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ABSTRACT
Developers in complex, self-organized open-source projects
often work on many different files, and over time switch fo-
cus between them. Shifting focus can have impact on the
software quality and productivity, and is thus an important
topic of investigation. In this paper, we study focus shift-
ing patterns (FSPs) of developers by comparing trace data
from a dozen open source software (OSS) projects of their
longitudinal commit activities and file dependencies from
the projects call graphs. Using information theoretic mea-
sures of network structure, we find that fairly complex focus-
shifting patterns emerge, and FSPs in the same project are
more similar to each other. We show that developers tend to
shift focus along with, rather than away from, software de-
pendency links described by the call graphs. This tendency
becomes weaker as either the interval between successive
commits, or the organizational distance between committed
files (i.e. directory distance), gets larger. Interestingly, this
tendency appears stronger with more productive developers.

We hope our study will initiate interest in further under-
standing of FSPs, which can ultimately help to (1) improve
current recommender systems to predict the next focus of
developers, and (2) provide insight into better call graph
design, so as to facilitate developers’ work.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Process metrics;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures; D.2.9 [Software Engineering]: Management—Pro-
ductivity

General Terms
Theory, Measurement, Management
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Time-series, Sequence analysis, Structural complexity, Lay-
ered network, Markov entropy
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1. INTRODUCTION
Large-software development projects are socio-technical

systems [17] in which developer actions are governed both by
the artifact and by the social interactions with co-developers.
Open source software (OSS) projects [15] are examples of
large-software development, maintained by self-organized gr-
oups of developers from around the world. The complex de-
pendencies between the large numbers of components make
these projects challenging for developers to understand and
explore as a whole, and thus may have a significant effect on
both the efficiency of developers [22, 35] and the quality of
the products [30, 48].

While executing development tasks in large and complex
software systems, needed knowledge can typically only be
found by navigating through many files [23, 24]. These nav-
igation patterns were found to be correlated with the ef-
fectiveness of developers to finish tasks [35]. The need for
navigation arises from the inherent inter-dependency of sys-
tem components; in addition to foraging for information [23],
developers often need to work on several files to complete a
task, shifting focus from one file to the other. Here, our in-
terest is in the focus shifting patterns (FSPs) of developers,
i.e., their dynamic work pattern as they shift focus among
the different components of an OSS project. Specifically, we
ask, what is the extent to which FSPs are in agreement with
the structure of the call graph? And, what relationships are
there between developer productivity and their FSPs?

Focus is known to have an impact on software develop-
ment. More narrowly focused developers work on fewer spe-
cific subsystems, with less cognitive burden, they introduce
fewer defects [32]; while within a particular code change, the
increased number of subsystems that need to be touched also
increases the risk of failure [28]. A strongly related concept
emerging in the same area is code ownership [5, 33], i.e.,
consistently, lower ownership of a component has a negative
impact on its code quality. In general, focus can be consid-
ered as an aggregated metric which is used to measure the
commit distribution of a developer on a number of files. It
was proven that such entropy-like metrics can provide valu-
able insights in the evolution of software systems [38, 41],
and are valuable for predicting bugs [16, 32]. However, all
these works are just based on the distribution of commit ac-
tivities, and none of them has studied the dynamic process
of focus. Here, we study focus-shifting as a temporal pro-
cess over a network of connected files, where files are linked
if they have been modified (i.e. committed to) in succession
by a developer. As such these networks encode both the
sequence of activities, and the structure of repeated efforts.



Publicly available OSS data sets record the social and
commit activities of developers over a relatively long span
of time, providing us an excellent opportunity to quantita-
tively study FSP and its effects on the code contributions of
developers. We describe FSPs using time-series analysis, a
much different approach from the static focus used in recent
work [32] to measure differential attention of developers.

We make FSPs specific by defining a focus shifting network
(FSN) as a graph over the files present in all commits by a
developer over a given time interval. We build a file depen-
dency network (FDN) for those same files based on the call
graph links between functions in them. Then, using layered
network analysis [42] we quantify the structural correlation
between the FSN and FDN, use information theory as well
as the orthogonal decomposition to measure their complex-
ities, and adopt multiple linear regression (MLR) [14] to
reveal the effects of FSP and other technical factors on the
code contributions of developers. By applying these meth-
ods to data from 15 OSS projects, in the rest of this paper:

• We find that developers indeed tend to shift commit
focus along the file dependencies. There seems to be
a negative relationship between the strength of this
tendency and the directory distance between files.

• We find that developers in the same project have rel-
atively similar FSPs, and those in different projects
have relatively different FSPs.

• We relate FSPs to productivity and show that more
productive developers, in terms of larger total lines of
code added and deleted per day [21], are more nar-
rowly focused but shift focus more frequently between
various files. This is likely due to their broader respon-
sibilities in the respective OSS communities.

• We also find that more productive developers tend to
contribute more to files that strongly depend on other
files (high out-degree), but less to files that are strongly
depended upon (high in-degree).

2. RELATED WORK
Network analysis in software system Network anal-

ysis has been adopted very recently in software engineering
to better understand the complex dependencies between dif-
ferent components. Several kinds of technical dependency
networks were established, including function call graphs
and class collaboration graphs [29], package dependency net-
works [46], and software mirror graphs [7].

Several structural properties of these dependency networks
were adopted to build prediction models for defects, and it
was proven that such models are more accurate than those
based only on code complexity. For instance, Zimmermann
and Nagappan [48] constructed dependency networks for
binaries in Windows Server 2003, and found that central
binaries with many neighbors and those in larger cliques
tend to be more defect-prone. Nguyen et al. [30] validated
the above results in the OSS Eclipse project, and showed
that class-level predictions are more significant in practice
than package-level predictions, and the performance of net-
work metrics decreases as they become less local. Herbsleb
et al. [18] found that dependencies between developers or
between software components slow down development, but
they don’t significantly affect productivity. Bird et al. [4] ex-
tended dependency networks to socio-technical networks by

integrating developer contribution links. They found that,
in Windows Vista and Eclipse, the network properties in
such a combined network can be used to better predict de-
fects than the methods that only use dependency or contri-
bution information separately. More recently, Cataldo and
Herbsleb [8] studied the congruence between technical de-
pendencies and coordinative actions in two large-scale soft-
ware projects and found that high socio-technical congru-
ence is associated with decreased software failures and in-
creased development productivity.

