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Biological Networks

• Gene Networks

• Metabolic Networks

• Signaling Pathways

• Others …

• Modeling

• Inference
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Simple Genetic Circuits

McAdams and Arkin et al 1998
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Cis-regulatory input

of lacZYA operon in E. coli

Setty et al. PNAS 2003
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Li, Fangting et al. (2004) Proc. Natl. Acad. Sci. 

Cell cycle network in S. 

Cerevisiae
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Segment polarity 

network in Drosophila

Nodes: mRNA (round), protein (rectangle), prot. Complex (octagon)

Edges: biochemical interactions or regulatory relationships

Albert and Otmer, JTB 2003
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Gene network of endomeso

development in Sea Urchin

Davidson et al. Science 2002
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Logic of Cis-regulation
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Transcriptional 

Regulatory Systems

• Cis regulatory elements: DNA sequence (specific sites)

• promoters;

• enhancers;

• silencers;

• Trans regulatory factors: products of regulatory genes

• generalized

• specific (Zinc finger, leucine zipper, etc.)

Known properties of real gene regulatory systems:

• cis-trans specificity

• small number of trans factors to a cis element: 8-10

• cis elements are programs

• regulation is event driven (asynchronous)

• regulation systems are noisy environments

• Protein-DNA and protein-protein regulation

• regulation changes with time
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Gene Regulatory 

Networks

Gene Networks: models of measurable 

properties of Gene Regulatory 

Systems.

Gene networks model functional 

elements of a Gene Regulation System 

together with the regulatory relationships 

among them in a computational 

formalism.

Types of relationships: causal, binding 

specificity, protein-DNA binding, protein-

protein binding, etc.
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Modeling Formalisms

• Static Graph        

Models

• Boolean Networks

• Weight Matrix     

(Linear) Models

• Bayesian Networks

• Stochastic Models

• Difference / 

Differential Equation 

Models

• Chemical/Physical 

Models

• Concurrency models

Combinatorial

(Qualitative)

Physical

(Quantitative or

Continuous)
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Continuous Models of 

Gene Regulation
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Outline

• Quantitative Modeling

• Discrete vs. Continuous

• Modeling problems

• Models:

– ODE

– PDE

– Stochastic

• Conclusions
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Quantitative Modeling 

in Biology 

• State variables: concentrations of 

substances, e.g. proteins, mRNA, 

small molecules, etc.

• Knowing a system means being able 

to predict the concentrations of all 

key substances (state variables)

• Quantitative Modeling is the process 

of connecting the components of a 

system in a mathematical equation

• Solving the equations yields testable 

predictions for all state variables of 

the system
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Discrete vs. Continuous

• Here we will talk about 
continuous models, where 
values of variables change 
continuously in time (and/or 
space)

• On a molecular scale things 
are discrete, but on a macro 
scale they blend in and look 
continuous

• Next class we’ll discuss 
discrete models
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Why Continuous?
• Continuous models are appealing 

because they allow for 

instantaneous change

• Continuous models let us express 

the precise relationships between 

instantaneous states of variables 

in a system
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Problems
When modeling with differential 
equations we face all the same 
problems as in the discrete 
models:

– Posing the equations. This presumes 
we understand the underlying 
phenomenon

– Data Fitting. How do we learn the 
model from the data?

– Solving the equations. Means we 
can do the math

– Model Behavior. Analyzing the 
fitted model to understand its 
behavior



Filkov, ECS289A, S05

Recall the Modeling 

Process…
1. Knowledge

2. Modeling Objectives

3. Construct and Revise Models

4. Model behavior and 

predictions

5. Compare to new data

6. Better Models, goto 3

7. Learn…
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1. Ordinary Differential 

Equations

Rate equation:

function a is :)(
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Systems of ODEs: There are n such 
equations

Solving the rate equations depends on f, 
but what is the form of the function f ?

The answer is: as simple as possible.
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• The rate function specifies the interactions 

between the state variables. 

