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Abstract In recent years, social synchrony has attracted much attention from d-
ifferent research areas including biology, physics, psychology, and engineering. It
is widely believed that synchrony, as an outcome of evolutionary selection, can in-
crease the cohesion of social groups and thus lead them to perform better when deal-
ing with complex tasks. This chapter briefly reviews several quantitative aspects of
social synchrony, including how to measure and how to model it, the impact on it of
the social network structure underlying the group, and its benefits to cooperation and
productivity. We provide a case study of social synchrony among software develop-
ers in Apache, a distributed Open Source Software (OSS) project. In it, we illustrate
how one could quantitatively study aspects of social synchrony. The results sug-
gest that Apache software developers synchronize their work with each other, and
work together in larger groups in relatively short periods. Such working synchrony
increases productivity, in terms of the number of lines of code produced, and im-
proves the efficiency of coordination among developers, in terms of communication
overhead.

1 Introduction

Self-organized synchrony is a group behavior which commonly occurs in nature.
For example, groups of insects [1], birds [2], and fish [3] can coordinate their moves
and speeds with their neighbors so that they can all move together, behavior called
swarming, flocking, schooling, and herding, for different kinds of species. Other ex-
amples of such behavior include fireflies that flash in unison [4], pacemaker cells
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in the heart [5], neural activities in cognitive processing [6], etc. Synchrony is also
a staple in social settings: choir singing [7], synchronization of applause in concert
goers [8], and the formation of public opinion [9] are easily recognizable examples.
Another example is the collaboration in decentralized communities, e.g. among de-
velopers in Open Source Software (OSS) projects [25, 26, 27]. Yet other examples
include the herd behavior among stock market traders [28, 29], the collective atten-
tion and emotion waves in online communities [30, 31], and language mimic [32].

It may be surprising that such synchronized behavior arises spontaneously with-
out overall coordination and centralized authority. In fact, in all those groups syn-
chronization emerges spontaneously, driven by simple decisions made by individu-
als in the group, based on limited sensory input of the behavior of their immediate
neighbors. Staying synchronized with others takes effort, and thus comes at some
cost to the individual. Thus, there are benefits to being synchronized, ranging from
higher attractiveness to mates (fireflies) and evading predators (school of fish), to
expressing forceful appreciation (concert goers).

Understanding the emergent behavior of complex systems which lack central-
ized governance would greatly enhance our understanding and interaction with the
world around us. Recently, computer scientists have much benefited from observing
self-organized biological systems and simulating their distributed rules in order to
solve computational problems efficiently. E.g., a number of artificial intelligent al-
gorithms [10, 11, 12, 13] were proposed to solve computational tasks of non-trivial
difficulty [14, 15, 16, 17, 18]. Meanwhile, these natural rules were also adopted to
design distributed control schemes [19, 20, 21] for groups of artifacts in order to deal
with complex tasks, e.g., formation of spacecrafts [22] and robotic drumming [23].
Effective study of synchrony in nature and society requires the use of quantitative
analysis methods and data sets exemplifying such behavior.

Here we review work on social synchrony, a phenomenon arising when a group of
people perform similar actions in a short period of time, actions which, over time,
lead to the accomplishment of tasks of significant complexity [24]. Although not
all naturally occurring social synchrony is well understood, a significant corpus of
work on these questions has amassed. A typical property of social synchrony is that
individuals can obtain some information of others’ behavior, followed by a simple
modification of one’s own behavior. Repeating this behavior leads to the emergence
of the self-organized collective. This leads to several important questions that we
and others have asked:

1. Synchrony is easy to describe and observe, but how can synchrony be measured
and modeled in social groups?

2. If social ties among individuals and their behavior are in correlation, then what
is the role of the social network structure on their synchronization?

3. Why do individuals synchronize their activities with each other, i.e., what is the
benefit of synchronization? Does it lead to synergy?

This review chapter is structured around the above questions, and thus will elab-
orate on the quantitative aspects of social synchrony modeling, including specific
metrics and models, the impact of social structure on the ability to synchronize, and
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the possible benefits of synchronization for the individual and community. Formal
mathematical descriptions are used in the following sections for completeness; the
chapter can be followed and understood sans the mathematical formalism.