On the other hand, it was found that developers spend
quite a large portion of their time navigating [23, 24], and
effective developers tend to investigate source code by follow-
ing structural dependencies [35]. These findings are echoed
in several recommendation algorithms [34, 37] based on de-
pendency networks to help developers quickly find useful
components. However, the empirical study of Robillard et
al. [35] was based on a relatively small number of developers.
In this study, by utilizing a large OSS data set, we sought to
validate and generalize those results in order to elucidate the
factors influencing the FSPs of developers, and to quantify
FSP’s relationship to developers’ code contribution.

Structural complexity metrics In software engineering,
Cyclomatic Complexity (CC) [27] is a popular structural
complexity metrics, defined as the number of linearly inde-
pendent paths between pieces of code, and is used to measure
the complexity of executing programs. Based on dependency
networks, several metrics for local structural complexity [4,
30, 48] have also been proposed, such as degree, between-
ness, closeness and so on. These metrics have been proven
useful for predicting defects in large software.

Mockus and Weiss [28] proposed several diffusion metrics
of code changes, and found that increased diffusion, in terms
of the larger numbers of touched files, modules, and subsys-
tems, increases the failure probability. Bird et al. [5] identi-
fied major-minor-dependency relationship in Windows Vista
and Windows 7, i.e., minor contributors to components are
always major contributors to other dependent components;
and they found that these minor low-expertise contribution
do have a large impact on software quality, removal of which
largely decreases the performance of defect predictors. Rah-
man and Devanbu [33] studied the ownership in the con-
text of implicated code that is modified to fix a defect, and
found that implicated code is more strongly associated with
a single, than multiple, developer’s contribution. Most re-
cently, Posnett et al. [32] introduced several ecological met-
rics to measure the focus of a developer, which provides new
insights for the structural complexity of the relationships
between developers and software components. They found
that more narrowly focused developers tend to introduce
fewer defects, after controlling the number of commits and
the number of touched files.

Outside of software engineering, Song et al. [39] intro-
duced several entropy metrics to measure the complexity of
the mobility patterns of mobile phone users, and found that
human mobility is far more predictable than we think. In
this study, we make an analogy between FSPs in software
and real-world mobility patterns, and will use these entropy
metrics to measure the complexities of FSNs and FDNs.

3. RESEARCH QUESTIONS
The development and maintenance of large software sys-

tems is complex, often requiring considerable time for one to



understand the system well enough to make correct changes
[19]. Following artifact dependencies, in a forward or reverse
manner, is a common way to explore an unfamiliar software
system and gain some understanding. Indeed, a number of
recommender systems [19, 34, 37] (which propose related
components to developers for detailed exploration) use de-
pendency structures as the basis for their suggestions. In
addition, modifying components without attending to de-
pendencies can increase the risk of errors [47]; and often
incidence of errors can be traced to dependencies [4]. All
this leads to our first question,

Research Question 1: To what extent are devel-
oper focus-shifting patterns following along the file de-
pendency links in the call graphs?

Social networks tend to be homophilic: those with similar
preferences and habits tend to associate [31] and then further
influence each other’s behavior [11]. In OSS, we would ex-
pect that this natural homophilic inclination, together with
the shared technical dependency structure of the software,
tends to push the focus-shifting patterns of developers close
together. Furthermore, we expect that the different depen-
dency structures of different systems would cause divergence
between FSPs of developers of different projects.

Research Question 2: Are the FSPs of developers
similar to each other in the same project, while rela-
tively different across projects?

Developers arguably have a higher tendency to touch code
already familiar to them and thus may centralize their at-
tentions to respective, highly coherent tasks [2, 6] in the
same module or package, rather than shift focus globally.
To study this, we ask,

Research Question 3: Does the way files are orga-
nized into directories relate to FSPs?

Effective developers are likely to investigate source code
by following structural dependencies [35], indicating that de-
velopers whose FSNs are more strongly correlated with their
FDNs would tend to be more productive. In addition, active
developers are likely to touch a large number of files in OSS
projects, and they try to fix bugs in time to preserve their
reputation [44]. These may lead to complex FSPs, since
bugs could be found anywhere at any time. So, we expected
that the developers with more complex FSPs are more active
and thus may contribute more lines of codes. On the other
hand, complex FSP imply frequent switching between dif-
ferent files, bringing about a heavy cognitive burden, which
may decrease work efficiency. This leads us to ask,

Research Question 4: To what degree are the FSPs
of developers correlated with their code contributions,
in terms of LOC/Day?

Finally, technical dependencies among parts of the code
describe the information flow in a software system, and thus

may have some impact on the coordination efficiency of de-
velopers [18] and the quality of the product [47]. Recently,
such dependencies were used to predict defects [9, 47, 48]
and select tests [3, 36]. Thus it is interesting to find out,

Research Question 5: How are specific dependen-
cies in the call graphs related to the FSPs and to devel-
oper code contribution, in terms of LOC/day?

4. METHODOLOGY
We collected the commits of developers in the Git reposi-

tories1 of 31 OSS projects from the Apache Software Foun-
dation on March 24th, 2012 [43, 44]. For each commit, we
record the developer ID, the commit time, and the numbers
of added and deleted lines of code.
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Figure 1: The rate of link changes between every
two sampled successive commits for Axis2 java.

