Perceived Language Complexity in GitHub Issue
Discussions and Their Effect on Issue Resolution

David Kavaler*, Sasha Sirovica*, Vincent Hellendoorn*, Raul Aranovich, Vladimir Filkov*
University of California at Davis, USA
* Department of Computer Science T Department of Linguistics
{dmkavaler, sasirovica, vhellendoorn, raranovich, vfilkov}@ucdavis.edu

Abstract—Modern software development is increasingly col-
laborative. Open Source Software (OSS) are the bellwether; they
support dynamic teams, with tools for code sharing, communica-
tion, and issue tracking. The success of an OSS project is reliant
on team communication. E.g., in issue discussions, individuals rely
on rhetoric to argue their position, but also maintain technical
relevancy. Rhetoric and technical language are on opposite ends
of a language complexity spectrum: the former is stylistically
natural; the latter is terse and concise. Issue discussions embody
this duality, as developers use rhetoric to describe technical issues.
The style mix in any discussion can define group culture and
affect performance, e.g., issue resolution times may be longer if
discussion is imprecise.

Using GitHub, we studied issue discussions to understand
whether project-specific language differences exist, and to what
extent users conform to a language norm. We built project-
specific and overall GitHub language models to study the effect
of perceived language complexity on multiple responses. We
find that experienced users conform to project-specific language
norms, popular individuals use overall GitHub language rather
than project-specific language, and conformance to project-
specific language norms reduces issue resolution times. We also
provide a tool to calculate project-specific perceived language
complexity.

I. INTRODUCTION

Broadly speaking, short words are best...
Winston Churchill

Written and spoken language is part and parcel of modern
software development. Millions of developers use GitHub to
code amazing new software. They collaborate and communi-
cate about the code, underlying design and arising issues, cre-
ating multi-layered socio-technical communities. Those OSS
developers come from different geographical and social back-
grounds. They have differing social and cultural identities,
informed by their socioeconomic status, cultural background,
and myriad other factors. This influences how they talk,
how they listen and how they understand written and spoken
language.

Sociological theories tell us that community membership
must be considered part of an individual’s social identity, and
OSS being analogous to a workplace, or a social activity,
GitHub and OSS projects take on the roles of communities.
In a sociolinguistic sense, GitHub and OSS projects frame the
conversations and provide context. Like in other communities,
these too have their own specific language idiosyncracies,
composed of project-specific terms and related jargon. Dialing

in the “correct” linguistic markers when talking to other
developers in the project is a mark of identity as well as
standing. It is natural to ask, then, to what extent are these
linguistic markers apparent on GitHub and within specific
projects? And do they impact productivity or effectiveness?

Answering such questions is contingent on being able to
measure a) community specific language idiosyncracies, or
even norms, if they exist, and b) the amount of departure
from them in any given written or spoken language. There
are many different characteristics of language that can be
measured. One which is particularly salient in communication
and collaboration is understandability, or simplicity of the
language used. This can be operationalized through various
information theoretic measures, especially entropy, as we do
later in the paper. Then, community linguistic norms can be
studied by looking at corpora of text written or spoken by
members of that community. Models built from those corpora
can then define the community language. Once a linguistic
norm is found, we can use entropy-like measures to compare
the departure of new text from the linguistic model of the
normative language (built from existing corpora of community
communication). This understandability as a function of both
the speaker/writer’s language use and the listener/reader’s
perception, will be referred to as the perceived language
complexity. It is a notion of how understandable a writer’s
text is to a community of readers.

In GitHub projects, discussions on issues are a natural focus
for a sociolinguistic study of community linguistic norms.
Discussions on issues involve multiple developers, and often
turn into back-and-forth conversations on the merits of the
issue and potential solution(s). These conversations are a
combination of rhetoric, where people present their arguments
in a narrative styleﬂ and technical arguments arising from
the project particulars. With the abundance of projects on
GitHub, issue discussions provide a rich data source for study-
ing linguistic determinants for outcomes relevant to software
engineering.

In this work, we study community specific language com-
plexity and perceived complexity, measured by Shannon en-
tropy and language models, from issue discussions in tens

'When we refer to rhetoric, we do not identify with the modern colloquial
term, with potential negative connotations. We refer to rhetoric in the
philosophical sense - as the art of argumentation, where one posits a premise
and argues soundly.

of the most starred and followed GitHub projects. The data
consist of 90, 722 issues, comprising 456, 669 total posts. We
explore the specific questions: is there evidence of a standard
GitHub perceived language complexity? And does this carry to
projects? Is there migration in perceived language complexity
towards the norm? le., do new project participants gravitate
towards the project perceived language complexity norm? And
what may drive this linguistic acculturation? What is the
relationship, if any, between perceived language complexity
and issue resolution latency? Remaining mindful of various
confounds and threats to validity, we provide the following
contributions:

e« We collected a data set comprised of many issue dis-
cussions, including issue post text, user-related metadata,
and constructed a social network defined by @mentions
to other users within and outside the project to determine
user project popularity defined by contributions in issue
discussions.

« We use unique language modeling strategies to create
a global GitHub language model, along with nested
dynamic project-specific language models to identify and
study perceived language complexity through language
model entropy. We find that project-specific language
models outperform the global GitHub language model
(statistically significant), indicating that project-specific
terms and perceived language complexity exist, and some
projects have more project-specific perceived language
complexity than others.

o Using our language models inside of regression models,
we find that users gravitate towards the project language
norm and popular users (measured by the number of times
they are @mentioned in issue discussions) are better
represented by the GitHub global language model than
project-specific language models.

e We also find that increased project perceived language
complexity increases issue latency.

o We provide a too to calculate perceived language com-
plexity given a user’s input and specified project.

This paper is an initial foray into language complexity
analysis and its relationship to OSS and communities of
practice in general. We hope to help bridge the two fields,
providing a coarse study of the links between them.

The remainder of this paper is organized as follows: Sec-
tion [lI] presents theory and related work; Section out-
lines our research questions; Section describes our data
and methods; Section [V| presents our results and discussion;
Section presents how to apply our results in practice;
Section presents our conclusions.

II. THEORY AND RELATED WORK

To understand the emergence of OSS project based lin-
guistic communities, as well as the extent of their linguistic
separation, we build theories that draw from a number of
backgrounds. We first tackle the connection between language

Zhttps://github.com/normative-team/normative

and community, by examining two sociolinguistic models:
communities of practice, and speech communities, and then
reason how GitHub communities fit in. Then, we turn our
attention to the ongoing conflict between two language com-
plexity paradigms, the technical and the rhetorical, as found
in GitHub issue discussion. To model this conflict, we start
from the anthropological theory of “homo narrans”, which can
explain the overly narrative structure of our communications,
even technical ones. We also mention anthropological models
of acculturation/assimilation that confound language use when
communities merge. Further, we go over work on entropy as a
measure of language complexity, which underlies the choices
for our measures. Finally, we review research on collaboration
during software development, which sets the larger context
of building and maintaining relationships and communities in
OSS.

A. Speech Communities and Communities of Practice

Sociolinguistics is the study of how societal aspects influ-
ence language, and the effects of language on society [1]]. The
two primary theoretrical frameworks regarding the influence of
communities on language are those of speech communities and
communities of practice. Here, we argue that GitHub projects
do not fall solely into either theoretical framework, but require
a blend of both.

