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A b s t r a c t .  Macro expansion in current Lisp systems 
is naive with respect to block structure. Every macro 
function can cause the capture of free user identifiers and 
thus corrupt intended bindings. We propose a change to 
the expansion algorithm so that macros will only violate 
the binding discipline when it is explicitly intended. 

1. P r o b l e m s  wi th  M a c r o  Expans ions  
Lisp macro functions are powerful tools for the extension 
of language syntax. They allow programmers to add new 
syntactic constructs to a programming language. A pro- 
stammer specifies a macro function which translates ac- 
tual instances of a syntactic extension to core language ex- 
pressions. This process can also be pyramided, i.e., macro 
functions may translate into an already extended language 
[5]. The defined set of macro functions is coordinated by a 
preprocessor, usually called a macro expander. The macro 
expander parses every user input. If the expander finds 
an instance of a syntactic e~tension, it applies the appro- 
priate macro function. It repeats this process until an 
expression of the core language is obtained. 

In most current Lisp systems the expander's task is 
confined to the process of finding syntactic extensions and 
replacing them by their expansions. This implies, in par- 
ticular, that each macro function is responsible for the 
integrity of the program. For Lisp systems (and other 
languages with similar macro facilities) this means specif- 
ically that variable bindings must not be corrupted. This, 
however, is not as simple a task as it sounds. 

Macro functions in Lisp generally act like the con- 
text filling operation in the A-calculus [2], p.29. Given 
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its textual parameters, a macro function places them into 
the appropriately labeled holes of some expansion pattern. 
Free identifiers in user code may unintentionally be cap- 
tured by macro-generated bindings. For example, a macro 
function for o r - e x p ~ i o n s  in Lisp may be understood as 
a transformation from patterns of the type 

(or (ezph (szp)2) 
to an expansion pattern like 

(let ~ [ ](~7), ( i f  e v [ ](,~,),)).l 
In other words, the or-macro fills the hole [ ](-i,), 

with (cxp)i. An instance like (or  nil v) is transcribed 
to (let v nil (if v v v)). This example reveals that the 
capturing of free user identifiers is dangerous. The ex- 
panded expression will always produce the value nil, in- 
dependently of the value of the user identifier v, quite 
contrary to the expectations of a programmer. 

The real danger of these erroneous macros is that they 
are treacherous. They work in all cases but one: when the 
user--or some other macro writer--inadvertently picks 
the wrong identifier name. 

Various techniques have been proposed to circumvent 
this capturing problem, but they rely on the individual 
macro writer. If even one of the many macro writers is 
negligent, the maCro system becomes unsafe. We claim 
that the task of safely renaming macro-generated identi- 
tiers is mechanical, it is essentially an o-conversion [2], p. 
26, which is knowledgeable about the origin of identifiers. 
For these reasons we propose a change to the naive macro 
expansion algorithm which automatically maintains hy- 
gienic conditions during expansion time. 

The rest of the paper is devoted to the presentation of 
the problem definition and the new algorithm. The sec- 
ond section describes our target programming language 
and its macro expander language. In the third section we 
discuss the naive macro expansion algorithm. Section 4 
contains the hygienic expansion algorithm and a correct- 
ness theorem. In Section $ we show how to extend the 
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solution to cover important constructs of Lisp. The last 
section highlights the merits of the new algorithm and its 
implications for macro writers. 

2. L a n g u a g e  Cons ide ra t ions  
A macro expander maps expressions from an extended 
programming language to an expression in a core lan- 
guage. Hence, our first consideration must be the source 
and target language of the expander. 

The most important aspect of the target language 
with respect to the capturing problem is its lexical scop- 
ing mechanism. We have chosen to use the A-calculus 
as it is the prototype of block structured programming 
languages. It is syntactically simple, yet contains all the 
required elements to make the case interesting, and has 
the right level of complexity. Furthermore, it is a fairly 
trivial task to generalize an algorithm for the A-calculus 
to Common Lisp [6], Scheme [3], or Algol-like languages. 

The variant of the A-calculus we use as our target 
programming language is defined by the grammar:. 

Atcrm ::-- vat 

[ const 

[ ( l a m b d a  ear Atcrm) 

[ (Aterm Atcrm). 

The characters "(~, ~) ' ,  and ~lambda" are terminal sym- 
bols and are collectively referred to as the set of core to- 
kens: coretok = {(,) ,  l ambda}.  The set const includes 
all constants commonly found in Lisp such as strings, vec- 
tors, numbem, closures, etc. The set ear is composed of 
Lisp symbols that are used as identifier names; it is dis- 
joint from the set of core tokens. 

Variable and constant expressions stand for values 
as usual. Abstractions, i.e., lambda-expressions, rep- 
resent procedures of one variable. The lambda-bound 
identifier--the parameter--can only be referred to within 
the abstraction body, i.e. identifiers are lexically scoped. 
We call the occurrence of a variable in the parameter part 
of a lambda*expreesion its binding instance. Applications 
correspond to function invocations. 

