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Understanding the dependence and interplay between architecture and function in biological networks has
great relevance to disease progression, biological fabrication, and biological systems in general. We propose
methods to assess the association of various microbe characteristics and phenotypes with the topology of their
networks. We adopt an automated approach to characterize metabolic networks of 32 microbial species using
11 topological metrics from complex networks. Clustering allows us to extract the indispensable, independent,
and informative metrics. Using hierarchical linear modeling, we identify relevant subgroups of these metrics
and establish that they associate with microbial phenotypes surprisingly well. This work can serve as a stepping
stone to cataloging biologically relevant topological properties of networks and toward better modeling of
phenotypes. The methods we use can also be applied to networks from other disciplines.
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A prime goal of systems biology is to discover emergent
properties that may be unraveled when a systemic view is
adopted to gain a comprehensive understanding of many pro-
cesses that occur in biological systems. The reductionist ap-
proach which has held sway in biology over the past several
decades has successfully identified the key components in
living systems and many interactions among them. However,
it almost never presents a holistic understanding of how the
systemic properties emerge. It is now becoming increasingly
clear that the functioning of biological systems depends cru-
cially on their complex underlying structure �1�. This com-
plexity is the consequence of numerous interconnected, dy-
namic, and nonlinear interactions among the plethora of
elements, such as genes, proteins, and metabolites. But the
importance of biological networks lies beyond their being
the most visible signatures of complexity. Understanding the
dependence and interplay between architecture and function
in biological networks has great relevance to disease progres-
sion, biofabrication, and biological systems in general.

The central issue, then, is to discover whether networks
encode systemic events and the precise manner in which they
do so. Ideally, we would like to understand and modify the
complex behavior of biological networks, which is contin-
gent on the proper level of modeling of their molecular in-
teractions. To model the systemic or emergent properties,
one would have to involve critically the interdependencies
among interactions and other organizational patterns, on a
local level �e.g., network motifs� as well as on a global level
�e.g., modularity�. Recent research in complex systems and
networks has presented opportunities to properly mine and
thence exploit the architectural interdependence in networks
�2–4�.

Multiple metrics exist in complex networks and various
studies have utilized one or few of them at a time to charac-
terize biological networks. Significant research has been

done to examine various topological properties of different
networks using computational and analytical methods. It has
been found that many biological networks �just like other
empirical networks� may have power-law degree distribu-
tions �5�, are modular �6� and hierarchical �7�, and have spe-
cific distributions of topological features that can be used to
characterize them �8–10�. In addition, topological properties
have been used to predict missing edges in networks �11� and
viability of mutant strains �12�.

In this Rapid Communication, we show that various topo-
logical metrics �which are the signature of complex network
architecture� associate with microbe characteristics and phe-
notypes to a surprisingly high degree. We undertake an au-
tomated approach using various topological metrics from
complex networks to characterize a collection of various
kinds of biological networks and show how these metrics
associate strongly with microbe characteristics. Specifically,
�i� using publicly available data we collect and cross-
reference metabolic networks for 32 different microbes via
ten different quantifiable characteristics and phenotypes; �ii�
we use a suite of 11 complex network metrics, so as to com-
prehensively compare all 32 networks simultaneously, allow-
ing for a much more in-depth evaluation of network models
�13� than is possible with the usually existing practice of
comparing one or two particular properties, most commonly
the degree distribution; �iii� we show that most of the net-
work metrics we use are independent and that multiple met-
rics are necessary to characterize the variability in networks
meaningfully; and �iv� via a hierarchical linear modeling ap-
proach, we identify subsets of network parameters which as-
sociate strongly with various microbe characteristics and
phenotypes. By presenting these strong associations and ex-
hibiting the necessity of multiple metrics to do so, this work
is a step forward toward a systemic cataloging of the meth-
ods and properties of biological networks that are relevant to
the underlying biology, and toward a better modeling of
emergent biological properties.