Where appropriate, we will also summarize our results on the subject. Our own
research work has recently centered on understanding self-organization in those so-
cial networks formed to achieve specific tasks, which we call task-oriented net-
works. To that end, we have focused significant attention on Open Source Soft-
ware communities. An established avenue for creating social capital, and reachly
rewarding for the volunteer participants, OSS are examples of projects where peo-
ple work in the absence of a coordinating hierarchy, to create snippets of code which
when put together become complex artifacts of useful software. Some popular OS-
Ss are Apache web server, Linux operating system, and the Mozzila web browser,
but thousands of others exist. The software developers in OSS can be thought of
as collaborating remotely on programming tasks, code integration, documentation
writing, bug fixing, etc., while coordinating their work via electronic communica-
tion or by sharing examples. At the end of the chapter we present a case study on
synchronization of software developers’ activities in the Apache web server project.

2 Metrics and Models for Social Synchrony

Information exchange is necessary to achieve synchrony. A social network describes
the links through which pairs of individuals exchange information. The following
model is often used to describe the dynamics in social networks [21, 33, 34, 35]:

ẋi(t) = F(xi(t))+δ ∑
j∈πi

G(xi(t),x j(t)), i = 1,2, . . . ,N (1)

where xi(t) and πi are the state and the neighbor set of individual vi, δ is the cou-
pling strength, F(·) is the individual dynamics, and G(·) is the coupling function
through which different individuals interact with each other. The group of individu-
als v1,v2, . . . ,vN are considered mathematically synchronized if and only if

N

∑
i, j=1

∥xi(t)− x j(t)∥→ 0, (2)

as t → ∞ [20, 36, 37]. However, Eq. (2) cannot be directly used to measure the
synchrony in real systems because of their finite life span, and also because individ-
uals may not take actions at the exactly same time, i.e., there might be short delays
between their actions. To overcome these limitations, recently, several quantitative
methods were proposed to measure social synchrony more realistically.

Sun et al. [38] modeled synchrony in a group of cows, of two different behavioral
states, eating or lying down. If we denote by τi(k) the kth time at which cow vi
switches to certain state (switching action), then the synchrony of this state between
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cows vi and v j is measured by

∆i j =
1
K

K

∑
k=1

|τi(k)− τ j(k)|, (3)

where it is assumed that the two cows have the same number of switching actions.
A smaller value of ∆i j indicates more synchrony of the two individuals. Then, for N
cows, the group synchrony is measured by averaging over all pairwise synchronies:

∆ = ⟨∆i j⟩=
1

N2

N

∑
i, j=1

|∆i j|. (4)

An alternative metric for synchrony is to directly count how often all individuals
have the same state [39].

In many real cases different individuals may be active at very different rates in
any given time interval, and each action may last for only a very short period of time,
or even be discrete, i.e., the activities may form a Zero-measure set on the time axis.
For example, in Open Source Software projects, different software developers have
different rhythms of submitting changes to the software, and only the times when
they submitted the changes are recorded. To address this situation, we have proposed
the following more general metric for synchrony.

1. Identify activity bursts. From the time-series of activities for each individual,
identify activity bursts based on a one-dimensional clustering method, i.e., first
inter-activity time intervals larger than a predefined time window θ are obtained,
then the activities between two consecutive large intervals are grouped as an
”active burst”, with occurrence time equal to the average of the times of the first
and the last activities in this burst.

2. Smooth bursts. Let Γi be the set of all occurrence times of activity bursts of in-
dividual vi. The smoothing function of the activity bursts is constructed by using
Gaussian kernels [40], as follows:

φi(t) =
1
|Γi| ∑

ξ∈Γi

1√
2πσ

e−
(t−ξ )2

2σ2 . (5)

3. Calculate synchrony through correlation. For each pair of individuals vi and v j,
their centralized curves are obtained by subtracting the corresponding average
value in the time interval [TL,TU ], where TL and TU are the minimum and maxi-
mum elements in the set Γi∪Γj, respectively. Their synchrony is calculated by the
Pearson correlation coefficient [41] between the two centralized curves. Similar-
ly, the group synchrony is calculated by averaging over all pairwise synchronies.