The source language needs to be an extension of the 
target language. It must allow for one kind of an expres- 
sion which is only specified in a rather general way. The 
concrete extension of Atcrm as defined by the indivdual 
macros will be specializations of this language. We refer 
to the source language as the language of syntax trees and 
define it inductively by: 

stre¢ ::= ear 

[ const 

] mstrec 

I ( l a m bda  ear strce) 

[ (stre¢ stree). 

The set mstree is the sublanguage of syntactic cztensions. 

We assume that instances of macro expressions are 
recognized by the presence of macro tokens, i.e. elements 
of a distinguished set maetok. Macro tokens can either be 
syntactic extensions by themselves or are the first compo- 
nent of an arbitrarily long syntax tree: 

mstree : := mactok [ (mactok street . . ,  strsem) 

for all n > 0. 

Since this syntax is ambiguous, we add the provision that 
an expression of the form (m a) with m ~. maetok and 
s E stree is a ~ntac t ic  extension; it is not an application. 
See Figure 1 for a summary of the definitions. 

3. The Naive Approach to Macro Expans ion  
Before we can describe the expansion algorithm which is. 
currently employed in Lisp systems, we need to define 

some terminology. Recall that a possible form for a syn- 
tactic extension is: 

( mactok street . . ,  stree,~ ). 

The trees street through streem are called the syntactic 
scope of the extension. 

We say a syntactic extension or any Atcrm-expression 
secure in a syntax tree if it is a subtree that is not nested 
within the syntactic scope of another syntactic exten- 
sion. For example, the syntactic extension (or z y) occurs 
within the expression 

( l a m b d a  z (or  z y)), 

but it does not occur within 

(case tag (name (or z y))) 

nor within 
(caee tag (or = y)) 

because it is in the syntactic scope of the case-extension. 

The notion of occurrence reflects the fact that every 
sentence in the language of syntax trees has two interpre- 
tations. It may be considered as an element of the Aterm- 
language or as a proper syntactic extension. Since the 
expansion of a syntactic extension involves a rearrange- 
ment of (parts of) syntax trees in its syntactic scope, we 
can only be sure about the interpretation of an expression 
when it is not embedded in a syntactic extension. In the 
above example, the list (or  z y) is in the first two cases 
a syntactic extension; in the third one, however, it only 
stands for a list with o r  in the first position and z and y 
in the rest of the list. The same is true if we replace the 
or by lambda .  

A syntactic transform/unction (E STF) is a macro 

function which is defined by the macro writer and which 
expands a particular class of syntactic extensions," e.g., 



the or-macro of Section 1. The result of applying a trans- 
form function to an occurrence of a syntactic extension 
is called a transcription. A transcription step is the one- 
step expansion of a syntactic extension. Symbols which 
are introduced during a transcription step are referred to 
as generated symbols. 

The set of macros used during an expansion is a syn- 
taz table (E ST) .  Applied to an occurrence of a syntactic 
extension it produces its transcription. It serves as a dis- 
patcher and applies the appropriate transform function to 
its argument. 

Equipped with these definitions, we can define the ez- 
pansion of a syntax tree with respect to a syntax table as 
the tree in which all occurrences of syntactic extensions 
are replaced by the expansions of their transcriptions. If 
the expansion process halts, the result of an expansion is 
a ~term, i.e., an expression of the core language. We have 
formalized these definitions in Figure 1. 

The major problem with naive expansion is that it 
does not enforce the integrity of lexical bindings. This 
point was illustrated in Section 1 with the incorrect ex- 
pansion of an or-expression. The example may suggest 
that one can simply rename all generated identifiers af- 

ter each transcription step. Bat tkis impression is too 
simplistic. Generated identifiers may act as free variables 
which are to be captured by the user-supplied program 
context. They must not be renamed. On the other hand, 
since macro expansion is possibly pyramided it may also 
not be quite obvious after a transcription step which iden- 
tifier is to be free and which one is to be bound. A final 
difficulty is that sometimes capturing is desired. Consider 
a loop-macro which transforms patterns of the form 

(loop (block)) 

by filling the expansion pattern 

((Y (lambda f ( lambda c ( f [  ]O~cx))))) 1). 

This fill-operation of contexts captures the free identifiers 
/ and e in the expression (block). The capturing by ? is 
almost certainly undesired, but the one by e may be quite 
useful. The identifier e is always bound to the result of 
the last iteration step, initially it is 1, and it might be nec- 
essary to have this value around. Given a protocol, which 
indicates this binding of e within the syntactic scope of 
loop for the macro user, one can imagine that the results 
of applying the macro function must capture free e's in 

Figure I: Naive macro expansion 

Syntactic Domains: 

c E const constant names, 
v E var identifier names, 
mE mactok macro tokens, 
e E mstree macro expressions, 
s E stree expressions. 

Syntax: 

s ::= c [ v [ e  [ ( l a m b d a v  s) [ (sts~), st ¢~mactok, 

e ::= m [ ( m s t . . . s . )  for n ~_ 0 

with the above restriction. 

Semantic Domains: 

S T F  = 

d E S T  = 

Aterm. 