• Its input are the concentrations, and the output 

is indicative (i.e. a function of) the change in a 

gene’s regulation

• The regulation function describes how the 

concentration is related to regulation

• This is a typical regulation function, called a 

sigmoid, bellow compared to similar ones

The Rate Function and 

Regulation
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Non-linear ODEs

The rate function is nonlinear!

Eg. 

1. Sigmoidal

2. Nonlinear, additive. Summarizes all 

pair wise (and nothing but pair wise) 

relationship

3. Nonlinear, non-additive. Summarizes 

all pairs and triplets of relationships
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Solving

• In general, these equations are difficult to 

solve analytically when fi(x) are non-linear

• Numerical Simulators/Solvers work by 

numerically approximating the 

concentration values at discretized, 

consecutive time-points. Popular software 

for biochemical interactions:

– DBsolve

– GEPASI

– MIST

– SCAMP

• Although analytical solutions are 

impossible, we can learn a lot from general 

analyses of the behavior of the models, 

which some of the packages above provide
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Model Behavior:

• Feedback is essential in biological 
systems. The following is known about 
feedback:

– negative feedback loops: system 
approach or oscillate around a single 
steady state

– positive feedback loops: system 
tends to settle in one of two stable 
states

– in general: a negative feedback loop 
is necessary for stable oscillation, 
and a positive feedback loop is 
necessary for multistationarity
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Data Fitting

• Fitting the parameters of a non-linear 
system is a difficult problem.

• Common solution: non-linear 
optimization scheme

– explore the parameter space of the 
system

– for each choice of parameters the models 
are solved numerically (e.g. Runge-
Kutta)

– the parameterized model is compared to 
the data with a goodness of fit function. 
It is this function that is optimized

• Genetic Algorithms and Simulated 
Annealing, with proper transition 
functions have been used with promising 
results
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Linear and Piecewise Linear 

ODEs

Linear

– These are much easier to deal with: 

if the input variables are limited by 

a constant, they can be solved and 

learned polynomially, depending on 

the amount of data available

– One way to learn them is by 

approximating them with linear 

weight models
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Piecewise linear

• Approximating the sigmoid regulatory 

function with a step function

• Here the function bil is a function of n 

variables, defined in terms of sums and 

products of step functions:

• This amounts to subdividing n-dimensional 

space into “orthants”, and in each of the 

orthants the PLODEs reduce to ODEs

∑
∈

≥=

≤≤−=

Ll

ilili

iii

i

bkg

xg
dt

dX

0)()(

ni1  ,)(

xx

x γ

0

1

jθ

0

1

kθ



Filkov, ECS289A, S05

de Jong, JCB 2002
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2. PDES

• ODEs count on spatial 
homogeneity

• In other words, ODEs don’t 
care where the processes take 
place

• But in some real situation this 
assumption clearly does not 
hold

– Diffusion

– Transcription factor gradients in 
development

– Multicelular organisms
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Example: Reaction-

Diffusion Equations

The equation above describes the change in conc. for 

all state variables, in all cells of the line above. When 

the number of cells is large, this becomes a PDE:

These equations were first introduced in the study of 

developmental phenomena and pattern formation by 

Turing.

Direct analytical solutions are impossible even for two 

variables (n=2) 
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Drosophila Example

• These PDE models have been 
used repeatedly to model 
developmental examples in the 
fruit fly

• Instances of the reaction-diffusion 
equations (only more specific) 
have been used to model the 
striped patterns in a drosophila 
embryo
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3. Stochastic Master 

Equations

• Deterministic modeling is not always 
possible, but also sometimes incorrect

• Assumptions of deterministic, 
continuous models:
– Concentrations of substances vary 

deterministically

– Conc. Of subst. vary continuously

• On molecular level, both assumptions 
may not be correct

• Solution: Instead of deterministic 
values, accept a joint probability 
distribution, similar to the one 
discussed in the Bayesian Network 
lectures.
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Equation:

These equations are very difficult to solve and simulate!