A speech community (SC) describes a group of people who
use language in a way that is mutually accepted among the
group [1]]. To belong to an SC, one must have communitative
competence [2]; they must speak in a manner that is standard
within the SC. SC members often speak with specialized terms
or form jargon that is understood within the community [3].
Another way to express this is the idea of norm conformity,
where the language norm is set by the community and individ-
uals are expected (or aspire) to speak in a manner according
to said norm.

First coined by Wenger and Lave [4]], the notion of a
community of practice (CoP) is widely discussed and debated
in the field of sociolinguistics. Broadly, a CoP can be described
similarly to a SC - members use language in a specialized way
that is defined by the group, and group members are expected
to conform to the group language norm. The precise definition
of this notion has been expanded and expounded over time by
Wenger and many others [5], [6]. Wenger proposed multiple
critical characteristics of a CoP, outlined by Holmes and
Meyerhoff [7], contained in Table m

Figure[T]is an example where a member of the out-group (an
end-user) has an issue. They attempt to express their problem,
but the contributing member (in-group) is unable to understand
the description, and further asks the end-user to conform to
project-specific norms (i.e., fill out the standard issue report
formﬂ This is an example where a lack of community norm
conformity causes confusion.

3Note that all the characteristics listed in [7] can be applied to GitHub; we
select the most relevant for brevity.

4Note that the in-group member seems to also be confused by the English
language description, not just the lack of a standard issue report form.

https://github.com/normative-team/normative

nexisnd commented 6 days ago

If1 just open atom by dicking on the desktop exe short, it opens blank state, which is fine. | can open any flle
1 want by ctrl+O or drag&drop from a file explorer program.

However, if | open a file with atom, for example "test.cpp® file, atom will proceed to open the blank state.
This happens with any file | open with atom.

Is this a bug?

Contributor

ungb commented 6 days ago - edited

@nexisnd, in the future, please fill out the issue template. Here's the reason why:

all

By blank state, do you mean that when open the file atom test.cpp . it opens atom, but there's no project
in the tree view and the file doesn't show up? A screenshot or gif would be helpful in this case.

Also, Can you provide the following info?
Versions

You can get this information from copy and pasting the output of atom --version and epm --version
from the command line. Also, please include the OS and what version of the OS you're running.

Additional Information

Any additional information, configuration or data that might be necessary to reproduce the issue.

Fig. 1: Issue thread 14357 from the atom/atom project.

TABLE I: Differences between a speech community and a community
of practice [7].

Speech Community

Community of Practice

Shared norms and evaluations of
norms are required.

Shared practices are required.

Shared membership may be de-
fined externally.

Membership is con-

structed.

internally

Nothing to say about relationship
between an individual’s group and
personal identities.

Actively constructed dependence
of personal and group identities.

Non-telelogical.

Shared social or instrumental goal.

Nothing to say about maintenance
or (de)struction of boundaries be-
tween categories.

Boundares are maintained but not
necessarily defined in contrasts
with outgroups.

Acquistion of norms

Social process of learning.

Research in CoPs initially focused on the classroom and
businesses in which students and employees are physically co-
located. Important to us is the work of Dubé et al., who argued
that members of a CoP do not have to be physically co-located,
but can form a “virtual community of practice” [8] with the
same attributes as a standard CoP. In addition, Kleinnijenhuis
et al. discuss Networks of Practice, a further refinement of so-
ciolinguistic ideas w.rt. community organization, specifically
for online communities [9]].

Table [I| shows partially overlapping characteristics between
SCs and CoPs in each row. Those within the same project share
practices, as all members are on GitHub. However, member-
ship is not entirely internally constructed. Llamas et al. [10]
present an example of a CoP within the workplace, saying that
individuals regularly engage in scheduled social practices (e.g.,
business mettings), and mutually define themselves as CoP
members. Eckert [[11] describes SCs as having membership
defined by “broad and fundamental social categories”, such as
socioeconomic status, age, and ethnicity.

In essence, membership in a CoP is much more structured,
where members of the in-group determine who else is a

jaredbeck commented on Mar 17 Contributor

I'd like to improve the docs for action_dispatch/request/session . It seems that | should be able to use
methods like ::ActionDispatch::Request::Session#delete .

The Action Controller Overview mentions a few methods in Section 5.1 Accessing the Session, but it is not
(nor should be) comprehensive.

I think that methods like ::ActionDispatch: :Request: :Session#delete should appear on
hittp//api.rubyonrails.org,

How can | help to make this happen? Do we remove a inodoc: Statement somewhere?

pixeltrix commented on Mar 18 Ouner
@jaredbeck | think exposing that iass is exposing the implementation details - there's an overview of

session accessing in the documentation of ActionController::Base on hitp://apirubyonrails.org. Perhaps
expanding that and making it more prominent in some way would be better?

Fig. 2: Issue thread 28464 from the rails/rails project.

member, while membership in an SC lies in factors that the
group itself may not control, e.g., cultural background or self-
identification. The idea of one’s social identity is of extreme
importance in the field of sociolinguistics, where it is well-
known that social identity is informed by, e.g., one’s workplace
and social activities, and contributes heavily to language use
and variety [7].

On GitHub, developers of a project fall heavily into the CoP
characteristic of internally constructed membership, analogous
to a workplace. The community of users, we argue, is more
like that of an SC than that of a CoP, due to their ability
to self-identify with the project through their use of the
product. One cannot unilaterally separate the users from the
developers of an OSS project, as they are a vital part of the
ecosystem. In fact, our data shows that many issues are not
initially posted by project members (i.e. committers), but by
general users. Thus, in terms of membership, GitHub projects
share aspects of an SC and a CoP. Due to the inclusion of
the users as part of the project ecosystem, one can make a
similar argument for the remaining listed characteristics. As
one can see, GitHub projects are not solely classified by either
theoretical framework; the framework necessary to describe
the complex interactions in GitHub projects is a feedback
between both the ideas of SCs and CoPs.

B. Homo Narrans

GitHub issues serve a direct purpose within the community:
to, e.g., raise concerns or report bugs in the related software.
However, their form is that of discussion; a user posts an issue,
and anyone on GitHub is free to post responses and express
their opinion, as in a message board. This provides opportu-
nities for rhetoricaﬂ communication. An example of this can
be seen in Figure [2| The first poster posits an issue (“I'd like
to improve the docs...”) and suggests a solution (“I think that
methods like ... should appear on ...”). Another poster responds
with a counter-idea, and the conversion continues (not shown).

We can imagine that each developer resolves an internal
conflict when posting on these discussions, a conflict about
how technical, or terse, vs. rhetorical, their post should be.
The following theory offers an explanation for how such a
conflict is likely to be resolved, in a population of developers.