The microbe characteristics or phenotypes that are ex-
plored in this work are �1� microbe class �MC�, �2� genome
size �GS�, �3� GC content �GC�, �4� modularity �Q�, �5� num-

*soumen@uchicago.edu
†filkov@cs.ucdavis.edu

PHYSICAL REVIEW E 80, 040902�R� �2009�

RAPID COMMUNICATIONS

1539-3755/2009/80�4�/040902�4� ©2009 The American Physical Society040902-1

http://dx.doi.org/10.1103/PhysRevE.80.040902


ber of such modules �NQ�, �6� motility �MO�, �7� competence
�CO�, and whether these microbes are �8� animal pathogens
�AP�, �9� strict anaerobes �AN�, or �10� extremophiles �EX�.
Microbes are normally classified as archaea or bacteria �14�.
Genome size alludes to the sum total of DNA contained
within one copy of a genome. The usual measure of it is in
terms of mass in picograms or the total number of nucleotide
base pairs �commonly as millions of base pairs or mega-
bases�. Intriguingly, an organism’s genome size is not di-
rectly proportional to its complexity and a few microbes
have much more DNA compared to other microbes. In this
context, it is interesting to point out that the association be-
tween genome sizes and topological metrics of the networks
are among the strongest of all phenotypes explored in this
work. The GC content is the percentage of nitrogenous bases
on a DNA molecule, which is either cytosine or guanine �and
not thymine or adenine�. Data for genome size and GC con-
tent were obtained from the National Center for Biotechnol-
ogy Information �NCBI� Entrez genome project database
�15�. With regard to biological networks, modularity is de-
fined as the fraction of edges within modules less the ex-
pected fraction of such edges. We use a recent algorithm �17�
in determining the community structure in networks, which
incorporates the edge directionality. Until recently, the most
common approach to modularity in complex networks litera-
ture has been to simply ignore edge direction and apply
methods developed for community discovery in undirected
networks. However, this discards potentially useful informa-
tion contained in edge directions, which is most commonly a
very biologically relevant criterion. It should be noted that
modularity is intimately connected to function in biology as
the modules typically correspond to genetic circuits or path-
ways �6,16�. Therefore, we include it here as a phenotypic
property rather than as a variable. In scenarios where modu-
larity lacks apparent connection to a function, it is more ap-
propriate to treat Q and NQ as input variables.

Motility allows microbes to move toward desirable envi-
ronments and away from undesirable ones. Competence de-
notes the ability of a cell to take up extracellular DNA from
its environment. Anaerobic organisms are those that do not
require oxygen for growth and may even die in its presence.
Extremophiles are organisms which thrive in or require ex-
treme physical or geochemical conditions, in which majority
of life on earth cannot survive. Data for phenotypes �6�–�10�
have been compiled from Ref. �18�. While GS, GC, Q ,NQ
can take on any value, the rest of the microbe characteristics
or phenotypes are “binary” �e.g., a microbe is either archaea
or bacteria; either aerobic or anerobic, etc.�.

We used metabolic networks of 32 different microbes
based on data deposited in the What Is There �WIT� database
�19�. This database contains metabolic pathways that were
predicted using the sequenced genomes of several organisms.
The nodes in these networks are enzymes, substrates, and
intermediate complexes, while edges represent sequences of
reactions in the organism’s cells. �We had to exclude the
following three microbial species: A. actinomyc., R. caps.,
and M. thermoautot., from the original collection because
many of the microbe characteristics or phenotypic data do
not seem to be publicly available for them.� The network
sizes vary from 595 nodes and 1354 edges to 2982 nodes and
7300 edges.

We calculated a suite of 11 important complex network
attributes across all 32 networks. These are the number of
nodes, N, and edges in the network and the first three stan-
dardized moments �mean, standard deviation, and skewness�
of the distributions of geodesic �20�, betweenness coefficient
�21�, and degree of the network, respectively, denoted as
geo1 ,geo2 ,geo3; betw1,betw2,betw3; and deg1 ,deg2 ,deg3.
The importance of studying the higher moments of distribu-
tions is well known in physics �22�. The geodesic was cal-
culated by using the Dijkstra algorithm �20�. For normaliza-
tion, we subtract the mean value of a metric �over all species�
and then divide by the standard deviation of the metric �over
all species�, for all networks. Some of our metrics are robust
to measurement errors. Observing the system �i.e., network�
from multiple angles provides a measure of robustness
against noise �false positives and false negatives�.

