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Abstract—Work practices vary among software developers.
Some are highly focused on a few artifacts; others make wide-
ranging contributions. Similarly, some artifacts are mostly au-
thored, or “owned”, by one or few developers; others have very
wide ownership. Focus and ownership are related but different
phenomena, both with strong effect on software quality. Prior
studies have mostly targeted ownership; the measures of own-
ership used have generally been based on either simple counts,
information-theoretic views of ownership, or social-network views
of contribution patterns. We argue for a more general concep-
tual view that unifies developer focus and artifact ownership.
We analogize the developer-artifact contribution network to a
predator-prey food web, and draw upon ideas from ecology to
produce a novel, and conceptually unified view of measuring
focus and ownership. These measures relate to both cross-entropy
and Kullback-Liebler divergence, and simultaneously provide
two normalized measures of focus from both the developer and
artifact perspectives. We argue that these measures are theoret-
ically well-founded, and yield novel predictive, conceptual, and
actionable value in software projects. We find that more focused
developers introduce fewer defects than defocused developers. In
contrast, files that receive narrowly focused activity are more
likely to contain defects than other files.

I. INTRODUCTION

Developers are the lifeblood of open source software, OSS,

and their contributions are vital for OSS to thrive. Rather

than being assigned tasks by management, OSS developers are

generally free to choose the style, focus, and breadth of their

contributions. Some might be quite focused, working on one

specific subsystem; others may contribute to many different

subsystems. An device driver expert, for example, may con-

tribute very specialized knowledge to an open source project,

focusing on only a few files or packages. His contributions to a

small subset of modules1 may be his only contribution during

his tenure with the project. In contrast, a project leader may

work on a variety of different tasks touching many modules

within a project. While OSS developers are free to choose

their contribution styles, such choices are not inconsequential,

especially to the central issue of software quality.

A dominant theme emerging from previous work in this

area is module ownership [1], [2], [3]. Low ownership of a

module, i.e., too many contributors, can adversely impact code

quality. There is, however, an entirely different perspective,

developer’s attention focus, which is relatively unexplored.

Human attention and cognition are finite resoucres [4]. When

different tasks are simultaneously engaged, they can compete

1We use modules to mean either packages or files, depending on the context.

for mental resources and task performance can suffer [5]. A

developer engaged in many different tasks carries a greater

cognitive burden than a more focused developer. Interestingly,

the developer and module perspectives are, conceptually sym-

metric, dualistic views of focus. From a module’s perspective,

strong ownership indicates a strong focused contribution. We

refer to this as module activity focus, or MAF , a measure of

how focused the activities are on a module. Symmetrically, we

refer to the developer’s attention focus, or DAF , a measure

of how focused the activities are of a particular developer.

A surprising, but natural analogy for MAF and DAF , are

predator-prey food webs from ecology. In a sense, modules

are predators that “feed upon” the cognitive resources of

developers. As the number of developers contributing to a

module increases, the diversity of cognitive resources upon

which the module “feeds” also increases; likewise, a developer

is a “prey” whose limited cognitive resources are spread over

the modules that “prey” upon her.

Ecosystem diversity is of great interest to ecologists.

Williams and Martinez call the roles complexity and diversity

play “[o]ne of the most important and least settled questions

in ecology.” [6] This diversity has two symmetric perspectives,

both from a prey’s perspective, and a predator’s perspective.

Ecologists have developed sophisticated symmetric measures

of predator-prey relationships, drawing upon ideas such as

entropy and Kulback-Leibler divergence, that simultaneously

capture both perspectives. We adapt these measures for soft-

ware engineering projects into the metrics MAF and DAF .

In this work, we employ the methodology presented by El

Emam to validate our measures [7]. In particular, we show

that the DAF and MAF measures succeed in distinguishing

important cases that extant measures don’t capture. We make

the following contributions:

• We adapt terminology and motivation from ecology,

based on bipartite graphs;

• We incorporate and generalize previous results on devel-

oper and artifact diversity;

• We provide easy to compute measures of focus, MAF
and DAF , normalized to facilitate comparison within and

across projects;

• We show these measures more precisely capture out-

comes relevant to software researchers and practitioners.

This novel analysis simultaneously considers focus both

from the artifact perspective and the author perspective.

Researchers can use our MAF and DAF metrics to more
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Fig. 1: Graphical representation of commits from multiple developers
to a single package (a), from a single developer to multiple packages
(b), and their bipartite representation (c).

precisely evaluate how attributes of developer experience and

focus contribute to outcomes of interest. Managers could also

use these metrics to assess whether the degree of focus each

developer exercises is in alignment with their expectations.

Research Outline Existing measures such as ownership and

diversity only partially capture developer focus. Consider, for

example, device drivers. They are small but intricate and will

likely require “focused” work. If we measure the focus from

solely the perspective of the module (the driver source code),

we may be misled. If a single developer D contributed most

of the coding activity in a driver module, then traditional

ownership measures will indicate that the driver has received

highly focused activity. However, if D is a prolific contributor,

then the contribution D makes to the driver may not reflect

focused attention. Indeed, D may have been distracted by

many tasks, and the quality of the activity in the driver may

be compromised.