5 As noted previously, we refer to rhetoric in the argumentative sense.

It is accepted that technical language (e.g., within a technical
manual) is often terse, concise, and prone to the inclusion of
jargon when compared to natural language [3]], [12]. One may
believe that rhetorical language is likewise comparatively terse
and concise. However, in his seminal work, Fisher [13]] argues
(in summary by Hauser [14]) (specifically w.r.t. rhetorical
communication) that “all humans are definitively story tellers;
they are of the species homo narrans... their communication
assumes the basic form of stories”. Essentially, Fisher argues
that, by nature, all communication must be seen in the lens
of narration, and thus even in rhetorical language the argu-
mentator forms a narrative. Although GitHub issues contain
significant amounts of technical language, their function as
rhetorical communication separates them from being terse and
concise. GitHub discussions are a push-and-pull effort between
the push to use technical language that is relevant to the
project, and the pull to provide a narrative which frames one’s
position through rhetoric. Thus, GitHub discussions may lend
their language classification to be somewhere between purely
technical language and narrative language.

C. Acculturation and Assimilation

Acculturation and assimilation are the processes that result
from the merger of fusion of two cultures [13], typically a
majority one and a minority one [16]. Both are two way
processes, but the former term describes an outcome in which
both cultures change, and the minority one retains cultural
distinctions like language, cuisine, efc. The latter, assimilation,
is when the identifying characteristics of the minority culture
gradually get dissolved into the majority culture. Assimilation
reduces the communication overhead and conflicts inside a
group [17], while acculturation exemplifies diversity [15].

Linguistic acculturation in particular is the process of cul-
ture phenomena influencing the language used. Such accultura-
tion can happen fairly rapidly, and has been studied in both im-
migrants who learn a second language [18] and communities
of practice [[19]. Communities of practice, especially those on
the social web, are good examples of linguistic acculturation
standing in for performance and status based metrics. Thus,
adjusting to the local culture and language fairly rapidly can
be seen as a successful migration into a community.

In the context of developer communities on GitHub, devel-
opers who join new projects may be able to acculturate or
even assimilate if the project culture is sufficiently dissimilar
from their own. Prior results on work/talk culture in OSS
communities [20], [21] points in the direction that strong
incompatibility of an individual and a project culture may lead
to failure to acculturate, and subsequent departure from the
project.

D. Entropy and Language Complexity

Language models, generally, attempt to predict the next
word in a text given the word’s context (normally the pre-
ceding n words). The metric by which language models
are generally evaluated is entropy (described precisely in
Section [[V-C). Kolmogorov [22] presented a formulation of

the connection between entropy and complexity in terms of
predictability, which has been discussed in length [23]], [24].

There has been work in using entropy as a description of
language complexity and style. Kontoyiannis [25] studied hwo
entropy represents the complexity of language in the literary
sense. They computed entropy per character of the Bible and
the writing of Jane Austen and James Joyce using a specialized
language model that utilizes a sliding window of context. They
found that a larger context window leads to a lower entropy
estimate for the Bible and a higher estimate for Jane Austen
and James Joyce novels. Repetitive language style, as in the
Bibl has lower entropy and is easier to understand and rea
while the style of, e.g., James Joyce seems more complex and
harder to read.

In this work, we hypothesize that norm conformity (as, e.g.,
members of the out-group are assimilated to the in-group) can
be measured in terms of perceived language complexity. Thus,
we define the following:

A community’s language is defined by sociolinguistic
norms set by members of the group. In this work, we refer
to the GitHub community (global) and nested project-
specific (local) community languages. These community
languages are represented by a language models.

Perceived language complexity is the distance between a
community’s language and a given text. This is quantified
using the (cross-) entropy distance (Section [[V-C).

As perceived language complexity increases, the under-
standing of the text by members of the community will
decrease.

Additionally, we study the difference between global and
local language, represented by separate language models. Juola
and Baayen [26] found success in using cross-entropy to settle
authorship disputes. This lends creedance to our method of
comparing global GitHub language model entropy to project-
specific language model entropy in describing project differ-
ences. Kwon ez al. [27] proposed a model for representing
narrative complexity, and use entropy as a quantitative measure
to describe this narrative complexity. As we state, based on
Fisher’s work [13]], that rhetoric is really a form of narrative,
the decision of Kwon et al. to use entropy as a measure of
narrative complexity supports our approach.

E. Collaborative Work in Software Engineering

Dabbish et al. [28] studied the effects of transparency (e.g.,
the ability to see everyone’s contributions) on GitHub projects
and found that project members use this transparency to make
rich inferences about others’ goals. This lends creedance to
the existence of a CoP structure; CoP membership is internally
constructed, and in-group members use transparent details to

They state that it is a well-known fact in linguistics that, excluding proper
names, there are only about 500 roots in the Bible

"Though the thoughts and feelings invoked as reported by human subjects
can be much deeper than that of a less repetitive style.

~

o

Project-level mean entropy
>
e @ o0

&

Local model Global model

Fig. 3: Project-level mean post entropy for all projects under study
(paired Welch two sample t-test and paired Wilcoxon rank sum test
p < 0.001).

~

Per project

?x\'\
|

Global model entropy — local model entropy
g

°

0 25K 50k 75k 100k
Within—project issue post number (time ordered; k = thousand)

Fig. 4: Difference (i.e., separation) between global and local model
entropy per observed post, per project. Smoothed by cubic regression
spline (shrinking).

determine who should be a member of the in-group. Tsay et
al. [29] examined pull-request discussions and the effects of
various measures (e.g., test inclusion, prior social interaction
of submitter, efc.) on acceptance. Blincoe ef al. [30] found that
popular users attract their followers to new projects. This find-
ing is of interest as new developers to projects are likely from
the out-group, which means they will need to conform to local
linguistic norms in order to communicate effectively. Xuan
et al. [20], [21] studied work/talk patterns in OSS projects
and found that these patterns eventually converge in time,
or the users with dissimilar patterns will leave the project.
Similar to ours is the work of Yu et al. [31], who examined
determinants of pull request latency. Our work concerns issues
in general, not just pull-requests, and focuses on language
as a predictor rather than other measures. Given the strong
theoretical backing in sociolinguistics, there is a distinct lack
of work on quantiative linguistic analysis of communication
and collaboration traces (e.g., issues) and effects on software
engineering outcomes. We present an initial look into this
domain.

III. RESEARCH QUESTIONS

Guided by the discussion in our theory (Section [}, we
investigate a number of research questions.

The GitHub community is organized into projects, or its
sub-communities. SC and CoP theory both state that there
exist community language norms, as effective communication

relies on expressing oneself in a manner that resonates with
the community. Thus, we hypothesize that project-specific
language differences will work to separate the project lan-
guage, analogous to, e.g., software engineering, from the larger
GitHub community language, analogous to, e.g., the Computer
Science academic community. The theory also suggests that
given that GitHub issue discussions are a complex combination
of rhetoric and technical terms, their perceived language
complexity should lie somewhere in the spectrum between
rhetorical narratives (e.g. novels) and technical manuals.

RQ 1: Is there evidence for a standard for the GitHub
community language? Does this also carry over to projects,
i.e., is there evidence for a project-specific language?

As posited by SC and CoP theory, those who wish to
communicate effectively within a community must do so in
a way that is guided by the community language. Thus, we
expect that the perceived language complexity of posts will
migrate, in time, toward the project norm.

RQ 2a: Is there migration in perceived language complex-
ity, over time, toward the project norm?