Semantic Functions: 
t , i , ,  : stree --* S T  --* ~term; 

mstree -* stree, 

mstree --* stree, 

t , , ~ , , | c l  = ~O.c, 
e . , , . l v l  = ~o.~,  
t , , ~ . l e l  = ~ o . t . : . l ( o e ) | o ,  

~.,ive|(lambda v s)] = ),O.(lambda v ~'.,/.els]O), 
e. , , . , l (s ,  s2)l : ~o . (e . ,~ . l s , lO  t,,,ls2lO). 
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(block) but must avoid the capturing of ]'s. The situa- 
tion looks hopeless for a mechanized solution. Therefore, 
people have invented a variety of techniques which give the 
designer of the macro functions a mechanism for avoiding 
capture when required. 

One of the common solutions to the capturing prob- 
lem uses bizarre or freshly created identifier names for 
macro-generated bindings. Another solution involves the 
freezing---closing--of nser-code at the right time in the 
correct environment [7]. It is clear that bizarre names only 
lower the probability of the problem occurrence, but do 
not eliminate it. The freshly created identifier approach 
works if the macro writer always specifies which identifiers 
are to be so considered. Freezing and thawing user-code 
is even more complicated since it has to be done in the 
right environment. All of these solutions suffer from the 
same drawback; the macro writer is responsible for their 
realization. If he is negligent, the macro is insidious. 

In the next section we present an expansion algorithm 
which automatically resolves the problem and requires lit- 
tle modification to the conventional macro writing style. 
It relies on the fact that almost all generated identifiers 
are to be freshly created, and it allows exceptions from 
this default assumption when necessary. 

4. Hyg lenk  Macro  Expansion 
The capturing problem of the naive expansion algorithm 
is analogous to the substitution problem in the A-calculus. 
When an expression M with free variables is to be sub- 
stituted into an expression N, the binding variables of 

N must be different from the free ones in M. Put dif- 
ferently, bindings in N must not capture free variables 
in M. Kleene calls this condition "being-free-fermi4]; the 
term ~hygiene condition" is a more informal but rather 
descriptive name for it [1]. 

So, what we want to impose on macro expansion is 
something like a hygiene condition. With a few excep- 
tions, we do not want generated binding instances cre- 
ated by one transcription step to capture user-supplied 
variables or variables from some other transcription step. 
Thus, not taking intended capturinge into account, we 
formulate the 

Hygiene Condit ion for Macro  Expansion.  
Generated identifiers that becon~e binding instances in 
the completely expanded program must only bind vari. 
shies that are generated at the same transcription step. 
(IIC/ME) 

From the ~-calculus, one knows that if the hygiene 
condition does not hold, it can be established by an appro- 
priate number of o-conversions. That is also the basis of 
our solution. Ideally, a-conversions should be applied with 
every transformation step, but as we have discussed in the 

previous section, that is impossible. One cannot know in 
advance which macro-generated identifier will end up in 
a binding position. Hence, it is a quite natural require- 
ment that one retains the information about the origin 
of an identifier. To this end, we combine the expansion 
algorithm with a tracking mechanism. 

Tracking is accomplished with a time-stamping 
scheme. Time-stamps, sometimes called clock values, 
are simply non,negative integem. The domain of time- 
stamped variables (tsear) is isomorphic to the product of 
identifiers and non-negative integers. We sometimes refer 
to elements of tsear as tokens. The source and target lan- 
guage of the individual macros is extended to the language 
of time-stamped syntax trees. Time-stamped syntax trees 
are defined like syntax trees but instead of identifiers they 
include elements from the union of identifiers and tokens. 
The formal definition is shown in Figure 2. 

Figure 3 contains functions which connect time- 
stamped domains with pure ones. The function $ takes a 
time-stamp as an argument and returns a function which 
injects identifiers into twar with the given time-stamp. 
Se is the function which stamps an identifier with a 0. It 
will play a role in the treatment of intended capturings. 
The function Iv~wit acts like a substitution: given a time- 
stamped w, a e, and a time-stamped ~term, it substitutes 
all free occurrences of ~v by e. We have omitted the for- 
mal definition of the domain of time-stamped ~terms but 
it is the subset of tgatrees which do not contain syntactic 
extensions. 

The new algorithm consists of four major phases; see 
Figure 4. It starts out by transforming the user-supplied 
8tree into a time-stamped syntax tree. This is accom- 
plished by the function T which parses the stree and 
stamps all identifier leaves with the function f. For the 
initial pass, ~ is the function Se = ($0). Then the real 
expansion process begins and the clock value is increased 
to 1. 

As before, in the naive algorithm, the function t 
parsee through tgetree.expreesions that are also Aterrn- 
expressions. When it discovers a syntactic extension, it 
generates the appropriate transcription. But instead of 
immediately continuing, the algorithm first time-stamps 
all the macro-generated identifiers. Again, this time- 
stamping process is performed by the function T in co- 
operation with the function ($j),  where j is the current 
clock value. Afterwards, the clock value is increased and 
the expansion continues. 

