
Measuring the Effect of Social Communications on
Individual Working Rhythms: A Case Study of

Open Source Software
Qi Xuan∗†, Mohammad Gharehyazie∗, Premkumar T Devanbu∗, Vladimir Filkov∗,

∗Department of Computer Science, University of California,Davis
Davis, California 95616–8562

†Department of Automation, Zhejiang University of Technology
Hangzhou 310023, China
Email: qxuan@ucdavis.edu

Abstract—This paper proposes novel quantitative methods
to measure the effects of social communications on individual
working rhythms by analyzing the communication and code
committing records in tens of Open Source Software (OSS)
projects. Our methods are based on complex network and time-
series analysis. We define the notion of a working rhythm as the
average time spent on a commit task and we study the correlation
between working rhythm and communication frequency. We
build communication networks for code developers, and find
that the developers with higher social status, represented by
the nodes with larger number of outgoing or incoming links,
always have faster working rhythms and thus contribute more
per unit time to the projects. We also study the dependency
between work (committing) and talk (communication) activities,
in particular the effect of their interleaving. We introduce multi-
activity time-series and quantitative measures based on activity
latencies to evaluate this dependency. Comparison of simulated
time-series with the real ones suggests that when work and talk
activities are in proximity they may accelerate each other in OSS
systems. These findings suggest that frequent communication
before and after committing activities is essential for effective
software development in distributed systems.

I. I NTRODUCTION

Recently, much attention has been paid to social networks
[1]–[3], where nodes represent different individuals and links
between pairs of nodes mean the corresponding individuals are
friends or directly communicate with each other. Generally,
there are two reasons that can explain this great interest
in networks. First, can conveniently model the topological
structure of complex systems, providing a series of structural
characteristics [4], [5] that can help differentiate the roles of
individuals working on these systems. For example, Albertet
al. [6] and Holmeet al. [7] found that the communication
efficiencies of networks are more likely to depend on the
nodes with larger degrees or betweenness centralities,i.e., the
network performance decreases quickly once these nodes are
removed. Second, it is widely believed that network structure,
or more specifically, communications themselves can influence
the individual actions, and thus some cooperative behaviors
such as synchronization [8]–[10] naturally emerge.

However, such influence is often difficult to measure, and

subject to conflicting viewpoints. Consider the increasing
interest of developers to contribute to open source software
(OSS) projects [11]–[13]. Developers communicate through
emails and commit to different files in real time. Since most
work on OSS is voluntary, the success of these OSS projects is
mainly determined by the committing activities of developers
[14], which leads to an important question [15] in this area:
whether and how do the communication activities influence the
committing activities? For this question, different people may
have different answers before such influence can be quantified.

It is often argued that social communication activities delay
programming activities, since both of these activities may
compete for the time resources of developers. As a result,
people always prefer to find ways to reduce “communication
overheads”. Baldwin and Clark [16] argued that the commu-
nication and coordination in large systems can be significantly
reduced by adopting proper design rules. On the other hand, in
our society, productivity and communication often go hand-in-
hand. In OSS projects, it can be argued that once a user finds a
bug [17], [18], she would want to report them as soon as pos-
sible in order to gain some sense of achievement, while once
the developers received some (possibly negative) evaluations
of their work, they may respond by updating the software right
away, in order to preserve their reputation among the social
circle of developers. In such a situation, since task-relevant
information flows through communication activities, it canbe
argued that communication activities accelerate committing
activities in the OSS projects to some extent.

Then, which is it? Do the communication activities impede
committing activities or do they accelerate them? Although
a recent study [19] on OSS projects indicates that there are
strong correlations between the number of messages sent by
an individual and the number of code changes he/she made,
this result still cannot answer the above question. Clearly,
both of these activities are positively correlated with the
time interval over which they take place; however, this result
doesn’t necessarily imply that one accelerates the other.