ODE vs. Stochastic solutions

(c) Jason Kastner and Caltech
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Linear (Weight Matrix) 

Models of Regulation
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Description of the Model
• A graph model in which the nodes are genes

that are in continuous states of expression (i.e. 

gene activities). The edges indicate the strength 

(weight) of the regulation relationship between 

two genes

• The net effect of gene j on gene i is the 

expression level of gene j multiplied by its 

regulatory influence on i, i.e. wijxj.

• Assumptions:

– regulators’ contribution to a gene’s 

regulation is linearly additive

– the states of the nodes are updated 

synchronously

A B

C

D

xa(t)

xc(t)

xb(t)

xd(t)

wc,bwa,c

wa,d

wd,c wb,d

xi(t) – state of gene i at time t

wij – regulatory influence of 

gene j on gene i

- wij > 0, activation

- wij < 0, inhibition

- wij = 0, none
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Calculating the Next 

State of the System

If all the weights, wij are known, 

then given the activities of all

the genes at time t, i.e. 

x1(t),x2(t),…,xn(t), we can 

calculate the activities of the 

genes at time t+1.
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Fitting the Model to the Data

• In reality, we don’t know the weights, and 
we would like to infer them from 
measurements of the activities of genes 
through time (microarray data)

• The weights can be found by solving a 
system of linear equations (multiple 
regression)

• Dimensionality Curse: the expression 
matrices, of size 
n x k, where n is in thousands and k is at 
most in hundreds

• The linear system is always under-
constrained and thus yields infinitely many 
solutions (compare to over-constrained 
where we need to use least-squares fit)
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Normalization

• The input gene expressions 

need to be normalized at each 

step, so that the contributions 

are comparable across all genes

• The resulting (output) values 

are then de-normalized

• Common normalization 

schemes:

– mean/variance: x’=(x-µ)/σ2

– Squashing function: (neural nets)
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Properties of Linear 

Models (Weaver et al, 1999)

• Simulating Linear State Models by 

randomly generating the parameters

• The output of a state was used as input for 

the next

• The models were iterated until they 

reached a terminal steady state

Realistic although 

highly oscillating!

(D’Haeseleer does 

better by insisting on 

an additional 

smoothness criterion)
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Limitations

• Some assumptions are known to 
be incorrect:

– all genetic interactions are 
independent events

– synchronous dynamics

– weight matrix

• The results may not offer 
insight to the problem instead 
they may just model the data 
well (the weight matrix will be 
chosen based on multiple 
regression)
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How Much Data?

• If the weight matrix is dense, we 

need n+1 arrays of all n genes to 

solve the linear system, assuming the 

experiments are independent (which 

is not exactly true with time-series 

data). In this case we say that the 

average connectivity is O(n) per 

node.

• If instead the average connectivity 

per node is fixed to O(p), than it can 

be shown that the number of 

experiments needed is 

O(p*log(n/p))
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Summary

• Linear models yield good, realistic 

looking predictions

• The amount of data needed is O(n)

experiments, for a fully connected 

network or O(p*log(n/p)) for a p-

connected network

• The weight matrix can be obtained by 

solving a linear system of equations

• Dimensionality curse: more genes 

than experiments. We have to resort 

to reducing the dimensionality of the 

problem (e.g. through clustering)



Filkov, ECS289A, S05

Biography

• Hidde de Jong, Modeling and Simulation of Genetic Regulatory Systems: 

A Literature Review. Journal of Computational Biology 9(1): 67-103 

(2002).

• McAdams and Arkin, Annu. Rev. Biophys. Biomol. Struct. 1998 (27)

• Setty, Y. et al., Detailed map of a cis-regulatory input function, PNAS, 

100:7702-7707 (2003)

• Fangting et al., PNAS 2004 (101)

• Albert, R. and Othmer, H.G. Journal of Theoretical Biology 223, 1-18 

(2003). 

• Davidson, E.H. et al., Science 295, 1669-1678, 2002

• D. C. Weaver and C. T. Workman and G. D. Stromo, Pacific Symposium 

on Biocomputing, 1999.

• D’Haeseleer et al., Pacific Symposium on Biocomputing, 1999. 