Measuring focus solely from the developer’s perspective

is also insufficient. The attention of a particular developer

may be highly focused on just a few files. However, if those

activities make insignificant contributions, say a few lines out

of thousands, then we should describe these contributions

as minor in comparison to those who contribute the bulk

of the code. Given equal overall contributions, a developer

whose attention is focused on a small subset of the code

base is viewed as exhibiting greater focused attention than

the developer that contributes more uniformly.

Our Goal: Simultaneously study the module activity

focus and developer attention focus in OSS.

We introduce the MAF and DAF measures in Section III.

To understand them we mount a detailed study of module

activity and developer attention focus in OSS projects. Starting

from a combined DAF and MAF perspective, we use

regression modeling to tease apart the effects of MAF and

DAF on software quality and answer the questions delineated

below.

Our measures enable us to characterize the attention focus

of developers as broad or narrow. In particular, we ask if the

leaders, or people with top involvement in open source projects

are distinguishable by this measure?

Research Question 1: Do project leaders exhibit broad or

narrow attention focus? What about the top developers?

The effect of focus and collaboration on defects has been

studied in the past. Some papers use social network models

of developer collaborations; others use ownership measures

of contributions by developers. Complex network measures

such as degree centrality and betweenness are difficult to

interpret and act upon. Ownership measures are better, but they

ignore the effect of developer attention focus. Simultaneously

modeling the diversity of both sides of the developer-module

contributions using MAF and DAF , allows us to tease

apart the effect of each separately. First, from the developer

perspective:

Research Question 2: Do developers with narrow atten-

tion focus create fewer defects?

The symmetry of our measures allows us to also ask the

converse, from the module perspective:

Research Question 3: Are modules that receive narrowly

focused activity less defective?

In summary, our goal here is to understand and generalize

previous results on developer focus in software development

contribution networks, realizing it is two-fold. We draw in-

sights from similar conceptual structures that have been de-

veloped in ecology on specialization and expect that this will

lead to more intuitively appealing and discerning measures

of contribution patterns. We begin by introducing the basic

concepts of contribution and ecological networks.

Contribution Networks These networks model the total num-

ber of contributions made by each developer to each module

over a specific period of time. Figures 1(a) and 1(b) illustrates

a contribution network as a bipartite network consisting of

modules and developers. Figure 1(c) shows a network formed

by the many-to-many relationships of numerous developers,

each working on numerous modules. Social network analyses

have been applied to these networks [8], [9], using metrics

largely derived from one-mode projections, which project the

two-mode networks into either developers alone or modules

alone. Instead, we use ecology-based measures which preserve

their bipartite nature.

Ecological Networks In the field of ecology, interaction

networks relate predator to prey, pollinator to pollen, parasite

to host, or simply organism to resource [10], [11], [12]. These

networks usefully capture resource-consumption relationships,

and their effects on the relative abundance of different species

in an ecosystem. They can, e.g., help quickly identify species

critical to ecosystems, or species whose survival is threatened.
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In our context, we view artifacts as “consumers”, and

developers’ resources as the “food source”. We asume that

cognitive capacity is limited, and no one can work an un-

limited amount of time. If a person’s capacity is excessively

spread out or diluted, two factors come into play. First, as

diversity of an individual’s contribution targets increases, a

given individual can only contribute a proportional amount

of time to each target. Secondly, cognitive limitations, such as

the difficulty of context-switching, may drive down the quality

of each contribution [13]. From the consumer’s perspective,

a particular module clearly benefits from contributions from

a greater diversity of developers, i.e., there is more “food”

for the consumer. On the other hand, the contributions from

each developer creates additional workload for the other con-

tributors, as they must also understand these contributions, so

additional contributors make everyone who “feeds” this mod-

ule have to work harder, and thus provide less “food”. Thus,

the straightforward analogy from food webs is complicated

by cognitive limitations that introduce non-linear interference

between contribution targets and contributors.

However, the above analysis-by-analogy with “food” and

“consumption” highlights the two perspectives on focus in

contributor networks. The developer focus looks at how fo-

cused developers are in their contributions, and the module

focus considers how focused the contributions to an artifact

are. We frame our contributions by first presenting existing

work in this area before we launch into the theory behind our

new measures.

II. RELATED WORK

Most previous work in this area has centered around the

aggregation of ownership, largely considering the dominant

author as a measure of artifact authorship. Our work most

closely relates to recent work by Bird et al. [3], Rahman

et al. [2], and by Mockus et al. [1]. These works study the

relationship of quality to code ownership, from an artifact

perspective. Bird et al. focus on minor contributors, viz., those

who contribute less than 5% of the content of an artifact, and

finds that these play a strong role in defects. However, this

perspective ignores the details of the contributions of these

minor committers, and in fact is agnostic about the other

activities of these contributors. What if a minor contributor d1
contributed to a module f but didn’t do anything else? Then

d1 is a highly focused minor contributor. On the other hand,

a minor contributor d2 to f may in reality have contributed

major changes to other modules. Bird et al. ignore this dis-

tinction; we in fact find that d1 is less likely to produce defects

than d2.

Mockus et al. studies the risk of software changes by defin-

ing a measure that considers a developer’s overall experience

weighted by their experience with a particular modification

request. Rahman et al. take a similar perspective, focusing on

a developer’s experience and ownership with a specific file as

an indicator of quality of that file, regardless of the developer’s

other activities. Rahman et al. adapt the measures of Bird

and Mockus; specialized experience measures the dominant

contributor’s contribution to a particular artifact, and general

experience is an adaptation of Mockus’ weighted experience

measure. The findings in Rahman et al. are generally consis-

tent with Bird et al., and have similar limitations.