In order to answer this question more definitely, here we
first provide the definition of working rhythm, or committing



rhythm more specifically, for developers. Then, we propose
two methods to measure the effects of communication activi-
ties on committing rhythms. In particular, the main contribu-
tions of this paper include the following two parts:

1) Macroscopic view. We build communication networks
for code developers from ten years of email records in 31
OSS projects, and utilize the local structural properties
in complex network theory, such as outgoing degree and
incoming degree, to quantify the social status of devel-
opers. We find that the developers with higher social
status, represented by the nodes with larger number of
outgoing or incoming links, always have faster working
rhythms and thus contribute more per unit time to the
projects.

2) Microscopic view. We introduce multi-activity time-
series and propose the definitions ofevaluation and
responselatencies between the successive committing
and incoming communication activities in order to quan-
titatively measure the dependency between work and talk
activities. We introduce a mechanism to generate inde-
pendent simulated time-series of incoming communica-
tion activities which have precisely the same statistical
properties as the real ones. By comparing measurements
on the simulated time-series with those on the real
ones, we find that the committing and communication
activities may significantly accelerate each other in OSS
systems.

We study how work and talk activities interact; our find-
ings suggest that frequent, interleaving communication around
committing activities is essential for effective softwaredevel-
opment in a distributed setting; but our findings may have
broader implications beyond OSS. Many real-world systems
can be described by complex networks and individual actions
can be modeled using time-series, the methods proposed here
can also be used to quantify certain relationships in other areas.

The rest of the paper is organized as follows. In Section
II, the communication and committing data obtained from
OSS projects are briefly introduced, where communication net-
works and committing networks are constructed and some ba-
sic properties are provided. In Section III, the methodologies,
including the definition of committing rhythm and the network
and time-series based methods are introduced. In Section IV,
the main results are obtained based on the proposed definition
and methods. The paper is finally concluded in Section V.

II. DATA DESCRIPTION

A total of 31 OSS projects were obtained from theApache
Software Foundationon March 24th, 2012. For each project,
a communication social network is constructed from online
developer mailing lists [20]. These mailing lists are used for
communication and coordination among the normal users and
developers, where each email has an ID, a sender ID, and a
reference ID with date time and body. Here, the reference ID
is the ID of the email that this email is in response to. In sucha
network, the nodes are the people sending messages on the list,
if a personP1 replies to a message from another personP2,

TABLE I
SOME BASIC PROPERTIES OF THE31 OSSPROJECTS.

Project NT ND NF 〈kout〉 〈dF 〉

Accumulo 75 5 1622 3.5 833.2
Mahout 552 16 5123 4.4 698.9
Lucene 2148 41 6674 4.2 414.2
Nutch 862 16 3072 3.4 424.3
Derby 1128 35 6563 5.6 660.1
Ode 377 18 11006 3.8 1013.4

Openejb 179 38 43960 5.8 2374.0
Log4php 88 9 1409 2.1 242.0
Wicket 540 24 48045 5.5 3907.3
Log4j 540 19 5519 2.3 472.7

Bookkeeper 32 3 407 3.0 245.0
Xerces2j 922 33 3732 1.7 347.4

Hive 321 18 7333 3.4 887.2
Axis2 java 3758 76 129978 2.8 3034.1

Hadoop hdfs 264 25 1153 2.4 171.2
Camel 844 31 36965 3.2 1713.1
Avro 284 12 3021 3.0 387.6

Abdera 196 13 3193 2.7 352.4
Cassandra 397 13 17125 3.7 1534.7
Activemq 2053 29 16788 2.2 946.3

Cxf 443 45 37867 4.2 1726.2
Log4net 297 7 1060 1.4 320.9

Ant 1406 45 11620 3.2 666.5
Empire db 8 5 2341 0.88 807.6
Axis2 c 608 24 10262 4.4 805.3
Cayenne 170 20 31489 3.8 2629.9
Log4cxx 92 6 2966 1.7 730
Harmony 709 25 14898 9.0 636.8

