
being discussed we often omit the sub-
script so vpbL 5 vpb. Standard languages
used in the remainder of this article are:

L: an implementation language
S: a source language
T: a target language

The program meaning function v_bL is of
type D* 3 V. Thus

output 5
vpbL [in 1, in 2, . . . , in n]

results from running p on input values
in 1, in 2, . . . , in n, where n $ 0 (out-
put is undefined if p goes into an infi-
nite loop).
The Defining Equation. The essential

property of a partial evaluator mix is
now formulated more precisely. Suppose
p is a source program expecting two
inputs, in1 is the data known at stage
one (static), and in2 is data known at
stage two (dynamic). Then computation
in one stage is described by

out 5vpb [in1, in2]

Figure 1. A partial evaluator.

Introduction to Partial Evaluation • 481

ACM Computing Surveys, Vol. 28, No. 3, September 1996

Computation in two stages using special-
izer mix (as in Figure 1) is described by

pin1 5 vmix b [p, in1]
out 5 vpin1 b in2

Combining these two we obtain an
equational definition of mix :

vpb [in1, in2] 5
vvmix b [p, in1] b in2

specialized program

Here equality needs a broader interpreta-
tion than usual: it means that if one side
of the equation is defined, then the other
side is also defined and has the same
value. This is easily generalizable to var-
ious numbers of static and dynamic in-
puts with a more complex notation.2

Multiple language partial evaluation
with different input, output, and imple-
mentation languages (say S, L, T,
respectively) is also meaningful. An ex-
ample is AMIX, a partial evaluator with
a functional language as input and
stack code as output [Holst 1988]:

vpbS[in1, in2] 5

vvamix bL[p, in1] bT in2

specialized program

1.2 Speedups by Partial Evaluation

The chief motivation for doing partial
evaluation is speed: program pin1 is of-
ten faster than p. To describe this more
precisely, for any p, d1, . . . , dn [D, let
tp (d1, . . . , dn) be the time to compute
vpbL d1 . . . dn. This could for example be
the number of machine cycles to execute
machine code for p on a concrete com-
puter.
Specialization is clearly advantageous

if in2 changes more frequently than in1.
To exploit this, each time in1 changes
one can construct a new specialized pin1
faster than p, and then run it on various
in2 until in1 changes again. Partial
evaluation can even be advantageous in
a single run, since it often happens that

tmix~p, in1! 1 tpin1~in2! , tp~in1, in2!

An analogy is that compilation plus tar-
get run time is often faster than inter-
pretation in Lisp:

tcomp~src! 1 ttarg~d! , tinterp~src, d!

2. HOW CAN PARTIAL EVALUATION BE
DONE?

We use the term “partial evaluation” for
automatic program specialization—not
hand-directed program transformation
or verification. Three main partial eval-
uation techniques are well known from
program transformation [Burstall and
Darlington 1977]: symbolic computa-
tion, unfolding function calls, and pro-

2 Exactly the same idea applies to Prolog, except
that inputs are given by partially instantiated
queries and answers are sequences of terms as
variable values. In this case in1 is the part of a
query known at stage one and in2 instantiates
this query further.

Figure 2. Specialization of a program to compute xn.

482 • N. D. Jones

ACM Computing Surveys, Vol. 28, No. 3, September 1996

gram point specialization. The latter is
a combination of definition creation and
folding, amounting to memoization.
Figure 2 applied the first two tech-

niques; the third was unnecessary since
the specialized program had no function
calls. The idea of program point special-
ization is that a single function or label
in program p may appear in the special-
ized program pin1 in several specialized
versions, each corresponding to data de-
termined at partial evaluation time.
More details may be found in Jones et
al. [1993].

A representative example. Acker-
mann’s function is useless for practical
computation but an excellent vehicle to
illustrate program point specialization.
An example is seen in Figure 3 (the
underlines should still be ignored). Note
that the specialized program uses less
than half as many arithmetic operations
as the original.

2.1 Online and Offline Specialization

Figure 3 illustrates offline specializa-
tion [Bondorf 1991; Consel 1993; Go-
mard and Jones 1991a; 1991b]. This
makes use of program annotations, here
indicated by underlines, e.g., n-1 . These
can be regarded as instructions to the
specializer. Offline specialization begins
with a so-called binding-time analysis,

whose task is to place appropriate anno-
tations on the program before reading
the static input.
Interpretation of the annotations by

the specializer is simple:

(1) evaluate all nonunderlined expres-
sions;

(2) unfold at specialization time all non-
underlined function calls;

(3) generate residual code for all under-
lined expressions; and

(4) generate residual function calls for
all underlined function calls.

An alternative, called online specializa-
tion, computes program parts as early
as possible and takes decisions “on the
fly” using only (and all) available infor-
mation [Berlin and Weise 1990; Sahlin
1990; Weise et al. 1991].
Figure 3 is a clear improvement over

the unspecialized program, but can ob-
viously be improved even more by “on-
the-fly” reductions to

a2 ~n! 5 if n 5 0 then 3

else a1 ~a2 ~n 2 1!!

a1 ~n! 5 if n 5 0 then 2

else a1 ~n 2 1! 1 1

These methods often work better than
offline methods, in particular on struc-
tured data that is partially static and

Figure 3. Specialization of a program for Ackermann’s function.

Introduction to Partial Evaluation • 483

ACM Computing Surveys, Vol. 28, No. 3, September 1996

partially dynamic. On the other hand,
they introduce new problems and new
techniques concerning termination of
specializers. Comparisons and evalua-
tions of costs and benefits can be found
in Ruf [1993] and Jones [1993, Ch. 7].

2.2 Sketch of an Offline Partial Evaluator

Consider as given (1) a first-order func-
tional program of form

f1(s, d) 5 expression1
g(u, v, . . .) 5 expression2
. . .

h(r, s, . . .) 5 expressionm

and (2) annotations that mark every
function parameter, operation, test, and
function call as either eliminable: per-
form or compute or unfold during spe-
cialization, or residual: generate pro-
gram code to appear in the specialized
program.
In particular, the parameters of any

definition of a function f can be parti-
tioned into those which are static and
the rest, which are dynamic. For in-
stance, m is static and n is dynamic in
the Ackermann example.
The specialized program will have the

same form as the original, but it will
consist of definitions of specialized func-
tions (program points) gStatvalues , each
corresponding to a pair (g, Statval-
ues) where g is defined in the original
program and Statvalues is a tuple
consisting of some values for all the
static parameters of g. The parameters
of function gStatvalues in the specializer
will be the remaining parameters of g,
all dynamic.
Finally, we give the specialization al-

gorithm sketch, assuming the input pro-
gram’s defining function is given by
f1(s, d) 5 expression1 and that s
is static and d is dynamic. In the follow-
ing, variables Seenbefore and Pend-
ing both range over sets of specialized
functions gStatvalues . Specializer output
variable Target will always be a list of
(residual) function definitions.

1. Read Program and S.

2. Pending :5 {f1 s};
Seenbefore :5{};

3. While Pending Þ {} do 4O6:
4. Choose and remove a pair gStatvalues

from Pending , and add it to Seenbe-
fore if not already there.

5. Find g’s definition
g(x1, x2, . . .) 5 g-expression
and let D1, . . . , Dmbe all its dynamic
parameters.

6. Generate and append to Target the
definition

gStatvalues (D1, . . . , Dm) 5
Reduce(E);

where E is the result of substituting
static value Si from Statevalues
in place of each static g-parameter
xi occurring in
g-expression

Reduction of an expression E to its re-
sidual equivalent RE5 Reduce(E) is de-
fined by:

1. If E is constant or a dynamic param-
eter of g, then RE 5 E.

2. If E is a static parameter of g then
RE5 its value, extracted from the list
Statvalues .

3. If E is of form
operator(E1, . . . , En) then
compute the values v1, . . . , vn of
Reduce(E1), . . . , Reduce(En).
(These must be totally computable
from g’s static parameter values, else
the annotation is in error.)
Then set RE5 the value of operator
applied to v1, . . . , vn.