Shannon’s entropy was originally intended to quantify the

information content in a signal. The idea of using entropy

to measure properties of software evolution has a long his-

tory [14], [15]. It has been used in numerous software engi-

neering contexts; for space reasons we limit this discussion to

some of the most recent efforts. Entropy has been applied to

source code to model readability [16] and measure the quality

of modularization [17]. Hassan and Holt applied normalized

entropy to a sliding time window of source code changes to

capture the commit state of a project and used linear regression

to predict defects in several open source projects [18]. Canfora

et al. used entropy to study the relationship between several

factors, including refactoring, design patterns, and the number

of contributers, and the entropy of changes as defined by

Hassan and Holt [19]. The experiments yielded mixed results.

Taylor et al. introduced author entropy as discussed in the

introduction [20]. Krien et al. extended the concept by defin-

ing author entropy across the distinct programming languages

that a developer contributes code to within a project [21].

Their analysis showed a clear negative relationship between

language author entropy and lines of code contributed.

Hindle et al. use topic analysis to study “what” a developer

is focused on but their work does not capture the degree to

which a developer is focused on specific artifacts [22]. Others

have also studied the contributions of individual developers to

artifacts. Pinzger et al. studied the effect of network metrics

taken over the contribution network on software failures [8].

However, their results do not show significance of these

measures for prediction of failure proneness even though they

are significant in a linear regression model of defect counts.

Consequently, it is difficult to derive any direct understanding

of the relationship between the aforementioned measures and

defect proneness [23]. Cataldo et al. build on earlier work

in this area using network measures to more precisely define

software and work dependencies.

Ecology has inspired other software engineering work.

Calzolari used dynamic predator-prey models to study main-

tenance effort [24]. Lawrance et al. leveraged predator-prey

relationships in a study of how information foraging theory can

apply to software maintenance [25]. In this theory, developer’s

are modeled as predator that seeks its information prey. Posnett

et al. studied aggregation in SE models and the threat of

ecological inference risk [26]. Baudry and Monperrus de-

scribed several approaches for ecologically inspired software

engineering [27].

Our work takes a unified approach to focus and ownership

combining artifact and developer perspectives. This leads to

important new findings. After we present our theory below

we will discuss in detail how our work builds upon existing

measures.
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III. THEORY

In this paper, we consider the relationships between devel-

opers and modules. For expository purposes, we use the term

module in a the generic sense to represent a tangible unit of

code relevant to the research question. Module could refer to

a file, a package, a component, or even simply a function.

An individual developer is denoted by dj , for j ∈ 1 . . .m
and an individual module by mi, for i ∈ 1 . . . n. The total

contribution count to module i by developer j is denoted

by wij . Summing over all developers and all modules yields

the total number of contributions to the system as A =
∑n

i=1

∑m

j=1
wij . We can also calculate the total number of

contributions that developer j makes to the system by Dj =
∑n

i=1
wij . Similarly, the total number of contributions made

to module i by all developers is denoted by Mi =
∑m

j=1
wij .

The contribution wij can be measured in lines of code,

commits, or any other measure of contribution relevant to

the studied context. In this work, we measure proportion of

contribution as the number of commits contributed by each

author.

Diversity This measure is conceptually based on Shannon’s

entropy, which measures the degree of disorder or surprise

(viz., information) in a system. Theoretical ecologists were

among the first to employ Shannon’s entropy as a measure of

diversity in a species [28]. A straightforward explanation of

what ecologists mean by diversity can be found in a recent dis-

cussion by Camargo [29]. We summarize here for the purposes

of clearly translating the intuition to a software engineering

setting. Camargo presents the definition as follows:

H(Species Diversity) = -

S
∑

i=1

pi log2 pi

Where S represents the total number of distinct species and

pi is the proportion of individuals that are of species i. The

definition of author entropy given by Taylor et al. is precisely

the concept of diversity from ecology. Compare the above

to the definition due to Taylor et al. we can see that where

ecologists refer to species and individuals, Taylor refers to

developers and ownership. If all species are equal in number,

then diversity is high, if a particular species dominates then

the diversity measure will be low. With respect to author

entropy, however, diversity simply measures the uniformity of

the commits relative to each author. If one author makes most

of the commits across a system, then low diversity conveys

that one author dominates the commit activity. Similarly, we

can also consider the diversity of authorship commit activity

with respect to a module. A module that has only one author

is not diverse at all, and a module with many authors has

a high degree of diversity. Simply, diversity captures commit

behavior for either authors over a module, or modules over an

author.

Using the notation given above and in Figure 1, we for-

mulate two distinct definitions of diversity, Hdj
captures the

diversity of contributions of author dj to all modules, and Hmi

captures the diversity of contributions to a module mi from

all authors; these are defined as follows:

Hdj
= -

n
∑

i=1

(

wij

Dj

ln
wij

Dj

)

, Hmi
= -

m
∑

j=1

(

wij

Mi

ln
wij

Mi

)

Specialization & Focus Specialization, in a general sense, is

the opposite of diversity; the more specialized a developer’s

behavior, the less diverse is his contribution to a project. This

property, proposed by Bluthgen et al. [30] in an ecological

setting, can be measured naturally in a bipartite graph formu-

lation. To distinguish our use from the terminology in ecology,

and to better reflect the actual cognitive phenomena of concern

in software development, we prefer the term focus.

