Biological Networks

 Gene Networks

e Metabolic Networks
e Signaling Pathways
e Others ...

e Modeling

e Inference

Filkov, ECS289A, S05




Simple Genetic Circuits
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Cis-regulatory 1input
of lacZY A operon in E. coli
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Cell cycle network 1n S.
Cerevisiae
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Segment polarity
network 1n Drosophila
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Nodes: mRNA (round), protein (rectangle), prot. Complex (octagon)
Edges: biochemical interactions or regulatory relationships
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Gene network of endomeso
development in Sea Urchin
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Logic ot Cis-regulation
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Transcriptional
Regulatory Systems

 Cis regulatory elements: DNA sequence (specific sites)
* promoters;
e enhancers;
* silencers;

 Trans regulatory factors: products of regulatory genes
e generalized
* specific (Zinc finger, leucine zipper, etc.)

Known properties of real gene regulatory systems:

e cis-trans specificity

e small number of trans factors to a cis element: 8-10
* cis elements are programs

e regulation 1s event driven (asynchronous)

e regulation systems are noisy environments
 Protein-DNA and protein-protein regulation

e regulation changes with time
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Gene Regulatory
Networks

Gene Networks: models of measurable
properties of Gene Regulatory
Systems.

Gene networks model functional
elements of a Gene Regulation System
together with the regulatory relationships
among them in a computational
formalism.

Types of relationships: causal, binding
specificity, protein-DNA binding, protein-
protein binding, etc.
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Modeling Formalisms

Combinatorial
(Qualitative)

Physical
(Quantitative or
Continuous)

e Static Graph
Models

e Boolean Networks

e Weight Matrix
(Linear) Models

e Bayesian Networks

Filkov, ECS289A, S05

e Stochastic Models

e Difference /
Differential Equation
Models

e Chemical/Physical
Models

e Concurrency models




Continuous Models of
Gene Regulation
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Outline
e Quantitative Modeling

e Discrete vs. Continuous
 Modeling problems

 Models:
— ODE
— PDE
— Stochastic

e Conclusions
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Quantitative Modeling
in Biology
e State variables: concentrations of

substances, e.g. proteins, mRNA,
small molecules, etc.

 Knowing a system means being able
to predict the concentrations of all
key substances (state variables)

e Quantitative Modeling 1s the process
of connecting the components of a
system 1n a mathematical equation

e Solving the equations yields testable
predictions for all state variables of
the system
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Discrete vs. Continuous

e Here we will talk about
continuous models, where
values of variables change
continuously in time (and/or
space)

e On a molecular scale things
are discrete, but on a macro
scale they blend 1n and look
continuous

e Next class we’ll discuss
discrete models
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Why Continuous?

e Continuous models are appealing
because they allow for
instantaneous change

e Continuous models let us express
the precise relationships between
instantaneous states of variables
In a system

VS. — = OSA
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Problems
When modeling with differential

equations we face all the same
problems as in the discrete
models:

— Posing the equations. This presumes
we understand the underlying
phenomenon

— Data Fitting. How do we learn the
model from the data?

— Solving the equations. Means we
can do the math

— Model Behavior. Analyzing the
fitted model to understand its
behavior
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Recall the Modeling

Process...
Knowledge

Modeling Objectives
Construct and Revise Models

Model behavior and
predictions

= o=

hd

Compare to new data
Better Models, goto 3
7. Learn...

N

Filkov, ECS289A, S05




1. Ordinary Differential
Equations

Rate equation:

dx,
L= f(x), 1<i<n
dt
where
X = [Xl P O ] is a vector of n concentrations

f:(x):R" — Ris a function

Systems of ODEs: There are n such
equations

Solving the rate equations depends on f,
but what is the form of the function f'?

The answer is: as simple as possible.
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The Rate Function and
Regulation

e The rate function specifies the interactions
between the state variables.

e Its input are the concentrations, and the output
1s indicative (1.e. a function of) the change in a
gene’s regulation

e The regulation function describes how the
concentration is related to regulation

m
X
4

(8)

AT (x;, 05,m) =

x4

e This is a typical regulation function, called a
sigmoid, bellow compared to similar ones
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Eg.

Non-linear ODEs

The rate function 1s nonlinear!