4. If E is operator(E1, . . . , En)
then compute E19 5 Reduce(E1), . . . ,
En9 5 Reduce(En).
Then set RE5 the expression
“operator(E1 9, . . . , En 9)” .

5. If E is if E0 then E1 else E2 then
compute Reduce(E0). This must be
constant, else the annotation is in
error. If Reduce(E0) equals true ,
then RE 5 Reduce(E1), otherwise
RE5 Reduce(E2).

6. If E is if E0 then E1 else E2 then
RE 5 the expression “if E0 9 then
E19 else E2 9” where each Ei 9
equals Reduce(Ei).

484 • N. D. Jones

ACM Computing Surveys, Vol. 28, No. 3, September 1996

7. Suppose E is f(E1, E2, . . . ,
En) and Program contains definition
f(x1 . . . xn) 5 f-expression

then RE5 Reduce(E9), where E9 is the
result of substituting Reduce(Ei) in
place of each static f -parameter xi
occurring in f-expression .

8. If E is f(E1, E2, . . . , En) ,
then
(a) Compute the tuple Statvalues 9

of the static parameters of f , by
calling Reduce on each. This will
be a tuple of constant values (if
not, the annotation is incorrect).

(b) Compute the tuple Dynvalues of
the dynamic parameters of f , by
calling Reduce; this will be a list
of expressions.

(c) Then RE5 the call
f Statvalues 9(Dynvalues)

(d) A side-effect: if f Statvalues 9 is nei-
ther in Seenbefore nor in Pend-
ing , then add it to Pending .

2.3 Congruence, Binding-Time Analysis,
and Finiteness

Where do the annotations used by the
algorithm above come from? Their root
source is knowledge of which inputs will
be known when the program is special-
ized, for example m but not n in the
Ackermann example. There are two fur-
ther requirements for the specialization
algorithm above to succeed.
First, the internal parts of the pro-

gram must be properly annotated (wit-
ness comments such as “if . . . the anno-
tation is incorrect”). The bottom line is
that if any parameter or operation has
been marked as eliminable, then one
needs a guarantee that it actually will
be so when specialization is carried out,
for any possible static program inputs.
For example, an if marked as eliminable
must have a test part that evaluates to
a constant. This requirement (properly
formalized) is called the congruence con-
dition.
The second condition is termination:

regardless of what the values of the
static inputs are, the specializer should
attempt to produce neither infinitely

many residual functions nor any infi-
nitely large residual expression.
It is the task of binding-time analysis

to ensure that these conditions are sat-
isfied. Given an unmarked program to-
gether with a division of its inputs into
static (will be known when specializa-
tion begins) and dynamic, the binding-
time analyzer proceeds to annotate the
whole program. Several techniques for
this are described in Jones et al. [1993].
The current state of the art is that

congruence can definitely be achieved
automatically, whereas binding-time
analyses that guarantee termination
are only beginning to be constructed.
The problem is complex in that the
binding-time analysis must account for
possible consequences not one step into
the future, but two.

3. COMPILERS, INTERPRETERS

3.1 Computation in One Stage or More

Computational problems can be solved
either by single-stage computations or
by multistage solutions using program
generation. To illuminate the problems
and payoffs involved we describe two
familiar examples, at first informally:

(1) A compiler, which generates a tar-
get program in some target lan-
guage from a source program in a
source language.

(2) A parser generator, which generates
a parser from a context-free gram-
mar.

Compilers and parser generators first
transform their input into an executable
program and then run the generated
program on runtime inputs for a com-
piler, or on a character string to be
parsed. Efficiency is vital: the target
program should run as quickly as possi-
ble, and the parser should use as little
time per input character as possible.
Figure 4 compares two-step compila-

tive program execution with one-step
interpretive execution. Similar dia-
grams describe two-step parser genera-
tion and one-step general parsing.

Introduction to Partial Evaluation • 485

ACM Computing Surveys, Vol. 28, No. 3, September 1996

Comparison. Interpreters are usually
smaller and easier to write than compil-
ers. One reason is that the implementer
thinks only of one time: execution time,
whereas a compiler must perform ac-
tions to generate code to achieve a de-
sired effect at run time. Another is that
the implementer only thinks of one lan-
guage (the source language), while a
compiler writer also has to think of the
target language.
Further, an interpreter, if written in

a sufficiently abstract, concise and high-
level language, can serve as a language
definition: an operational semantics for
the interpreted language.
However, compilers are here to stay.

The overwhelming reason is efficiency:
compiled target programs usually run
an order of magnitude (and sometimes
two) faster than interpretating a source
program.
Another source of efficiency. A two-

phase program may in its first phase
establish global properties of its first
input and exploit them to construct a
good second-stage program. Examples: a
compiler can type-check its source pro-
gram and, if type-correct, generate a
target program without run-time
checks. A parser generator may check
that its input grammar is LALR(1), so
allowing efficient stack-based parsing.

3.2 Interpreters

A source program can be run in one step
using an interpreter; an L-program, call
it int, that executes S-programs. This
has as input the S-program to be exe-
cuted, together with its run-time inputs.
Symbolically

ou8tput 5 vsource bS [in 1, . . . , in n]

5 vint bL [source,in 1, . . . , in n]

By definition (assuming only one input
for notational simplicity), program int is
an interpreter for S written in L if for all
source, d [D

vsource bS d 5 vint bL [source, d]

3.3 Compilers

A compiler generates a target program
in target language T from a source pro-
gram source in language S. The com-
piler is itself a program, say compiler,
written in implementation language L.
The effect of running source on input
in 1, in 2, . . . , in n is realized by
first compiling source into target form:

target 5 vcompiler bL source

and then running the result:

output 5 vsource bS [in 1, . . . , in n]

5 vtarget bT [in 1, . . . , in n]

Figure 4. Compilation in two steps, interpretation in one.

486 • N. D. Jones

ACM Computing Surveys, Vol. 28, No. 3, September 1996

Formally, compiler is an S-to-T-compiler
written in L if for all source, d [D,

vsource bS d 5

vvcompiler bL source bT d

4. COMPILING BY SPECIALIZATION

In general, the idea is to specialize the
interpreter to execute only one fixed
source program, yielding a target pro-
gram in the partial evaluator’s output
language so that

target 5 vmix b [int, source]

Program target can be expected to be
faster than interpreting source since
many interpreter actions depend only
on source and so can be precomputed.
Remark: this shows that mix together

with int can be used to compile. It does
not show that mix is a compiler as de-
fined earlier, since a compiler has only
one input and mix has two.

4.1 Example of Compiling

We now consider a fairly trivial inter-
preter written for an imperative lan-
guage S in a simple functional language
L. A source program is an instruction
sequence with the following syntax
(only seven instructions!):

X: 5X11, X: 5X21,
Y: 5Y11, Y: 5Y21,

(IFY 50GOTO label),
(IFX 50GOTO label),

(GOTO label)

Figure 5. Functional interpreter for an imperative language.

Introduction to Partial Evaluation • 487

ACM Computing Surveys, Vol. 28, No. 3, September 1996

The middle box of Figure 5 contains an
interpreter interp for S written in L,
using a syntax whose meaning, we
hope, is obvious.
How the interpreter works. the “in-

struction counter” is maintained by ar-
gument pgmtail of Run. Its value is
always a suffix of source program pgm,
and its first instruction is the next to be
executed. Normal sequential execution
just removes this first instruction and
contains with the remainder, called
rest in Run. Control transfer is han-
dled by function N-th which, given a
label ,, finds the ,-th instruction in pgm
and returns the suffix of pgm beginning
at that point. (This is the reason that
argument pgm is passed along through-
out the interpreter.)
Effect of specialization. Figure 5

shows in the uppermost box a source
program src that doubles its input x by
counting y up by 2 each time it counts x
down by 1, stopping when x becomes
zero. (Instructions are labeled 0, 1, . . . ,
so 5 denotes the end of the program.)
The lowermost box shows a functional
target program tgt equivalent to source
program src . Our claim is that special-
ization of interp with respect to src
yields tgt .
The underline in the call in Execute

causes generation of the call to Run-1 .
(This is function Run, specialized to
src , src as its first two arguments.)
Within function Run, all the “syntac-

tic dispatch” operations (the case, let
and patterns) having to do with source
program structure can be done stati-
cally, and so do not appear at all in the
target program. On the other hand, op-
erations involving x and y cannot be so
executed, so code is generated (residual
target code x 2 1 and (y 1 1) 1 1) .
As to function calls of Run to itself,

those which decrease argument
pgmtail (i.e., those reflecting normal
sequential execution) may safely be un-
folded, since pgmtail can only be de-
creased finitely many times (pgmtail is
a list, not an integer). The remaining
calls (to interpret tests and GOTOs)
may not be safely unfolded—this could

cause infinite unfolding and thus non-
terminating specialization in the case of
source program loops. They are thus
marked (by underlining) as “not to be
unfolded,” and thus account for the call
to Run-1 nested inside Run-1 .
In general, program target will be a

mixture of int and source , containing
parts derived from both. A common pat-
tern is that the target program’s control
structure and computations resemble
those of the source program, while its
appearance resembles that of the inter-
preter, both in its language and the
names of its specialized functions.