The result of the function t is a time-stamped ~term. 
It differs from the result of the naive algorithm. Wherever 
the naive result contained a variable, the modified result 
contains a corresponding time-stamped variable. For ex- 
ample, when the naive aJgorithm returned the tree 

( iambda z ( lambda z ((1 z) z))) 
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the modified result may appear as 

( l ambda  z:0 ( l ambda  z:l ((jr:l z:0) z:l))). 

This indicates that according to the HC/ME the naive 
algorithm would have gotten the bindings wrong. 

The third phase of the modified algorithm replaces 
all bound, time-stamped identifiers by unstamped identi- 
tiers. It is important that we can tell when a token was 
generated. Tokens with different time-stamps came from 
different transcription steps, and this difference must be 
preserved. Since the expre~ion is now a time-stamped 
~term, o-conversions easily achieve the effect. The func- 
tion ,4 parses the term and applies the appropriate sub- 
stitution function to A-abstractions. The above example 
would become something similar to 

( l ambda  a ( l ambda  b ((f: l  a) b))). 

The bindings are now as intended. The only rem~in- 
ink time-stamped identifiers correspond to free identifiers. 
Their meanings are determined by the identifier compo- 
nents and, hence, they must be unstamped. This is the 
task of the function Z/. It parses the tree and removes all 

time-stamps. The result of this fourth and last phase is a 
pure Aterm: 

( lambda a Oambda b {(jr u) b))). 

Before we can examine the similarities and differences 
between the results of the naive and hygienic expansion 
algorithm, we need to discuss the implications of the mod- 
ified expander on the transform functions. Since we have 
changed the source and target languages of STFs, we 
should expect that transform functions must employ dif- 
ferent functions. However, the change of languages is re- 
ally a minor one. Indeed, if we consider time-stamped 
identifiers simply as a special kind of variable, the trans- 
form functions are not changed except that functions that 
need to know or compare identifier names must unstamp 
the appropriate token with the function ~/(or a respective 
restriction thereof). Thus, a syntax table 0 for the naive 
expander indeccs a syntax table ~ for the hygienic one in 
such a way that 

for all S E tsmstre¢, O(Uljr|) = ~ l O ° ( j r ) l  . 

Figure 2: Hygienic macro expansion (!) 

Syntactic Domains: 

c E const 
v 6. var, w6  tsvar 
mE mactok, 
e E mstrec, f E  tsmstree 
s E stree, t E tsstree 

constant names, 
(time-stamped) identifier names, 
macro tokens, 
(time-stamped) macro expressions, 
{time-stamped) expressions. 

We also refer to 

= E const U ear U mactok U corctok, 
Y E const U t w a r  U mactok U coretok, 
z E coretok U tsstree. 

Syntax: 

s ::= ¢ i v l • l ( l ambda  v ~) I (81 s~), ol q~ mactok, 

• ::= m I (m s l . . .  s,,) for n >_ O; 

t ::-- ¢ I v [ w l f [ ( l ambda  v t) [ (t| t2), tt ~ mactok, 

jr ::= m l ( m t l . . .  t , )  for n _> 0 

with the above restriction. 

Semantic Domains: 

S T F  - tsmstree-~tss tree,  

d E S T  -" tsmstree-.*tsstree, 
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Figure 3: Hygienic macro expansion (2) 

Auxiliary Functions: 
$: N . . .  ear  ~ t w o r ,  $ i v = v:i. 

$o: ear  . . ,  tin, or; $0 ffi $ O. 

[ / ]: tovmr X ~ r  - *  tostroe .-~ tsstre¢ 
where the ~,trees are restricted to time-stamped ~terms; 

l v l , l z  = z, 

[t,/w,l(huubdaq t) ffi . ' l  =~ q "* 

(lambda u~ t), 
O , , n b a a , q  Iv/,v,lt), 

Ivlwl(t, t2) = ([v/u, lt, Iviwlt2). 

Figure  4: Hygienic macro expansion (3) 

Semantic Functions: 

t kn :  Mree .-~ ST  .-, A tom,  
T:  tootree .-. (vat  .-~ t w a r )  -~ tootree, 
~: tsotree -.~ S T  ~ N ..t Aterm, 

.4: tsotr¢o ~ toetre¢, 
with the domain restricted to time-stamped Merino, 

U: tootree ..* otree; 

t l , , Io l  = Ae.e iZ l t l r lo l$olOJol i  where j0 = l; 

' r i d  = A~.~, 
1"i,,i = A~.~v, 

T l (z ,  . . .  z . ) l  = A~. ( r l~ , l~ . . .  l"lz. l~); 

t l w l  = ,o / .w ,  
t l [ l =  *e/.tl'rl(el)l(S /)leO + z), 

t l ( l . m b d -  ~, t) I = Ae/ . ( lambda uJ (.eltlt~/)) 
tl(t~ t~)l = ~o/.(llt,l~j tlt2lOj); 

Air|  = v, 

A i d  = y, 
, q ( h ~ b d , ,  t ) l  = O m b d a  v Zl lv /wlt l )  

where v is a fresh variable, 

Al(t, t2)l = ( • i td  ,q td ) ;  

~l |z |  = z ,  

~/|v:l] : v, 

~l(z ,  . . .  ~.)! = (U lz , l . . .  Ulz , i ) .  