Pluto 265 23 5971 3.1 483.0
Solr 839 19 8534 3.76 655.8
Ivy 68 9 3513 2.3 523.2

then there is a directed link from the node representingP1 to
that representingP2. The social networks constructed by this
method are directed networks, and each nodevi in a network
will have an incoming degreekin

i
and an outgoing degree

kout
i

representing the numbers of directed links from and to
this node, respectively. The average outgoing degree of the
network is denoted by〈kout〉, and the average incoming degree
of the network has the exactly same value. Meanwhile, the
committing activities of developers on different files in each
project are gathered from the corresponding Git repositoryand
can also be considered as a network, where a node represents
a developer or a file, and a link between a developer and a
file represents that the developer has contributed to the file
(i.e., add some codes in this file). The committing networks
constructed by this method are bipartite networks, i.e., links
only exist from developers to files. A developervD

i
has a

degreedF
i

representing the number of files s/he has committed.
Then the average degree〈dF 〉 in a project denotes the mean
number of files committed by a developer. Note that, in these
projects, users can have multiple aliases; these were resolved
using a semi-automatic approach devised by Birdet al. [19].

Several basic properties, including name of the project,
number of usersNT (including the developers), number of
developersND, number of filesNF , average outgoing de-
gree 〈kout〉 in the corresponding communication network,
and average committing files〈dF 〉, of the 31 OSS projects



3

1

2

3

1

2

1

2

3

(a) Social network (b) Committing network

(c) Time series of committing activities

Fig. 1. The topological structure of (a) social network and (b) committing network of the project calledbookkeeper, where the three marked unfilled nodes
are the developers who contributed to the project and the filled nodes represent the other users and files in the corresponding networks. (c) The time-series of
the committing activities of the three corresponding developers, with the time of their first and last committing activities provided, where the horizontal axis
denotes time (in one second) and each vertical line corresponds to an activity of adding codes.

are presented in TABLE I. By considering all the projects
together, there are totally 20465 users, 702 developers and
483,209 files. In particular, the social network structure and the
committing network structure of the project calledbookkeeper
are shown in Fig. 1 (a) and (b), respectively, where the three
developers are represented by the unfilled nodes and marked
by 1, 2, and 3, respectively, while the other users and files are
represented by the filled nodes, in the corresponding networks.
Meanwhile, the time-series of committing activities of the
three corresponding developers are visualized in Fig. 1 (c),
where there is a vertical line if the developer added codes at
that time.

III. M ETHODOLOGY

A. Definition of committing rhythm

Suppose there are totallyM(M ≥ 2) activities for an in-
dividual at different consecutive timet1, t2, . . . , tM satisfying
t1 < t2 < . . . < tM , there will beM − 1 inter-activity time
buckets, denoted by

∆ti = ti+1 − ti, i = 1, 2, . . . ,M − 1. (1)

Since many human activities are Poisson processes [21] where
independent events occur at a constant rateλ, the inter-activity
time between two consecutive activities of an individual fol-
lows an exponential distribution as follows:

P (∆t) = λe−λ∆t. (2)



10
−4

10
−2

10
0

10
2

10
4

10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T (h)

P
(∆

t<
T

)

 

 

Communication activity
Committing activity

Fig. 2. The cumulative inter-activity time distributions of the communication
activities and the committing activities in 31 OSS projects.

Committing activity is no exception either, as shown in
Fig. 2, where the near linear functions in semilog coordi-
nates indicate that both inter-activity time distributions of
communication and committing activities follow exponential
distributions.

Therefore, the average inter-activity time of an individual,
calculated by

〈∆t〉 =

∑M−1

i=1
∆ti

M − 1
=

tM − t1

M − 1
, (3)

is close to the inverse of the only parameterλ of the distribu-
tion, and thus is a reasonable way to measure its committing
rhythm, i.e., smaller average inter-activity time means faster
rhythm.

B. Network based method

Generally, communications between individuals can be de-
scribed by social networks, as shown in Fig. 1 (a), while in
the area of social network analysis, the status of an individual
is more likely to be characterized by its local structural
properties [4], such as degree [5], rather than the number of
communication records themselves. In particular, the social
status of a developer here is characterized by the incoming
and outgoing degree of the corresponding node in the network,
since in OSS projects, it is considered that a developer with
higher incoming degree is widely trusted in the local society
while one with higher outgoing degree has a better sense of
responsibility for the project. In most cases, these two local
structural properties are correlated with each other to a certain
extent, i.e., an individual with higher responsibility forthe
project is always widely trusted by others in the corresponding
local society.