4.2 Partial Evaluation Versus Traditional
Compiling

Given a language definition in the form
of an operational semantics, partial
evaluation eliminates the first and larg-
est order of magnitude: the interpreta-
tion overhead. Further, the method
yields target programs which are al-
ways correct with respect to the inter-
preter (assuming, of course, that mix is
correct). Thus the problem of compiler
correctness seems to have vanished.
Clearly the approach is suitable for

prototype implementation of new lan-
guages which are defined interpretively,
as has been done in functional lan-
guages since very early times [Mc-
Carthy et al. 1962].
The generated target code is in the

partial evaluator’s output language,
typically the language in which the in-
terpreter is written. Thus partial evalu-
ation will not devise a target language
tailor-made to the source language, e.g.,
P-code for Pascal.
It won’t invent new runtime data

structures, either, so human creativity
seems necessary to gain the full hand-
written compiler efficiency. Recent work
by Hannan and Miller [1990], however,
suggests the possibility of deriving tar-
get machine architectures from the text
of an interpreter.
Because partial evaluation is auto-

matic and general, its generated code
may not be as good as handwritten tar-

488 • N. D. Jones

ACM Computing Surveys, Vol. 28, No. 3, September 1996

get code. In particular, we have not
mentioned classical optimization tech-
niques such as common subexpression
elimination, exploiting available expres-
sions, and register allocation. Some of
these depend on specific machine mod-
els or intermediate languages and so
are hard to generalize; but there is no
reason many well-known techniques
could not be incorporated into the next
generation of partial evaluators.

4.3 The Cost of Interpretation

A typical interpreter’s basic cycle is first
syntax analysis; then evaluation of sub-
expressions by recursive calls; and fi-
nally, actions to perform the main oper-
ator, e.g., to do arithmetic operations or
a variable lookup. In general, running
time of interpreter int on inputs p and d
satisfies

ap z tp(d) # tint(p, d)

for all d, where ap is a constant. (In this
context, “constant” means: ap is inde-
pendent of d, but may depend on source
program p). In experiments ap is often
around 10 for simple interpreters run
on small source programs, and larger
for more sophisticated interpreters.
Clever use of data structures such as
hash tables or binary trees can make ap
grow slowly as a function of p’s size.

Optimality of mix. The “best possible”
mix should remove all computational
overhead caused by interpretation. This
can be simply checked for a self-inter-
preter sint—an interpreter for L which
is written in L (as was McCarthy’s first
Lisp definition).
As above, the running time of sint

will be around ap z tp(d); and ap will be
large enough to be worth reducing. Ide-
ally mix should reduce ap to 1. For any
program p and input d

vpb d 5 vsint b @p, d #

5 vvmix b @sint, p #bd

so p9 5 vmix b[sint, p] is a program
equivalent to p. If p9 is at least as effi-

cient as p, then all overhead caused by
sint’s interpretation has been removed.

Definition mix is optimal provided tp9

(d) # tp(d) for all p, d [D, where sint is
a self-interpreter and p9 5 vmix b[sint,
p] .

This criterion has been satisfied for
several partial evaluators for various
languages, using natural self-interpret-
ers [Jones et al., p. 174; Romanenko
1988]. In each case p9 is identical to p
up to variable renaming and reordering.
The same property explains the

speedups resulting from self-application
mentioned in the previous discussion.

4.4 Example with Larger Speedup

Several earlier articles exemplify compil-
ing from interpreters for traditional pro-
gramming languages [Andersen 1992;
Bondorf 1991; Consel 1993; Gomord and
Jones 1991a; 1991b; Jones et al. 1989;
Jørgensen 1992; Safra and Shapiro 1986].
An example with a different flavor but
the same essence is seen in Figure 6—a
regular expression recognizer rex , writ-
ten in a Lisp-like functional language.
“Compiling” a regular expression is a way
to obtain a lexical analyzer.
The recognizer rex has as inputs a

regular expression r , e.g., (a 1 b) p
abb , and a subject string s . The recog-
nizer’s effect is to return #t (true) if s is
generated by the regular expression,
else #f . The code shown takes into ac-
count the possibility that s is empty. If
not, its first symbol is checked against
those r could begin with, using function
firstcharacters . If successful, the
rest of s is checked against a new regu-
lar expression obtained by next . Fur-
ther explanations may be found in Bon-
dorf’s thesis [1990].
For example, suppose r 5 (a 1 b) p

abb . The results of some calls follow:

~accept-empty? r ! #f

~next r ’a ! bb 1 ~a 1 b!*abb

~next r ’b ! ~a 1 b!*abb

Introduction to Partial Evaluation • 489

ACM Computing Surveys, Vol. 28, No. 3, September 1996

An example target program. Figure 7
shows that the result of specializing “in-
terpreter” rex with respect to “source
program” is (a 1 b) p abb .
The “target” program is essentially a

program form of the deterministic fi-
nite-state automaton derived from (a 1
b) p abb by standard methods. An
interesting observation is that mix
knows nothing at all about finite autom-
ata—just how to specialize programs.
Experiments show that in general

vtarget b s runs about 200 times faster
than interpretively computing vrex b
regex s . This is much larger than for
more traditional interpreters, where
speedups of 10 are more common.

How the target program was obtained.
The input to mix is the program rex ,

whose dynamic parts are annotated by
underlining as in Figure 6, and the reg-
ular expression r . Variables r0, r1,
r2, firstchars, frest and f de-
pend only on known (static) input r ,
even though at run time the value of s
will determine just which values they
assume during the computation. The
point is that the set of all their possible
values is finite and so can be precom-
puted by mix during specialization.
In particular, functions next and

first-characters may be completely
evaluated at compile time for every
reachable argument combination. Fol-
lowing these rules gives the target pro-
gram of Figure 7.
For this fixed rex and any r, compila-

tion of target 5 vmix b[rex, r] will

Figure 6. Regular expression recognizer.

490 • N. D. Jones

ACM Computing Surveys, Vol. 28, No. 3, September 1996

terminate. Proof depends on the fact
that any regular expression has only
finitely many “derivatives” (not hard
but nontrivial to prove).

5. GENERATION OF PROGRAM
GENERATORS

Why not take our own medicine and
apply partial evaluation to produce
faster generators of specialized pro-
grams? A telling catch phrase is bind-
ing-time engineering—making computa-
tion faster by changing the times at
which subcomputations are done.
This can indeed be done, yielding a

generator of program generators as in
Figure 8. Efficiency of such a procedure
is desirable at three different times:

(1) The specialized program pin1 should
be fast. Analogy: a fast target pro-
gram.

(2) The program specializer p-gen
should quickly construct pin1 . Anal-
ogy: a fast compiler.

(3) cogen should quickly construct p-
gen from p. Analogy: fast compiler
generation.

Our goal is thus to construct an efficient
program generator from a general pro-
gram by completely automatic methods.
On the whole the general program will
be simpler but less efficient than the
specialized versions the program gener-
ator produces.

5.1 Generating Program Generators

In practice one rarely uses extremely
general programs, e.g., specification ex-
ecuters, to run programs or to parse
strings—since experience shows them
often to be much slower than the spe-

Figure 7. Specialization of the recognizer to (a1b)*abb.