We used the Doxygen tool [26] to gather the call graphs
for the 27 java projects out of the 31. For each project,
we randomly sample 30 commits, obtain the call graphs at
those times, and then integrate them as one, i.e., accumulate
the weights of links for each pair of files. We find that the
structures of the call graphs are relatively stable in these
projects, i.e., the rate of link change between the common
files in two commits is about 11% per year, on average. Take
Axis2 java for example. We randomly sampled 30 commits
with the first and last commits occurring on Feb 16, 2005
at 07:59:27 and Aug 10, 2010 at 20:09:04, respectively. The
rate of link change between every two sampled successive
commits are shown in Figure 1, where we can see that the
structure of the call graph changed relatively rapidly in the
first two years since it was created, while it became much
more stable as the project got mature, i.e., the rate of change
is below 2% per quarter after 2007.

We only considered those commits to source files contain-
ing functions, and we filtered the data as follows. We remove
the commits that modify more than 50 files at a time, since
such commits likely consist of just copied or automatically
generated files; then, we remove the developers with fewer
than 100 remaining commits, and, we only keep projects
with at least 5 such developers, to get statistically meaning-

1Note that some projects may use git mirrors of the Apache
subversion histories, which will not influence the following
results, since here we only consider the commit activities.



ful results. After this filtering, we were left with 15 projects2

and a total of 140 developers. We limit our focus on .java
source files that have at least one function. For each project,
that is our file set F .

4.1 FSN and FDN Layered Networks
We use and correlate two types of graphs for each devel-

oper, one that captures their technical work activities, and
the other that describes the call graph file dependencies of
the files in those work activities.

From the commit data we assemble a network for each
developer that captures their FSP over the set of files that
they have ever committed to.

A focus shifting network (FSN) for a developer
d is a weighted directed graph over all the files fi to
which d has ever committed. fi and fj are connected
by an edge if they have been committed to by the de-
veloper in successive times, with the edge pointing from
the earlier commit file to the later. We call those edges
focus shifting links.

The weight wij is a sum of the contributions from every
two successive commits in a given time interval, such that
the first commit includes file fi and the second fj . Since
multiple files may be involved per commit3, two successive
commits may contribute to the weights of many links. To
normalize for this, each weight contribution is divided by the
numbers of files in these two successive commits and then
summed to one. In particular, if Ft and Ft+1 are the sets of
files committed to at successive times by a developer, τ the
time interval between them, and fi ∈ Ft and fj ∈ Ft+1, then
the added weight on edge (fi, fj) for that pair of commits is

∆wij =
1

|Ft||Ft+1|
exp(− τ2

2δ2
), (1)

where the exponential decay term is introduced to discour-
age the focus shifting through long intervals, and δ is the
time window, e.g., smaller δ leads to emphasis of focus shift-
ing within shorter intervals, and we treat the focus shifting
through different length of intervals equally when δ → ∞.
| · | is the set cardinality.

From the call graph data, for the same set of files as in
the FSN, we assemble a network for each developer that
captures the artifact dependencies.

A file dependency network (FDN) for a devel-
oper d is a weighted directed graph over all the files fi
to which d has ever committed. An edge from fi to fj
means there is at least one function in fi calling a func-
tion in fj . We call these edges dependency links. The
weight of the edge is equal to the number of times that
all functions in fi call those in fj .

In both FSN and FDN self-links are allowed. For each
developer, these two networks can be considered as layers in

2Activemq, Ant, Axis2 java, Camel, Cassandra, Cayenne, Cxf,
Derby, Hive, Lucene, Ode, Openejb, Solr, Wicket, and Xerces2.
3In practice, developers may submit all at once the changes
they have done to a number of different files. Thus, the
commit time for those changes will be the same in our data.

a two-layer network, since they are over the same set of files.
In this layered network, each pair of files can thus be either
connected by both shift and dependency links, only one of
them, or disconnected.

Given an FSN and an FDN, we next describe how to cal-
culate their congruence, or agreement. Let Wβ be the set
of weights of the FSN edges that are also in the FDN, re-
gardless of edge directions, and Wα be the set of weights of
FSN edges that are not in the FDN. For a particular time
window δ, we then define the congruence, or agreement, of
FSN on FDN as that fraction of the average weights that is
in agreement in the two networks4:

Cong =
〈Wβ〉

〈Wα〉+ 〈Wβ〉
. (2)

Cong achieves values between 0 and 1, and is higher when
the networks are in better agreement. We will use the con-
gruence to characterize each developer’s tendency of shifting
focus along the dependency links.

4.2 Measures of Network Structure
We sought to model developer behavior in terms of the

connectivity of their FSN and FDN. From the FSN, we
would like to measure the uncertainty in a developer’s fo-
cus shifting behavior. In the FDN, on the other hand, we
want to measure the unevenness of the dependencies among
a neighborhood of files. Those measures would serve as the
structural predictors in our models.

Here, we adopt an information theoretic approach, due to
its appropriateness for capturing frequent vs infrequent pat-
terns over time. Following the approach of Song et al. [39],
who proposed three types of entropy to measure the com-
plexity of human mobility patterns, we measure the com-
plexity of a developer’s patterns as they shift focus from
one file to another, as follows. If a developer has already
committed to a total of N files, and no other information is
known, then it stands to reason that a developer will focus
on any of these files with equal probability, at any time step.
Such uncertainty can be measured by random entropy

ER = log2N, (3)

which is intuitive since the uncertainty will certainly increase
with the network size. In this case, both the FSN and FDN
of the same developer will have the same complexity, ER.