In order to study such social responsibility on committing
rhythms of developers, it is intuitive to divide the developers
into different groups by their incoming or outgoing degrees.
Since there are only 702 developers, here the developers are

only divided into two groups in order to make sure that the
final results have statistical meaning. In particular, there are
two cases as follows:

• Case I: The developers are divided into two groups
according to their incoming degrees, i.e., the developers
with incoming degreekin ≤ 50 and the developers with
incoming degreekin > 50.

• Case II: The developers are divided into two groups
according to their outgoing degrees, i.e., the developers
with outgoing degreekout ≤ 50 and the developers with
outgoing degreekout > 50.

Note that here the degree threshold value to divide the de-
velopers into two groups is set to 50, which is just because,
in such a case, there are similar number of activities in the
two groups, although, in fact, the results almost keep the
same for different degree threshold values. Then, all the inter-
activity time buckets of the developers in the same group are
put together and is compared with those of the developers in
the other group. If committing activities are driven by social
responsibility, it is reasonable to find that, statistically, the
developers with larger incoming or outgoing degrees have
faster committing rhythms. Otherwise, if communication and
committing activities compete the time resources of develop-
ers, the opposite phenomenon may be observed.

C. Time-series based method

At a fine-grained level, the interaction between communi-
cation and committing activities can be directly measured by
comparing their time-series. In fact, there is an evaluation-
response mechanism in many OSS projects. That is, once a
developerD submits a section of codes at timet1, denoted by
actionA1, s/he may receive several evaluations (such as code
reviews or problem reports) from other users (including other
developers) at timet2, t3, . . . , tk via email.D may respond to
these evaluations by adding new section of codes at timetk+1,
denoted by actionA2. Suppose that actionsA1 and A2 are
successive,i.e., D does not add any code in the time interval
(t1, t2), and we have thatt1 < t2 ≤ t3 ≤, . . . ,≤ tk < tk+1,
the evaluation latency and the response latency then are
defined by

τE = t2 − t1, (4)

τR = tk+1 − tk, (5)

respectively, as shown in Fig. 3.
Using the actual incoming communication activities of each

individual, but assuming that there is no co-ordination between
communication and committing activities, it is possible to
generate a series of simulated incoming communication activ-
ities for each individual independently. In particular, for each
developervi, the precise method to generate such a simulated
time-series of incoming communication activities is as follows:

1) Suppose there are totallyUi(Ui ≥ 2) incoming com-
munication activities forvi at different times, denoted
by t1, t2, . . . , tUi

, respectively, as shown in Fig. 4
(a). Then,Ui − 1 ordered time intervals, denoted by



Fig. 3. The definitions of the evaluation latencyτE and the response latency
τR for a developer. The horizontal axis denotes time. Each solidvertical line
corresponds to a commiting activity of adding codes at timet1 andtk, while
each dotted vertical line corresponds its incoming communication activities,
i.e., he/she received emails at timet2, t3, . . . , tk satisfyingt1 < t2 ≤ t3 ≤
, . . . ,≤ tk < tk+1. Then the evaluation latencyτE and the response latency
τR are defined by Eqs. (4) and (5), respectively.

Fig. 4. The steps to generate a simulated time-series of incoming commu-
nication activities for each developer.

∆t1,∆t2, . . . ,∆tUi−1, respectively, can be obtained by
∆ti = ti+1 − ti, as shown in Fig. 4 (b).

2) Randomly rearrange theUi − 1 time intervals and
get a new sequence of time intervals, denoted by
∆ta1 ,∆ta2 , . . . ,∆ta

Ui−1, respectively, as shown in Fig.
4 (c). This essentially generates random orderings of
“idling periods” for the developer, but ensures that
his “idling” periods are exactly the same as actually
observed.