Introduction to Partial Evaluation • 491

ACM Computing Surveys, Vol. 28, No. 3, September 1996

cialized programs generated by a com-
piler or parser generator.
Wouldn’t it be nice to have the best of

both worlds—the simplicity and direct-
ness of executable specifications, and
the efficiency of programs produced by
program generators? This dream is il-
lustrated in Figure 8:

—Program cogen accepts a two-input
program p as input and generates a
program generator (p-gen in the dia-
gram).

—The task of p-gen is to generate a
specialized program pin1 , given
known value in1 for p’s first input.

—Program pin1 computes the same out-
put when given p’s remaining input
in2 that p would compute if given
both in1 and in2 .

Andrei Ershov gave the appealing name
“generating extension” to p-gen [1982].
We will see that partial evaluation can
realize this dream quite generally, both
in theory and in practice on the com-
puter.
First, we give an example to demys-

tify Figure 8 by showing a generating
extension for our very first example, the
exponentiation program from Figure 2.
This is seen in Figure 9. Since the pur-
pose of p-gen is to generate program

code, we have used an informal string
notation with quotes for output code.

Efficiency in program generator gener-
ation. It would be wonderful to have
such a tool, but it is far from clear how
to construct one. Polya’s problem advice
on solving hard problems was to solve a
simpler problem similar to the ultimate
goal, and then to generalize. Following
this approach, we can clump boxes co-
gen and p-gen in Figure 8 together into
a single program with two inputs, the
program p to be specialized and its first
argument in1 . This is just the mix of
Figure 1, so we already have a weaker
version of the multiphase cogen .
We will see how cogen can be con-

structed from mix . This has been done
in practice for several different pro-
gramming languages, and efficiency cri-
teria 1, 2 and 3 have all been met.
Surprisingly, criteria 2 and 3 are
achieved by self-application—applying
the partial evaluator to itself as input.

5.2 Compiling by the First Futamura
Projection

This section shows the sometimes sur-
prising capabilities of partial evaluation
for generating program generators.
In Section 4 we saw examples of com-

Figure 8. A generator of program generators.

492 • N. D. Jones

ACM Computing Surveys, Vol. 28, No. 3, September 1996

piling by partial evaluation. This proce-
dure always yields correct target pro-
grams, verified as follows:

out 5 vsource bS input
5 vint b [source, input]
5 vvmix b [int, source] b input
5 vtarget b input

The last three equalities follow respec-
tively by the definitions of an inter-
preter, mix , and target . The net effect
has thus been to translate from S to L.
Equation

target 5 vmix b@int,source #

is often called the first Futamura projec-
tion, first reported in Futamura [1971].
The conclusion is that mix can com-

pile. The target program is always a
specialized form of the interpreter, and
so is in mix ’s output language—usually
the language in which the interpreter is
written.

5.3 Compiler Generation the Second
Futamura Projection

We now show that mix can also gener-
ate a stand-alone compiler:

compiler 5 vmix b @mix, int #

This is an L-program which, when ap-
plied to source , yields target , and so
is a compiler from S to L, written in L.
Verification is straightforward from the

mix equation:

target 5 vmix b@int, source #

5 vvmix b@mix, int #b source

5 vcompiler b source

Equation compiler 5 vmix b[mix,
int] is called the second Futamura pro-
jection. The compiler generates special-
ized versions of interpreter int , and so
is in effect int-gen , as discussed in
Section 5.1. A concrete example may be
seen in Jones et al. [1993, Ch. 4].
Operationally, constructing a com-

piler this way is hard to understand
because it involves self-application—us-
ing mix to specialize itself. But it gives
good results in practice, as we soon
shall see.

Remark. This way of doing compiler
generation requires that mix be written
in its own input language, e.g., that S 5
L. This restricts the possibility of multi-
ple language partial evaluation as dis-
cussed in Section 1.1.

5.4 Compiler Generator Generation by the
Third Futamura Projection

By precisely parallel reasoning, co-
gen 5 vmix b[mix, mix] is a compiler
generator: a program that transforms
interpreters into compilers. The compil-
ers it produces are versions of mix it-
self, specialized to various interpreters.

Figure 9. Generating extension for a program to compute xn.

Introduction to Partial Evaluation • 493

ACM Computing Surveys, Vol. 28, No. 3, September 1996

This projection is even harder to under-
stand intuitively than the second, but
also gives good results in practice. Veri-
fication of Figure 8 is again straightfor-
ward from the mix equation:

vpb @in1, in2 # 5

vvmix b @p, in1 #b in2 5

vvvmix b @mix, p #b in1 b in2 5

vvvvmix b @mix, mix #b pb in1 b in2 5

vvvcogen b pb in1 b in2

5.5 Speedups by Self-Application

A variety of partial evaluators satisfy-
ing all the above equations have been
constructed. Compilation, compiler gen-
eration and compiler-generator genera-
tion can each be done in two different
ways:

target 5 vmix b @int, source #

5 vcompiler b source

compiler 5 vmix b @mix, int #

5 vcogen b int

cogen 5 vmix b @mix, mix #

5 vcogen b mix
The exact timings vary according to the
design of mix and int , and with the
implementation language L. Nonethe-
less, a number of researchers have ob-
served that in each case the second way
is often about 10 times faster than the
first [Consel 1993; Gomard and Jones
1991b; Jones et al. 1993; Jones et al.
1989; Romanenko 1988]. Moral: self-ap-
plication can generate programs that
run faster!

Parser and Compiler Generation. As-
suming cogen exists, compiler genera-
tion can be done by letting p be the
interpreter int and letting in1 be
source . The result of specializing int
to source is a program written in the
specializer’s output language, but with
the same input-output function as the
source program. In other words, the
source program has been compiled from

S into cogen ’s output language. The
effect is that int-gen is a compiler.
If we let p be program parser , with a

given grammar as its known input in1 ,
by the description above parser-gen is
a parser generator, meaning that
parser-gen transforms its input
grammar into a specialized parser. This
application has been realized in practice
[Sperber and Thiemann, 1995] and
yields essentially the well-known LR(k)
parsers, in program form.

6. AUTOMATIC PROGRAM GENERATION

6.1 Changing Program Style

Partial evaluation provides a novel way
to construct program style transform-
ers. Let program int be a self-inter-
preter for L. A generated compiler 5
vcogen bint is a translator from L to L
written in L. In other words, it is an
L-program transformer.
The transformer’s output is always a

specialized version of the self-inter-
preter. Because the basic operations
used in most partial evaluators are
quite simple, the output program will
“inherit” many of this interpreter’s
characteristics. The following examples
have all been implemented this way:

(1) Compiling L into a proper subset.
(2) Automatic instrumentation, e.g.,

transforming a program into ver-
sions including code for step count-
ing, or printing traces, or other de-
bug code.

(3) Translating direct style programs
into continuation-passing style. This
is easy: just write the self-inter-
preter itself in continuation-passing
style [Bondorf 1991].

(4) Translating lazy programs into
equivalent eager programs [Jør-
gensen 1992].

(5) Translating direct-style programs
into tail-recursive style suitable for
machine code implementation. In
principle this can be done by “just”
writing the self-interpreter itself in
tail-recursive style, but achieving

494 • N. D. Jones

ACM Computing Surveys, Vol. 28, No. 3, September 1996

the desired binding-time separation
is a quite nontrivial task [Sperber
and Thiemann 1996].

Example (2) was exploited by Shapiro
[1983] to aid in debugging programs in
Flat Concurrent Prolog.

6.2 Hierarchies of Metalanguages

A modern approach to solving a wide-
spectrum problem is to devise a user-
oriented language to express computa-
tional requests, hence, the widespread
interest in expert systems. A processor for
such a language usually works interpre-
tively, alternating between reading and
deciphering the user’s requests, consult-
ing databases and doing problem-related
computing—an obvious opportunity to op-
timize by partial evaluation.
Such systems are often constructed us-

ing a hierarchy of metalanguages, each
controlling the sequence and choice of op-
erations at the next lower level [Safra
and Shapiro 1986]. Here efficiency prob-
lems are yet more serious since each in-
terpretation layer can multiply computa-
tion time by a significant factor.
Assume L2 is executed by an inter-

preter written in language L1 , and that
L1 is itself executed by an interpreter
written in implementation language L0 .
The left side of Figure 10 depicts the
time blowup occurring when running
programs in language L2 .