In reality, developers rarely contribute to different files
uniformly, e.g., they tend to spend much more time on their
own files than those of others. In this case, the next focus
of a developer can be better predicted by utilizing the his-
torical distribution of his commits on different files, i.e., a
developer is more likely to commit to those files that have
been committed to by himself many times, consistent with
the idea of ownership. Particularly, suppose the developer
has committed ni times to file fi, then the probability that
the developer commits to this file at the next time step is

pi =
ni∑N
j=1 nj

, (4)

4Cataldo et al. [8, 10] used a similar metric to measure
social-technical congruence between coordination require-
ments and coordination activities in a revision, for multiple
developers. In contrast, here we investigate the relationships
between code changes in successive revisions, per developer.
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Figure 2: A source (a) and a sink (b) node.

which forms the basis for measuring uncorrelated entropy

EU = −
N∑
i=1

pi log2 pi. (5)

We note that EU ≤ ER and that EU is maximized only
when pi = 1/N, i = 1, 2, . . . , N , indicating that, prediction
always benefits from more information. E.g., compared to
the random case, here we also know the historical distribu-
tion of commits on different files. For the FDN, we only need
change the definition of ni so that ni means the number of
functions in file fi, as we treat all functions equally.

Since it is based on time-series of commits, the FSN pro-
vides even more information about the focus shifting behav-
ior of a developer, leading to better prediction. If wij is the
weight of the link from file fi to file fj , then, the conditional
probability that the developer shifts focus from fi to fj is:

p(j|i) =
wij∑
k∈πi

wik
, (6)

where πi is the outgoing neighbor set of fi in the FSN.
If we consider focus shifting as a Markov process—that

the next focus is totally determined by the current one—we
can define the Markov entropy as:

EM = −
N∑
i=1

[
pi

∑
j∈πi

p(j|i) log2 p(j|i)

]
. (7)

Intuitively, Eq. (7) says that the current commit behavior of
a developer provides information for the location of his next
commit. Similarly, EM ≤ EU , and EM is maximized when
the next focus is independent from the current one.

For the FDN, the Markov entropy can be calculated by
redefining wij as the weight of the directed dependency link
from fi to fj , i.e., the number of times that the functions in
file fi call those in file fj . We call it forward Markov entropy,
denoted by EFM . Since developers may also shift focus in the
opposite direction of the dependency link, we also define a
backward Markov entropy, denoted by EBM , for the FDN.
In this case, wij in Eq. (6) is defined as the weight of the
directed dependency link from fj to fi. E

F
M and EBM might

be quite different for the same FDN. For example, the source
node in Figure 2 (a) contributes to EFM (log2 4)/4 = 0.5, but
it contributes 0 to EBM , while the sink node in Figure 2 (b)
contributes 0 to EFM , but it contributes 0.5 to EBM .

We use all three of these entropies, rather than any single
one, to measure the complexities of the FSN and FDN in a
comprehensive way. Additionally, that increase the robust-
ness of our results to the entropies correlation with network
size. In addition, we don’t consider file size when calculating
the entropies to avoid the trivial overlap between the FSP
metrics and developer productivity.

4.3 Multiple Linear Regression and Orthogo-
nal Decomposition

We sought out to use multiple linear regression (MLR) [14]
to model developer productivity against the above measures
of complexity. However, the three types of proposed en-
tropy are all strongly correlated with the network size N ,
i.e., they are not independent from each other and thus are
not suitable to be considered together as predictors in the
same MLR model. We transform them by eliminating their
dependency on N , using orthogonal decomposition5 [12].

Based on the relationship EM < EU < ER = log2N ,
and considering all developers together, we de-correlate the
vectors EU and EM from ER, to get network-size uncor-
related complexities P and Q, respectively. We centralize
these vectors first, and solve the following for P and Q.

EU = aER + P, (8)

EM = bER + cP + Q, (9)

subject to the constraint that the inner products 〈ER,P〉,
〈ER,Q〉, and 〈P,Q〉 all equal to zero. From Eq. (8), we get

〈EU,ER〉 = a‖ER‖2, (10)

Substituting a from Eq. (10) into into Eq. (8), we get

P = EU −
〈EU,ER〉
‖ER‖2

ER. (11)

Similarly, from Eq. (9), we have

Q = EM −
〈EM,ER〉
‖ER‖2

ER −
〈EM,P〉
‖P‖2 P. (12)

We refer to P as the distributional complexity. In the
FSN it captures the global heterogeneity of the commit dis-
tribution; it is maximized if the developer is focused on all
files equally, and minimized if he is focused on one of them.
We refer to Q as the structural complexity, which, in turn,
captures the local heterogeneity of the commit distribution;
it is minimized if the developer’s next focus can be exactly
predicted given his current focus. The explanations for the
FDN are quite similar, except that there are two structural
complexities, QF for EFM , and QB for EBM .

5. RESULTS AND DISCUSSION

5.1 RQ1: Shifting Focus along Call Links
We think of focus-shifting here as a collective phenomenon.

Whereas the behavior of an individual developer might look
random, significant phenomena may emerge by considering
all developers together, due to the latent software structure6.
To investigate the degree to which the focus-shifting behav-
ior of developers are aligned with their FDN, we first inte-
grate the FSNs of all developers (by summing all the weights
of directed links between the same pair of nodes), and get
the corresponding FDNs, in a project. Then, we calculate
the congruence between the overall FSN and FDN.

We find that developers indeed tend to shift their focus
from one file to another along FDN links: the weights of
FSN links between pairs of files also connected in FDN, Wβ ,

5Alternatively, principal component analysis (PCA) [20]
could be used to extract linearly uncorrelated features. How-
ever, those new features may be difficult to interpret.
6We consider developer FSN and FDN congruence in RQ#4.



are on average about 4 times larger (with the significance
p = 0) than those of FSN linked files that are not linked in
FDN, Wα, for any project, and over different time windows.
In other words, when a developer commits to a file fi at one
time, with a much higher probability he will commit at the
next time step to file fj that is dependent on fi in the call
graph, than to a file fk that is not.
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Figure 3: The relationship between the FSN&FDN
congruence and time window δ.