3) Weld these new ordered time intervals one by one, as
shown in Fig. 4 (d), and then get a new time-series
ta1 , t

a
2 , . . . , t

a

Ui
, satisfying that
{

ta
i
= ti, i = 1,

ta
i
= ta

i−1 +∆ta
i−1, i ≥ 2.

(6)

Note that the simulated time-series of incoming communica-
tion activities generated by this mechanism preserves similar
statistical properties as the real one,viz., the same distribution
of inter-activity interval time.

By replacing the real time-series of communication activi-
ties by this simulated time-series and comparing with the real
time-series of committing activities, we can get two series
of simulated evaluation and response latencies which are still
calculated by Eqs. (4) and (5), respectively. Generally, for
the real communication and committing activities, there are

several possible relationships between them, which are listed
as follows and can be characterized by comparing the real and
simulated evaluation and response latencies.

1) They are independent from each other.If this is the case,
the distributions of real evaluation and response latencies
will be statistically indistinguishable from the simulated
ones.

2) They delay each other. In reality, both communication
and committing activities do take time,i.e., they com-
pete for the time resources of developers. In addition,
developers may spend time responding to bug reports,
questions, challengesetc in the emails; this might delay
committing activities to a certain extent. If this is the
case, the actual evaluation and response latencies will
be statistically longer than the simulated ones.

3) They accelerate each other. As discussed earlier, the
desire to enhance and or maintain reputations may
incentivize users to respond more quickly to tasks that
relate to received email correspondence. Bug finders
may accelerate bug reports to gain recognition. Like-
wise, programmers may be hastening to respond to bug
reports, or design/coding critiques, in order to maintain
their peer-reputation. If this is the case, statistically,the
real evaluation and response latencies will be relatively
shorter than the simulated ones.

Certainly, there are also other cases where only one kind
of activities influence the other. For example, only incoming
communication activities accelerate committing activities. In
this case, it can be expected that, statistically, the real response
latencies will be relatively shorter than while the real evalua-
tion latencies will be close to the simulated ones. And other
cases can be confirmed by the similar manner.

IV. RESULTS

A. Higher social status indicate faster committing rhythms

Here, we use network-based measures. As one can see, the
human activity rhythms can be statistically analyzed using
the cumulative inter-activity time distribution, which allows
us to compare the committing rhythms of developers belong-
ing to different groups. The cumulative inter-activity time
distributions of the committing activities for different groups
of developers characterized by their incoming degrees (Case
I ) and outgoing degrees (Case II) are shown in Fig. 5 (a)
and (b), respectively. By comparison, there are more short
inter-activity time intervals for the developers with higher
social status,i.e., larger incoming or outgoing degrees, which
indicates that, statistically, the developers with highersocial
status may have faster committing rhythms. More interestingly,
it is found that the difference of cumulative inter-activity time
distribution between the two distinct groups of developersis
mainly introduced when∆t > 1 (h) while there seems no
difference between them when∆t ≤ 1 (h), which suggests
that social status can only influence the long-term, but have
little effects on the short-term committing rhythms. This is
reasonable because the short-term committing rhythm is more



a reflection of the developer’s programming habit,i.e., saving
codes in real time when he/she commits files, which is for
sure seldom influenced by social factors. Just considering
the inter-activity time with length longer than one hour, the
differences of committing rhythms between the developers
belonging to different groups can be presented by the box-
and-whisker diagrams more clearly, as shown in Fig. 6 (a)
and (b), respectively.