As OSS projects are dynamic, there are always users coming
and going. As posited by SC and CoP theory, new members of
the community will adopt the community-specific language in
order to communicate effectively and signal themselves part
of the in-group. Thus, as a corollary of research question 2a,
we hypothesize that new contributors (be they end-users or
developers) to issue discussions are better represented by the
global language than the local language, and will eventually
conform to the local norm. In addition, we hypothesize that
experienced or popular users will be more in-tune to the
project, and that their perceived language complexity will
reflect this.

RQ 2b: Do users (popular or experienced) conform to their
associated project language? And does perceived language
complexity influence popularity?

Finally, we seek to identify any effects of perceived lan-
guage complexity on outcomes of particular interest to soft-
ware engineering. Specifically, if the language in a post or
discussion is more uncommon given the global or local norm
(i.e., less understandable to the community), we hypothesize
that issue resolution latency will increase.

RQ 3: What is the relationship, if any, between perceived
language complexity and issue resolution latency?

IV. DATA AND METHODS
A. Issues

GitHub projects have issue trackers with a rich feature set,
including ticket labeling, milestone tracking, and code tagging.
For each project on Github, individuals can open up an issue
thread where others can comment and discuss a specific issue.

GitHub contributions are centered around pull-requests.
Users who wish to add a feature can submit a pull-request
to be incorporated into the main project. GitHub treats pull-
requests as a subtype of issues; thus, we consider both ordinary
issues and pull-requests in our data.

GitHub

| i PyGithub

Issue Comments User Data Commit Data

Body, Date, Login,
Close

/\

@Mention Language
N Network Models

Fig. 5: Overview of dataset formation.

Line Changes,
Author, Date, ...

| |

Metadata

Name, Location,
Bio, ...

J

We queried GitHub’s public API using PyGithubﬁ Our data
is a sample of 48 projects from the top 900 most starred
and followed projectsﬂ The number of stars and followers are
proxies for project popularity, and can identify projects likely
to contain enough issues to build robust language models.
Figures [I|and 2] depict issue threads. For every post in an issue
thread, we gathered the following information: date of post,
post body, login of poster, and issue closing time. Post bodies
were used to extract text-related metadata and to build our
language models. In addition to examining comments we also
collected a variety of metadata from projects. This included
commit-related metrics: number of lines added and deleted,
date of commit, commit author; and user data: full name, time
they joined Github, and location. Figure [5] presents a graph of
our data pipeline.

B. Social Networks

We constructed a social network for each project using
@mentions in their issue comment threads, similar to Zhang
et al. [32]]. @mentions are commonly used to either reference
or reply to someone else in a discussion. Figures [I]and 2] show
examples of @mentions in use.

In our networks every edge (u,v) is represented by user
u @mentioning v somewhere in their post. In addition, we
track changes in network measures over time to construct time-
varying networks, used to more accurately represent a user’s
attributes at the time of posting. The key metric extracted from
the social network is indegree, used as a measure of within-
project user popularity. Additional metrics calculated from the
networks include outdegree, betweenness, and degree central-
ity, but were not used in our models due to multicollinearity.

C. Language Models

Measuring perceived language complexity relies on two
components: the training data and the language model. The
choice of training data (or corpus) determines what sequences
of tokens (e.g., words, punctuation) the language model will
deem likely or unlikely at test time, whereas a good choice of
language model should capture useful patterns and ensure that

8https://github.com/PyGithub/PyGithub
9We sampled 50 projects, but with replacement, leading to 48 projects. 50
projects is the upper bound for what is reasonable to process within a day.

rare or novel sequences are not assigned zero probabilities.
This combination allows for a distance metric between two
corpora in terms of the (left-to-right) predictability of the
tokens ¢; in the test corpus, given a language model LM
trained on the training corpus:

|test|
dpy(train,test) = [poa(tilty -+ tio1)
=1

In practice, instead of a product over probabilities, we use the
average of (binary) log-probabilities, which yields an entropy
score that reflects how many bits of information the average
token in the test corpus has w.rt. the training corpus:

[test|

dry(train,test) = Z —logy(pras (tiltr - - tiz1))
i=1

 test|

As mentioned, entropy is our measure of perceived language
complexity.

1) Choice of corpus: To create a representation of the
GitHub community language, we must create a corpus that is
representative of GitHub as a whole. To accomplish this, for
each project, we construct a corpus consisting of all posts in all
other projects. Thus, each project has a corresponding model
that is representative of the GitHub community as a whole;
we call this the global model. Note that each project has a
different global model, as we must be careful not to overlap
project-specific community language with our representation
of the whole GitHub community language. On average, each
project’s global model is trained on ~ 25M tokens.

To create a representation of project-specific languages,
we use each project’s associated global model as a static
representation, and chronologically update a project-specific
language model with each observed post from a given project.
This yields an evolving model that captures project-specific
idiosyncracies in the presense of a global norm; we call this
the local model. Each local model is a dynamic mix-model,
mixing a static global model with a dynamic local model. As
this is an atypical use-case for conventional language models,
we implemented it using SLP-Core [?]PE] a library designed
for mixing and dynamically updating language models.

2) Choice of a model: RNN/LSTM models [33] are some
of the most powerful language models available, but our
cross-project setting is such that it would be computationally
infeasible to use these modelsE] Furthermore, updating the
model per post is poorly supported by these models. Instead,
we use n-gram language models, which are proven as powerful
yet simple tools to capture much of the complexity of both
natural language and source code, even rivaling LSTMs in the
latter. In addition, n-gram models are much faster when used
for prediction than their neural network counterparts, allowing
us to build a tool for fast predictions (Section |[VI).

An n-gram model uses the counts of sequences in the
training data. It assigns a conditional probability to a token

10https://github.com/SLP-team/SLP_Core
Tn total, we train and test on =~ 1.2 billion tokens of data, twice.

https://github.com/PyGithub/PyGithub
https://github.com/SLP-team/SLP_Core

TABLE II: Poster mean entropy models. User-level observations. Project factor ommitted for brevity.

Dependent variable:

Poster mean post entropy (local)

Poster mean post entropy (global)

Log mean # tokens in posts by user —1.262%** —0.789***
Log # of posts by user —0.0003*** 0.00001
Log mean # URLSs in posts by user —0.300*** —0.129***
Log mean # non-English words in posts by user 1.287*** 1.016%**
Mean Flesch Reading Ease of posts by user —0.002*** —0.002***
Log poster indegree (as of last post) —0.003 —0.047***
Log # additions + deletions by poster (as of last post) 0.003 0.019***
Log # followers of poster (as of last post) —0.014*** —0.033***
Log # public repos for poster (as of last post) 0.018*** 0.023***
Log # public gists by poster (as of last post) 0.010* —0.013***
Log poster’s GitHub age (hours) (as of last post) —0.015%** —0.013***
Log poster’s project age (hours) (as of last post) —0.017*** —0.020%**
Intercept 7.084*** 6.713***
R? 0.259 0.238

Note:

given the (n — 1) preceeding tokens by dividing the count of
the whole sequence (length n) by the count of the context
sequence (length n — 1), effectively making a Markovian
assumption about word distribution. The model is generally
smoothed by combining this maximum likelihood estimate
probability with those returned by repeating the process for
a shorter (e.g., length n — 2) context, until reaching the empty
context, where the model just uses the vocabulary rate of
the token. Various smoothing methods propose different rules
to mix longer contexts with shorter ones depending on how
“confident” they are in the longer context. We compared
various n for various smoothing methods and found little
difference in entropies scores across all 3-5-gram models.
Thus, we use a 4-gram Witten-Bell smoothed model; a general
purpose smoothing approach that has historically been used
in text compression [34]. Finally, before training each model,
we extract a vocabulary from the training data and replace all
tokens seen fewer than 10 times with a generic “unknown”
token in the train and test data, and replace all well-formatted
code segments with a special “code” token. This standard
preprocessing step prevents the models from having to predict
completely novel or very rare words at test time. On average,
the vocabulary used for each model spans 36,164 tokens
(standard deviation 796 tokens).