The metrics above calculate synchronies but don’t tell us if those values are sig-
nificantly different than those that would result from chance synchronization. To
calculate the significance of the results we need a random or null model of behavior
for all possible activities. One null model example is the uniform model, and anoth-
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er is a class of models that results from randomly permuting the labels on the events
in the time series (bootstrapping) [26]. Using such models, the data can be ran-
domized many times, each resulting in a population, and then pairwise synchronies
can be computed for the individuals in each population. This procedure will yield a
distribution with which the statistical significance of the real case can be assessed,
using tests such as the t-test or the Wilcoxon-Mann-Whitney test.

3 The Impact of the Network Architecture on Synchrony

Based on the mathematical model represented by Eq. (1), we can see that synchrony
may depend on the underlying network structure. As a result, it is of much scientific
interest to characterize the kinds of networks which can facilitate synchrony.

In many theoretical works [33, 34, 42, 43, 44, 45], it is simply assumed that

G(xi(t),x j(t)) = H(x j(t))−H(xi(t)), (6)

where H(·) is called the output function. Eq. (6) is intuitive by considering that each
individual is cooperative and hopes to be in an activity state close to those of its
neighbors. By substituting Eq. (6) into Eq. (1), we have

ẋi(t) = F(xi(t))−δ
N

∑
j=1

Li jH(x j(t)), i = 1,2, . . . ,N, (7)

where L is the Laplacian matrix with its element Li j =−1 if vi and v j are neighbors
in the network, Lii = ki if vi has degree ki, and Li j = 0 otherwise. If the network is
connected, i.e., there is a path between each pair of nodes, the Laplacian matrix has
the eigenvalues satisfying 0 = λ1 < λ2 ≤ λ3 ≤ . . .≤ λN .

Nishikawa et al. [46] found that the network’s ability to synchronize is deter-
mined by λN/λ2: the smaller that ratio, the less difficult it is to synchronize the
dynamics of the nodes, and vice versa. Then, the question is which kind of network-
s have relatively small ratio of λN over λ2. Several studies [42, 47, 48] proved that
the ratio is mainly determined by two factors: small world property and homogene-
ity. That is, a group of individuals are more likely to synchronize with each other
when they are close to each other, i.e., have short average distance, and meanwhile
have similar social status, i.e., have similar degrees. Thus, it is easy to infer that the
fully connected network has the maximum synchronization ability since it has the
minimum average distance and all the nodes have exactly the same degree. In fact,
it can be proved that, in a fully connected network of N nodes, λ2 and λN have the
same value N, so that the ratio λN/λ2 is equal to 1, which is the minimum over
all connected networks [49]. However, in most real cases, an individual cannot es-
tablish and keep the social ties with all others in a social system, especially when
the system is large. Therefore, it is of much interest to identify the optimal net-
work structures for synchrony under the condition that the average degree is fixed
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and much smaller than the network size. Donetti et al. [47] proposed a method to
minimize the eigenvalue ratio by a rewiring process, and they found that the optimal
networks have extremely homogeneous structure, i.e., very small variance in degree,
node distance, betweenness, and loop distributions [50], properties similar to those
of Cage graphs [51] studied by many mathematicians. We obtained the same result
by adopting another method [48], where the average shortest path length rather than
the ratio is minimized by a rewiring process under the condition that all nodes have
exactly the same degree. In fact, we found that the average shortest path length and
the ratio λN/λ2 are linearly correlated in the optimization process. Since such op-
timization algorithms are always very time-consuming, we also proposed a growth
model to obtain sub-optimal structure of large-scale networks in this work.

Most real-world networks have heterogeneous and modular structure [52, 53, 54,
55]. When looking inside, it was found that hub nodes and the links connecting
different modules play key roles in the synchronization process [24, 33, 56]. For
example, theoretical analysis [56] proved that the network of individuals are more
likely to be synchronized when those highly connected individuals are selected as
leaders (they are not influenced by others), i.e., smaller number of leaders are need-
ed, as compared to the random case, while empirical studies of the popular social
site Digg [24] also indicate that large-scale social synchronies are more likely to
arise if initialized by individuals with larger numbers of connections. Recent studies
of synchrony on modular networks can also provide some useful insights. In fac-
t, synchrony always occurs within each module at group level because the nodes in
each module are always highly connected, almost like a fully connected subnetwork.
However, the steady states of different modules may be independent from each oth-
er, i.e., the global synchrony cannot be achieved at system level, unless there are
enough between-module links including some random and long-range links among
these modules [33, 57, 58]. These findings indicate that the links connecting differ-
ent modules are important for the systemic behaviors.