Metaprogramming without order-of-
magnitude loss of efficiency. The right
side of Figure 10 illustrates graphically

that partial evaluation can substan-
tially reduce the cost of multiple inter-
pretation levels. The possibility of alle-
viating these problems by partial
evaluation has been described in several
places. A literal interpretation of Figure
10 involves writing two partial evalua-
tors, one for L1 and one for L0 . Fortu-
nately, there is an alternative approach
using only a partial evaluator for L0 .
Let p2 be an L2 -program and let in ,

out be representative input and output
data, so

out 5 vint 0
1bL0[int 1

2, p2, in]
One may construct an interpreter for L2
written in L0 as follows:

int 0
2 : 5 vmix bL0[int 0

1, int 1
2]

Partial evaluation of int 0
2 can compile

L2 -programs into L0 -programs. Better,
one may construct a compiler from L2
into L0 by

comp0
2 : 5 vcogen b int 0

2

The net effect is that metaprogramming
may be used without order-of-magni-
tude loss of efficiency. Although concep-
tually complex, the development above
has been realized in practice more than
once by partial evaluation (one example
is Jørgensen [1992]), with significant
speedups.

6.3 Semantics-directed Compiler
Generation

By this we mean more than just a tool
to help humans write compilers. Given

Figure 10. Overhead introduction and elimination.

Introduction to Partial Evaluation • 495

ACM Computing Surveys, Vol. 28, No. 3, September 1996

a specification of a programming lan-
guage, for example, a formal semantics
or an interpreter, our goal is automati-
cally and correctly to transform it into a
compiler from the specified “source” lan-
guage into another “target” language
[Mosses 1979; Paulson 1984].
Traditional compiler-writing tools

such as parser generators and attribute
grammar evaluators are not semantics-
directed, even though they can and do
produce compilers as output. These sys-
tems are extremely useful in practice—
but it is entirely up to their users to
ensure generation of correct target code.
The motivation for automatic com-

piler generation is evident: thousands of
man-years have been spent constructing
compilers by hand, and many of these
are not correct with respect to the in-
tended semantics of the language they
compile. Automatic transformation of a
semantic specification into a compiler
faithful to that semantics eliminates
such consistency errors.
The three jobs of writing the language

specification, writing the compiler, and
showing the compiler to be correct (or
debugging it) are reduced to one: writ-
ing the specification in a form suitable
for the compiler generator. There has
been rapid progress towards this re-
search goal in the past few years, with
more and more sophisticated practical
systems and mathematical theories for
the semantics-based manipulation of
programs. One of the most promising is
partial evaluation.

6.4 Executable Specifications

A still broader goal is efficient imple-
mentation of executable specifications.
Examples include compiler generation
and parser generation.
One can naturally think of programs

int and parser above as specification
executers: the interpreter executes a
source program on its inputs, and the
parser applies a grammar to a character
string. In each case the value of the first
input determines how the remaining in-

puts are to be interpreted. Symbolically
we can write:

vspec-exec bL [spec, in 1, . . . ,in n]
5 output

The interpreter’s source program input
determines what is to be computed. The
interpreter thus executes a specifica-
tion, namely a source S-program that is
to be run in language L. The first input
to a general parser is a grammar that
defines the structure of a certain set of
character strings. The specification in-
put is thus a grammar defining a pars-
ing task.
A reservation is that one can of course

also commit errors (sometimes the most
serious ones!) when writing specifica-
tions. Achieving our goal does not elim-
inate all errors, but it again reduces the
places at which they can occur to one,
namely the specification. For example, a
semantics-directed compiler generator
allows quick tests of a new language
design to see whether it is in accordance
with the designers’ intentions regarding
program behavior, computational ef-
fects, freedom from run-time type er-
rors, stack usage, efficiency, etc.

7. BROADER PERSPECTIVES

Partial evaluation is no panacea. Pro-
gram specialization, like highly optimiz-
ing compilation, may not be worthwhile
for all applications. For one example,
knowing the value of x will not signifi-
cantly aid computing xn as in Figure 2.
Further, the efficiency of mix-generated
target programs depend crucially on
how the interpreter is written. For an-
other, if an interpreter uses dynamic
variable name binding, then generated
target programs will have run-time
variable name searches; and if it uses
dynamic source code creation then gen-
erated target programs will contain
run-time source language text.
Characteristics of a problem that

make it suitable for specialization in-
clude: It is time-consuming. It must be
solved repeatedly. It is often solved with
similar parameters, for example: code

496 • N. D. Jones

ACM Computing Surveys, Vol. 28, No. 3, September 1996

keys in cryptography, a circuit to simu-
late, a query to evaluate, or a network
communication pattern. It is solved by
well-structured and cleanly written soft-
ware (programming tricks make it hard,
not only for the human to maintain, but
also for the specializer). It implements a
high-level applications-oriented lan-
guage.

7.1 Efficiency Versus Generality and
Modularity?

One often has a class of similar prob-
lems that all must be solved efficiently.
One solution is to write many small and
efficient programs, one for each. Two
disadvantages are that much program-
ming is needed and maintenance is dif-
ficult: a change in outside specifications
can require every program to be modi-
fied.
Alternatively, one may write a single

highly parametrized program able to
solve any problem in the class. This has
a different disadvantage: inefficiency. A
highly parameterized program can
spend most of its time testing and inter-
preting parameters and relatively little
in carrying out the computations it is
intended to do.
Similar problems arise with highly mod-

ular programming. While excellent for doc-
umentation, modification and human us-
age, inordinately much computation time
can be spent passing data back and forth
and converting among various internal rep-
resentations at module interfaces.
To get the best of both worlds: write

only one highly parameterized and per-
haps inefficient program; and use a par-
tial evaluator to specialize it to each inter-
esting setting of the parameters,
automatically obtaining as many custom-
ized versions as desired. All are faithful
to the general program, and the custom-
ized versions are often much more effi-
cient. Similarly, partial evaluation can
remove most or all the interface code from
modularly written programs.

7.2 Some More Dramatic Examples

Applications of program generation in-
clude the following, all of which have
been seen to give significant speedups
on the computer. A common characteris-
tic is that many involve general and
rather “interpretive” algorithms. More
details may be found in Jones et al.
[1993] or in the reports cited below.

Pattern recognition. An earlier exam-
ple gave the result of specializing a gen-
eral regular expression recognizer to a
particular expression, with dramatic
speedup. This theme has been carried
much further, for several classes of pat-
terns, by several researchers [Consel
and Danvy 1989; Danvy 1991].

Computer graphics. “Ray tracing” re-
peatedly recomputes information about
the ways light rays traverse a given
scene from different origins and in dif-
ferent directions. Specializing a general
ray tracer to a fixed scene to transform
the scene into a specialized tracer, only
good for tracing rays through that one
scene, gives a much faster algorithm
[Andersen 1994; Mogensen 1986].

Database queries. Partial evaluation
can compile a query into a special-pur-
pose search program whose task is only to
answer the given query. The generated
program may be discarded afterwards.
Here the input to the program generator
is a general query answerer and the out-
put is a “compiler” from queries into
search programs [Safra and Shapiro
1986]. A more recent application is spe-
cialized integrity checks through partial
evaluation of meta-interpreters [Leusche
and De Shreye 1995].

Neural networks. Training a neural
network typically uses much computer
time, but can be improved by specializ-
ing a general simulator to a fixed net-
work topology [Jacobsen 1990].

Spreadsheets. Spreadsheets are usu-
ally implemented interpretively, but the
program generation approach has been
used to transform spreadsheet specifica-

Introduction to Partial Evaluation • 497

ACM Computing Surveys, Vol. 28, No. 3, September 1996

tions into faster specialized spreadsheet
programs [Appel 1988].