156 



in other words, if we disregard the time-stamps, 0 and the 
induced 0' generate the same results. 

Another relationship that we have to consider is the 
one between )~terms as generated by the naive and hy- 
gienic expander. It is clem" that the hygienic expansion 
should work so that the resulting terms are the same ex- 
cept for the bindings. These must respect the HC/ME. 
We call this relation structural equivalence and define it in 
the following way: Two Merms are structurally equivalent 
if they are equal after replacing all bound variables by the 
symbol X. Given the notions of induced syntax tables and 
structurally equivalent terms, we can formalize the differ- 
ence between hygienic and naive macro expansion with: 

Theorem.  Let 0 be a syntax table and let O' be the in- 
duced syntax table. Then, for all st~es P, if ~'Ni,elP]0 ex- 
pands into a ~ferm, then t~nlPl  O' expands into a struc- 
turally equivalent term which satisfies the hygiene condi- 
tion for macro expansion. 

Proof.  The proof is structured according to the four 
phases of the function t t~r  

Step l . --The result of "r[Pl$o is structurally equiva- 
lent to P; all identifiers have the 0 time-stamp. This claim 
can be verified by an induction on the structure of P. 

Step 2.--Call the output of Step 1 Po. Then we can 
prove two statements about the relationship of ~=,d,e|P|O 
to  tlPolO'. 
1) The two results are equal modulo the time-stamps, 

i.e., t , , , , l P I O  = tl i t lPolOq. This proposition de- 
pends on the fact that 0 ~ is induced by 0. It implies 
that the two results are structurally equivalent. 

2) Moreover, all variables of a transcription step receive 
the same time-stamp which is unique with respect to 
the path from the root of the term to the occurrence 
of the respective syntactic extension). This follows 
from the fact that all transcriptions previous to the 
current one were time-stamped with a clock value of 
lees than j - - the  current clock value. This statement 
is true for all syntactic extensions occurring in Po. It 
is re-established by the time-stamping that immedi- 
ately follows a transcription step. The variables in 
(0Jr) are either pure identifiers or tokens that already 
occurred in ] .  The pure ones are stamped with j and 
are thus distinguishable from all the previously gen- 
erated identifiers. Afterwards the clock is advanced 
and all following expansions receive time-stamps at s 
higher level. As for applications, we know that syn- 
tactic extensions in the function and argument part 
cannot overlap. Hence, it is justified to continue the 
expansion process on both paths with the same clock 
value. 

Step 8.wWe know from the previous step that the re- 
sult of ~' is structurally equivalent to the result of t u i ,  e 
and that all identifiers of the hygienic result have a unique 
time-stamp reflecting their origin. Hence, if we ~-convert 
all ~t.expressions such that each time-stamped parame- 
ter is replaced by a fresh variable, the result satisfies the 
HC/ME and is also structurally equivalent to the input of 
A. This can easily be verified by showing that [v/wJz is a 
substitution function and that .4 otherwise preserves the 
structure. 

Step 4.--The input to the last step is a term which 
satisfies the HC/ME and is structurally equivalent to the 
naively expanded program modulo time.stamps of free 
variables. It is a routine matter to prove by induction 
that the function ~ removes these time-stamps and leaves 
all other properties intact. 

This concludes the proof. Q 

Implementa t ion Note.  From the above discussion and 
proof one can deduce an important fact about the imple- 
mentation of the time-stamping scheme. Time-stamped 
variables have two essential properties. First, they are 
unique with respect to the rest of the program. Second, 
they must contain a component which indicates the orig- 
inal name. Hence, one can use gensym'd atoms with a 
property "original-name n. When they turn out to be 
bound variables, they can simply stay in place. If they 
are free, they are replaced by the original name. The 
functions/{ and/J have to be changed accordingly. End 
of  Note  

Now that we have a hygienic expansion algorithm, 
we can think about the implementation of exceptions to 
the HC/ME-rule. The exceptions which we have in mind 
should specify that certain "free identifiers ~ in a param- 
eter to a transform function are captured by generated 
binding instances. The meaning of afree identifier," how- 
ever, is not quite clear. To begin with, identifiers may oc- 
cur in syntactic trees which are not expanded yet. Second, 
identifiers have time-stamps in the modified expander. We 
must ask whether we only want to consider identifiers with 
time-stamp O--they are the user-supplied ones--or iden- 
tifiers with all kinds of time-stamps. 

The response to the first point is clear. If some iden- 
tifier is to be captured, then it must be the one which 
survives as a free identifier until the input is completely 
expanded, no matter whether we can predict it or not. 
On the other hand, the second point cannot be resolved 
so easily. If we allowed capturing at all time-stamp lev- 
els, it would mean that there could be interaction of var- 
ious syntactic extensions which are unpredictable. Since 
transform functions are all declared at the same level, i.e., 
there is no scoping as among lexically scoped procedures, 
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the interactions cannot be deduced from static expres- 
sions. This would render the situation worse than before. 
We have therefore decided that macros may only capture 
user-empplied identifiers. The decision should be reconsid- 
ered when a macro system is being designed which shows 
for the modularization of syntactic extensions, for exam- 
pie, by blocks in a lexically ecoped language. 

