
Building It Together: Synchronous Development in OSS

Qi Xuan*†

qxuan@ucdavis.edu
Vladimir Filkov†

filkov@cs.ucdavis.edu

*Department of Automation †Department of Computer Science
Zhejiang University of Technology University of California, Davis

Hangzhou 310023, China Davis, CA 95616-8562, USA

ABSTRACT
In distributed software development synchronized actions
are important for completion of complex, interleaved tasks
that require the abilities of multiple people. Synchronous
development is manifested when file commits by two de-
velopers are close together in time and modify the same
files. Here we propose quantitative methods for identify-
ing synchronized activities in OSS projects, and use them
to relate developer synchronization with effective productiv-
ity and communication. In particular, we define co-commit
bursts and communication bursts, as intervals of time rich in
co-commit and correspondence activities, respectively, and
construct from them smoothed time series which can be,
subsequently, correlated to discover synchrony. We find that
synchronized co-commits between developers are associated
with their effective productivity and coordination: during
co-commit bursts, vs. at other times, the project size grows
faster even though the overall coding effort slows down.
We also find strong correlation between synchronized co-
commits and communication, that is, for pairs of developers,
more co-commit bursts are accompanied with more commu-
nication bursts, and their relationship follows closely a linear
model. In addition, synchronized co-commits and commu-
nication activities occur very close together in time, thus,
they can also be thought of as synchronizing each other.
This study can help with better understanding collabora-
tive mechanisms in OSS and the role communication plays
in distributed software engineering.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Program-
ming teams; D.2.8 [Software Engineering]: Metrics—
Process metrics

General Terms
Theory, Measurement, Management

Keywords
OSS, collaboration, communication, synchronization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2756-5/14/05 ...$15.00.

1. INTRODUCTION
Software engineering projects depend on collaboration [19,

24, 30, 31, 45, 51], as almost any non-trivial software re-
quires the effort of multiple developers to design it, imple-
ment features, maintain revisions, and so on. Open Source
Software (OSS) projects are examples of organized software
development where collaboration is essential. Collaboration
is well defined and organized in traditional companies [12,
13, 52], however, its mechanism in OSS projects is still un-
clear to date, although it is considered to play a key role in
the success of many OSS projects [7, 43], such as Apache,
Mozilla, Eclipse, etc. How does collaboration come to pass
in OSS, and why? While lacking formal organization, these
projects do exhibit a social network among the participants
enabling them to accomplish complex tasks [7]. For exam-
ple, often multiple developers work on the same or related
files around the same time, and these activities, or collab-
orations are accompanied by task-coordination via remote
communications, through different electronic tools, such as
emails, instant messaging, and web-based applications. So,
collaboration and communication in OSS should be strongly
connected, but how can we quantify that?

Many OSS projects have existed for a long time, e.g.,
more than ten years, and are comprised of large numbers
of files, while their organizations are highly dynamic [6, 16,
34, 41], i.e., developers join and quit frequently. Thus, to
assert that there is a collaborative relationship between two
developers we need more than just evidence that they sim-
ply contributed to the same project or same files; we need
to know whether their activities occurred close together in
time. Note that here we only focus on file-level collabo-
ration [46] in order to observe the generative process of a
project more carefully. A collaboration in OSS projects,
therefore, involves, at the minimum, a pair of developers,
their possible contribution to the same artifacts, and over-
lapping times of contribution. To emphasize the synchrony
of such a collaborative activity and distinguish it from the
traditional definition of collaboration, here we call it syn-
chronous development. Fortunately, most activities of de-
velopers, including code commits and communication, are
all recorded in OSS repositories [4, 5, 27, 50]. These valu-
able data sets provide an excellent opportunity for us to de-
fine synchronous development between developers in an ob-
jective way, to study the relationship between synchronous
development and communication, and further reveal their
effects on productivity in these projects.

Here, we study synchronous development in OSS projects,
its effect on a measure of code size, the number of gener-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ICSE’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2756-5/14/05...$15.00
http://dx.doi.org/10.1145/2568225.2568238

222

ated lines of code (LOC) [28] by developers, and the as-
sociation between developer communication and their syn-
chronous development. Specifically, we make a dual contri-
bution. First, we present a theoretical framework to quan-
titatively study synchronous development and communica-
tion, based on intervals of time rich in co-commits and cor-
respondence activities between pair of developers, which we
call, respectively, co-commit bursts, or C-bursts, and email
communication bursts, or E-bursts. Time-series smoothing
and correlation allow us to identify synchronous patterns
across bursts.

Our second, empirical contribution, is in applying the
quantitative framework to data from six OSS projects, with
the following results:

• We find that during a synchronous development more
LOC are generated and fewer are deleted, i.e., the
projects grow faster, less coding effort is expended,
and the coordination is more effective;

• We show that synchronous development and commu-
nication are positively correlated and accelerate each
other;

• We present a metric to compare communication tools
as effectors on task-coordination between developers;

• We provide case studies by analyzing the content of
email messages in support of the quantitative results.