The degree of overlap, or dependence, between the at-
tributes when characterizing networks can be accurately as-
sessed by a symmetric heatmap, showing the pairwise corre-
lations of the network metrics over all the networks. Figure 1
shows the heatmap over network attributes. We start with a
32-dimensional vector �which is the number of microbes
studied� for each of the 11 metrics. Thus, we have 11 points
in the 32-dimensional vector space. We then calculate the
correlation between all pairs of these 11 points and color
code the distance. White indicates perfect correlation while
black indicates anticorrelation. The rows �and by symmetry
the columns� are arranged automatically so that the rows
most similar are placed next to each other, as determined by
the hierarchical clustering algorithm implemented in the
HEATMAP package of the R system �23� �as any other clus-
tering scheme, this one too has its limitations, e.g., in the
placement of the edges and nodes columns, which could ar-
guably be swapped�. Thus, the map allows us to identify
clusters of “similar” network attributes by looking for blocks
of light-colored squares along the diagonal of the figure.
Since there is only a small amount of clustering along the
diagonal, it follows that the network attributes we have cho-
sen are relatively independent and, thus, they all provide
information to our analysis.

To find how well the organism phenotype associates with
the underlying network architecture, we consider our 11 net-

FIG. 1. The heatmap over network metrics.
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work metrics �which can be regarded as characteristics of the
architecture� and model each phenotype as a linear combina-
tion of these metrics. It should be especially noted that the
basis of linear modeling is not to imply that the dependent
variables are the cause and the explanatory variables are the
effect, but that there is a significant association between
these variables. Anticipating that not all metrics will be per-
tinent to each phenotype and, in general, to avoid overfitting,
we use hierarchical linear regression methods to model the
phenotypes as linear combinations of subsets of the network
metrics. To identify the best model we start by assuming a
linear dependence on all 11 variables, because we do not
know initially which ones associate better than others. We
then iteratively proceed to exclude variables whose absence
improves or does not significantly alter the quality of the
resulting model �we used a specific implementation of this
iterative procedure through the step () function of the R sys-
tem �23��. The model selection is guided by minimizing the
well-known Akaike information criterion �24� denoted here
as �, a standard measure in statistics allowing for selection
among various nested models. � scores a model based on its
goodness of fit to the data and penalizes models having many
parameters. If k is the number of parameters in the statistical
model and L is the maximum logarithmic likelihood for the
estimated model, � is defined as

� = 2k − 2 ln�L� . �1�

Thus, we identify the smallest number of independent and
indispensable network metrics that can be associated with
the microbe characteristic or phenotype. The results for the
best model for each phenotype are given in Table I. We use
the root-mean-square error �, which is a measure of the
goodness of fit of our model associations and the experimen-

tal data. � of an estimator X̂ with respect to the estimated
parameter X is defined as the square root of the mean-
squared error,

��X̂� = �E��X̂ − X�2� . �2�

We also report the significance of the best model, which we
obtain by the linear hierarchical modeling procedure dis-

cussed above by bootstrapping with respect to the same
model and using a random permutation of the observed data.
We measure � of these random models, �random, and how
many times �or whether at all� �random��best, where �best is
obviously � of the best model. The number of times this
happens is reflected in the normalized significance. We ob-
serve 106 such random permutations, for each microbe phe-
notype. We also performed an analysis of variance of the
difference of our model with fewest dependent variables ver-
sus the model with all 11 variables, and the difference was
not significant.

For half of the microbe phenotypes in this study �GS, Q,
NQ, AP, and EX�, we do not come across a single instance
where �random is less than �best for that phenotype. For each
of these five phenotypes and also for the rest of the ones
considered in this study, �best is always less than ��random�,
with very low p values. This thus indicates a strong associa-
tion of organism phenotypes with the relevant network met-
rics, in general.

There are some other facts which are observable from
Table I: �i� there is no supremely important single metric
associated with each and every phenotype studied here and,
�ii� in the present study, this of course rules out one or more
set of metrics associated with more than one phenotype�s�.
Albeit, the latter occurrence does not automatically follow
from the former if one or more metrics are consistently ob-
served to be associated with all phenotypes. These facts,
however, attest to the indispensability of the simultaneous
study of multiple network metrics. It is notable that the as-
sociation patterns are nontrivial, even when the microbe phe-
notype or characteristic is simply binary, as opposed to the
case, when it possesses a range of values. The dependence of
the prediction quality on the number of metrics is also not
readily ascertainable. For example, in AP, five of the 11 met-
rics seem to be needed for sufficient representation, while
eight are required for Q and NQ. However, with six metrics
for GC and MO, or nine for MC, the prediction quality is
apparently not enhanced.