We modify the hygiene condition to rellect our deci- 
sion: 

Modified Hygiene Condi t ion for Macro  Expan- 
sion. Generated identifiers that become binding in- 
stances in the compleCefy expanded program must only 
bind identiliem that are generated at the same trail. 
scription step or identifiers d tee original user.input. 
(mHC,/ME) 

The realization of this modified rule is simple. We 
provide the macro writer the function f0 which generates 
identifiers with a 0 time-stamp. If the transform function 
places these tokens in a binding position, they capture 
all the corresponding user-supplied identifiers. It is easy 
to see that ~'~n together with this variation satisfies the 
above theorem for the mHC/ME. 

~. Adding More  Lisp Cons t ruc ts  
Although the A-calculus is a prototypkal example of a 
programming language, it is by no means a real-world lan- 
guage. Compared to Lisp it is rather sparse. It lacks as- 
signment statements, conditional expressions, and quoted 
structures. When we wish to add to these core forms, we 
extend the set eorefok to include whatever symbols we 
choose to designate them. For example, coretok might 
become 

(( , ) ,  lambda, setl, g, quote}. 

Assignments and conditionals c~use no problenm at all 
because they are not binding constructs requiring special 
treatment by t .  Hence, they are treated like Lisp appli- 
cations with a slightly more elaborate syntactic structure. 

Quoted atoms or lists need special treatment. The ex- 
pander can only recognize syntactic forum not occurring 
in the syntactic scope of any macro expression. Structures 

which seem to occur inside the syntactic scope of an ex- 
tension may get rearranged during the expansion process, 
e.g., the or-expression in Section 3. What appeam to be 
a quoted structure because of the presence of the symbol 
'quote' may not be an actual quoted structure. Thus its 
components must be time-stamped. However, when E, 
A, and [ / ] encounter au expl~seion of the type (q n o t ,  
/9), they must inhibit the parsing proeses. The expremion 
is a sentence of the target language and it is a constant 

expression. The respective additional lines in these func. 
tions are: 

,q(quote D)i = (quote B) 
~'l(qnote D)] ffi (quote D) 

[e/w](quote ~) = (quote ~). 

The time-stamps in p are ultimately removed when the 
unstamp function ~ is applied to the entire program. 

6. Conclusion 
The gains of the hygienic macro expander are clear. Macro 
writers can concentrate on the functional aspects of trans- 
form functions and need not worry about scope issues. 
Prohibiting the inadvertent capture of lexic~! identifiers 
has been an additional detail tbat the careful macro writer 
has had to remember. Furthermore, users find hygienic 
expansion more trustworthy. Careless macro writers will 
no longer surprise a user with unexpected bindings. While 
the user needs to know a semantics for the macro'expres- 
sions, he should not need to know that a pasticular macro 
accomplishes its goal by binding certain local, temporary 
identifiers. 

For those bindings the macro writer wishes to make 
public, the algorithm requires a change in conventional 
macro writing style. We expect the writer to inform the 
macro system of his decision u well as to document it for 
the user. In the past, the writer has been able to-rely on 
the expansion algorithm to effect his desired bindings. 

We have found that macros requiring capturing iden- 
tifiers are rarer than those that introduce local binding 
identifiers. Them we have shifted the expander's default 
behavior from pomibly capturing all ldentifiem to ouly 
capturing those explicitly designated, in summary, we 
have given the macro writer lees to worry about. And we 
have assured the macro user that any identifiers he puts 
in a macro expression will have the bindings he expects. 

A transform function must untidy two new conditions: 

(1) time-stamped identifiers must be mapped to identifier 
names with the function ~ in a situation where abe 
name of an identifier is needed by a tranMorm func- 
tion; 

(2) identifiers in the output of a transform fuucttou must 
be unstamped, generated by Se, or time-stamp-equal 
to input identifier& 

The first refers to the situation in which a transform func- 
tion takes some action that involves an actual identifier 
from the input. Such cases occur, for example, when dif- 
ferent expansions are triggered by the presence of different 
identifiers in the user expression or when the transform 
function eaves a piece of the input expression for some 
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purpose other than actual expansion. The second means 
that we cannot allow spurious identifiers generated by the 
transform function which appear stamped but were not 
produced by $0 or contained in the input expression. We 
must be able to recognize our own time-stamps. We have 
found that these restrictions on transform functions are 
usually satisfied or that it requires little effort to adapt 
existing transform functions. 

In conclusion, we feel that hygienic expansion makes 
the writing and use of macron easier. It is safer than naive 
expansion since the accidental capturing of identifiers that 
appear in user code cannot occur. 

Acknowledgements 

Mitch Wand provided invaluable help in the presenta- 
tion of these ideas. Guy Steele pointed out a slight gen- 
eralizaion to our original solution. Eugene Kohlbecker 
is an IBM Graduate Fellow. This material is based on 
work supported by the National Science Foundation un- 
der grants DCR 85-01277 and MCS 83-03325. 