The rest of the paper is organized as follows. Next, we
discuss our research questions. In Section 3, we present our
methods, followed by the results in Section 4. Then, we dis-
cuss the possible threats to the validity in Section 5, followed
by a section on related work in Section 6. Finally, the paper
is concluded in Section 7.

2. RESEARCH QUESTIONS
The C-burst and E-burst methodology, which we present

in the next section, is useful for quantifying emerging syn-
chronous relationships between actions of participants in
complex distributed systems, like OSS projects. We put
it to use in answering questions related to synchronization
of developers in OSS projects.

To make the case for synchronous development we first
ask if there is sufficient evidence in the data to support the
assertion that synchronous development is more than ran-
dom commits by pairs of developers.

Research Question 1: Is synchronous development
more than a random phenomenon? That is, does it
occur significantly more frequently in real OSS projects
than it would by chance?

Next, we consider the effects that synchronous develop-
ment might have on efforts expended and on code growth
in OSS projects. In an OSS project, it is plausible that de-
velopers can contribute more when they participate in syn-
chronous development. Here, to quantify this phenomenon,
we follow previous studies and use the lines of code, or LOC,
to measure the effort developers expend as well as the project
size and its growth. In a simplified, but easy to quantify,
sense, each commit activity of a developer consists of two

parts: adding new code and deleting old code. If we let
LAdd and LDelete denote the LOC added and deleted per
commit, respectively, then the change in LOC, or project
size, for each commit is:

∆L = LAdd − LDelete. (1)

Similarly, we can also define the effort expended as:

∆W = LAdd + LDelete. (2)

We note that effort may go into appropriately deleting lines
of code, which may result in a small, if any, size difference
to the project code. Then, we ask,

Research Question 2: Do projects grow more, in
terms of larger ∆L, per commit, when developers par-
ticipate in synchronous development? Do developers
expend more or less effort, in terms of ∆W , during syn-
chronous development?

Software projects are inherently cooperative, which re-
quires many software engineers to coordinate their efforts in
order to produce a large software system [51]. Collaboration
between developers always involves coordination challenges,
which have been studied extensively [22, 25, 30], including
careful interview studies [23]. In OSS, coordination means
respecting others’ work while making one’s own work more
compatible with theirs. In other words, a developer adding
his lines of code tries not to affect much others’ lines. This,
we expect, should be easier done during co-commit bursts.

Research Question 3: Are developers more effec-
tive in coordination, in terms of smaller LDelete per com-
mit, during co-commit bursts than outside of co-commit
bursts?

Communication is vital in making collaboration effective.
Since software developers in OSS projects work from wher-
ever they happen to be, electronic communications, such as
email, rather than traditional face-to-face conversations, are
preferred [47]. The public availability of email traces makes
it possible to analyze the relationship between commit and
communication activities. We have already found that com-
munication and commits accelerate each other in Apache
OSS projects [54]. Since communications are necessary for
collaboration, here it is natural to assume that synchronous
developments accompany communications very closely.

Research Question 4: What is the relationship
between C-bursts and E-bursts? Are more co-commit
bursts always accompanied with more email bursts?

Further, if there exists a positive relationship between the
C- and E-bursts, it is plausible that communication and syn-
chronous development are positively coupled, i.e., having
more of one increases the other.

Research Question 5: Are communication and syn-
chronous development activities positively coupled (in a
dynamic sense)? That is, will increase in one result in
increase in the other, shortly thereafter?

223

3. METHODOLOGY
Here we describe the mathematical framework we use to

make the concept of synchronous development more prac-
tical, based on time-series of commit and communication
activities of developers.

For an OSS project, we denote by D the set of developers
and by F the set of files. For each developer d ∈ D, let
T (d) be the sequence of their commit times. Since a devel-
oper may submit changes to several files at the same time,
let fi(d) ⊆ F the subset of files to which developer d made
changes at the i ’th commit. For a pair of developers da and
db, we denote by Ω(da, db) the sequence of their interleaved
email communications’ times. We consider all communica-
tions undirected, thus, Ω(da, db) ≡ Ω(db, da), for any da, db.

We denote by ξ a fixed time-window, based on which we
define the time-series of events we call co-commit bursts, or
C-bursts, and email bursts, or E-bursts.

Co-commit Bursts A co-commit burst, or C-burst, is a
sequence of temporally interleaved commit activities of two
developers such that each commit of the first developer is
followed closely, within time ξ, by a commit of the second
developer, and of the files the two commits modify at least
one is the same in both. More precisely, in a C-burst se-
quence, for every commit activity of the first developer, da,
modifying a set of files fi(da) at time ti(da) in the burst,
there is at least one commit activity by the other devel-
oper db on the file set fj(db) at time tj(db) in the burst,
and no such activities outside of the burst exist satisfying
|ti(da)− tj(db)| ≤ ξ and fi(da) ∩ fj(db) 6= ∅.