Simply using diversity measures applied to both sides of

the contribution network to measure focus, however, is not

advisable. As Bluthgen et al. point out, this approach is

undesirable in an ecological setting; their arguments also apply

in a software development setting. An appropriate measure of

focus in software development should not only consider the

diversity of artifacts that a developer interacts with, but also,

the overall amount of activity for each artifact. A developer

who only commits a few times to a popular package with

many commits, is less specialized than a developer who makes

similar commits to an unpopular package. A good measure

of focus should increase when a developer makes most of

the contributions to a package compared with others who

also contribute to that package. To this end, we measure the

difference between the distribution of commits made by a

developer to all modules and the distribution of commits to

the system represented by those modules.

Kullback-Liebler Divergence Kullback Liebler divergence,

or relative entropy, measures the difference between two

probability distributions. For probability distributions P and

Q the Kullback Liebler Divergence (KL) is defined as:

DKL(P ||Q) =
∑

i

Pi ln
Pi

Qi

KL is a measure of the expected number of extra bits that are

required to code samples from P when using a code based

on Q. Bluthgen et al. define a species level diversity measure,

d, using the KL Divergence. We exploit this measure in our

context to relate our two probability distributions of interest.

Our Measures: DAF and MAF We introduce two mea-

sures: Developer Attention Focus , or DAF , measures the

divergence from the developer perspective, viz., the degree of

focus a developer exercises with respect to the artifact side of

the network. From the artifact side, Module Activity Focus ,

or MAF , measures the degree to which a module receives

focused attention. We define the proportion of commits made

by developer j to module i as q′ij = wij/Dj and the proportion

of commits made to each module i as r′ij = wij/Mi. The total

proportion of commits to each package is ri = Mi/A and the

total proportion of commits by each developer is qi = Dj/A.

We adapt the Bluthgen et al. notation to be compatible with

ours and substitute δj and δi in place of d to avoid confusion
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and to convey clearly which side of the network each metric is

associated with. This (un-normalized) measure compares the

distribution of the interactions with each network partner, viz.,

developers and modules, to the overall partner contribution,

δj =

n
∑

i=1

(

q′ij ln
q′ij
ri

)

, δi =

m
∑

j=1

(

r′ij ln
r′ij
qj

)

.

DAF Intuition The intuition behind these measures is

straightforward, seen clearly after a small transformation;

using δj (un-normalized DAF) as an example we obtain

δj =

n
∑

i=1

(

q′ij ln q
′

ij − q′ij ln ri
)

=
n
∑

i=1

q′ij ln q
′

ij −
n
∑

i=1

q′ij ln ri

=

(

−

n
∑

i=1

q′ij ln ri

)

−

(

−

n
∑

i=1

q′ij ln q
′

ij

)

=

(

−

n
∑

i=1

wij

Dj

ln
Mi

A

)

−

(

−

n
∑

i=1

wij

Dj

ln
wij

Dj

)

.

This measure is computed for each developer, viz., we fix j,

and it is computed over all modules. There are two terms in

the δj equation, which merit separate explanation.

The left term is the cross entropy of developer j’s contribu-

tions with the module level contributions from all developers.

The intuition is that if the proportion of a developer’s con-

tributions to each module are similar in distribution to the

proportion of commits to each module overall, then we are

unsurprised: the developer’s contributions mimic the project

as a whole. He works less on modules that are just a small

part of the overall system and works a great deal on the more

substantial modules. On the other hand, if the distributions

are dramatically different, then the developer’s contribution

is unexpected, increasing cross entropy, and hence, the focus

metric. If, e.g., he works solely on modules that comprise just

25% of the system, then his contributions are out of proportion

and should be seen as focused.

The right term corrects for a complication. Suppose that

the above mentioned 25% of the system is spread out over

many tiny modules that each represent a small fraction of

the system. Then, even though our developer’s contributions

are disproportionate (limited to just 25% of the system), and

we would not consider him focused. but rather distracted. In

this case we want to penalize his focus score to reflect this

distraction. This is accomplished by the right term, which is

simply developer diversity as described in the previous section.

The more spread out a developer is, the higher his diversity

score. In summary, DAF is high when a developer both

monopolizes packages and is not distracted by too many other

packages.

MAF Intuition The derivation of MAF mirrors DAF , so

we present only the final line to aid understanding:

δi =



−

n
∑

j=1

wij

Mi

ln
Dj

A



−



−

n
∑

j=1

wij

Mi

ln
wij

Mi



 .

This measure is taken from the complementary side of the

network and is computed for each module, viz., we fix i, and

compute the metric over all developers. While the computation

is virtually identical, it captures a different aspect of the

contribution network.

The left term is the cross entropy of the contributions to

the module, with the developer contributions to the system. As

before, if the distributions are similar, then the module receives

minimal contributions from developers who are not major

contributors to the overall system, and sufficient attention

from those developers most responsible for the system. In this

case, the module’s focus is low, and we’re not particularly

surprised. For example, if a README file has received a frac-

tion of a percent of the commits from a particular developer,

we’re not surprised so long as the file isn’t dominating that

developer’s attention. If, in fact, it is dominating, then this

excess attention is focused attention to the module. Similar

to DAF , the right term penalizes the focus for the diversity

of contributions. Modules equally contributed to by multiple

developers do get less focused attention than modules with

high ownership. In summary, MAF is high when a package

monopolizes a developer’s attention and receives little atten-

tion from other developers.