By considering all projects together, the relationship be-
tween the congruence, Cong, of FSN and FDN, as calculated
by Eq. (2), and the time window δ, is shown in Figure 3. We
can see that the congruence decreases exponentially as the
time window increases from one hour to one week, indicat-
ing that developers are more likely to shift focus along FDN
links when the interval between the commits is shorter. This
is reasonable, considering that developers tend to finish the
same or related tasks in several successive compact commits,
while after relatively long breaks, they tend to initialize new
tasks which may be unrelated to the preceding ones. Note
that, the congruence of FSN on FDN doesn’t decay to 0,
rather it is always larger than 0.8 even when δ → ∞, since
long intervals between successive activities are rarer than
short intervals.

We then calculate the Pearson correlation7 between the
weights of the links in common between the overall FSN and
FDN, and find a significant positive correlation (p < 0.005)
in both directions, same and opposite (See Section 3), with
coefficient equal to 0.2237 and 0.2259, respectively, on aver-
age for all projects, when the time window is set to δ = 1
(day). Note that, when the self-links are excluded, the pos-
itive correlation is still significant for 11 out of 15 projects,
in at least one direction. While relatively weak, the posi-
tive correlations between the overall FSN and FDN in most
projects are stable for time windows from one hour to infin-
ity, indicating that developers are more likely to shift focus
along more strongly dependent files in the FDN. The above
results suggest that developers’ FSPs indeed significantly
correlate with their FDNs, answering RQ#1 in the positive.
The following specific situations illustrate our results.

Illustration 1: In Lucene, the strongest one way link in
the overall FDN is from TestIndexWriter.java to IndexWrit-
er.java with a total weight of 3762. Meanwhile, we also

7Spearman correlation yields very similar results.

find strong links between the two files in the overall FSN,
in both directions: a weight of 4.6 (total 55 times) from
TestIndexWriter.java to IndexWriter.java and a weight of
4.0 (total 52 times) for the reverse, when δ = 1 (day).

Illustration 28 K. A. Hatlen (ID: 762862, in Derby)
added code to file DRDAConnThread.java to provide a warn-
ing when a string is truncated (Sep 9 06:47:30 2011). In
particular, he added a conditional to the function buildSqler-
rmc, a couple of variables and conditionals to writeFDODTA
along with modifying some function calls, and also added an
argument to writeFdocaVal and modified each call to that
function correspondingly. However, he discovered later that
the fix introduced a bug when communicating with older
clients and disabled the warning in that case. At his next
commit (Sep 10 07:00:38 2011), he added conditionals to the
function writeLDString in file DDMWriter.java. The Git log
commit message indicates that the modified writeFdocaVal
calls to writeLDString introduced the bug.

This finding supports the design of focus recommender
systems by following file dependency links; in general, it also
indicates that two developers are likely to coordinate if the
files committed by one are dependent on those committed
by the other, thus validating the studies of Cataldo et al. [8,
10] on socio-technical congruence and expands our previous
work [43] on synchronous collaboration.

5.2 RQ2: Comparing FSPs within
and between Projects

Developers in the same projects commit to the same files
and influence each other through various social means [13].
As a result, they may have similar FSPs.

In fact, we indeed find that the developers in the same
projects have relatively more similar entropy, either random,
uncorrelated, or Markov, than those from different projects.
It may be argued that all the three types of entropy are
related to network size, and they are, so such results may
just mean that the developers in the same projects tend to
touch a similar number of files. Next, we show that the
similarity between the FSP’s in the same project is deeper
than the number of files they’ve touched.

We calculate the Euclidean distances between the pairs of
de-correlated complexities, (P , Q), for the FSNs of develop-
ers within the same projects and between different projects,
and find that the within-project distances are significantly
smaller (p < 0.01) than the between-project distances, for a
wide range of time windows, from one hour to infinity. This
result indicates that developers’ FSPs, beyond the numbers
of touched files (recall that P and Q are linearly uncorre-
lated with log2N), are also similar within the same project,
while they are relatively different across different projects,
which positively answers RQ#2. This result is not trivial
since developers in the same project may contribute to dif-
ferent parts of the project and they may have distinct com-
mit habits, resulting in different FSPs.

It can be shown that this phenomenon partly arises from
the overlap between the committed files of developers in the
same projects. We rank the files based on their commit times
by a developer, and select the top H of them with the most
commits. If the number of committed files of a developer is
smaller than H, we consider all of them. Then, for a pair of
developers in the same project, if they committed to X such

8https://issues.apache.org/jira/browse/DERBY-5236
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Figure 4: The average overlap between the top H
files most frequently committed to by two develop-
ers in the same projects.

common files, we calculate the file overlap between them by

Overlap =
X

min(|ϕDev1|, |ϕDev2|)
, (13)

where |ϕDev1|, |ϕDev2| represent the respective number of
top ranking files committed to by the two developers, and
both numbers are no more than H. Then, for different H,
we calculate the average overlap by considering all devel-
opers in the 15 projects, and the relationship between file
overlap and H are shown in Figure 4. Generally, file overlap
increases with H, indicating that the more files the devel-
opers touched, the heavier the overlap between them. The
average overlap is close to zero for extremely small H, sug-
gesting that developers focus on their own files which rarely
overlap with other’s. E.g, when we consider the top 10 files
each developer has most committed to, the average overlap
between them is 0.11, meaning that two developers commit-
ted to only one common file in this case.

While the relationships between file overlap andH in most
projects follow the overall trend in Figure 4, Hive seems to
be an exception. In this project, the average overlap is 0.64
when H = 10, which is much larger than 0.11 in the case of
considering all the projects together. This might be because
Hive is a relatively young project (the first commit occurred
on Sep 2, 2008) lacking an effective division of labor, and
thus most developers mainly focus on a number of common
files. The following example illustrates our reasoning.