Sigmoidal

Nonlinear, additive. Summarizes all
pair wise (and nothing but pair wise)
relationship

e
= 2T
J

Nonlinear, non-additive. Summarizes
all pairs and triplets of relationships

dX .
d_tl B Zijfj(Xj)fk (Xk)+zzjfj(xj)
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Solving

e In general, these equations are difficult to
solve analytically when f,(x) are non-linear

e Numerical Simulators/Solvers work by
numerically approximating the
concentration values at discretized,
consecutive time-points. Popular software
for biochemical interactions:

— DBsolve
— GEPASI
— MIST

— SCAMP

e Although analytical solutions are
impossible, we can learn a lot from general
analyses of the behavior of the models,
which some of the packages above provide
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Model Behavior:

e Feedback 1s essential in biological

systems. The following 1s known about
feedback:

— negative feedback loops: system
approach or oscillate around a single
steady state

— positive feedback loops: system
tends to settle in one of two stable
states

— 1n general: a negative feedback loop
1s necessary for stable oscillation,
and a positive feedback loop 1s
necessary for multistationarity
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Data Fitting

 Fitting the parameters of a non-linear
system 1s a difficult problem.

e Common solution: non-linear
optimization scheme

— explore the parameter space of the
system

— for each choice of parameters the models
are solved numerically (e.g. Runge-
Kutta)

— the parameterized model 1s compared to
the data with a goodness of fit function.
It 1s this function that 1s optimized

e Genetic Algorithms and Simulated
Annealing, with proper transition
functions have been used with promising
results
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ILinear and Piecewise Linear
ODEs

[inear

— These are much easier to deal with:
if the input variables are limited by
a constant, they can be solved and
learned polynomially, depending on
the amount of data available

dx
At = ZWU-X]-

J

— One way to learn them 1s by
approximating them with linear
weilght models
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Piecewise linear

e Approximating the sigmoid regulatory
function with a step function

dX .
! :gi(X)_%'xi’ ISISH
dt

g,(xX)=> kb, (x)20

leL

* Here the function b, 1s a function of n
variables, defined in terms of sums and
products of step functions:

A

1 4+

0, 6,
e This amounts to subdividing n-dimensional

space into “orthants”, and in each of the
orthants the PLODESs reduce to ODEs
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FIG. 9. (a)Example regulatory network of three genes and {b) corresponding piecewise-lineardifferential equations;
X1, X2, and x3 represent protein or mRNA concentrations, respectively, &1, . .., x4 production constants, y1,..., 3
degradation constants, and 611, 812, 621, 31, #32 threshold constants.
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FIG. 10. {a) The phase space box of the model in Fig. 9, divided into 2- 3.3 = 18 orthants by the threshold planes.
(b) The state equations for the orthant & < x] < 831, f12 < xz < maxy, and f33 < x3 < maxz (the orthant demarcated
by bold lines).

de Jong, JCB 2002
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2. PDES

* ODESs count on spatial
homogeneity

e In other words, ODEs don’t
care where the processes take
place

e But in some real situation this

assumption clearly does not
hold

— Diffusion

— Transcription factor gradients in
development

— Multicelular organisms
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Example: Reaction-
Diffusion Equations

(0

dx; 141 Do G-1 .
—= A (-0 1) L ziem 120 < (16)

HEEEEEEE

The equation above describes the change in conc. for
all state variables, in all cells of the line above. When
the number of cells is large, this becomes a PDE:

Bx,- 321‘;' ;
Ezﬁ(x)‘ﬂsiwaoilik,lilﬁn. a7n
If it is assumed that no diffusion occurs across the boundaries [ = 0 and ! = A, the boundary conditions
become
82 8-
a0 =0ad (1) = 0. (18)

These equations were first introduced in the study of
developmental phenomena and pattern formation by
Turing.

Direct analytical solutions are impossible even for two
variables (n=2)
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Drosophila Example

* These PDE models have been
used repeatedly to model
developmental examples in the
fruit fly

 Instances of the reaction-diffusion
equations (only more specific)
have been used to model the
striped patterns 1n a drosophila
embryo
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3. Stochastic Master
Equations

e Deterministic modeling is not always
possible, but also sometimes incorrect

e Assumptions of deterministic,
continuous models:

— Concentrations of substances vary
deterministically

— Conc. Of subst. vary continuously

e On molecular level, both assumptions
may not be correct

e Solution: Instead of deterministic
values, accept a joint probability
distribution, similar to the one
discussed in the Bayesian Network
lectures.
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Equation:

species, efc. The time evolution of the function p(X, 1) can now be spéciﬁed as follows:

pULE+AY=p(X, 1) [1-) ar| +) B, (0
J=] j=1

where m 1s the number of reactions that can ocour in the system, @; At the probability that reaction

will occnr in the interval [¢, ¢ + Af] given that the system is in the state X at ¢, and fyA¢ the probability

that reaction j will bring the system in state X' from another state in [r, # + Ar] (Gillespie, 1977, 1992).
Rearranging (21), and takng the limit as At — 0, gives the master equation (van Kampen, 1997):

m

ot 3

d
—pX.)= Y (B, -a;p(X,)) @)