MAF and DAF are both normalized by the theoretical

maximum and minimum possible values of the measures.

For the max, δjmax
= ln A/Dj and δimax = ln A/Pi. The

theoretical minimum value of 0 is typically not attainable in

the case where the proportional counts are based on integer

values, as is the case here, so a heuristic is used to find a

suitable minimum (See [30] for more detail)2. Using these

minimum and maximum values the δj is standardized to a 0
to 1 range with the following normalization:

DAFj =
δj − δjmin

δjmax
− δjmin

, MAF i =
δi − δimin

δimax − δimin

.

Since these measures specifically take into account the con-

tributions that each developer makes and that each module

receives, their values are independent of this variation within

a network and can be used to compare the relative focus

levels of individual developers and modules.Each metric can

be interpreted as a deviation of contribution frequencies from a

null model which assumes that all developer/module pairs are

contributed from/to in proportion to the overall contribution to

the system. In the simplest case of a fully balanced network.

where all q′ij = r′ij , the theoretical minimum value of 0 will be

achieved. When q′ij = r′ij the cross entropy equals the entropy,

and focus is minimized.

In Section V we discuss how our metrics related to existing

work and present a small case study on a real system to help

illuminate how it is able to distinguish important cases. In the

next section we describe the data and methods used for the

case study and for the statistical analysis in Section VI.

2Also the R bipartite package, http://cran.r-
project.org/web/packages/bipartite/index.html
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TABLE I: Apache Software Foundation projects used in this study.

Project Releases # Files # Packages

Avro 1.3.2 - 1.4.1 158-238 12-17
Cassandra 0.6.0 - 0.6.8 314-332 31-33
CXF 2.11-2.3.1 3086-4097 491-598
Ivy 2.0.0 - 2.2.0 481-498 65-67
Lucene 1.9.1 - 3.0.3 1010-957 102-85
Shindig 2.0.0, 2.0.1 811-812 75-75
Wicket 1.2.7 - 1.3.7 1776-1947 240-249

IV. DATA AND METHODOLOGY

Data We extracted metrics often used for defect prediction for

seven projects maintained by the Apache Software Foundation,

listed in Table I. For each project we used the source code

repository and the Jira issue tracking system to extract basic

process metrics such as churn, the number of commits, and the

number of developers associated with each file and package.

The specific metrics used are described briefly with each

model description.

Jira Jira is an issue and bug tracking system that manages a

database of issue reports submitted by developers and users.

Issues are of various types including new features, improve-

ments, or defects. Jira enforces a basic development process

by mapping issue reports to version control commit messages.

Issue IDs extracted from version control system commit log

messages are cross linked with the associated report in the Jira

database. We extracted the Jira issues from the XML report

available on the Apache Software Foundation’s project website

for each of the projects.

Version Control Version control systems, e.g., Git, SVN, and

CVS, facilitate collaboration among developers by maintaining

and recording a history of changes. To obtain the number of

commits and developers associated with each file we parse

logging data retrieved from Git. We use the Jira issue IDs and

the Git version control log to link issues associated with each

commit to the modified files and to associate defect counts

with each file in the release.

Bug-Introducing Change For defect issues in the Jira database

we’d like to try to locate the files that induced the defect

fixing modification. The lines of code associated with the

changes that triggered such a modification are referred to as

“fix inducing code” as coined by Sliwerski et al. [31].

To identify the fix inducing code we use the aforementioned

SZZ algorithm and identify the commits associated with each

defect fix. If a fix is associated with revision n, then we apply

git diff to revision n−1 and revision n to identify the specific

lines that were changed in the fix. We then use git blame

on only the changed lines to identify the revision responsible

for the fix inducing code. If the revision was changed after

the defect introduction, then we do not associate post defect

changes with the defect. Otherwise we associate the unique

defect ID with the file in the fix inducing revision. This allows

us to identify the unique defects, modulo SZZ accuracy, that

can be blamed on each file in the system.

Contribution Networks We described contribution networks

in Section I. To gauge the global focused attention of each

developer over the life of the project we built a network using

all entries in the commit graph over the full period of each

project that we studied. This approach results in static focused

attention values for each developer and for each module.

V. ANALYSIS AND A CASE STUDY

With respect to the methodology described by El Emam we

want to show that our new metrics MAF and DAF capture

properties not captured by other metrics [7]. We discuss this in

an analytical setting first and conclude this section with a case

study. In Section VI, we strengthen this analysis with some

statistical results.

Ownership The simplest measure of focus is module owner-

ship which is usually measured as the proportion of contribu-

tions to a module. The developer with the highest ownership is

identified as the module’s owner. Not surprisingly, ownership

shows no meaningful correlation with MAF but strong cor-

relation with betweenness measures (see Section V); trivially,

ownership cannot capture any significant nature of developer

or module interaction as the measure itself considers only a

single developer and module in isolation.

