
Methods for Random Modularization
of Biological Networks

Zachary M. Saul∗ and Vladimir Filkov†
Department of Computer Science

University of California, Davis
Davis, CA 95616

∗Contact Author: saul@cs.ucdavis.edu
†filkov@cs.ucdavis.edu

Abstract— Biological networks are formalized summaries of
our knowledge about interactions among biological system com-
ponents, like genes, proteins, or metabolites. From their global
topology and organization one can learn nontrivial, systemic
properties of organisms. In studies of biological network orga-
nization empirical networks are typically compared to random
network models, and features are identified as important if they
are statistically ”unusual,” i.e. occur surprisingly often or seldom.
Naturally, more representative random models result in better
feature identification. Since biological networks exhibit a modular
structure (mostly pertaining to their hierarchical functional or-
ganization), random network models need be modular similarly.

In this work we consider the problem of generating random
network models that incorporate network modularity. Theoreti-
cally, the problem is equivalent to generating random decompo-
sitions of a graph into a given number of connected components.
Here we describe two methods we have developed to do that and
illustrate their utility on pertinent systems biology problems of
feature scaling.

I. INTRODUCTION

Biological networks provide convenient summaries of our
knowledge about interactions among components in biolog-
ical systems (e.g. genes and proteins). When represented
as mathematical graphs with nodes (components) and edges
(interactions) between the nodes, they can be visualized and
analyzed on whole-system scales. Then, questions of structure
and organization can be posed and answered, and hypotheses
relating the topological structure to biological phenomena can
be investigated.

In systems biology, networks are analyzed by comparing
them to random networks or simulated networks, and features
are identified as important if they are statistically “unusual”
(i.e. occur surprisingly often or seldom). Statistically, this
amounts to eliminating the null hypothesis with very high
confidence. To find out exactly what “usual” is, the biological
network is typically modeled as a random graph having as
many properties of the original as possible. Naturally, better
random models of what is usual in these networks will yield
better discriminatory power of the “unusual” features. Thus,
global properties of the networks are very important and are
used to create the random graph distributions on which feature
identification relies.

Recently much attention has been focused on the statistical
distribution of the node degrees in biological networks (i.e.

the number of interactions per node). The evidence seems to
point to the presence of many more highly connected nodes
(or hubs) in the networks than one would expect, yielding a
scale-free topology. The highly connected nodes tend to have
important biological roles (e.g. lethal genes transcriptional
regulators, etc.) [1], [2], [3]. It is relatively simple to generate
random networks with node degree distributions mimicking
those of real biological networks [1], [4]. Scale-free random
graphs fare better than Erös-Rényi random graphs in describ-
ing reality [1], and have been used successfully to identify
systemic properties of networks [5].

Another key observation about biological networks is that
they have a modular structure [6], [7]. Studying modularity
has a number of important precedents outside of biology. For
example, in both circuit and software design modularization is
considered a simplifying design practice [8]. Studying naturally
occurring biological modularity allows us to take advantage of
system analysis techniques borrowed from these other fields.

There are varied examples of biological network modularity,
but most pertain to the hierarchical organization of function
in the networks. Biochemical pathways are an obvious ex-
ample of functional modularity in metabolic networks [9]. In
addition, a number of researchers have published evidence
that within protein-protein interaction networks there are sets
of nodes that act as modules, interacting mainly with other
nodes in the module [3], [10]. Others have performed studies
that indicate that transcriptional regulation occurs in a modular
fashion [11]. There, it has been shown that sets of transcription
factors (TF) act together to activate (or inhibit) genes, and each
TF set (or module) regulates its gene in a unique spatial or
temporal context.

Another study noted that there are subgraphs in both nat-
urally occurring and man-made networks which occur more
often than expected due to chance [5]. The authors proposed
that these subgraphs could be elementary modular building
blocks. Studying such over-represented subgraphs, or network
motifs, could aid understanding of the system properties of
biological networks.

To build better random network models, in addition to
simulating properties like node degree distribution, one needs
to factor in network modularity. Then, one can attempt to
answer systemic questions like: if a property has been shown

Sixth IEEE Symposium on BionInformatics and BioEngineering (BIBE'06)
0-7695-2727-2/06 $20.00 © 2006

to hold in the whole network, will it also hold in the network’s
parts? In other words, one can answer if a given property
scales to different organizational levels of the network and
reason as to why it does or why it does not.

The simplest random graph model that can be used to further
such studies is one which has the same number of modules
or components as the real graph, but they have been selected
at random. Such a graph could serve as a null hypothesis for
testing if properties are independent of the level of modular
organization of the biological network.

In this work, we consider the problem of generating ran-
dom modularizations of biological networks. Theoretically, the
problem is equivalent to generating random decompositions
of a graph into a given number of connected components.
Here, we describe two methods that we have developed to do
that and illustrate their utility on pertinent systems biology
problems of feature scaling.