Interestingly, the orthogonality of the geodesic and be-
tweenness metrics which we established before is reflected
by their consistent appearance in the association results. It is

TABLE I. Exploring the association of microbe characteristics and phenotypes with network metrics: microbe class �MC�, genome size
�GS�, GC content �GC�, modularity �Q�, number of modules �NQ�, motility �MO�, competence �CO�, and whether the microbes are animal
pathogens �AP�, strict anaerobes �AN�, or extremophiles �EX�.

Range �min, max� �best ��random� p value Best model variables

MC Binary 0.113 0.507 �3�10−5 N , edges,geo1 ,geo2 ,geo3 ,betw1,betw2,betw3,deg1

GS �0.58, 6.3� 0.476 1.302 �10−6 N , edges,betw1,betw2,betw3,deg2 ,deg3

GC �28.2, 66.6� 0.763 1.158 �9.8�10−5 N , edges,geo1 ,geo2 ,geo3 ,betw1

Q �0.59, 0.69� 0.005 0.033 �10−6 N , edges,geo2 ,geo3 ,betw1,betw3,deg1 ,deg2

NQ �14, 35� 2.102 6.413 �10−6 N , edges,geo1 ,geo2 ,geo3 ,betw1,deg1 ,deg2

MO Binary 0.315 0.577 �1.4�10−5 N , edges,betw3,deg1 ,deg2 ,deg3

CO Binary 0.158 0.683 �9�10−6 N , edges,geo1 ,geo2 ,geo3 ,betw1,betw3,deg1 ,deg2 ,deg3

AP Binary 0.325 0.567 �10−6 geo1 ,geo2 ,betw3,deg2 ,deg3

AN Binary 0.359 0.495 �2.66�10−4 edges,geo1 ,geo3 ,betw1,betw2,betw3,deg3

EX Binary 0.284 0.540 �10−6 geo1 ,geo2 ,betw3,deg1 ,deg2 ,deg3
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entirely possible that the association of other network met-
rics, which are not a part of this study, with these or other
phenotypes or organism characteristics could be particularly
strong. Exhaustive studies with the inclusion of such metrics
should bear out this fact. Here, we focused on metrics that
have been shown to be biologically pertinent. The ap-
proaches adopted here are scalable and can easily accommo-
date other important metrics, which could be unraveled in
future as a result of the continuous ongoing research in net-
work theory.

The importance of this study is in justifying that suitably
identified groups of network metrics can and should be used
to meaningfully model and study organism characteristics.
Most immediately, the results can be used to build more
sophisticated and even predictive models of organism pheno-
types, based on their network architecture. These results are
also a good starting point for the classification or cataloging
of biologically relevant topological features that can eventu-
ally yield vocabularies which cross reference topology with
biological function. While still far away, we expect such
tabulated and well-described architectural features to be akin
to biological markers in other empirical data. In this sense,
our work is a modest step toward understanding the precise
nature of interdependence between function and topology in
biological networks. Follow-up modeling and simulations
could give valuable insight into a wide range of far-reaching

issues such as the effect of topology on the design and evo-
lution of networks. The comprehensive “lookup scheme,”
elucidated with the present set of biological networks, could
also be helpful for other real-world complex networks in
general. Of course, the measures need not be the same as
those above and will depend on the nature and topology of
the network.

It is well known that various centrality measures play an
important role in networks and, in some cases �e.g., in the
global airline network �25��, few nodes which have a rela-
tively low degree, but high betweenness could be very spe-
cial. Nodes with high betweenness can act as bottlenecks for
information passage and the role of betweenness is well
known in epidemiology, information, and wireless or sensor
networks. The role of betweenness in biological networks is
being thoroughly exploited in recent times �26�. However, to
our knowledge, there is almost no in-depth work in the lit-
erature, investigating the role of higher moments of the be-
tweenness distribution in biological networks. The present
work underlines the importance of such studies.
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some of our networks. We thank E. Leicht and M. Newman
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networks. This work was funded in part by the NSF under
Grant No. IIS-0613949.
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