D. Regressions

To seek answers for our research questions, we use ordinary
least squares (OLS) linear regression. This allows us to inspect
the relationship between our response (dependent variable)
and our explanatory variables of interest (predictors or co-
variates, e.g., user age), under the effects of various controls.

When performing regression modeling, one is not only in-
terested in standard “goodness-of-fit” measures (e.g., R?), but
also the results of model diagnostics [35]]. In OLS regression,
R? literally measures the percentage of variance captured by
a model. However, a “low” R? value alone does not mean that
the model cannot be inferred from, or that a model is somehow
“incorrect” [36], [37], [38], [39]. For example, if the variance
in the dependent variable is large (as is the case for our data),
a “low” R? can mean a great deal, as even a small percentage

*p<0.05; **p<0.01; ***p<0.001

TABLE III: Poster indegree model. User-level observations. Project
factor ommitted for brevity.

User indegree (as of last post)

Mean entropy of posts by user (local) 0.026***
Mean entropy of posts by user (global) —0.030***
Log mean # URLSs in posts by user 0.015**
Log mean # non-English words in posts by user 0.041**
Mean Flesch Reading Ease of posts by user —0.001***
Log poster outdegree (as of last post) 0.777***
Log # additions + deletions by poster (as of last post) 0.030***
Log # followers of poster (as of last post) 0.010***
Log # public repos for poster (as of last post) —0.011***
Log # public gists by poster (as of last post) —0.004
Log poster’s GitHub age (hours) (as of last post) 0.018***
Log poster’s project age (hours) (as of last post) 0.071***
Intercept —0.131***
R? 0.685

Note: *p<0.05; **p<0.01; ***p<0.001

of a large variance is meaningful When searching the space
for the best model, we tried many model types, including
Poisson and Quasi-Poisson generalized linear regression, and
mixed-effects models. In all cases, we could construct a model
with a much higher R? value (from 60% to 70%); however,
these models do not pass diagnostics; they had a multitude
of problems, including heteroscedasticity, autocorrelation of
residuals, conditionally non-normal errors, etc.

Most important is that our models meet the assumptions
of the given regression approach, as indicated by model
diagnostics. We take great care to make sure that our models
pass these diagnostics, and thus can be inferred from, rather
than providing artificially inflated R? with incorrect models.
When appropriate, we employ log transformations to stabilize
the variance and improve model fit [40]. We remove variables
that introduce multicollinearity measured by variance inflation
factor > 5, as multicollinearity reduces inferential ability [40].
We control for many potential confounds through our controls,
and make a best-effort to build models that are statistically
robust, in spite of what may be considered a “low” R? value.
Our models can be found in Tables and and are
discussed in Section [Vl

V. RESULTS AND DISCUSSION

In the model Tables our variables of interest are
listed in bold; our variables act as controls for confounds, i.e.,

12The raw value of explained variance is then large.

Wi

————
—

2
o\fw

Per person

o
14

Global model entropy - local model entropy
o

0 25K 50k 75K 100k
Within—project issue post number (time ordered; k = thousand)
(a) Linear fits for per person per post difference between global
and local model entropy over time (50 people with more than
50 total posts each sampled to reduce visual clutter).

1000

Count (log scale)

=
S

I ||“h [Iiul I
s 4

0
Linear fit slope

(b) Histogram of slopes following the logic in Figure @ for
people with at least 2 posts. Bins of width 0.1.

Fig. 6: Plots indicating changes in language complexity over time for each person.

TABLE IV: Issue resolution latency model (hours). Issue-level ob-
servations. Project factor omitted for brevity.

Log issue resolution latency (hours)

Mean issue entropy (local) 0.116***
Mean issue entropy (global) —0.008
First post entropy (local) 0.023*
First post entropy (global) 0.004
Log # URLs in first post 0.175***
Log # non-English words in first post 0.220%**
Flesch Reading Ease of first post —0.0001
Log poster indegree 0.001
Hour of day (first post) —0.012%**
Monday (factor) (first post) —0.244***
Tuesday (factor) (first post) —0.311%**
Wednesday (factor) (first post) —0.212%**
Thursday (factor) (first post) —0.209***
Friday (factor) (first post) —0.099*
Saturday (factor) (first post) 0.125*
Log # additions + deletions by poster —0.073%**
Log # followers of poster 0.027***
Log # public repos for poster —0.011
Log # public gists by poster 0.009
Log poster’s GitHub age (hours) 0.016*
Log poster’s project age (hours) 0.054***
Log number of posts in issue 0.572%**
Log number of unique posters in issue 1.758***
Log ordered time of first post (ordinal) —0.096***
Intercept —1.207***
R? 0.254
Note: *p<0.05; **p<0.01; ***p<0.001

post readability, measures of time, and code contributions.
RQ 1: Is there evidence for a standard for the GitHub
community language? Does this also carry over to projects,
i.e., is there evidence for a project-specific language?
Recall from Section that a local model learns to adjust
over time to the community language; a global model is static.
As shown in Figure [3] the local language model significantly
outperforms the global model for each project (p < 0.001).
The mean entropy for global models is 6.98 bits; 6.15 bits
for local models (Cohen’s d 1.689 [?] for the difference). We
compare these results to that of n-gram language models built
on technical manuals written in English, reported by Hasan
and Ney [41] to lie between 5.58 and 4.85 bits, depending on
model type, and those built on English, reported to be ~ 8 bits
by Hindle et al. [42] and Tu et. al [43]] on a combination of
the Brown and Gutenberg corpore{ﬂ Note that the Brown and

13The Brown corpus consists of a mixture of news articles, letters, books,
etc. from different genres. The Gutenberg corpus consists of books.

Gutenberg corpora may be considered more terse and concise
than a corpus consisting of, e.g., James Joyce novels, and still
has higher entropy than our models.

We hypothesized in Section [MI] that the post entropy of
GitHub issues would lie somewhere between that of technical
manuals and narrative language (at a comparative scale), and
see that the performance of both the global and local models lie
in this range, so our results are consistent with this hypothesis.

Figure [4] shows that projects separate from the global
standard to varying degrees in time, and sometimes from each
other. Recall that global model entropy is static; thus, the
plot measures how local model performance changes in time
w.rt. the static global model. The idea is that if the local
model performs better than the global model (lower entropy),
the difference (global - local entropy) is larger, leading to a
larger y-axis value. As shown, after an initial (slightly chaotic)
period, projects generally settle within a region where the local
model outperforms the global model, with varying degree,
depending on project. This indicates that projects do diverge
from the global norm and towards a local norm; i.e., posts
tend to conform to the local norm.