Our methods can be used to simulate the distribution of
modules expected due to chance in a given graph. This
distribution gives a baseline context in which to analyze any
modular network. In the context of network module analysis, a
distribution of the modules is analogous to the distribution of
graphs in the context of more traditional single-node analysis
described above. In both of these contexts, scientists can use
the simulated distribution to calculate z-scores for network
features of interest, assigning a score of potential importance
to each. This is an important property, because it gives a
statistical indication of which features are “surprising” or
important.

The algorithms community has explored a number of meth-
ods to decompose a graph into connected subgraphs [12], [13],
[14]; however, these methods investigate graph decomposition
as a way to increase the speed of graph algorithms, rather than
focusing on random decompositions. As far as we know no
standalone algorithms are available to randomly decompose a
graph into connected components, for the purpose of simulat-
ing a distribution.

In addition to the biological motivations for a method to
randomly decompose a graph into modules, there exist a few
additional benefits of such a method. First, from an algorithmic
standpoint, modularizing networks leads to a natural divide
and conquer strategy. Many of the algorithms currently used
to analyze biological networks are computationally complex.
In fact, most of them are not executable in polynomial time (in
the size of the network). To exacerbate this problem, biological
networks often consist of thousands of interactions, exceeding
our computing capacity. Breaking biological networks into
modules and running an algorithm on the modules indepen-
dently can improve performance.

Next, from an analysis standpoint, studying modules can
can reduce the number of factors a researcher must consider
when studying a biological network, making the analysis more
tractable than it might be. Because these networks consist of
the thousands of interactions, wholesale system analysis is
often beyond the capacity of our analysis tools. By modu-
larizing the network, the researcher can consider the parts of

the network independently. This use of system modularization
is common in the engineering world, where systems are often
composed of several interacting modules.

II. METHODS

Given these motivations, our purpose is to randomly decom-
pose the input graph into n connected components (modules).
Both methods that we developed first select n seed nodes at
random and then grow the components from these seed nodes
in a round-robin fashion, selecting one node to add to each
module per round. The round robin process can be likened
to choosing teams in a pick-up sports match. The modules
take turns “choosing” eligible nodes to add (in this case, the
modules can only add neighboring nodes that haven’t already
been chosen). Clearly, with this method of “module-growing,”
it is possible to attain a module for which there no longer exist
any nodes eligible to be added. At this point, our algorithm
marks the module as inactive and no longer considers it in the
round-robin process. This round-robin process applies to both
of our algorithms, and they differ only in the way that they
select nodes to be added.

Algorithm 1 The BFS node-selection algorithm picks nodes
in breadth first order to be added to the current module.

INPUTS:
CurModule - Module for which to select a node.
UsedSet - Set of previously used nodes.
ActiveModules - Set of active modules.

Node = CurModule.NeighborQ.Remove ()
while Node ∈ UsedSet do

if CurModule.NeighborQ.Empty () then
ActiveModules.Remove (CurModule)
Output (CurModule)

end if
Node = CurModule.NeighborQ.Remove ()

end while
UsedSet.Add (Node)
CurModule.NodeSet.Add (Node)
CurModule.NeighborQ.Add (Neighbors of Node)
return (CurModule, UsedSet, ActiveModules)

A. BFS algorithm

The first algorithm uses a node-selection method that is
patterned after breadth-first search.

The breadth-first search algorithm maintains a queue of
nodes to be visited in the graph. The queue is initialized with
the neighbors of the start node for the search. Then, the nodes
are visited in the order that they are in the queue, and as each
is visited, its neighbors are added to the back of the queue.
This procedure guarantees a breadth first search.

Similarly, the BFS node-selection method maintains a
neighbor-queue for each active module. This queue contains
the neighbors of the module. Each time a node is added to
the module, its neighbors are added to the back of the queue,

Sixth IEEE Symposium on BionInformatics and BioEngineering (BIBE'06)
0-7695-2727-2/06 $20.00 © 2006

guaranteeing that the nodes are added to the module in breadth
first order. However, because we have the restriction that each
node can be added to only one module, our algorithm keeps
track of which nodes have already been used and checks before
adding a node to a module if that nodes has been previously
used.

B. Random-BFS algorithm

The second node-selection method is also patterned after
breadth-first search. However, instead of choosing the neigh-
bors in visited order, this method chooses the nodes randomly
from the set of neighbors of the module and is called random-
BFS. Rather than storing the candidate nodes in queues,
random-BFS simply keeps a set of neighboring nodes for each
module, and it selects each node for addition uniformly at
random from the set of neighbors for each module.

Algorithm 2 The random-BFS algorithm is similar to the BFS
algorithm with the exception that it selects nodes from the
neighbor set uniformly at random rather than in visited order.