Illustration 3: A pair of developers in Hive committed
to a maximum of eight common files, five of which form
a connected FDN, as shown in Figure 5 (a), where the
link width is proportional to its weight. The correspond-
ing FSNs of the two developers, involving the five files,
are shown in Figure 5 (b) and (c), where we can see that
developer 743385 mainly contributed to file SemanticAna-
lyzer.java while developer 743435 mainly contributed to Ex-
ecDriver.java. We observe strong self-links for these two
files in the respective FSNs, corresponding to the strong
self-links of these two files in the FDN. We also find rela-
tively strong links between SemanticAnalyzer.java and Hive-
Conf.java in the FSN-743385 and between ExecDriver.java
and HiveConf.java in the FSN-743435, since both Semanti-
cAnalyzer.java and ExecDriver.java call functions in Hive-
Conf.java, as in the FDN. This phenomenon is precisely con-
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(a) FDN

(b) FSN-743385 (c) FSN-743435

Figure 5: A pair of developers with IDs 743385 and
743435 in Hive committed to a maximum of eight
common files when considering the respective top
ten most frequently committed files. Five of these
common files form (a) a connected FDN. (b) and
(c): the corresponding FSNs of the two developers
with the time window δ = ∞. The link width is
proportional to its weight and the file names are
shown in the upper right corner.

sistent with Bird et al.’s recent finding [5] that a developer
being a minor contributor to a component is partly because
he/she is a major contributor to a depending component.
Both FSNs seem to be positively correlated with the FDN,
thus it is not surprising to observe that the two develop-
ers have similar FSPs, i.e., in this case, the corresponding
weights of the directed links in these two small FSNs are
also positively correlated, with the Pearson coefficient equal
to 0.55 (p = 0.0046).

More interestingly, we also find strong links between Se-
manticAnalyzer.java and GenMapRedUtils.java in the two
FSNs although they don’t directly depend on each other in
the FDN. We expected that these two files depend on the
same part of the file HiveConf.java, however, while both of
them indeed reference the same function in HiveConf.java,
the function has only two lines and doesn’t change much
over time. These two files have relatively short directory
distance equal to 4, we thus attribute this phenomenon to
other kinds of dependencies, which are not discussed here
and need to be validated in the future.

5.3 RQ3: File Organization and FSPs
The rationale for this approach is that files in the same

Java package have relatively shorter directory distance than
those from different packages. To see if FSP structure corre-
lates with the files’ functional similarity, we use file directory



Table 1: MLR for Wβ, the weight of link in FSN
against the weight of link in FDN and its corre-
sponding directory distance.

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.4065 0.0088 46.07 <2e-16
WD 0.0010 3.61e-05 29.00 <2e-16
Dir -0.0233 0.0009 -25.91 <2e-16
R-squared: 0.0475; Adjusted: 0.0475; RSE: 1.099

distance9between two files as a proxy for their functional
proximity, similar to earlier work [2, 6]. Directory distance
is the shortest path between two files in the file directory
tree in which they reside.

We find that, while developers tend to shift focus through
file dependency links, they shift focus even more frequently if
the two associated files have smaller directory distance, indi-
cating that the organization of files does influence the FSPs
of developers. When we consider all projects together, and
use the weight of links in FDN, WD, and its correspond-
ing directory distance, Dir, to linearly regress the weight of
link in FSN, Wβ , we get regression results shown in Table 1,
when the time window is set to δ = 1 (day). The goodness of
fit, including R-squared, Adjusted R-squared, and residual
standard error (RSE), are also presented. The results are
similar for various time windows and show the significant
negative impact of directory distance on the focus-shifting
weight although the R-squared is relatively small here, an-
swering guardedly research question 3.

Of note, R-squared is even smaller if we use just one of
{WD, Dir} to build the regression model, i.e., 0.0279 for the
model built on the weight of link in FDN and 0.0229 for
that built on directory distance, indicating their respective
independent impacts on FSP. Regressing Wβ in terms of a
random re-sampling of WD yields a non-significant result
and an R-squared < 10−4, indicating that the above small
effect is very unlikely to be due to chance.

This finding suggests that putting highly dependent files
into the same directory may slightly increase the probability
of shifting focus along these dependencies, and thus increase
the congruence between FSN and FDN, which may improve
developer efficiency [35] and decrease the risk of errors [47].

5.4 RQ4: FSPs and Productivity
Even if most developers tend to shift their focus along de-

pendency links, some classes of developers may still behave
differently than others when navigating a complex software.
Some studies [35] have indicated that more effective devel-
opers are more likely to investigate source code by following
structural dependencies. Therefore, it is expected that the
congruence between FSN and FDN may have significant ef-
fects on the amount of code contribution of developers.

To assess that, here, for each developer, we calculate the
congruence between their FSN and FDN, by Eq. (2). Then,
we use multiple linear regression, MLR, to model the code
contribution of a developer, in terms of LOC/Day, against
the congruence, Cong, while controlling for the number of
commits, C, and the number of files per commit, FpC. The
Variance Inflation Factors for this model are all close to 1.
When we included the number of files committed to, N , to
the model, the VIFs jumped to above 5, indicative of the

9An alternative is to compare common name-prefix length.