Betweenness In prior research, betweenness in contribution

networks is used as a proxy for developer focus. It is a

simple measure of module connectivity, measuring the fraction

of geodesic paths between developers that pass through a

module [32]. If a module was touched by fewer developers,

who themselves touched few other modules, then betweenness

will be low, indicating high focus. We also consider the

“developer network edge betweenness” (DNBetweenness), a

collapsed view where developers are the nodes of the graph

and the modules connecting nodes form the edges. As more

developers touch a file, the likelihood of betweenness goes

up; so, however, does the number of commits, the code size,

the number of bug fixes, and consequently, the number of de-

fects (see Table II). Thus, betweenness, in practice, rarely adds

any predictive value beyond raw developer count (see Sec-

tion V).

Diversity Diversity is a more sensitive measure that represents

the commit entropy of each module. Like betweenness, high

diversity values implies a lack of contribution focus. Low

values of diversity suggest low surprise at who is going to

commit next. Diversity doesn’t distinguish cases where this

surprise might be important, e.g., a device driver, with cases

where it is largely irrelevant, e.g., a README file.

TABLE II: Spearman rank correlation of network measures and
MAF . (Btw=Betweeness, DNE=DNEMaxBetweenness)

MAF Ownership Diversity Btw DNE Bugs

MAF 1.00 -0.07 -0.18 -0.19 0.05 -0.19
Btw -0.19 -0.47 0.66 1.00 0.70 0.49

DNE 0.05 -0.49 0.85 0.70 1.00 0.53
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Thiruvalluvan Douglas Phillip

avro.genavro
avro.io.parsing

avro.io avro.generic avro.reflect
avro.specific

avro avro.file avro.tool
avro.util

avro.mapred.tether

avro.mapred
default

avro.idl

avro.ipc
avro.ipc.trace

avro.ipc.stats

Fig. 2: The full bipartite network of Apache Avro with developers at the top and files on the bottom. Block and edge sizes represent the
number of commits either from, or to, developers and packages respectively.

Experience Some measures of experience consider a devel-

oper’s system level contributions along with each contribu-

tion to an entity; specifically, Mockus’ experience measure,

although applied in a different setting, is the closest to ours [1].

In fact, it can be shown that this measure is equivalent to a

normalization term minus the cross entropy H(r′ij , qj). It does

not, however, fully capture the nature of developer “focus”

as it does not capture diversity, does not have a standard

range, and most importantly, does not define a developer

focus metric such as DAF . Additionally, it is worthwhile

to note that the dual nature of our measures permits an

elegant computation, viz., that the same code can be used to

calculate either measure on the weighted adjacency matrix that

represents the contribution network simply by transposing the

matrix to obtain the dual.

Avro Case Study Apache Avro is a remote procedure call

and serialization framework. Its primary purpose is to provide

serialization for persistent data and a format for distributed

data exchange. It is a moderately-sized project with over 200
files. We gathered 110 distinct commits of the project between

Jan 2010 and Sep 2010. During that time there were only

three committers to the Java code of the project. Because

of its manageable size we use it here to illustrate some

properties of various focus metrics. The full bipartite package

level contribution network can be seen in Figure 2. Block

and edge sizes in the graph represent the number of commits

either from, or to, developers and modules respectively. We

first consider MAF , contrasting it to with the previously

defined entropy measures, the simple proportional measure of

ownership, and the concepts of node and edge betweenness,

and then we discuss DAF .

MAF In comparing other metrics to MAF , ownership is

the simplest to discuss; consider package avro in Figure 2

which is owned by Douglas with ownership of 0.78. With a

MAF score of 0.04 we might conclude that ownership and

MAF are inversely related. However avro.specific has

both higher ownership, and higher MAF . Table II shows that

MAF and ownership are not strongly correlated.

Betweenness considers more of the network, but are also

problematic. Since betweenness measures, as in Meneely

et al. [9], do not take into account the relative contribution

of each developer, they are often highly correlated with

the number of developers and other “size” metrics. Further,

because the developers are tightly connected by the modules,

neither form of betweenness discriminates interesting cases.

Diversity is able to capture some variance in contribution

that betweenness misses. Consider the packages avro.file

and avro.specific. They have identical betweenness val-

ues of 0.125, suggesting that they are unfocused artifacts.

Their diversity values, however, tell a different story and are

considerably different for these two packages. Three devel-

opers have contributed to avro.file which has a diversity

TABLE III: MAF discriminates interesting cases better than other
ownership metrics in Apache Avro.

Ownership Diversity Focus Btw DNE Bugs
MAF Btw

avro 0.78 0.67 0.04 0.12 1 1
avro.file 0.71 0.76 0.03 0.12 1 2

avro.specific 0.94 0.23 0.09 0.12 0 1
avro.tool 0.67 0.80 0.05 0.12 1 0

avro.ipc.stats 0.57 0.68 0.21 0.00 0 0
avro.io 0.75 0.56 0.34 0.12 0 0

avro.io.parsing 0.86 0.41 0.36 0.12 0 1
avro.genavro 1.00 0.00 0.23 0.00 0 0
avro.generic 0.75 0.72 0.01 0.12 1 4
avro.reflect 0.75 0.72 0.00 0.12 1 0

avro.util 1.00 0.00 0.10 0.00 0 0
avro.ipc 0.93 0.24 0.10 0.00 0 2

avro.mapred 1.00 0.00 0.12 0.00 0 0
avro.mapred.tether 1.00 0.00 0.10 0.00 0 0

avro.idl 1.00 0.00 0.02 0.00 0 0
avro.ipc.trace 0.60 0.67 0.14 0.00 0 0

default 1.00 0.00 0.00 0.00 0 0
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score of 0.759. The width of the ribbon connecting Phillip to

this package indicates that he has made a modest but signifi-

cant proportion of the commits to the package, Thiruvalluvan

has also made at least one commit, although his contribution

is smaller. Finally, although Douglas has made most of the

commits, the total number of contributions to the package

is still relatively small. In contrast, avro.specific, has

only two contributors and Douglas clearly owns the lion’s

share. This results in a much lower diversity value of 0.234,

indicating the relative lack of surprise at who will make the

next commit.