These equations are very difficult to solve and simulate!
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(c) Jason Kastner and Caltech

ODE vs. Stochastic solutions
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Linear (Weight Matrix)
Models of Regulation
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Description of the Model

e A graph model in which the nodes are genes
that are in continuous states of expression (i.e.
gene activities). The edges indicate the strength
(weight) of the regulation relationship between
two genes

* The net effect of gene j on gene i is the
expression level of gene j multiplied by its
regulatory influence on i, 1.e. wx;

e Assumptions:

— regulators’ contribution to a gene’s
regulation 1s linearly additive

— the states of the nodes are updated
synchronously

Wae xc( x,(t) — state of gene i at time ¢

ASRE < w,. — regulatory influence of
x0-(Q LI .
W gene j on gene 1
w o \ 5 Wha - w;; > 0, activation
@ - w; < 0, inhibition
xt) - W= 0, none
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Calculating the Next
State of the System

xi(t+1) = Z wiix;j(t)

x;,w;,; €R

Or 1n matrix notation :

(n><1) (nxn) (nx1)
t+1 W Xt

If all the weights, w;; are known,
then given the act1V1tles of all
the genes at time ¢, 1.€.
x,(t),x,(¢),...,x (), we can
calculate the activities of the
genes at time 7+1/.
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Fitting the Model to the Data

e Inreality, we don’t know the weights, and
we would like to infer them from
measurements of the activities of genes
through time (microarray data)

 The weights can be found by solving a
system of linear equations (multiple
regression)

e Dimensionality Curse: the expression
matrices, of size
n X k, where n 1s in thousands and £ 1s at
most 1n hundreds

e The linear system 1s always under-
constrained and thus yields infinitely many
solutions (compare to over-constrained
where we need to use least-squares fit)
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Solving the Linear Model

Let the vector Y; represent the expressions of n genes at time point i, i.e.

yiz[xl(i) x2(i) xn(i)].

Then, given k + 1 time points, i.e. vectors Yo i=1,...k+11let

Y1
A(k xm) be a matrix with rows equal to the first k vectors,i.e.a =| 2 |, and
Yk
Kk -
B( xn) be a matrix with rows equal to the last k vectors,i.e.s =| '3
Yk+1

Then, the linear system becomes :

AeW 1 = B, which we want to solve for W

— If k > n, the system is overconstrained, and there

1s no unique solution. A least squares (regression) solution :

W=A""B, |[A*" =(ATA)"1AT

— If k = n thereis a unique solution;

— If k < n, the system is underconstrained, and there
are infinitely many solutions. We can find a pseudo -

inverse to A that best fits the data (Moore - Penrose), as :

W=A""A, AT AT (AAT)"1
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Normalization

e The input gene expressions
need to be normalized at each
step, so that the contributions
are comparable across all genes

e The resulting (output) values
are then de-normalized

e Common normalization
schemes:

— mean/variance: x’=(x-u)/0
— Squashing function: (neural nets)
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Properties of Linear
MOdelS (Weaver et al, 1999)

e Simulating Linear State Models by
randomly generating the parameters

e The output of a state was used as input for

the next
e The models were iterated until they
Ea :I ||| ﬂi?’g s;j i:!'??'x *b A
fi t,iﬁ_le ST _mﬁe_ — -s.,...,w_ til_:;..ﬂml -
W
”(EiiS#Reallstlc although
e highly oscillating!
C2 (D’Haeseleer does
{0 better by insisting on
e s Gy an additional
fime —» ' smoothness criterion)
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[.imitations

e Some assumptions are known to
be incorrect:

— all genetic interactions are
independent events

— synchronous dynamics
— welght matrix

e The results may not offer
insight to the problem instead
they may just model the data
well (the weight matrix will be
chosen based on multiple
regression)
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How Much Data?

e If the weight matrix 1s dense, we
need n+/ arrays of all n genes to
solve the linear system, assuming the
experiments are independent (which
1s not exactly true with time-series
data). In this case we say that the
average connectivity 1s O(n) per
node.

e If instead the average connectivity
per node 1s fixed to O(p), than it can
be shown that the number of
experiments needed 1s

O(p*log(n/p))
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Summary

Linear models yield good, realistic
looking predictions

The amount of data needed 1s O(n)
experiments, for a fully connected
network or O(p*log(n/p)) for a p-
connected network

The weight matrix can be obtained by
solving a linear system of equations

Dimensionality curse: more genes
than experiments. We have to resort
to reducing the dimensionality of the
problem (e.g. through clustering)
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