Table 2: MLR for the LOC/day code contribution
against the congruence, Cong, between FSN and
FDN, while controlling for the number of commits
C, and the number of files per commit FpC.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.8519 0.9184 -3.105 0.0023
log2 C 0.6276 0.0680 9.225 4.85e-16
FpC 0.4526 0.0601 7.535 6.16e-12
Cong 1.9744 1.1488 1.719 0.0880
R-squared: 0.5284; Adjusted: 0.5180; RSE: 1.027

correlation between N and C, indicating using N was not
safe in this model (we used C instead of N because that
choice yielded a higher R-squared model). We logged the
code contribution, as well as the number of commits and
the number of files, to stabilize the variance and improve
the model fit. We do find Cong has a positive effect on code
contribution, however, it is not significant for relatively small
time windows, e.g., δ ≤ 30 (day). The significance is smaller
than 0.1 only when δ = ∞, and is shown in Table 2, sug-
gesting that the more productive developers are more likely
to shift focus through FDN links, consistent with the results
in [35], and answering RQ#4. This is reasonable since more
productive developers tend to have fewer long breaks, which
enhances their tendency of shifting focus along FDN links,
as indicated by Figure 3. This result is further evidence of
the benefit to investigating code along FDN links.

Additionally, we find that the Markov entropy of FSN is
the best single predictor of code contribution, out of the
variables: itself, the number of commits, the number of
files committed to, the number of files per commit, and
the uncorrelated entropy of FSN, for the time window vary-
ing from one hour to infinity. We use each of them alone
to linearly regress the code contribution and the goodness
of fit is presented in Table 3 when the time window is set
to δ = 1 (day), showing that the linear model established
on the Markov entropy (EM ) of FSN has the highest R-
squared and Adjusted R-squared, and the lowest RSE. In
fact, adding all variables in a single model does not yield a
better performing model (in terms of R-squared) than only
using EM . The relationship between the LOC/Day code
contribution of a developer and the Markov entropy of the
corresponding FSN can be well fitted by the following linear
model: log2(LOC/Day) = aEM + b, with the parameters
(95% confidence bound) equal to a = 1.486 (1.254,1.717)
and b = 2.063 (1.516,2.610), for another answer to RQ#4.
The linear relationship indicates that focus shifting of more
productive developers, in terms of larger LOC/Day, is less
predictable. Arguably, this is so since they tend to touch a
larger numbers of files due to their broader responsibilities.

5.5 RQ5: Structural Effects on Productivity

Table 3: Goodness of fit for LOC/day against:
R-squared Adjusted RSE p-value

log2 C 0.3102 0.3052 1.234 8.92e-13
log2N 0.3455 0.3408 1.202 2.25e-14
FpC 0.1718 0.1658 1.352 3.55e-7
EU (FSN) 0.2261 0.2205 1.307 2.92e-09
EM (FSN) 0.5385 0.5351 1.009 <2.2e-16



Table 4: MLR for the code contribution against the
distributional and structural complexities of FSN
and FDN. The time window is set to δ = 1 (day).

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.5823 0.5510 -1.057 0.2926
log2N 0.6976 0.0636 10.977 < 2e-16
P (FSN) -1.5496 0.2356 -6.578 1.00e-09
Q(FSN) 1.0899 0.1681 6.484 1.61e-09
P (FDN) -1.1650 0.5112 -2.2279 0.0243
QF (FDN) 0.7555 0.4510 1.675 0.0962
QB(FDN) -1.4501 0.4972 -2.917 0.0042
R-squared: 0.6186; Adjusted: 0.6014; RSE: 0.9343

We already resolved that the three entropy measures are
significantly correlated. Here we look into more specific
structural effects on developers’ contributions once those
correlations are removed. The Markov entropy of FSN can
be decomposed into three uncorrelated parts using orthog-
onal decomposition: the random entropy ER = log2N , the
distributional complexity P (FSN) and the structural com-
plexity Q(FSN), given by Eq. (9). Here, we will use them, as
well as the three complexities of FDN, P (FDN), QF (FDN),
and QB(FDN), to build a higher resolution MLR model for
the code contribution of a developer. We logged the code
contribution to stabilize the variance. Such a model can help
to understand to what extent the complexities of focus shift-
ing are correlated with developer’s code contribution under
the control of technical properties. The model can also re-
veal technical effects on code contribution, given developers
with the same level of focus shifting complexities.

We get 5 independent variables with significance p < 0.05
for time windows from one hour to infinite, while the for-
ward structural complexity of FDN is significant (p < 0.05)
only when the time window δ ≥ 3 (day). The regression
results are shown in Table 4 when the time window is set
to δ = 1 (day). Since the number of variables is relatively
large in this model, we do some extra validations as fol-
lows: we checked the magnitude of multicollinearity of the
model by calculating the VIFs, and find that VIFs for all
the variables are smaller than 3, indicating that the multi-
collinearity is low; we use Bonferroni test to check outliers,
and don’t find any significant Studentized residuals; we also
assess the model by using the global test, and find that the
assumptions including Global Stat, Skewness, Kurtosis, Link
Function, and Heteroscedasticity are all acceptable. These
statistic results validate that the linear combination of the
listed variables is feasible to explain the code contribution
of a developer.

We learn the following from the MLR results. After con-
trolling for other variables, the developers with a lower FSN
distributional complexity and higher FSN structural com-
plexity, in terms of smaller P (FSN) and larger Q(FSN), re-
spectively, contribute more lines of codes, providing a more
detailed answer for RQ#4. Interestingly, the developers
with smaller distributional complexity can be referred as
more narrowly focused, and previous work [32] indicates that
such developers may also introduce fewer defects.

On the other hand, after controlling for the FSP vari-
ables, more productive developers tend to contribute to net-
works of files that have more heterogeneous distributions

of functions, in terms of a smaller P (FDN). They are also
more likely to contribute to the networks of files with higher
forward structural complexity, in terms of larger QF (FDN)
(significant only when the time window is relatively large),
but lower backward structural complexity, in terms of smaller
QB(FDN), indicating that they tend to contribute more to
those files that strongly depend on other files, but less to
files that others strongly depend upon, answering RQ#5.
These results suggest a way to improve the productivity of
developers by reorganizing functions into files so as to shape
the FDN, e.g., increasing a file’s dependence on other files
may attract more code contribution from developers.

Table 5: The best model for each subset size by per-
forming all-subsets regression, with the correspond-
ing R-squared also reported.