References 

1. BARENDREGT, !1. P. Introduction to the lambda cal- 
culus. Nieutv Archie/voor Wisenhnde ~ 4 (1984), 
337-372. 

2. BAItENDItEGT, H. P. The Lambda Calcwlus: Its Syn- 
tuz and Semantics Revised Edi6on. North-Holland, 
Amsterdam, 1984. 

3. CLmGEn, W. D., (tV.). The revised revised report on 
Scheme. Joint Technical Report Indiana University 
and MIT Laboratory for Computer Science, 1985. 

4. KLEENE, STEPHEN COLE. Introdection to Metamathe- 
marion, Van Noetrand, New York, 1952. 

~. MOlLRo¥, M. DOUGLAS. Macro instruction extensions 
of compiler languages. CACM 8, 4 (1960), 214-220. 

6. STEELE, GUY L., Jn. Common Lisp: tAe Language. 
Digital Press, 1984. 

7. STEELE, GUY L., JR. AND GERALD J. SUgSMAN. The 
revised report on Scheme, a dialect of Lisp. Memo 
452, MIT AI-Lab, 1978. 

(Appendix  begins on the nex t  page.)  

159 



Appendix 
An Implementation in Scheme 

(eetioe ehy I 
(1--bda (s) 

(leabda (thmta) 
(O (~ (((S ((T s) S-nuCht)) the?e) 1)) ) ) ) )  

(def ine T 
( l ~ e  (t) 

(Zu~ta (tme) 
(cond 

[(etontc-uoa-v~r? t) t ]  
[(v~r~ t)  ( t n  t ) ]  
[mime (map (lambde (t) ((T ~) tau)) t ) ] ) ) ) )  

(define E 
(lmbda (t) 

(lambda (~heta) 
( l ~ e  ( j)  

(coud 
[(cone? t) t] 
[(~mp.dT t) t] 
[(quote? t )  t]  
[(recto? t) 
(((1[ ((T O;ketm t ) )  (8 J))) thrace) 
(a~tdl J))] 

[(lmtde? 1C) 
' (UJeOa , (vat t) 

. (((z (body t))  thmte) J))] 
[ (app? t )  
' ( , ( ( (K (~Un t ) )  theta) J) 

.(((~ (~rl t ) )  t~mte) J))])))))  

(def ine  A 
( 1 - - ~  (t) 

(cou4 
[(v~r? t )  t ]  
[ (atoalc-non-var? t )  t ]  
[(quote? t)  t] 
[ (lambda? t) 
(Zet (Iv (Smnsym (U (vLr t ) )  

":" "umv")]) 
* (LAmDA . v 

.(A ( ( * / *  v (vat t ) )  
(body t ) ) ) ) ) ]  

[(app? t )  
' ( . (a  (~.n t ) )  

.(A (ere t ) ) ) ] ) ) )  

(definm U 
(lmmbdm (t) 

(cond 
[(e~oLtc-not-mtmnp*d? t)  t] 
[(m~up*dT t)  

(~et t ' o r l s i n e l - a ~ ) ]  
[mZsm (map ~ t ) ] ) ) )  

(ddine 8 
( l a ~ e  (n) 

(lint (lame ' 0 ] )  
( 1 ~ *  (v) 

( le t  ( I S l e  (auq v area)|) 
( i f  In2m 

(cdr i-*o) 
( le t  ([amy ( p u ~  v " : "  I ) ] )  

(put amy ' o r ~ t u l - n m  v) 
(eetl Non 

(cou 
( c o u v  nov) mmme)) 

nmv))) ) ) ) )  

(define S-naught (8 0)) 

(d.~inm */* 
(1--bda (v w) 

(lembdm (t) 
(cond 

[(mtsnp,d? t) ( i t  (*q? t w) v t)]  
[(atoalc*not-stam~d? t) t] 
[(quote? t)  t] 
[ (lambda? t )  
(i~ (mqt v ( v u t ) )  

' (La.~mDA .w . (body t ) )  
' (LI~DI , (vat t) 

, ( ( * / .  v v) 
(body t ) ) ) ) ]  

[ (app? t)  
' ( , ( ( * / *  v v) (~u  t ) )  

,((*/* v v) ( t r l  t ) ) ) ] ) ) ) )  

(det/I.~ nmped? 
(l~Ixte (w) 

( ~  (m)~bol? v) 
( p t  w ' o r t r t as l -um) ) ) )  

(define nactok? 
(lambda (It) 

(u4  (synbol? s) 
(lint • 'm~ctok)))) 

(define coretok? 
(lnWm (c) 

( u a  (symbol? c) 
(Set c 'corm?ok)))) 

(define quotm? 
( la~le (t) 

(and (pair? t) 
(,q? (c~r t) 'qU01~) 
(pair? (c~Lr t))  
(null? (cdeLr ~))))) 
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(define lamlxla? 
( l ~ a  (t) 

(and (pair?  t )  
(eq? 'LkMBD~ (car t ) )  
(pair?  (cd:  t ) )  
(vat? (cad: t ) )  
( l~ i~  (cdd: t ) )  
(nul l?  (cdddr t ) ) ) ) )  