The Kuramoto model [34, 59] may be the most well-known model to study the
synchronization on networks. In this model, F(θi)≡ωi and G(θi,θ j)≡ sin(θ j−θi),
where ωi is the natural frequency of node vi, θi rather than xi is adopted as the state
of a node in order to keep these symbols the same as those in the related references,
and the time t is omitted for simplicity. Then, we have the following collective
dynamics:

θ̇i = ωi +δ ∑
j∈πi

sin(θ j −θi), i = 1,2, . . . ,N. (8)

The synchronization here means that a group of individuals with different natu-
ral frequencies may oscillate with the same mean frequency when their coupling
strength exceeds some critical point determined by the network structure. Note that
this model can be theoretical analyzed, and Arenas et al. [34] have provided a de-
tailed review for this kind of study, which will not be extendedly discussed here. In
fact, the Kuramoto model on networks has a simple linear form:

θ̇i = ωi +δ
N

∑
j=1

Li jθ j(t), i = 1,2, . . . ,N. (9)
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Recently, Lerman and Ghosh [45] proposed a more general linear model by re-
placing the Laplacian matrix L in Eq. (9) by R ≡ αI −A in order to describe non-
conservative social and biological processes more appropriately. The synchroniza-
tion process partly depends on network structure, as a result, it can also be used
to identify the network structure [60, 61, 62, 63], e.g., detect communities. Inter-
estingly, Lerman and Ghosh [45] found that the identified network structure may
be different by using different kinds of interactions in the synchronization scheme,
which suggests that such methods for identifying local structures in complex net-
works must be used with great care.

4 Benefits of Social Synchrony: Toward Synergy

One of the reasons that a group of individuals prefer to take similar actions in certain
time is that they want to deal with complex tasks more efficiently, in other words,
they see synchrony as a way for the group to gain more than what each individual
puts in. Thus, they aim to achieve synergy, defined as the creation of a whole that is
greater than the sum of its parts [64]. There are a dozen of such examples in nature.
Ants are more likely to follow others in the same colony in order to perform bet-
ter when they search and carry food as a group [65, 66]. Male fireflies synchronize
their flashing rhythm in order attract more females in a wide-range area [67, 68].
A larger flocking of birds can help them detect approaching predators with a high-
er probability [69], meanwhile, formation flight can also reduce the flying cost on
aerodynamics aspect [70], which can explain why groups of birds always present
special shapes when they migrate over a long distance.

There are also many reasons for humans to synchronize our actions with oth-
ers: Macrae et al. [71] found that the synchrony of movements during social ex-
changes may facilitate the person perception process, e.g., the memory for an in-
teraction partner’s characters can be enhanced during this process. Hove and Risen
designed experiments to show that interpersonal synchrony increases affiliation with
a group [72], similar to the effect of mimicry [73], which may provide evidence for
the hypothesis that such phenomena may play important role in social cohesion [74].
While recently Paladino et al. [75] suggested that synchrony may also have a magic
to blurs self-other boundaries. All of these psychological findings indicate that so-
cial synchrony is selected evolutionarily, which may help a group of people increase
their cooperative ability to better solve complex social tasks, as validated by Gon-
zales et al. [32], Valdesolo et al. [76], and Wiltermuth et al. [77] in their empirical
studies. Moreover, Woolley et al. [78] suggested that such cooperative ability can
be characterized as a general collective intelligence factor, i.e., they found that the
group performances on different tasks are significantly positively correlated, while
the average and maximum performances of individual group members are not, and
this factor can further be used to predict the group performance on other tasks.
More on collective intelligence can be found in Woolley and Hashmi’s chapter of
this book.
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Having chosen a metric and model of synchrony as described in the above sec-
tions, synergy can be studied as an outcome, by modeling it in terms of the observed
synchronizations in the groups or in the whole system. Great attention must be paid
to following good modeling habits to avoid colinearities and other statistical obsta-
cles.