In order to provide more credible results, simple T-tests are
implemented for both cases and the statistics including the
average inter-activity time length, T-value, and significance are
recorded in TABLE II, wherek meanskin for Case Iandkout
for Case II. Generally, the average inter-activity time length
of the developers with larger incoming (or outgoing) degrees
is much smaller than that of the developers with smaller
incoming (or outgoing) degrees, and the differences in both
cases are quite significant, with the relatively large T-values
20.4 and 22.3, respectively. More specifically, denote by∆tin

L

(or ∆tout
L

) and∆tin
S

(or ∆tout
S

) the average inter-activity time
lengths of the developers with incoming (or outgoing) degree
larger and smaller than 50, respectively. Then, on average,the
differences of committing rhythm between the different groups
of developers in two cases can be qualified by

∆tinS −∆tinL = 57.5(h), (7)

∆toutS −∆toutL = 62.6(h), (8)

respectively. These differences will be further enlarged if
only the inter-activity time buckets with length longer than
one hour are considered. For comparison, extra T-tests are
also implemented for the two cases in this situation, and the
statistics are recorded in TABLE III, where one can see that
the gaps are almost doubled when only considering long-term
rhythms.

TABLE II
T-TESTS FOR THE DIFFERENCES OF INTER-ACTIVITY TIME LENGTHS

BETWEEN DIFFERENT GROUPS OF DEVELOPERS INCase IAND Case II.

T-test k ≤ 50 k > 50 T-value Significance

Case I 103.0 (h) 45.5 (h) 20.4 p < 10−6

Case II 111.2 (h) 48.5 (h) 22.3 p < 10−6

Moreover, From Eqs. (7) and (8), one can see that, by com-
parison, the social status characterized by outgoing degrees
have slightly more remarkable effects than those characterized
by incoming degrees on committing rhythms of developers,
although these two characters are strongly correlated witheach
other. This phenomenon suggests that the developments of
these OSS projects may be more likely determined by the
strong responsibility of the developers.

B. Communication and committing activities accelerate each
other

Here, we use a time-series based method. The box-and-
whisker diagrams for real and simulated evaluation latencies
and response latencies of all the developers are shown in
Fig. 7 (a) and (c), respectively. Since both evaluation and

TABLE III
T-TESTS FOR THE DIFFERENCES OF INTER-ACTIVITY TIME LENGTH

LONGER THAN ONE HOUR BETWEEN DIFFERENT GROUPS OF DEVELOPERS

IN Case IAND Case II.

T-test k ≤ 50 k > 50 T-value Significance

Case I 181.4 (h) 83.0 (h) 20.5 p < 10−6

Case II 198.0 (h) 87.2 (h) 22.0 p < 10−6

TABLE IV
T-TESTS FOR THE DIFFERENCES BETWEEN SIMULATED AND REAL

EVALUATION AND RESPONSE LATENCIES.

T-test simulated Real T-value Significance

Evaluation 89.9 (h) 58.5 (h) 8.21 p < 10−6

Response 97.0 (h) 57.2 (h) 9.92 p < 10−6

response latencies are highly skewed,i.e., they may have
some extremely large values, the boxes are flattened in these
two figures. In order to present the differences of evaluation
and response latencies between real and simulated cases more
clearly, the y-axes are log-transformed and the corresponding
results are shown in Fig. 7 (b) and (d), respectively, where one
can see that both the real evaluation and response latencies
are shorter than simulated ones. This phenomenon seems to
suggest that these two kinds of activities may accelerate each
other in reality. However, this result can be claimed only
when the differences between the real evaluation and response
latencies and the simulated ones are statistically significant.

The statistics of the T-tests are shown in TABLE IV.
It is found that the average real response and evaluation
latencies equal to 58.5 (h) and 57.2 (h), which are much
shorter than the average simulated evaluation and response
latencies that equal to 89.9 (h) and 97.0, respectively. TheT-
tests show that the differences are significant with relatively
large T-values 8.21 and 9.92. According to this result and that
obtained by the network based method, it is reasonable to say
that, statistically, the communication activities can accelerate
committing activities in reality. Note that, recent studies on
human activities suggest that real distributions of inter-activity
time may have relatively heavy tails [22]–[24],i.e., there may
be activities separated by long periods of inactivity, which may
result in more extremely long evaluation or response latencies
in the real situation than in the simulated situation, as shown
in Fig. 7 (a). However, since the numbers of these extremely
long latencies are very small, they will hardly influence the
results presented here.