(define app? 
(lmbda (~) 

(and (pel t?  t )  
(pair?  (cdr t ) )  
(null? (cdd~ t ) ) ) ) )  

(do~ine atomic-non-vat? 
(lambda (y) 

(or (coast? y) 
(sttmped? y) 
(mectok? y) 
(coretok? y ) ) ) )  

(define at  omic-not-stamped? 
(lamt~la (x) 

(or (coast? x) 
(and (vat? x) 

(not (stamped? x))) 
(mactok? x) 
(coretok? x))))  

(define vat? s~mbol?) 
(de~ine coast? amsber?) 
(define vat  cad:) 
(define body cadd:) 
(de, tan tun car) 
( d ~ t n e  ~ |  cadr) 

(put 'LAJqBDA 'corutok ' t rue )  
(put 'QUOTE 'coretok ' t rue )  
(pat 'LET 'mactok ' t rue )  
(put ' IF 'nmctok ' t rue )  
(put 'OK '~c tok  'true) 
(put 'BAI~r~-oR 'l~ctok 'tz~le) 
(pat 'FJi~E '~actok ' t~le) 
(put 'CJl~ 'mctok 'true) 

(deflne macro? 
(lamt~a (n) 

(record-caan m 
(LET (vat  val  body) t rue]  
[IF (a b c) t rue]  
[OK (a b) true] 
[NAIVE-OK (a b) t rue]  
[~tl~ (x) true] 
[CASE (a b) true] 
[else fa lse] ) ) )  

(deflne ST 
(lamlxla (s) 

(record-cue n 
(LET (1 • b) '((LJMBD& .I .b) .e)] 
[ZF (a b c) ' ( ( ( e l  ,a) .b) .c)]  
[OR (a b) '(LET v .a (IF v v .b)) ]  
[NAIVB-OK (a b) 

(lot (Iv (8-aaqht 'v)))  
' (L~r .v .a (IF .v .v .b ) ) ) ]  

[ F ~  (x) '(Wo;z .z)] 
[CASE (exp pa i r )  

'(LET v .axp 
(IF ((eq? v) (qUOTK . (car  pa i r ) ) )  

.(cadbr pa i r )  
fa lse)) ]  

[else (alTer "ayatlx table: ao mtch" m)]))) 

- -  demonstration 

((Ehy s ' (LET z (Ca a v) (NAIVE-Ca x v ) ) )  ST) 

1 (LET x:O (ca a:O v:O) (NAIVE-Ca x:O v:O)) 
2 (HAlVE-Cax:O v:O) 
$ (LET v:O x:O (IF v:O v:O v:O)) 
4 (IF v:O v:O v:O) 
4 ( ( ( e l : 4  v:O) v:O) v:O) 
8 ((LANBDAv:O ( ( ( e l : 4  v:O) v:O) v:O)) x:O) 

((Lk~Dk v:O (((el:4 v:O) v:O) v:O)) x:O) 
2 (ca a:O v:O) 
3 (LET v:2 a:O (IF v:2 v:2 v:O)) 
4 ( I t  v:2 v:2 v:O) 
4 (((Of:4 V:2) V:2) v:O) 
S ((Lk~DAv:2 ( ( ( e l : 4  v:~) v:~) v:O)) a:O) 
2 ((LM4BDAv:2 ( ( ( e l : 4  v:2) v:2) v:O)) a:O) 
I ((LkqBDAx:O 

((LAKBDA v:O ( ( (o f :4  v:O) v:O) v:O)) x:O)) 
((LA~Dk v:2 ( ( ( e l : 4  v:2) v:2) v:O)) a:O)) 

((I~U4BDA x:nev 
((LA~Dkv:nev ( ( (e l  v:nev) v:nav) v:nev)) x:nev)) 

( ( ~ D A  v:nev ( ( ( e l  v:nev) v:nev) v)) a)) 

((EhyS '(L~mDA a (CASE (FA~ Q) (QUOTe a ) ) ) )  ST) 

1 (CASE (FAKE a:O) (QUOTEs:O)) 
2 (LET v : l  (FAKKa:O) 

(ZF ((eq?:l v : l )  (QUOlZQUO1~)) a:O fa lse : l ) )  
3 (IF ((oq?:l v : l )  (qUOTE QUOTE)) a:O fa lan : l )  
a ( ( (e l :3  ((oq?:l v : l )  (QTJOTEqUOTE))) a:O) fa lse : l )  
3 (FAI~ a:O) 
3 (qUOTE a:O) 
2 ((LAI~DA v : l  ( ( (e l :3  ((eq?:l v : l )  ((NOTE QUOTE))) a:O) 

fa lse : l ) )  
(qU011~ a:O)) 

1 ((LAI~DA v : l  ( ( (ef :$ ((eq?:l v:1) (qUOIE QUOTE))) a:O) 
fa lse: | ) )  

((NOTE a:O)) 

( ~ D A  a:neu 
( ( ~ D A v : n e w  

( ( ( e l  ((~!? v:nev) (q~)l~ C~I'E))) a:nev) f a loe ) )  
(Quo1~ a) ) )  
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