Research Answer 1: We find that we can construct a
language model representative of the norm for GitHub
overall. We find that perceived project-specific language
complexity exists, and has significantly lower complexity
than the GitHub standard. Projects diverge from the
global standard to varying degrees, and from each other.

RQ 2a: Is there migration in perceived language complex-
ity, over time, toward the project norm?

Figure[6] contains two plots. Figure[6al contains linear model
fits for the separation between global and local model entropies
per post in time, for each person, analogous to Figure [} If the
slope of the fit is positive, the separation between the global
and local model for each person becomes larger in time; the
opposite is true if the fit is negative. Figure [6b] is a histogram
of slopes following the logic in Figure [6a] for people with at
least 2 postﬂ There is a large concentration of users around

4People are not sampled as they are in Figure @

a slope of 0, indicating that most people do not become further
separated by the global and local models in time. Note that
a 0 slope does not mean that local norm conformity does not
exist, just that the separation may not increase with time. It
could be that these individuals are already at the local project
norm, and thus have reached a saturation in their ability to
separate themselves from the global norm. It could also be
that once people hit this saturation point, they do not further
conform to the local norm. This is supported by evidence
from Posnett ef al. that users do not become better at asking
questions over time on Stack Overflow [44]. It may also be
that the project is dominated by “tourists”, e.g., those that
briefly “visit” the project, post an issue and participate in a
single discussion, then leave. These individuals would then
not further conform to the local norm, as they are not active
participants. To investigate if there is conformance to the local
norm for each person, we build models where we control for
confounds that may otherwise affect interpretation.

RQ 2b: Do users (popular, experienced, or otherwise)
conform to their associated project language? And does
perceived language complexity influence popularity?

Table [[I] contains our model describing poster mean entropy
(local and global). As this model has user-level observations,
the dependent variables are mean entropy across all posts by
the given user. For each variable with the description “as of
last post”, we mean the last post by the user under observation,
not the last post overall. Poster’s GitHub age is the time from
the creation of their GitHub account to the time of their last
observed post; poster’s project age is the time from the first
authoring of a commit to the time of their last observed post.

Our affectors of interest are popularity (measured by inde-
gree in the @mention network) and measures of age (poster’s
GitHub age and poster’s project age). We argue that popularity
is best measured by indegree as an in-link in the @mention
network indicates that someone has mentioned the poster
directly in context of the discussion, serving as a measure
of how many others are aware of the @mentioned user in the
project; thus a proxy for popularity.

For the local model, we see significant negative effects of
our age measures. This indicates that older (GitHub age) and
more experienced (project age) users have posts with lower
local perceived language complexity, indicating conformity to
the local norm. We see no significant effect of popularity or
code contributions for the local model.

For the global model, we see a similar effect of age as
for the local model. However, in the global model, popularity
and code contributions are significant as well. A more popular
poster has lower global perceived language complexity, but a
higher code contributor has a higher global perceived language
complexity. The coefficient for code contributions can be
explained by the fact that code contributors are likely in-tune
with the technical details of a project, and thus discuss them
more frequently than others. As technical terms are project-
specific, we expect that someone who uses them more has
a higher global language complexity, indicating divergence
from the global norm. The negative effect of popularity on

global language complexity is initially somewhat puzzling -
why would a popular person within a project use language
fitting to the global norm? When analyzed in tandem with our
popularity models, we can investigate this finding.

Table [III| contains our model for describing poster popular-
ity, which also has user-level observations. We see a positive
coefficient for both age metrics, indicating that older and
experienced users generally have higher popularity. However,
the effects of poster’s mean entropy have differing signs:
positive for the local case, and negative for the global case.
In other words, being more like the global norm (decreased
global entropy) leads to higher within-project popularity, and
being more like the local norm (decreased local entropy) leads
to decreased within-project popularity.

There are a variety of social and technical mechanisms that
could explain this. In general, people value outside opinions;
prior work has shown that diversity (geographic, cultural, efc.)
is important in OSS [435]], [46]. The explanation could lie in the
existence of cross-project correlated bugs [47], where people
discuss issues with members of required library projects.
Perhaps those with high indegree are most called-upon by
people in the out-group (e.g., users within the SC but not
the CoP), and thus express themselves using language that
out-group individuals would better understand, i.e., the global
language. The precise mechanism behind this phenomenon
could be the focus of future work.

Research Answer 2: We find evidence of migration
towards a perceived project-specific language complexity
norm in time. We find that those with higher GitHub and
project age conform to both the local and global norms,
while popular users conform more to the global norm. We
find that conformity to the local norm leads to decreased
popularity, while conformity to the global norm leads to
increased popularity.

RQ 3: What is the relationship, if any, between perceived
language complexity and issue resolution latency?

Table [[V]is our model for describing a software engineering
outcome: issue resolution latency. This model has issue-level
observations; we look at the first post’s entropy and user-level
attributes of the poster, along with summary metrics for the
rest of the discussion, e.g., mean issue entropy - measured
across the entire issue discussion. This choice was made as
the first post in an issue generally explains the issue in detail
and sets the stage for the following discussion. When “poster”
is in the coefficient name, we are referring to the first post
(i.e., opening post) in the issue thread. For indegree and code
contribution variables, we use the calculated value at the time
of posting. The “ordered time of first post” variable is an
ordinal time variable that essentially counts the total number
of posts across all issues preceding the observed in the project;
e.g., if the first post of a given issue is the 100th post overall,
the value of this variable will be 100. Age measures are defined
by the relevant starting time (account creation or first authoring
of a commit) to the time of the post under observation.

The coefficient for local entropy of the first post is positive;
those posts which do not conform to the local norm experience
e%023 ~ 2.3% longer response time (in hours) for each bit
of increased entropy. We see something similar for the mean
entropy of the discussion as a whole: each bit of increased
entropy for the local model leads to a €%!'¢ ~ 12.2%
longer response time. The effect for the first post is small in
percentage, but as resolution latencies increase, the raw effect
can be noticeable. The effect for mean discussion entropy
is more palpable; if an issue would otherwise take 8 hours
to resolve, an increase to it of 12.2% may take longer than
a working day, reducing its usefulness, as responsiveness to
important issues (e.g., bugs) is vital for software success. Thus,
if one can influence an issue discussion to be more towards
the local norm, there can be software related benefits.

Research Answer 3: Conformity towards local language
norm can reduce issue resolution times. Increase in
first post entropy leads to 2.3% increase in resolution
time, while increase in mean entropy of posts across the
discussion leads to 12.2% increase in resolution time.

VI. IMPLICATION FOR SOFTWARE PRACTICE

Here we distill some practice-related conclusions from our
studies. Some mix of technical and social conversation may be
expected in each conversation in GitHub. From a community
perspective, developers may take less time to acculturate if
they know ahead of time that such a process is expected, and
may in fact be imminent. This result, in conjunction with prior
results on work/talk culture in OSS communities [21], points
in the direction that strong incompatibility of an individual
and a project culture may lead to a failure to acculturate, and
result in subsequent departure from the project. Developing
explicit acculturation plans, beyond just “learning the ropes”
may aid in early discovery of incompatibilities with the project
and also prevent attrition when the learning curve is too steep.