Unfortunately, diversity is insufficient to capture many ex-

amples of focus. avro.ipc.trace and avro have almost

identical diversity values of 0.673 and 0.683 respectively,

but their betweenness values, and the number of developers,

are different. Package avro.ipc.stats also has a similar

diversity score of 0.683 and like avr.ipc.trace has only

two developers, thus, its betweenness value is 0. In this exam-

ple, MAF is able to discriminate between many interesting

cases that other metrics fail to capture.

DAF We now turn our attention to developer focus and

DAF . From the contribution network we can see at a glance

that Thiruvalluvan probably has the greatest focus. Most

of his commits are focused in two packages, whereas both

Douglas and Philip, do not appear to have any packages

that dominate their contribution patterns. This distinction is

important; clearly Douglass dominates the avro package and

one can view the package as receiving focused contributions,

however, it does not dominate Douglas’ contributions to the

system. Even though it is the package that Douglas has

contributed to the most, it has received, at most, approximately

twice the contributions of the next smaller package and there

are at least three or four such packages. This is quite different

from Thiruvalluvan who’s largest contribution accounts for

about half of his total contributions to the system. In this in-

stance, developer diversity, viz., (author entropy), captures this

difference nicely, ranking Thiruvalluvan as the most focused

developer, and Douglas as the least focused (See Table IV).

However, as with the module perspective, diversity is limited

as a measure of developer focus. Consider again packages

avro.file and avro.specific, which have identical

betweenness values and drastically different diversity values.

The MAF values of these packages are both fairly low at

0.034 and 0.087 respectively. The skewed contribution from

Douglas yields the low diversity score indicating focused at-

tention, but the contribution from Douglas does not represent

a disproportionate focus from his perspective. It cannot be

argued that Douglas is focused on this package, his efforts are

spread out fairly evenly over a number of packages. So MAF
and DAF measures capture focus from both the perspective

of the developer and the module. A focused package is one

that receives a lot of attention from few developers who devote

most of their attention to that package.

Interestingly, the two packages with the highest focused

activity scores are avro.io.parsing and avro.io which

are both dominated by Thiruvalluvan. By simply looking at

the web, we might conclude that Thiruvalluvan is something

of an I/O specialist, Douglas is the project leader, and that

both he and Phillip exhibit broader, less focused attention.

Both the MAF and DAF scores, which are mostly low with

the exception of Thiruvalluvan and his focus on I/O, support

this hypothesis.

TABLE IV: DAF scores reflect developer role in the Avro project.

DAF Diversity #Commits Bug Fixes Bugs

Douglass 0.23 2.48 71 26 7
Thiruvalluvan 0.51 1.57 25 11 2

Philip 0.30 1.94 14 2 2

VI. RESULTS AND DISCUSSION

For the following research questions, we used negative

binomial regression, NBR, to model count data against pa-

rameters of interest. NBR is a generalized linear model used

to model non-negative integer responses. It is appropriate

here as it can handle over- dispersion, e.g., cases where the

variance is greater than the mean in the response [33]. Our

focus is on understanding the mean, within project, behavior;

consequently, we view each project as a random effect in

a pooled model incorporating it as a grouping factor that

captures the between project variance in the response. In

all cases we log transformed independent count variables to

stabilize the variance and improve the model fit [33].

RQ1: Overall and top-contributor attention focus

As we saw with the Avro project, it is often the case in

OSS that there is a dominant project contributor. We might

expect that project leaders exhibit lower attention focus if they

contribute a significant proportion of the project’s code. As a

developer’s contribution increases, it becomes increasingly dif-

ficult to contribute a greater proportion of code than expected

to the many files currently touched. The dominant contributor

DAF for each project is listed in Table V. In each case, the

focus scores of the dominant contributors are below the mean.

TABLE V: Project leaders are less focused than average.

Ivy Avro Wicket Shindig Lucene Cassandra CXF

DAF 0.17 0.23 0.20 0.08 0.19 0.09 0.14

DAF 0.41 0.54 0.57 0.41 0.56 0.43 0.57

To determine the level of contribution by focused devs we

regressed the number of commits against the number of files

touched and the developers DAF score. A manual exami-

nation of the data revealed that the top 5% of contributors

touch significantly more files than the remaining developers

necessitating the inclusion of #files in the regression model as a

control. We can see from the model in Table VI that the DAF
coefficient is suggestive of an effect, viz., only significant at a

10% level, after controlling for the number of files touched.

So while focused developers do contribute to fewer files,

even while controlling for this factor, i.e., holding it constant,
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TABLE VI: Developers with high DAF contribute less code.