Scientific computing. General pro-
grams for several diverse applications
including orbit calculations (the n-body
problem) and computations for electri-
cal circuits have been speeded up by
specialization to particular planetary
systems and circuits [Baier et al. 1994;
Berlin and Weise 1990].

Parsing. Parsing can also be done by
first generating a parser from an input
context-free grammar:

parser 5 vparse-gen bL grammar

and then applying the result to an input
character string:

parse-tree 5 vparser bL char-string

On the other hand, there exist one-step
general parsers, e.g., Earley’s parser.
Similar tradeoffs arise—a general
parser is usually smaller and easier to
write than a parser generator, but a
parser generated from a fixed context-
free grammar runs much faster.

8. AUTOMATION AND PARTIAL
EVALUATION

Binding-time separation. The essence of
partial evaluation is to recognize which
of a program’s computations can be
done at specialization time and which
should be postponed to run time. This
“binding-time separation” is becoming
much better understood, resulting in
more reliable and more powerful sys-
tems.
In our experience it is usually fairly

easy to establish termination, when
given a particular interpretive language
definition and when the separation into
static and dynamic arguments have
been accomplished by a binding-time
analysis. Ensuring termination may,
however, require small changes to the
interpreter. Binding-time analysis suffi-
cient to give a congruent separation is
now well automated; but fully auto-
matic binding-time analyses sufficiently
conservative to guarantee termination

of specialization, or to perform “binding-
time improvement” program transfor-
mations automatically, are still topics of
ongoing research.

Critical assessment. Partial evalua-
tors are still far from perfectly under-
stood in either theory or practice. Sig-
nificant problems remain, and we
conclude this section with some of them.
Partial evaluation has advanced rap-

idly since the first years. Early systems
sometimes gave impressive results but
were only applicable to limited lan-
guages, required great expertise on the
part of the practitioner, and sometimes
gave wrong results. Often in order to
get good specialization it was necessary
both to give extensive user advice on the
subject program and to “tune” the par-
tial evaluator itself to fit new programs.

Need for human understanding. A
deeper difficulty is that new problems,
and programs that solve them, require
understanding, a program development
aspect never likely to be fully auto-
mated (regardless of progress in artifi-
cial intelligence).
While mechanical program under-

standing is unreasonable to expect,
progress is occurring to automate much
of the program manipulation now done
by hand. Program transformations,
adaptations, etc., are being developed
that respect the behavior of the pro-
grams being manipulated. Formally,
program behavior is semantics, and re-
cent rapid progress in partial evalua-
tion owes to advances in understanding
the operational aspects of semantics.

Greater automation and user conve-
nience. The user should not need to give
advice on unfolding or on generaliza-
tion, that is to say where statically com-
putable values should be regarded as
dynamic. (Such advice is required in
some current systems to avoid con-
structing large or infinite output pro-
grams.)
The user should not be forced to un-

derstand the logic of a program result-
ing from specialization. An analogy is

498 • N. D. Jones

ACM Computing Surveys, Vol. 28, No. 3, September 1996

that one almost never looks at a compil-
er-generated target program or a Yacc-
generated parser.
Further, users shouldn’t need to un-

derstand how the partial evaluator
works. If partial evaluation is to be used
by non-specialists in the field, it is es-
sential that the user think as much as
possible about the problem he or she is
trying to solve, and as little as possible
about the tool being used to aid its
solution. A consequence is that systems
and debugging facilities that give feed-
back about the subject program’s bind-
ing-time separation are essential for use
by nonspecialists.
Quite significant advances have been

made, but the presence or absence of
such important characteristics is all too
rarely mentioned in the literature.

Analogy with parser generation. In
several respects, using a partial evalua-
tor is rather like using a parser genera-
tor such as Yacc. First, if Yacc accepts a
grammar, then one can be certain that
the parser it generates assigns the right
parse tree to any syntactically correct
input string and detects any incorrect
string. Analogously, a correct partial
evaluator always yields specialized pro-
grams correct with respect to the input
program. For instance, a generated
compiler is always faithful to the inter-
preter from which it was derived.
Second, when a user constructs a con-

text-free grammar, he or she is mainly
interested in what strings it generates.
But use of Yacc forces the user to think
from a new perspective: possible left-to-
right ambiguity. If Yacc rejects a gram-
mar, the user may have to modify it
several times, until it is free of left-to-
right ambiguity.
Analogously, a partial evaluator user

may have to think about his or her
program from a new perspective: what
are its binding-time properties? If spe-
cialized programs are too slow, it will be
necessary to modify the program and
retry until a better binding-time-stage
separation is achieved. In other words,
does one need binding-time improve-

ments: transformations that do not
change the algorithm’s semantics, but
make it easier for the specializer to
separate binding-times?

Everchanging languages and systems.
Unfortunately for many automation at-
tempts, the ground is constantly shifting
under one’s feet in both software and in
hardware (e.g., new architectures and
changing preferences for imperative,
logic, functional, and object-oriented pro-
gramming). An ever-changing context
makes systematization and automation
quite hard; a well-known example is that
methods good for yesterday’s optimizing
compilers are sometimes disastrous on
today’s machines.
Nonetheless, frequent change is in no

way a good excuse for neglecting the
application of automation in our own
workplaces (indeed, this is embarrass-
ing, given the enormous benefits given
by computers in automating work done
in other scientific and industrial fields!).

9. HISTORY

Jones et al. [1993] describe several ap-
proaches to and systems for partial
evaluation. For an extensive bibliogra-
phy including references to papers in
Russian, see Sestoft and Zamulin
[1988]. It is still being updated and is
electronically available by anonymous
ftp from file pub/diku/dists/jones-
book/partial-eval.bib.Z .
Another source: http://www.

diku.dk/research-groups/topps/
Bibliography.html .

Theory. The idea of obtaining a one-
argument function by “freezing” an in-
put to a two-argument function is clas-
sical mathematics (“restriction,”
“projection,” or “currying”). Specializing
programs rather than functions is also
far from new, for instance Kleene’s s-
m-n Theorem from 1936(!) is an impor-
tant building block of recursive function
theory. On the other hand, efficiency
matters were quite irrelevant to
Kleene’s investigations.

Introduction to Partial Evaluation • 499

ACM Computing Surveys, Vol. 28, No. 3, September 1996

Futamura saw around 1970 that com-
piling may in principle be done by par-
tial [Futamura 1971]. Turchin [1986],
Ershov [1982] and Beckmann et al.
[1976] realized the same independently
in the mid-1970s and saw that even a
compiler generator could be built by ap-
plying a partial evaluator to itself.

Practice. Lombardi and Raphael’s
[1964] papers on incremental computa-
tion were pathbreaking. In the mid-
1970s a large partial evaluator was de-
veloped in Sweden for Lisp as used in
practice (including imperative features
and property lists) [Beckman et al.
1976] and a partial evaluator for Prolog
[Komorowski 1982]. Trends to recognize
partial evaluation as an important tool
appeared among dedicated builders of
compiler generators [Mosses 1979; Paul-
son 1984].
A wide range of languages has been

covered in recent years, including first-
order functional languages [Berlin and
Weise 1990; Consel 1993; Jones et al.
1989; Romanenko 1988], higher-order
languages including Scheme [Bondorf
1991; Gomard and Jones 1991b; Weise
et al. 1991], typed languages [Launch-
bury 1991], logic programming includ-
ing Prolog [Komorowski 1982; Lloyd
and Shepherdson 1991; Safra and Sha-
piro 1986; Leuschel and De Schreye,
1995; Sahlin 1990] a term-rewriting
language [Bondorf 1989], and impera-
tive languages [Andersen 1994; 1992;
Gomard and Jones 1991] including a
subset of C.

Self-application. A nontrivial self-ap-
plicable partial evaluator that required
handmade unfolding annotations for
function calls was first developed in late
1984 and communicated in Jones et al.
[1985]. Fully automatic self-applicable
systems among the above are discussed
in Andersen [1992], Bondorf [1990],
Consel [1993], Gomard and Jones
[1991a, 1991b], Jones et al. [1989] and
Romanenko [1988].