INPUTS:
CurModule - Module for which to select a node.
UsedSet - Set of previously used nodes.
ActiveModules - Set of active modules.

Node = CurModule.Neighbors.RandomRemove ()
while Node ∈ UsedSet do

if CurModule.Neighbors.Empty () then
ActiveModules.Remove (CurModule)
Output (CurModule)

end if
Node = CurModule.Neighbors.RandomRemove ()

end while
UsedSet.Add (Node)
CurModule.NodeSet.Add (Node)
CurModule.Neighbors.Add (Neighbors of Node)
return (CurModule, UsedSet, ActiveModules)

C. Overlapping modules and target sizes

Thus far, we have limited our decomposition algorithm to
always produce distinct modules. However, in several realistic
applications of this method, including biology and engineer-
ing, this may not be a reasonable limitation. For example,
the modules in a biological pathway graph must overlap. This
is how interaction between modules is performed; the shared
nodes act as intermediaries between the modules.

To extend our two basic methods to allow for overlapping
modules, we have added two parameters. The first parameter
is the overlap parameter. If the overlap parameter is set to
true, then the test (in both algorithms) to see if a candidate
node is already colored is changed to test if that candidate
node is colored the color of the module under consideration.
This technique prevents the same node from being added to
a module twice, while still allowing the modules found to
contain identical nodes (to overlap). However, because there

is no longer a stopping condition when the overlap parameter
is enabled, the sizes of the modules desired must be specified
with an additional parameter called the target-size vector.

The target-size vector, T , is the second parameter. This is
an n-dimensional vector containing target-sizes for each of
the n modules. This parameter can be used independently of
the overlap parameter. However, if we don’t allow overlap,
the requested sizes cannot necessarily be obtained, because
a graph cannot be divided into connected components with
arbitrary sizes. Therefore, in this case T is used to build a
vector of “emit probabilities,” e. The entries of e are defined
as e[x] = T [x]/

∑n
i=1 T [i] for all x from 1 to n. When a

module x comes up in the round-robin process, we first choose
whether or not to add a node to it in such a way that we add
a node with probability e[x]. If we choose to add a node, we
select it as before. However, if we choose not to add a node,
we simply move to module x + 1 in the round-robin process.

III. RESULTS

Biochemists have traditionally organized their studies of
large biochemical networks by focusing on the properties
of their functionally coherent sub-networks, which are often
important to the network as a whole. The large-scale network
can then be studied as a collection of the modules, or sub-
networks. Likewise, computational studies of modularity in
large-scale networks can reveal the relation between local
features, or properties, in network modules versus those in
the whole network, i.e. property scaling.

Two biologically motivated questions come to mind: (1) are
the same local features important in functional sub-networks,
or pathways, as in the full network? and (2) does the specific
modularization into sub-networks matter?

To illustrate how these questions can be addressed compu-
tationally, here we use the fairly simple and popular concept
of network motifs as our model for local features. Network
motifs are small, 3- or 4-node connected subgraphs which
occur suprisingly seldom (or often) in an empirical network,
as compared to a random network. Computationally, network
motifs are found by counting the occurrence of all possible
subgraphs of given number of nodes in the network in question
and comparing that count to the one of the occurrence of the
same subgraph in a simulated (or random) network in which
the node degree distribution is kept constant.

First, we retrieved all forty-eight available biochemical path-
ways from E. coli from the KEGG database [15]. These path-
ways are models for biochemical functions and are invaluable
as examples of biological modules. They range in size from
6 to 38 nodes. Connected together, through common nodes,
they comprise a full network of 503 nodes. Then, for each
of the pathways, or sub-networks, and for the full network we
identified the most-surprising 3-node network motifs (based on
their z-score as compared to the expected number based on a
same node degree random network). Overall, the motifs that
were most common in the sub-networks were also the motifs
in the overall network. This relationship is shown in figure 1.
The existence of such a scale-invariant property implies that

Sixth IEEE Symposium on BionInformatics and BioEngineering (BIBE'06)
0-7695-2727-2/06 $20.00 © 2006

�
�
�
�
�

�
�
�
�
�

6

* * **
0

1

2

3

4

5

Fig. 1. The number of pathways (out of 48) that each subgraph scored in the
top 20% of all motifs. The starred subgraphs were motifs in the full network.
Four out of five motifs are motifs at both scales.

the process of modularization can leave important network
properties intact.

Now we turn to the second question, which provides an
excellent example of the utility of the random modularization
algorithms: is the scale-invariance of network motifs above
a property of the modularization given by the biochemists,
or is it a general property that holds in most (or all) bio-
chemical pathways? Using our methods for random network
modularization, we repeated the above experiments, with the
biochemically derived modules replaced by our randomly
generated modules. The results, shown in Fig. 2, are similar to
those in Fig. 1. Thus, in spite of the random modularization,
the network motifs were mostly independent of scale. This
indicates that the scale-independence is a property of the E.
coli biochemical pathway under study and not a property of
the particular modules derived by the biologists.