V. CONCLUSION AND DISCUSSION

In this paper, the network and time-series based methods are
proposed to quantify the influence of social communications
on working rhythms by analyzing the communication and
committing data of 31 OSS projects in about 10 years, where
some new definitions, such as evaluation and response laten-
cies, and a mechanism to generate simulated communication
time-series are introduced. Based on these methods, it is found
that the developers with higher social status always have
relatively shorter average inter-activity time and the average



real evaluation and response latencies are also shorter than the
average simulated ones, which suggests that social communi-
cations may accelerate committing rhythms of developers in
reality. These findings can help researchers better understand
the evolution mechanism of OSS systems, and then further
help to design more efficient software engineering groups.

In the future, this work can be further expanded in the
following several ways. First, the network and time-series
methods can be used together in order to reveal whether the
individuals response at different rhythms for the evaluations
from others of different social status. This issue is important
because it involves the efficiency and fairness and thus may
determine the success of focused systems to a certain extent.
Second, other microscopic multi-activities patterns needto be
revealed, because more patterns will definitely provide more
information about the interaction between communication and
committing activities. Finally, based on these metrics, the co-
evolution between different activities can be modeled.

ACKNOWLEDGMENT

The authors would like to thank all the members in our
research group in the Department of Computer Science, Uni-
versity of California in Davis, for the valuable discussion
about the ideas and technical details presented in this paper.
All authors gratefully acknowledge support from the Air
Force Office of Scientific Research, award FA955-11-1-0246.
QX acknowledges support from the National Natural Science
Foundation of China (Grant No. 61004097).

REFERENCES

[1] John Scott, “Social network analysis”,Sociology, vol. 22, no. 1, pp.
109-127, 1988.

[2] M. E. J. Newman, S. Forrest, and J. Balthrop, “Email networks and
the spread of computer viruses”,Physical Review E, vol. 66, no. 3, pp.
035101(R), 2002.

[3] Q. Xuan, F. Du, and T.-J. Wu, “Empirical analysis of Internet telephone
network: From user ID to phone”,Chaos, vol. 19, no. 2, pp. 023101,
2009.

[4] L. D. F. Costa, F. A. Rodrigues, G. Travieso, and P. R. V. Boas,
“Characterization of complex networks: A survey of measurements”,
Advances in Physics, vol. 56, no. 1, pp. 167-242, 2007.

[5] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U.Hwang,
“Complex networks: Structure and dynamics”,Physics Reports, vol. 424,
no. 4-5, pp. 175-308, 2006.

[6] R. Albert, H. Jeong, and A.-L. Barabási, “Error and attack tolerance of
complex networks”,Nature, vol. 406, pp. 378-382, 2000.

[7] P. Holme and B. J. Kim, “Attack vulnerability of complex networks”,
Physical Review E, vol. 65, no. 5, pp. 056109, 2002.

[8] R. E. Mirollo and S. H. Strogatz, “Synchronization of Pulse-Coupled
Biological Oscillators”,SIAM Journal on Applied Mathematics, vol. 50,
no. 6, pp. 1645-1662, 1990.

[9] A. Arenas, A. D.-Guilera, J. Kurths, Y. Moreno, and C. Zhoug, “Syn-
chronization in complex networks”,Physics Reports, vol. 469, no. 3,
pp.93?C153, 2008.

[10] Wenwu Yu, G. Chen, and J. Lü, “On pinning synchronization of complex
dynamical networks”,Automatica, vol. 45, no. 2, pp. 429?C435, 2009.

[11] C. P. Ayala, D. S. Cruzes, O. Hauge, and R. Conradi, “Fivefacts on the
adoption of open source software”,IEEE Software, vol. 28, no. 2, pp.
95-99, 2011.

[12] S. K. Sowe, I. Stamelos, and L. Angelis, “Understanding knowledge
sharing activities in free/open source software projects:An empirical
study”, Journal of Systems and Software, vol. 81, no. 3, pp. 431-446,
2008.

[13] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of open
source software development: Apache and Mozilla”,ACM Transactions
on Software Engineering and Methodology, vol. 11, no. 3, pp. 309-346,
2002.