Size 1 2 3 4 5 6
(Intercept) X X X X X X
log2N X X X X X X
P (FSN) X X X X
Q(FSN) X X X X X
P (FDN) X X
QF (FDN) X
QB(FDN) X X X
R-squared 0.35 0.47 0.58 0.6 0.61 0.62

We also perform all-subsets regression using the regsub-
sets() function from the leaps package in R. Here, we only
report the best model for each subset size (the number of
variables), as presented in Table 5. The distributional and
structural complexities of FSN are always included in the
best models when the subset size is larger than two, indi-
cating that FSP related properties are better predictors of
the code contribution of a developer compared to the other
technical properties.

The revealed technical effects suggest that the code contri-
bution of a developer may be influenced by the local struc-
ture of the FDN, i.e., developers contribute more to files
which are source nodes than those that are sink nodes shown
in Figure 2. Denote by µout and µin the sum of weights of
all outgoing and incoming links, respectively, for a file in the
overall FDN of a project. We consider a file a source node if
µout/(µout+µin) > λ and a sink node if µin/(µout+µin) > λ,
with λ > 0.5 and µout + µin > 1000. Then, for various
δ = 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, we get two groups of files as
source nodes and sink nodes, respectively, and compare their
LOC changed per day. We find that developers indeed con-
tribute more to files that serve as source nodes than those
as sink nodes, and the difference between them is signifi-
cant when λ ≥ 0.8, and becomes even more significant as λ
further increases, as shown in Figure 6, answering RQ#5.

Such results are reasonable since developers tend to keep
away from those files that other files strongly depend upon,
as commits to them may influence the dependent files too. It
may also be because software development often makes use
of common functions that are called by many others. Such
functions are buses, typically identified early in the design
process and have well-defined, stable interfaces [1, 25, 40].

Illustration 4: A good example of this is factory in the
project Derby. For object-oriented design, a factory is an ob-
ject which creates another object, which is frequently called,
since the client always asks the factory for the new prod-
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uct, rather than create it directly using the constructor. By
adopting the factory pattern, just like the OODesign web-
site states10: The advantage is obvious, new shapes can be
added without changing a single line of code in the frame-
work. . . .And there are certain factory implementations that
allow adding new products without even modifying the fac-
tory class.

6. THREATS TO VALIDITY
There are a number of threats to this study. First, the

data sets are collected from the same foundation and are all
written in Java. The methods can be tested more broadly
on more varied OSS projects in the future.

We focused on file-level FSPs because files are an interme-
diary modeling level between classes/methods and package.
In addition, it allowed us to study the effect of directory
tree organization on FSPs. Since the call relationships are
actually at the class/method level, in the future, our study
can be refined to class/method level. On the other hand, a
package level analysis may be used to investigate the effect
of package organization on FSP.

Developers may change the name of a file in a relatively
long time-period of development for a project. Here, we
consider them as two different files. Such treatment may
slightly influence the structure of the FSNs and FDNs, but
we don’t think it will significantly influence our statistical
results, since renaming doesn’t occur very frequently while
these results are based on a large number of files.

We chose call relationships to establish FDNs, because
they are widely used to capture software structure [19, 29,
48]. But there are other dependencies between files which
may also influence the FSP of a developer [7, 29, 46]. While
our results stand on their own merit, considering these other
dependencies together with function calls will make for a
more comprehensive study. We also acknowledge that us-
ing Doxygen to get a static call graph considers every pos-
sible run of a program, and thus, generally results in an

10OODesign factory-pattern website:
http://www.oodesign.com/factory-pattern.html

over-approximation, since some call relationships that would
never occur in actual runs of the program can also be in-
cluded in our call graph. Removing these trivial dependen-
cies is relatively difficult but may result in a more precise
understanding of the network congruence.

There are different types of call relationships, e.g., Illust. 1
shows a relationship between production code and its test
code [45]. Treating them separately and studying their dif-
ferent effects on FSPs is an interesting topic for the future.

We cannot observe FSPs within a particular commit, based
on the current data sets. In fact, as we know, the investi-
gating trace of a developer within a particular commit is
not recorded in any public repository. Since there is re-
search [35] indicating that effective developers tend to in-
vestigate source code by following structural dependencies
in a modification task, it is reasonable to believe that the
results could be similar when considering the FSP within
each commit together in the future.

LOC per day is an approximate measure of effort and pro-
ductivity. Alternative measurements, e.g., the development
time of tasks [18] and the number of defects [8], may be
better estimates for programmer efficiency or code quality.
Using them may offer additional insight into the benefits
of the congruence between FSN and FDN. However, such
measurements are relatively more difficult to obtain.

7. CONCLUSIONS
In this paper, we studied the focus shifting patterns (FSPs)

of developers based on their commit activities in 15 OSS
projects, and made a dual contribution.

Findings We found that developers tend to shift focus
along file dependencies, and this tendency is influenced by
the time interval between successive commits and the di-
rectory distance between committed files; more productive
developers tend to have stronger such tendency, but have
more complex FSPs; they are more likely to commit files
that are strongly dependent on other files, but less on files
that other files depend upon.

Methods We introduced layered network analysis which
enables correlation analysis between different kinds of net-
worked relationships, which will be extremely useful as more
diverse data are collected from different sources; we pro-
posed Markov entropy to measure the focus shifting behavior
of developers, which will provide valuable insights for aggre-
gating the metrics of time-series data sets; and we adopted
the use of orthogonal decomposition which can improve the
discerning power of linear models.

In the future, more kinds of dependencies between files
can be considered in the same framework to make the re-
sults more comprehensive; the motif analysis method can be
used to quantify the relationship between files in the same
commit, to asses if productive developers also tend to com-
mit to dependent files at the same time; and our developer
behavior metrics can also be associated with metrics of code
quality and efficiency of developers.
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