IV. CONCLUSIONS

The methods for random modularization presented here
allow us to generate a distribution of modules for a given
network. We presented two main methods, each with two
parameters. The usefulness of each case depends on the
context graph decomposition is desired. For example, in most
biological contexts, the existing modularization include over-
lapping modules. This means that the overlap parameter should
usually be used in these situations. Another example is the
reasoning behind using the random-BFS method to decompose
the graph in the example study. We made this choice because
biological pathways generally consist of a compact core with
non-compact edge. This is the type of random modularization
given by random-BFS. The BFS method wouldn’t have suited
our purposes because it simply produces compact modules.

The systemic explorations of the E. coli example network
demonstrate the utility of our methods. In addition, we were
able to establish an interesting property of network motifs,
their scale-independence, by showing that the prevalence of
the top motifs is similar in a functionally and randomly
modularized network.

Importantly, we were able to perform our analysis of the
behavior of the network at different scales without relying
on any assumptions about the underlying degree distribution

* *

�
�
�
�
�

�
�
�
�
�

*
0

1

2

3

4

5

6

Fig. 2. When the experiment was repeated using random modules, three of
the five motifs were the same at both scales.

in our network. This is an important distinction because it
is not clear that the commonly made assumption of scale-
independence is correct [16].

In general, random modularization facilitates creating back-
ground distributions for any biological graph, providing an
important tool to study network modularity.

REFERENCES

[1] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, pp. 509–512, 1999.

[2] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási, “The
large-scale organization of metabolic networks,” Nature, vol. 407, p.
651, 2000.

[3] S.-H. Yook, Z. N. Oltvai, and A.-L. Barabási, “Functional and topologi-
cal characterization of protein interaction networks,” Proteomics, vol. 4,
pp. 928–942, 2004.

[4] C. Gkantsidis, M. Mihail, and E. Zegura, “The markov chain simulation
method for generating connected power law random graphs,” in Proceed-
ings of the 5th Workshop on Algorithm Engineering and Experiments
(ALENEX)., January 2003.

[5] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon, “Network motifs: Simple building blocks of complex net-
works,” Science, vol. 298, pp. 824–827, 2002.

[6] L. H. Hartwell, J. J. Hopfield, S. Leibler, and A. W. Murray, “From
molecualr to modular cell biology,” Nature, vol. 402, pp. C47–C52,
1999.

[7] D. A. Lauffenburger, “Cell signaling pathways as control modules:
Complexity for simplicity?” PNAS, vol. 97, pp. 5031–5033, 2000.

[8] C. Y. Baldwin and K. B. Clark, Design Rules: The Power of Modularity
Volume 1. Cambridge, MA, USA: MIT Press, 1999.

[9] P. Holme, M. Huss, and H. Jeong, “Subnetwork hierarchies of biochem-
ical pathways,” Bioinformatics, vol. 19, no. 4, pp. 532–538, 2003.

[10] J.-D. J. Han, N. Bertin, T. Hao, D. S. Goldberg, G. F. Berriz, L. V.
Zhang, D. Dupuy, A. J. M. Walhout, M. E. Cusick, F. P. Roth, and
M. Vidal, “Evidence for dynamically organized modularity in the yeast
protein-protein interaction network,” Nature, vol. 430, pp. 88–93, 2004.

[11] E. H. Davidson, Genomic Regulatory Systems. Elsevier Science and
Technology Books, 2001.

[12] J. Fouquet, M. Habib, F. de MontGolfier, and J. Vanherpe, “bimodular
decomposition of bipartite graphs,” 30th International Workshop on
Graph-Theoretic Concepts in Computer Science, WG 2004, 21-23 June
2004.

[13] S. Toida, “A decomposition of a graph into dense subgraphs,” IEEE
Transactions on Circuits and Systems, vol. CAS-32, no. 6, pp. 583–589,
1985.

[14] A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph Classes: A survey.
SIAM, 1999, ch. 12.

[15] M. Kanehisa, S. Goto, S. Kawashima, and A. Nakaya, “The kegg
databases at genomenet,” Nucleic Acids Res, vol. 30, pp. 42–46, 2002.

[16] N. Pržulj, D. G. Corneil, and I. Jurisica, “Modeling interactome: scale-
free or geometric?” Bioinformatics, vol. 20, no. 18, pp. 3508–3515,
2004.

Sixth IEEE Symposium on BionInformatics and BioEngineering (BIBE'06)
0-7695-2727-2/06 $20.00 © 2006