We found that smaller perceived language complexity in
discussions, w.r.t. the local norm, is most helpful to issue
resolution latency. So, an abstract recommendation is to have
developers use language in issue discussion as close as pos-
sible to the project-specific language. There are several ways
in which this can be made more specific and even actionable.

Newcomers to a project should be patient and learn the lan-
guage and culture before actively participating in project issue
discussions. This may not be a desirable solution, especially
in the cases when developer labor is needed to solve an issue,
so the next solution may be more appropriate.

Developers should try and use language consistently that is
close in complexity to the project norm. To aid in this we pro-
vide a prototype example feedback tool, called NormativeE]
which works with ~50 projects for now. When a project is
selected, and a developer types a paragraph in the tool’s open
field, Normative calculates the perceived language complexity
of that text to the specified project. Then, the developer can
change that text at will and observe how the distance changes.

Bhttps://github.com/normative-team/normative

As per feedback learning theory [48], repeated trials in this
tool can result in learning to write closer to the norm. We
will enhance this tool in the near future with examples from
related posts that are similar to the input text.

VII. CONCLUSION

In this work, we presented an initial look into perceived

language complexity from an analysis of communication
traces (issue discussions) on GitHub, guided by sociolinguistic
theory. We constructed language models representative of a
“global” GitHub language, and compared these models to
nested “local” project-specific language models, and saw that
local language norms exist, and differ by project. We found
that users gravitate towards perceived project-specific language
complexity norms, as expected by theory, and that popular
users are interestingly better represented by the global norm
than the related local norm. Also, lack of conformity to the
local norm increases issue resolution times, by a small amount.
To our knowledge, this is the first work that examines GitHub
language complexity and conformity towards project language
norms, and their effects on software engineering outcomes.
We hope followup work along these lines will understand
better how OSS community language style and project-specific
quirks affect outcomes important for OSS success.
Threats to validity: Some model R? may be considered
low. As discussed in Sect. we favored better model
diagnostics over higher R2, so as to not overfit. We did fit
models with R? between 60% and 70% , but these did not
pass diagnostics tests and thus are not valid for inference. We
note that lower goodness of fit does not negate the individual
effects of the independent variables.

We acknowledge that the effect size of some of our vari-
ables are low; e.g., 2.3% increased resolution time for each
additional bit of entropy for the first post. Nevertheless, the
raw values can be large if latency is high. They also need
to be taken in the larger context where the full discussion, if
more complex, can add 12.2% to the resolution time for each
additional bit of mean entropy, and the first post may set the
stage for similar posts.

As with any model, we have the threat of missing con-
founds. We attempted to control for many aspects that could
affect our outcomes, and performed a best-effort to gather as
much data as we reasonably could to use in our models.

Our measure of popularity using @mention networks has
no precedent in prior work; others have looked into the social
network of @mentions, but it is not known whether this
measure of popularity is comprehensive. We chose it due to
its natural occurence in issue discussions - our focus here.

Our work is an initial foray into the topic of differing
language use in GitHub. Mixed method approaches, including
qualitative studies, e.g., regarding language use in studied
projects, would strengthen future studies on his topic.

ACKNOWLEDGMENTS

We thank members of the UC Davis DECAL group for
comments and advice regarding this work.

https://github.com/normative-team/normative

[1]

[3

—

[4

=

[5]
[6]

[7]

[8]

[10]
(11]

[12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

S. K. Deckert and C. H. Vickers, An introduction to sociolinguistics:
Society and identity. A&C Black, 2011.

D. Hymes, “Two types of linguistic relativity,” in Sociolinguistics:
proceedings of the UCLA Sociolinguistics Conference, 1964, pp. 114—
67.

K. Varantola, “Special language and general language: Linguistic and
didactic aspects,” Unesco Alsed-LSP Newsletter (1977-2000), vol. 9,
no. 2, 1986.

J. Lave and E. Wenger, Situated learning: Legitimate peripheral partic-
ipation. Cambridge university press, 1991.

E. Wenger, Communities of practice: Learning, meaning, and identity.
Cambridge university press, 1998.

E. Wenger, R. A. McDermott, and W. Snyder, Cultivating communities
of practice: A guide to managing knowledge. Harvard Business Press,
2002.

J. Holmes and M. Meyerhoff, “The community of practice: Theories and
methodologies in language and gender research,” Language in society,
vol. 28, no. 02, pp. 173-183, 1999.

L. Dubé, A. Bourhis, and R. Jacob, “The impact of structuring charac-
teristics on the launching of virtual communities of practice,” Journal of
Organizational Change Management, vol. 18, no. 2, pp. 145-166, 2005.
J. Kleinnijenhuis, B. van den Hooff, S. Utz, I. Vermeulen, and M. Huys-
man, “Social influence in networks of practice: An analysis of organiza-
tional communication content,” Communication Research, vol. 38, no. 5,
pp. 587-612, 2011.

C. Llamas, L. Mullany, and P. Stockwell, The Routledge companion to
sociolinguistics. Routledge, 2006.

P. Eckert, “Communities of practice,” Encyclopedia of language and
linguistics, vol. 2, no. 2006, pp. 683-685, 2006.

J. S. Justeson and S. M. Katz, “Technical terminology: some linguistic
properties and an algorithm for identification in text,” Natural language
engineering, vol. 1, no. 01, pp. 9-27, 1995.

W. R. Fisher, “Human communication as narration: Toward a philosophy
of reason, value, and action,” 1989.

G. A. Hauser, L. C. Hawes, G. L. Wilson, G. Cheney, P. K. Tompkins,
C. R. Burgchardt, C. J. Stewart, E. C. Clark, J. M. Hogan, F. J. Boster,
G. M. Phillips, R. T. Craig, S. B. Shimanoff, C. Oravec, J. R. Bennett,
E. Smokewood, C. L. Bartow, J. Blankenship, M. P. Graves, R. J.
Connors, C. Kramarae, G. Berquist, R. M. Ogles, S. R. Brydon, S. R.
Hankins, W. M. Purcell, V. O’Donnell, B. K. Duffy, S. H. Browne,
M. Weiler, M. Cooper, and W. R. Fisher, “Book reviews,” Quarterly
Journal of Speech, vol. 74, no. 3, pp. 347-400, 1988.

D. Birman, Acculturation and human diversity in a multicultural society.
Jossey-Bass, 1994.

R. H. Teske and B. H. Nelson, “Acculturation and assimilation: A
clarification,” American Ethnologist, vol. 1, no. 2, pp. 351-367, 1974.
P. G. Zimbardo, “Involvement and communication discrepancy as de-
terminants of opinion conformity.” The Journal of Abnormal and Social
Psychology, vol. 60, no. 1, p. 86, 1960.

E. P. Dozier, “Two examples of linguistic acculturation: The yaqui of
sonora and arizona and the tewa of new mexico,” Language, vol. 32,
no. 1, pp. 146-157, 1956.

M. Lea, D. Barton, and K. Tusting, “Communities of practice in higher
education,” Beyond communities of practice: Language, power and
social context, pp. 180197, 2005.