5 A Case Study of Synchrony in Open Source Software Systems

Open Source Software systems provide a good platform to analytically study social
synchrony and synergy among people. In OSS, groups of volunteer software devel-
opers create a software artifact by sharing programming experiences, finding bugs,
or committing to files directly. OSS resemble ecological systems [27] in that in ad-
dition to the actual developers, they attract thousands of users and other contributors
looking to gain knowledge. These human resources, in turn, make the software grow
faster and become better by providing feedbacks and joining the ranks of developers
occasionally. Pavlic and Pratt, in another chapter of this book, compare eusocial in-
sect behavior with human behavior conceptually in the context of OSS on a variety
of dimensions.

Here, we look at projects from the Apache Software Foundation, and show how
to validate whether developers prefer to work together or not, i.e., we show how to
measure social synchrony and demonstrate that it is prevalent in these projects. We
selected the six projects Ant, Axis2 java, Cxf, Derby, Lucene, and Openejb because
they contain most developers so that we can get most meaningful statistical result-
s. The data, gathered on March 24th, 2012, contains both the commit-code-to-file
(commits) activities and the communication activities (emails) among developers.
For each commit in a project, we have gathered the developer ID, file ID, the sub-
mitting time in seconds, and the numbers of added and deleted lines of code in each
file. For each email communication activity, we have the sender ID, receiver ID, and
the sending time in seconds.

Based on this data we calculated group synchrony. First, we filtered the data
by selecting the files committed to by at least ten developers, and considered each
month from the first to the last commit time as a time window. For each file fi, out
of a total of M across all six projects, we counted the number of developers, denoted
by ni(t), that committed to this file in each time window t. Let Xi the total number
of months in the time interval and Yi = maxt ni(t). Then, for each fi, we obtained an
Xi ×Yi binary count matrix Ai, with its elements Ai(t,ni(t)) = 1 and the others equal
to zero.

Note that the count matrix Ai shows that developers worked together in the same
month on the same file, which, however, may be largely dependent on their own
working rhythms, i.e., Yi will be very large if the developers worked on the file fre-
quently and will be very small otherwise. Therefore, to establish a baseline, we need
to create simulated count matrices for comparison. To do that, we randomized the
data as follows. If developer v j committed to the file in hi j months, we randomly
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Fig. 1 The visualization of the significance matrix C. Here, S is the group size and T is a month in
the first two years for each file since it was created. The elements with ai j < 5, bi j < 0.1, or ci j ≤ 0
are not shown. The point size is proportional to the value of the corresponding element in matrix
C.

permuted these hi j active months among the total Yi months. We repeated that pro-
cess one hundred times and got 100 binary matrices, denoted by Bl

i , l = 1,2, . . . ,100,
for these random cases. Note that the real and simulated matrices may have differ-
ent sizes, in which case we then expand the smaller matrices by filling them with
zeros, so that all these matrices have the exactly same size. When considering all M
files together, we also expand smaller matrices by the same method, and still denote
them by Ai and Bl

i , i = 1,2, . . . ,M, l = 1,2, . . . ,100. Then, we can calculate the real
and simulated matrix counts by:

A =
M

∑
i=1

Ai, B =
1

100

M

∑
i=1

100

∑
l=1

Bl
i (10)

respectively. Based on these two matrices, we can get a significance matrix C with
each element calculated by ci j = (ai j −bi j)/bi j, which shows how significantly dif-
ferently than chance the developers prefer to work together as a group at a certain
scale. Here, only the elements satisfying ai j ≥ 5 and bi j ≥ 0.1 are considered. The
significance matrix C for the first two years of the lives of the files is visualized in
Fig. 1, where we can see that developers indeed prefer to work together as a group
at larger scale, and the absence of most points when S = 1 indicates that they seldom
work alone.

6 Conclusions

In this chapter, we have described social synchrony, and reviewed proposed metrics
and models for it. We also discussed its possible benefits in social groups, espe-
cially how it leads to synergy among participants. We applied those methods to the
analysis of distributed software development as a case study. In our analysis, we
successfully discovered group synchrony of code developers when they commit to
files, demonstrating the utility of this technique.