[14] R. Sen, S. S. Singh, S. Borle, “Open source software success: Measures
and analysis”,Decision Support Systems, vol. 52, no. 2, pp. 364-372,
2012.

[15] D. S. Pattison, C. A. Bird, and P. T. Devanbu, “Talk and work: A
preliminary report”, Proceedings of the 2008 International Working
Conference on Mining Software Repositories, pp. 113-116, Leipzig,
Germany, 2008.

[16] C. Baldwin and K. Clark,Design Rules. Cambridge, MA: MIT Press,
2000.

[17] T. Gyimóthy, R. Ferenc, and I. Siket, “Empirical validation of object-
oriented metrics on open source software for fault prediction”, IEEE
Transactions on Software Engineering, vol. 31, no. 10, pp. 897-910,
2005.

[18] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai, “Have Things
Changed Now?-An empirical study of bug characteristics in modern
open source software”,Proceedings of the 1st Workshop on Architectural
and System Support for Improving Software Dependability, pp. 25-33,
San Jose, USA, 2006.

[19] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan,
“Mining email social networks”,Proceedings of the 2006 International
Working Conference on Mining Software Repositories, pp. 137-143,
Shanghai, China, 2006.

[20] http://mail-archives.apache.org/modmbox/
[21] F. A. Haight,Handbook of the Poisson Distribution. New York: Wiley,

1967.
[22] A. L. Barab́asi, “The origin of bursts and heavy tails in human dynam-

ics”, Nature, vol. 435, pp. 207-211, 2005.
[23] R. D. Malmgren, D. B. Stouffer, A. E. Motter, and L. A. N. Amaral,

“A Poissonian explanation for heavy tails in e-mail communication”,
Proceedings of the National Academy of Sciences U. S. A, vol. 105, no.
47, pp. 18153-18158, 2008.

[24] Y. Wu, C. Zhou, J. Xiao, J. Kurths, and H. J. Schellnhuber, “Evidence
for a bimodal distribution in human communication”,Proceedings of
the National Academy of Sciences U. S. A, vol. 107, no. 44, pp. 18803-
18808, 2010.



10
−2

10
0

10
2

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T (h)

P
(∆

t<
T

)

 

 

k
in

≤50

k
in

>50

(a)
10

−2
10

0
10

2
10

4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T (h)

P
(∆

t<
T

)

 

 

k
out

≤50

k
out

>50

(b)

Fig. 5. The cumulative inter-activity time distributions of the committing activities for different groups of developers characterized by their (a) incoming
degrees and (b) outgoing degrees. As one can see, here the difference of cumulative inter-activity time distribution between two distinct groups of developers
is mainly introduced when∆t > 1 (h).

1 2

0

2

4

6

8

10

Ln
(∆

t)
 

k
in

≤50 k
in

>50(a)
1 2

0

2

4

6

8

10

Ln
(∆

t)

k
out

>50k
out

≤50(b)

Fig. 6. The corresponding box-and-whisker diagrams of the inter-activity time for different groups of developers characterized by their (a) incoming degrees
and (b) outgoing degrees. Here, only the inter-activity timewith length longer than one hour is considered, and the y-axes are logarithmically transformed in
order to present the difference of the committing activities between different groups of developers more clearly.



1 2

0

0.5

1

1.5

2

2.5

3

x 10
4

τ E
 (

h)

(a)
1 2

−8

−6

−4

−2

0

2

4

6

8

10

Ln
(τ

E
)

(b)

1 2

0

0.5

1

1.5

2

2.5

x 10
4

τ R
 (

h)

Real(c) Simulated
1 2

−8

−6

−4

−2

0

2

4

6

8

10

Ln
(τ

R
)

Real(d) Simulated

Fig. 7. The box-and-whisker diagrams for real and simulated (a)-(b) evaluation latencies and (c)-(d) response latencies. Here, for (b) and (d), the y-axes are
logarithmically transformed in order to present the differences of latencies between real and simulated cases more clearly.