Q. Xuan, M. Gharehyazie, P. T. Devanbu, and V. Filkov, “Measuring
the effect of social communications on individual working rhythms: A
case study of open source software,” in Social Informatics (Sociallnfor-
matics), 2012 International Conference on. 1EEE, 2012, pp. 78-85.
Q. Xuan, P. Devanbu, and V. Filkov, “Converging work-talk patterns in
online task-oriented communities,” PloS one, vol. 11, no. 5, p. e0154324,
2016.

A. N. Kolmogorov, “Three approaches to the quantitative definition
ofinformation’,” Problems of information transmission, vol. 1, no. 1,
pp. 1-7, 1965.

T. M. Cover, P. Gacs, and R. M. Gray, “Kolmogorov’s contributions
to information theory and algorithmic complexity,” The annals of
probability, vol. 17, no. 3, pp. 840-865, 1989.

T. M. Cover and J. A. Thomas, Elements of information theory. John
Wiley & Sons, 2012.
1. Kontoyiannis, The complexity and entropy of literary styles. Depart-

ment of Statistics, Stanford University, 1997.

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

(37]

(38]

[39]

[40]
[41]
[42]

[43]

[44]

[45]

[46]

[47]

P. Juola and R. H. Baayen, “A controlled-corpus experiment in author-
ship identification by cross-entropy,” Literary and Linguistic Computing,
vol. 20, no. Suppl, pp. 59-67, 2005.

H. Kwon, H. T. Kwon, and W. C. Yoon, “An information-theoretic
evaluation of narrative complexity for interactive writing support,”
Expert Systems with Applications, vol. 53, pp. 219-230, 2016.

L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
github: transparency and collaboration in an open software repository,”
in Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work. ACM, 2012, pp. 1277-1286.

J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical
factors for evaluating contribution in github,” in Proceedings of the 36th
international conference on Software engineering. ACM, 2014, pp.
356-366.

K. Blincoe, J. Sheoran, S. Goggins, E. Petakovic, and D. Damian,
“Understanding the popular users: Following, affiliation influence and
leadership on github,” Information and Software Technology, vol. 70,
pp. 30-39, 2016.

Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu, “Wait
for it: Determinants of pull request evaluation latency on github,” in
Mining Software Repositories (MSR), 2015 IEEE/ACM 12th Working
Conference on. 1EEE, 2015, pp. 367-371.

Y. Zhang, H. Wang, G. Yin, T. Wang, and Y. Yu, “Exploring the use
of @-mention to assist software development in github,” in Proceedings
of the 7th Asia-Pacific Symposium on Internetware. ACM, 2015, pp.
83-92.

V. J. Hellendoorn and P. Devanbu, “Are deep neural networks the best
choice for modeling source code?” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE
2017. New York, NY, USA: ACM, 2017, pp. 763-773. [Online].
Available: http://doi.acm.org/10.1145/3106237.3106290

Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural proba-
bilistic language model,” Journal of machine learning research, vol. 3,
no. Feb, pp. 1137-1155, 2003.

S. E. Chen and J. Goodman, “An empirical study of smoothing tech-
niques for language modeling,” in Proceedings of the 34th annual
meeting on Association for Computational Linguistics. — Association
for Computational Linguistics, 1996, pp. 310-318.

D. A. Belsley, E. Kuh, and R. E. Welsch, Regression diagnostics:
Identifying influential data and sources of collinearity. John Wiley
& Sons, 2005, vol. 571.

F. L. Schmidt and J. E. Hunter, Methods of meta-analysis: Correcting
error and bias in research findings. Sage publications, 2014.

M. Hu, “What does it mean to have a low r-squared? a warning about
misleading interpretation,” http://humanvarieties.org/2014/03/31/what-
does-it-mean-to-have-a-low-r-squared-a- warning-about- misleading-
interpretation/#fmore-3185, Human Varieties, 2014.

P. Birnbaum, “On correlation, r, and r-squared,” http:
//blog.philbirnbaum.com/2006/08/on-correlation-r-and-r-squared.htmll
Sabermetric Research, 2006.

P. Birnbaum, “r-squared abuse,” http://blog.philbirnbaum.com/2007/10/
r-squared-abuse.html. Sabermetric Research, 2007.

J. Cohen, Applied multiple regression/correlation analysis for the be-
havioral sciences. Lawrence Erlbaum, 2003.

J. Cohen, “Statistical power analysis for the behavioral sciences (revised
ed.),” New York: Academic Press, 1977.

S. Hasan and H. Ney, “Clustered language models based on regular
expressions for smt,” in Proc. of the 10th Annual Conf. of the European
Association for Machine Translation (EAMT). Citeseer, 2005.

A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in Software Engineering (ICSE), 2012 34th
International Conference on. IEEE, 2012, pp. 837-847.

Z. Tu, Z. Su, and P. Devanbu, “On the localness of software,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2014, pp. 269-280.

D. Posnett, E. Warburg, P. Devanbu, and V. Filkov, “Mining stack
exchange: Expertise is evident from initial contributions,” in Social In-
Sformatics (Sociallnformatics), 2012 International Conference on. IEEE,
2012, pp. 199-204.

B. Vasilescu, A. Capiluppi, and A. Serebrenik, “Gender, representation
and online participation: A quantitative study of stackoverflow,” in
Social Informatics (Sociallnformatics), 2012 International Conference
on. IEEE, 2012, pp. 332-338.

http://doi.acm.org/10.1145/3106237.3106290
http://humanvarieties.org/2014/03/31/what-does-it-mean-to-have-a-low-r-squared-a-warning-about-misleading-interpretation/#more-3185
http://humanvarieties.org/2014/03/31/what-does-it-mean-to-have-a-low-r-squared-a-warning-about-misleading-interpretation/#more-3185
http://humanvarieties.org/2014/03/31/what-does-it-mean-to-have-a-low-r-squared-a-warning-about-misleading-interpretation/#more-3185
http://blog.philbirnbaum.com/2006/08/on-correlation-r-and-r-squared.html
http://blog.philbirnbaum.com/2006/08/on-correlation-r-and-r-squared.html
http://blog.philbirnbaum.com/2007/10/r-squared-abuse.html
http://blog.philbirnbaum.com/2007/10/r-squared-abuse.html

[48] B. Vasilescu, D. Posnett, B. Ray, M. G. van den Brand, A. Serebrenik, [49] W. Ma, L. Chen, X. Zhang, Y. Zhou, and B. Xu, “How do developers

P. Devanbu, and V. Filkov, “Gender and tenure diversity in github teams,” fix cross-project correlated bugs?” To be presented at ICSE, 2017.
in Proceedings of the 33rd Annual ACM Conference on Human Factors ~ [50] H. Pashler, N. J. Cepeda, J. T. Wixted, and D. Rohrer, “When does feed-
in Computing Systems. ACM, 2015, pp. 3789-3798. back facilitate learning of words?” Journal of Experimental Psychology:

Learning, Memory, and Cognition, vol. 31, no. 1, p. 3, 2005.

	Introduction
	Theory and Related Work
	Speech Communities and Communities of Practice
	Homo Narrans
	Acculturation and Assimilation
	Entropy and Language Complexity
	Collaborative Work in Software Engineering

	Research Questions
	Data and Methods
	Issues
	Social Networks
	Language Models
	Choice of corpus
	Choice of a model

	Regressions

	Results and Discussion
	Implication for Software Practice
	Conclusion
	References