Future work involves extending this technique to identify synchrony patterns in
OSS systems, based on which more realistic synchrony models for code developers
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can be created. These methods can also be used to analyze other social communi-
ties, where people cooperate with each other to finish complex tasks, e.g., online
knowledge communities like Wikipedia, or question and answer communities such
as Stack Overflow, where people share knowledge by shaping answers for technical
problems together.
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30. Lehmann, J., Gonçalves, B., Ramasco, J.J., Cattuto, C.: Dynamical classes of collective at-
tention in Twitter. In the proceedings of the 2012 International World Wide Web Conference
Committee, 251–260 (2012)

31. Schweitzer, F., Garcia, D.: An agent-based model of collective emotions in online communi-
ties. The European Physical Journal B 77(4), 533–545 (2010)

32. Gonzales, A.L., Hancock, J.T., Pennebaker, J.W.: Language style matching as a predictor of
social dynamics in small groups. Communication Research 37(1), 3–19 (2010)

33. Park, K., Lai, Y.-C., Gupte, S.: Synchronization in complex networks with a modular struc-
ture. Chaos 16(1), 015105 (2006)

34. Arenas, A., Dı́az-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex
networks. Physics Reports 469(3), 93–153 (2008)
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S.: Synchronization interfaces and overlapping communities in complex networks. Physical
Review Letters 101(16), 168701 (2008)

63. Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75–174 (2010)
64. French, R., Schermerhorn, J.R., Rayner, C., Rees, G., Rumbles, S., Hunt, J.G., Osborn, R.N.,

Organizational Behaviour. (John Wiley & Sons, New York, 2008)
65. Deneubourg, J.L., Pasteels, J.M., Verhaeghe, J.C.: Probabilistic behaviour in ants: A strategy

of errors?. Journal of Theoretical Biology 105(2), 259–271 (1983)
66. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony of cooperating

agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 26(1),
29–41 (1996)

67. Otte D.: On theories of flash synchronization in fireflies. The American Naturalist 116(4),
587–590 (1980)



Synchrony in Social Groups and Its Benefits 13

68. Lewis, S.M., Cratsley, C.K.: Flash signal evolution, mate choice, and predation in fireflies.
Annual Review of Entomology 53, 293–321 (2008)

69. Siegfried, W.R., Underhill, L.G.: Flocking as an anti-predator strategy in doves. Animal Be-
haviour 23, 504–508 (1975)

70. Hummel, D.: Aerodynamic aspects of formation flight in birds. Journal of Theoretical Biolo-
gy 104(3), 321–347 (1983)

71. Macrae, C.N., Duffy, O.K., Miles, L.K., and Lawrence, J.: A case of hand waving: Action
synchrony and person perception. Cognition 109, 152–156 (2008)

72. Hove, M.J., Risen, J.L.: It’s all in the timing: Interpersonal synchrony increases affiliation.
Social Cognition 27, 949–960 (2009)

73. Lakin, J.L., Jefferis, V.E., Cheng, C.M., Chartrand, T.L.: The chameleon effect as social glue:
Evidence for the evolutionary significance of nonconscious mimicry. Journal of Nonverbal
Behavior 27, 145–162 (2003)

74. Freeman, W.: A neurobiological role of music in social bonding. In: Wallin, N.L., Merker, B.,
Brown, S. (Eds.), The Origins of Music, pp. 411–424. MIT Press, Cambridge, MA (2000)

75. Paladino, M.P., Mazzurega, M., Pavani, F., Schubert, T.W.: Synchronous multisensory stimu-
lation blurs self-other boundaries. Psychological Science 21, 1202–1207 (2010)

76. Valdesolo, P., Ouyang, J., DeSteno, D.: The rhythm of joint action: Synchrony promotes co-
operative ability. Journal of Experimental Social Psychology 46(4), 693–695 (2010)

77. Wiltermuth, S.S., Chip, H.: Synchrony and cooperation. Psychological Science 20, 1–5
(2009)

78. Woolley, A.W., Chabris, C.F., Pentland, A., Hashmi, N., Malone, T.W.: Evidence for a col-
lective intelligence factor in the performance of human groups. Science 330(6004), 686–688
(2010)