New applications. An early motiva-
tion was optimization, so it is gratifying

to see recent applications to scientific
computing such as that of Berlin and
Weise [1990] and Baier et al. [1994].
Applications to compiling and compiler
generation were envisioned long before
they were realized in practice, but un-
foreseen applications have arisen too,
for example in real-time processing
[Nirkhe and Pugh 1992], incremental
computation, debugging concurrent pro-
grams [Shapiro 1983], and parallel and
pipelined computation [Pingali and Rog-
ers 1990; Vasell 1993].
A potential use of fast specialization

is to have a specializer running concur-
rently with the original program, and
from time to time to switch to special-
ized versions whenever input patterns
recur.

10. CONCLUSIONS

Partial evaluation and self-application
have many promising applications and
work well in practice for generating pro-
gram generators, e.g., compilers and
compiler generators and other program
transformers, for example style chang-
ers and instrumenters.

Some recurring problems in partial
evaluation. Rapid progress has oc-
curred, but there are often problems
with termination of the partial evalua-
tor, and sometimes with semantic faith-
fulness of the specialized program to the
input program (termination, backtrack-
ing, correct answers, etc.). Further, it
can be hard to predict how much (if any)
speedup will be achieved by specializa-
tion, and hard to see how to modify the
program to improve the speedup.
An increasing understanding is evolv-

ing of how to construct partial evalua-
tors for various languages, of how to
tame termination problems, and of the
mathematical foundations of partial
evaluation. On the other hand, we need
to be able to

—make it easier to use a partial evalu-
ator,

—understand how much speedup is pos-
sible,

500 • N. D. Jones

ACM Computing Surveys, Vol. 28, No. 3, September 1996

—predict the speedup and space usage
from the program before specializa-
tion,

—produce better results when specializ-
ing typed languages,

—avoid code explosion (by automatic
means), and

—generate machine architectures tai-
lor-made to the source language de-
fined by an interpreter

Deeper-going and more advanced criti-
cal reviews may be found in Jones et al.
[1993] and Ruf [1993].

ACKNOWLEDGMENTS

This article has benefited greatly from many peo-
ple’s reading and constructive criticism. Special
thanks are due to Carsten Gomard, Peter Sestoft
and others in the TOPPS group at Copenhagen,
Jacques Cohen, Robert Glück, John Launchbury,
Patrick O’Keefe, Carolyn Talcott, Dan Weise, and
the referees.

REFERENCES

ACM. 1991. Partial Evaluation and Semantics-
Based Program Manipulation, New Haven,
Connecticut. (Sigplan Notices, 26, 9, Sept.),
ACM Press.

ACM. 1992. Sigplan Workshop on Partial Eval-
uation and Semantics-Based Program Manip-
ulation, (San Francisco).

ACM. 1993. Sigplan Workshop on Partial Eval-
uation and Semantics-Based Program Manip-
ulation (Copenhagen). ACM Press.

ACM 1994. Sigplan Workshop on Partial Eval-
uation and Semantics-Based Program Manip-
ulation, (Orlando, Florida) Univ. of Mel-
bourne report 94/9, 1994.

ACM. 1995. Sigplan Workshop on Partial Eval-
uation and Semantics-Based Program Manip-
ulation, (San Diego, Calif.) ACM Press.

AHO, A. V., SETHI, R., AND ULLMAN, J. D.
1986. Compilers: Principles, Techniques, and
Tools. Addison-Wesley.

ANDERSEN, L. O. 1994. Program analysis and
specialization for the C programming lan-
guage. DIKU, Dept. of Computer Science,
Univ. of Copenhagen. DIKU Rep. No. 94/19.

ANDERSEN, L. O. 1992. C program specializa-
tion. International Workshop on Compiler
Construction, (Paderborn, Germany), Spring-
er-Verlag.

ANDERSEN, P. H. 1994. Partial evaluation ap-
plied to ray tracing. Res. Rep. DIKU, Dept. of
Computer Science, Univ. of Copenhagen.

APPEL, A. 1988. Reopening closures. Unpub-
lished report, Princeton Univ.

BAIER, R., GLÜCK, R., AND ZÖCHLING, R. 1994. Par-
tial evaluation of numerical programs in For-
tran. In Proceedings of ACM SIGPLAN Work-
shop on Partial Evaluation and Semantics-
Based Program Manipulation, Tech. Rep. 94/9,
Univ. of Melbourne, Australia, 119–132.

BECKMAN, L., ET AL. 1976. A partial evaluator,
and its use as a programming tool. Artif.
Intell. 7, 4, 319–357.

BERLIN, A. AND WEISE, D. 1990. Compiling sci-
entific code using partial evaluation. IEEE
Comput. 23, 12 (Dec.) 25–37.

BJØRNER, D., ERSHOV, A. P., AND JONES, N. D.
EDS. 1987. Partial evaluation and mixed
computation. In Proceedings of the IFIP TC2
Workshop (Gammel Avernœs, Denmark, Oct.)
North-Holland, 1988.

BONDORF, A. 1989. A self-applicable partial
evaluator for term rewriting systems. In TAP-
SOFT ’89 Proceedings of the International
Conference Theory and Practice of Software
Development, J. Diaz and F. Orejas, Eds.
(Barcelona, Spain, Mar.) (Lecture Notes in
Computer Science, 352), Springer-Verlag, 81–
95.

BONDORF, A. 1990. Self-applicable partial eval-
uation. PhD thesis, DIKU, Univ. of Copenha-
gen. Revised version: DIKU Rep. 90/17.

BONDORF, A. 1991. Automatic autoprojection of
higher order recursive equations. Sci. Com-
put. Program. 17, 3–34.

BURSTALL, R. M. AND DARLINGTON, J. 1977. A
transformation system for developing recur-
sive programs. J ACM, 24, 1 (Jan.) 44–67.

CONSEL, C. AND DANVY, O. 1989. Partial evalua-
tion of pattern matching in strings. Inf. Pro-
cess. Lett., 30 (Jan.) 79–86.

CONSEL, C. AND NOEL, F. 1992. A general ap-
proach for run-time specialization and its ap-
plication to C. In ACM Symposium on Princi-
ples of Programming Languages, (Orlando,
Florida, Jan.) ACM Press.

CONSEL, C. AND DANVY, O. 1993. Tutorial notes
on partial evaluation. In ACM Symposium on
Principles of Programming Languages. ACM
Press.

CONSEL, C. 1993. A tour of Schism: a partial
evaluation system for higher-order applica-
tive languages. In ACM Symposium on Par-
tial Evaluation and Semantics-Based Pro-
gram Manipulation, 66–77.

DANVY, O. 1991. Semantics-directed compila-
tion of non-linear patterns. Inf. Process. Lett.
37, 315–322.

ERSHOV, A. P. 1982. Mixed computation: Poten-
tial applications and problems for study.
Theor. Comput. Sci., 18, 41–67.

ERSHOV, A. P., BJØRNER, D., FUTAMURA, Y., FU-
RUKAWA, K., HARALDSON, A., AND SCHERLIS, W.

Introduction to Partial Evaluation • 501

ACM Computing Surveys, Vol. 28, No. 3, September 1996

EDS. 1988. In Special Issue: Selected Pa-
pers from the Workshop on Partial Evaluation
and Mixed Computation, 1987. New Gen-
eration Comput., 6, 2,3. Ohmsha Ltd. and
Springer-Verlag.

FUTAMURA, Y. 1971. Partial evaluation of com-
putation process—an approach to a compiler-
compiler. Syst. Comput. Contr. 2, 5, 45–50.

GOMARD, C. K. AND JONES, N. D. 1991a. Compiler
generation by partial evaluation: a case study.
Structured Program. 12, 123–144. Also as
DIKU-report 88/24 and 90/16.

GOMARD, C. K. AND JONES, N. D. 1991b. A par-
tial evaluator for the untyped lambda-calcu-
lus. J. Funct. Program. 1 1 (Jan.) 21–69.

HANNAN, J. AND MILLER, D. 1990. From opera-
tional semantics to abstract machines. In
1990 ACM Conference on Lisp and Functional
Programming, (Nice, France), ACM Press,
June, 323–332.