N = 107 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.0924 0.3061 -0.30 0.7628

log(files) 1.0037 0.0366 27.43 < 2e− 16

DAF -0.6511 0.3898 -1.67 0.0948

they do not contribute as much code as more broadly focused

developers.

Result 1: Project leaders and top contributors tend to exhibit

lower attention focus than others. The effect of attention focus

on contribution falls below the 5% level standard for statistical

significance, but is suggestive at the 10% level of significance

after controlling for the number of files changed.

RQ2: Do narrowly focused developers create fewer de-

fects?

To answer this question we regressed the file contribution

pattern of each developer against the number of defects

introduced by that developer. We are interested in the degree

to which focused attention could explain their contribution of

defects to the software over its lifetime. For this experiment

we evaluated the entire contribution network for each project

obtaining a mean attention focus score for each developer

over the life of the project. We modeled the total number

of induced defects attributed to each developer against the

DAF scores, with respect to files. We limited the number of

size-based control variables to avoid a high variance inflation

factor VIF [33]. We included the number of files to control for

the spread of developer focus based on the number of artifacts

changed. Similarly, we include the number of commits to

control for the positive relationship between the number of

changes made and the number of defects.

TABLE VII: Developers with high DAF produce fewer bugs.

N = 107 Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.4960 0.4544 -3.29 0.0010

log(commits) 0.3266 0.1260 2.59 0.0095
log(files) 0.6998 0.1434 4.88 < 2e− 16

DAF -1.2979 0.5561 -2.33 0.0196

As can be seen from the model details in Table VII, after

controlling for the number of files as well as the number of

changes, DAF has a negative effect on the number of defects

induced by a developer, i.e., the more narrowly focused the

developer, the fewer defects that he introduces. Our results at

the package level were similar suggesting that this relationship

is robust to ecological inference risk [26].

Result 2: Narrowly focused developers introduce fewer de-

fects at both the file and package level.

RQ3: Do files that exhibit narrowly focused activity have

fewer defects?

If developers with narrow focus introduce fewer defects,

then we might expect that those files at the center of narrow

activity focus, i.e., that have a low MAF , would have fewer

defects. We considered this by regressing MAF and other

file properties against the number of defects induced in each

file, controlling for file size, the number of commits, and the

number of developers. The details of the model are shown

in Table VIII. Surprisingly, the direction of the coefficient is

positive, i.e., increasing focused activity has a negative impact

on software quality while holding other factors constant.

We included ownership in the model to test whether this

simple measure was able to capture a similar relationship

with defects. We placed both ownership and MAF in the

model last so that any collinearity with other variables would

attribute the shared variance to the control. Both the ownership

and MAF coefficients were stable in either order, however,

ownership had high collinearity with the number of commits

whereas MAF did not. We find that MAF accounts for

four times the explained deviance of ownership in this model.

When considered in concert with RQ2, this result suggests

that while it is important for a developer to focus his efforts

to avoid excessive unfocused contribution, it is also important

for files to receive some general attention.

We also note that, in agreement with prior research, in-

creased ownership is negatively correlated with defects. How-

ever, the effect is not statistically significant. There could be

several factors driving this result. Files with high MAF may

be more complex and are consequently naturally more defect

prone. It may also be the case that if file attention is too

focused, then there are simply too few eyeballs and greater

diversity may be necessary to find defects [34].

Result 3: Increased file activity focus results in a greater

number of defects.

Threats To Validity

We recognize a few threats. First, complex files are more de-

fective. It would be revealing to study the relationship between

code complexity and focus. However, since file complexity

is typically correlated with code size, and our models take

size into account, the impact on our results is likely small.

While MAF and DAF may change over time, this study

considers the aggregate behavior over the life of a project.

This is, in part, because our measures are based on information

theory, and consequently, they inherit the associated benefits

and challenges. In particular, information theoretic measures

are well known to necessitate substantial amounts of data to

yield appropriate results. We plan to address the evolution of

MAF and DAF in future work. Neither metric is suitable

TABLE VIII: MAF is significant after controlling for the number
of changes and is positively associated with the number of defects in
files.

N = 3595 Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.1503 0.2499 -16.61 < 2e− 16

log(commits) 0.8733 0.0618 14.13 < 2e− 16

log(devs) 0.1697 0.0916 1.85 0.0639
log(loc) 0.2261 0.0290 7.81 < 2e− 16

ownership -0.3397 0.1901 -1.79 0.0740
MAF 0.9430 0.2647 3.56 0.0004
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when either side of the network is a singleton in which case the

metrics are undefined. However, in this case, simple diversity

paints a complete picture of focus.

VII. CONCLUSION

The focus measures we introduced have roots in ecology

but are very well suited for analysis of focus in a symmetrical

setting between developers and artifacts. In addition, focus

used in modeling is facilitates straightforward interpretation.

The effect of focus on defect introduction is particularly clear:

when developer focus is higher, fewer defects introduced. With

files, the effect of focus on defects is clearly not strong. This

is a welcome side-effect of the artifact-developers symmetry

of this measure; the joint effects of artifact and developer

can be deconvolved into separate contributions so that they

can be considered and reasoned about individually, while still

considering their interaction within the contribution network.

Finally, our focus measures can be useful in practice as an

assessment tool.
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