HOLST, N. C. K. 1988. Language triplets: The
AMIX approach. In Partial Evaluation and
Mixed Computation, D. Bjørner, A. P. Ershov,
and N. D. Jones, Eds., North-Holland, 167–
185.

JACOBSEN, H. F. 1990. Speeding up the back-
propagation algorithm by partial evaluation.
DIKU Student Project 90-10-13, 32 pages.
DIKU, Univ. of Copenhagen. (In Danish).

JONES, N. D. 1988. Automatic program special-
ization: A re-examination from basic princi-
ples. In Partial Evaluation and Mixed Com-
putation, D. Bjørner, A. P. Ershov, and N. D.
Jones, Eds. North-Holland, 225–282.

JONES, N. D. 1995. MIX ten years later. In Pro-
ceedings of PEPM’95, the ACM Sigplan Sym-
posium on Partial Evaluation and Semantics-
Based Program Manipulation, 24–38.

JONES, N. D., GOMARD, C., AND SESTOFT, P.
1993. Partial Evaluation and Automatic
Program Generation. Prentice Hall.

JONES, N. D., SESTOFT, P., AND SØNDERGAARD, H.
1985. An experiment in partial evaluation:
The generation of a compiler generator. In
Rewriting Techniques and Applications, J.-P.
Jouannaud, Ed. (Dijon, France) Lecture Notes
Computer Science, 202, Springer-Verlag, 124–
140.

JONES, N. D., SESTOFT, P., AND SØNDERGAARD, H.
1989. Mix: A self-applicable partial evalua-
tor for experiments in compiler generation.
Lisp Symbolic Comput., 2, 1, 9–50.

JØRGENSEN, J. 1992. Generating a compiler for
a lazy language by partial evaluation. In
Nineteenth ACM Symposium on Principles of
Programming Languages (Albuquerque, New
Mexico, Jan.) ACM, 258–268.

JØRRING, U. AND SCHERLIS, W. L. 1986. Compilers
and staging transformations. In Thirteenth
ACM Symposium on Principles of Programming
Languages (St. Petersburg, Florida) 86–96.

KOMOROWSKI, H. J. 1982. Partial evaluation as
a means for inferencing data structures in an
applicative language: A theory and implemen-
tation in the case of Prolog. In Ninth ACM
Symposium on Principles of Programming
Languages, (Albuquerque, New Mexico) 255–
267.

LAUNCHBURY, J. 1991. Projection factorisations
in partial evaluation. Distinguished Disserta-
tions in Computer Science. Cambridge Univ.
Press.

LEONE, M. AND LEE, P. 1994. Lightweight run-
time code generation. In Proceedings of
PEPM’94, the ACM Sigplan Symposium on
Partial Evaluation and Semantics-Based Pro-
gram Manipulation. ACM Press.

LEUSCHEL, M. AND DE SCHREYE, D. 1995. Towards
creating specialised integrity checks through
partial evaluation of meta-interpreters. In Pro-
ceedings of PEPM’95, the ACM Sigplan Sympo-
sium on Partial Evaluation and Semantics-
Based Program Manipulation, (La Jolla,
California, June) ACM Press, 253–263.

LLOYD, J. W. AND SHEPHERDSON, J. C. 1991. Par-
tial evaluation in logic programming. J. Logic
Program., 11, 217–242.

LOMBARDI, L. A. AND RAPHAEL, B. 1964. Lisp as
the language for an incremental computer. In
The Programming Language Lisp: Its Opera-
tion and Applications, E. C. Berkeley and D.
G. Bobrow, Eds. MIT Press, Cambridge, Mas-
sachusetts, 204–219.

MCCARTHY, J., ET AL. 1962. LISP 1.5 Program-
mer’s Manual. MIT Computation Center and
Research Laboratory of Electronics.

MOGENSEN, T. 1986. The application of partial
evaluation to ray-tracing. Master’s thesis,
DIKU, Univ. of Copenhagen, Denmark.

MOSSES, P. 1979. SIS—semantics implementa-
tion system, reference manual and user guide.
DAIMI Rep. MD-30, DAIMI, Univ. of Aarhus,
Denmark.

NIRKHE, V. AND PUGH, W. 1992. Partial evalua-
tion and high-level imperative programming
languages with applications in hard real-time
systems. In Nineteenth ACM Symposium on
Principles of Programming Languages, (Albu-
querque, New Mexico, Jan.) ACM, 269–280.

PAGAN, F. G. 1991. Partial Computation and
the Construction of Language Processors.
Prentice-Hall, 166.

PAULSON, L. 1984. Compiler generation from
denotational semantics. In Methods and Tools
for Compiler Construction, B. Lorho, Ed.
Cambridge University Press, 219–250.

PINGALI, K. AND ROGERS, A. 1990. Compiler par-
allelization for a simple distributed memory-
machine. In International Conference on Par-
allel Programming, (St. Charles, Illinois).

PU, C., AUTREY, T., BLACK, A., CONSEL, C., COWAN,
C., INOUYE, J., KETHANA, L., WALPOLE, J., AND

502 • N. D. Jones

ACM Computing Surveys, Vol. 28, No. 3, September 1996

ZHANG, K. 1995. Optimistic incremental
specialization: streamlining a commercial op-
erating system. In ACM Symposium on Oper-
ating Systems Principles.

ROMANENKO, S. A. 1988. A compiler generator
produced by a self-applicable specializer can
have a surprisingly natural and understand-
able structure. In Partial Evaluation and
Mixed Computation, D. Bjørner, A. P. Ershov,
and N. D. Jones, Eds. North-Holland, 445–
463.

RUF, E. 1993. Topics in online partial evalua-
tion, Ph.D. thesis, Stanford Univ., California,
Published as Tech. Rep. CSL-TR-93-563.

SAFRA, S. AND SHAPIRO, E. 1986. Meta inter-
preters for real. In Information Processing 86,
H.-J. Kugler, Ed. North-Holland, 271–278.

SAHLIN, D. 1990. The Mixtus approach to auto-
matic partial evaluation of full Prolog. In
Logic Programming: Proceedings of the 1990
North American Conference (Austin, Texas,
Oct.), S. Debray and M. Hermenegildo, Eds.
MIT Press, 377–398.

SESTOFT, P. AND ZAMULIN, A. V. 1988. Annotated
bibliography on partial evaluation and mixed
computation. In Special Issue: Selected Papers
from the Workshop on Partial Evaluation and
Mixed Computation. Ohmsha Ltd. and
Springer-Verlag, 309–354.

SHAPIRO, E. 1983. Algorithmic Program Debug-
ging. MIT Press, 1983.

SØRENSEN, H., GLÜCK, R., AND JONES, N. D.
1994. Towards unifying partial evaluation,
deforestation, supercompilation, and GPC. In
European Symposium on Programming (Glas-
gow) J.-P. Jouannaud, Ed., (Lecture Notes in
Computer Science). Springer-Verlag.

SPERBER, M. AND THIEMANN, P. 1996. Realistic
compilation by partial evaluation. In ACM
SIGPLAN Conference on Programming Lan-
guage Design and Implementation PLDI’96.

SPERBER, M. AND THIEMANN, P. 1995. The es-
sence of LR parsing. In ACM SIGPLAN Con-
ference on Partial Evaluation and Semantics-
Based Program Manipulation (San Diego,
California), ACM Press, 146–155.

TURCHIN, V. F. 1986. The concept of a super-
compiler. ACM Trans. Program. Lang. Syst.,
8, 3 (July) 292–325.

VASELL, J. 1993. A partial evaluator for data
flow graphs. In ACM SIGPLAN Conference
on Partial Evaluation and Semantics-Based
Program Manipulation. (Copenhagen) 206–
215.

WEISE, D., CONYBEARE, R., RUF, E., AND SELIGMAN,
S. 1991. Automatic online partial evalua-
tion. In Functional Programming Languages
and Computer Architecture (Cambridge, Mas-
sachusetts, Aug.) J. Hughes, Ed., (Lecture
Notes in Computer Science, 523), ACM,
Springer-Verlag, 165–191.

Received February 1996; accepted June 1996

Introduction to Partial Evaluation • 503

ACM Computing Surveys, Vol. 28, No. 3, September 1996