Based on the above definition we use a one-dimensional
clustering algorithm to identify C-bursts, as follows:

1. For each pair of developers da and db, a 6= b, we denote
by U the sub-burst set, and set U = ∅.

2. For each commit of da at time ti(da) ∈ T (da), it is in a
sub-burst if there is at least one commit of db at time
tj(db) ∈ T (db), such that |ti(da)− tj(db)| ≤ ξ, and the
same files were changed, i.e., fi(da) ∩ fj(db) 6= ∅. We
group all such commits of db, as well as the commit of
da, into the sub-burst, and record its time interval from
the first commit to the last in the sub-burst. Then, we
add this sub-burst to U .

3. For all sub-bursts in U , we merge those with over-
lapping time intervals, and update the corresponding
start and end times of the burst.

4. The final set of C-bursts for da and db is denoted by
BC(da, db), with the occurrence time of each burst
given by the mean of its start and end times.

We note that the simpler approach of dividing develop-
ers’ overlapping active-time intervals into successive time-
windows of the same length, and then checking for commits
to the same files in the same time-windows does not work
in general, as it results in breaking up a synchronous devel-
opment, especially when the synchronous development lasts
for a longer time.

Email Bursts An email burst, or E-burst, is a sequence
of temporally interleaved email communication activities of
two developers, such that the time interval between any two
successive emails in the burst is smaller than some minimal
time, say ξ. Thus, for every pair of developers da and db,
all their E-bursts are just the subsequences remaining after

excising all intervals longer than ξ from their sequence of
email communication activities occurring at Ω(da, db).

Note that an E-burst is different from an email thread [43]
which is the group of emails referring to the same subject. In
contrast, an E-burst is determined by the time that emails
were sent and not their content.

3.1 Comparing Bursts via Smoothed Curves
Work related communications may occur before or after

the commit activities being discussed, as, e.g., plans or con-
clusions, respectively. Hence, C-bursts and E-bursts can
occur at non-overlapping time periods which makes it dif-
ficult to gainfully correlate those time-series. In addition,
the bursts are, in general, non-regular time series, and also
discrete, and noisy.

To extract trends and patterns from such challenging time-
series, and at the same time reduce the effect of noise we use
smoothing. This technique reduces complexity in time-series
data and allows for easy comparison of the smoothed curves.
For the C-bursts and E-bursts we use Gaussian smoothing,
based on a symmetric bell curve [38], defined as:

f(x, ζ) =
1√
2πσ

e
(x−ζ)2

2σ2 , (3)

where ζ is the position of the peak and σ controls the width
of the curve. An important character of the Gaussian func-
tion1 is that it quickly decreases to zero when x goes outside
of the range [ζ − σ, ζ + σ].

For every two developers, let ΓC and ΓE be the sets of
occurring times of their co-commit and email bursts, respec-
tively. Then, the corresponding smoothed bursts, C-curve
and E-curve, are defined as (| · | is set cardinality)

ϕC(x) =
1

|ΓC |
∑
ζ∈ΓC

f(x, ζ), ϕE(x) =
1

|ΓE |
∑
ζ∈ΓE

f(x, ζ). (4)

If we let ∆ be the time interval between the minimum
time and maximum time in ΓC∪ΓE , then the corresponding
centralized curves on the whole ∆ interval are calculated by

φC(x) = ϕC(x)− 1

∆

∫ U

L

ϕC(x)dx, (5)

φE(x) = ϕE(x)− 1

∆

∫ U

L

ϕE(x)dx. (6)

Then, we can measure the synchronization between the
two curves by calculating the Pearson correlation coefficient
[9], defined as

R =

∫ U
L
φC(x)φE(x)dx√∫ U

L
[φC(x)]2 dx

√∫ U
L

[φE(x)]2 dx
. (7)

Based on this definition, R is 1 when φC(x) ≡ φE(x); it is
-1 when φC(x) ≡ −φE(x), and it is 0 when the two curves
are independent of each other.

3.2 Null Models
The values of the Pearson correlation coefficients as calcu-

lated by Eq. (7) tell us the magnitude of the synchronization
between synchronous development and communication ac-
tivities of pairwise developers, but they don’t specify if the

1We expect that the results will not change much if other
kernel functions are adopted.

224

Table 1: Basic properties of the six OSS projects.
Project Description Time period #Developers #Files #Commits #Messages
Ant Software tool 2000/01/13-2012/03/16 44 11620 14697 9398
Axis2 java Web services engine 2001/10/04-2012/03/18 72 129978 13466 11865
Cxf Web services framework 2005/07/22-2012/03/16 45 37867 14288 4625
Derby Database management system 2004/08/11-2012/03/22 35 6563 8301 25057
Lucene Search software 2001/09/11-2012/03/23 41 6674 5337 17708
Openejb Container system and server 2002/01/18-2012/03/22 38 43960 7801 5312

synchronization is significant statistically. To calculate the
significance we conduct simulations to generate randomized
instances of our data.

We simulate random email communication time-series by
randomizing the time intervals between successive activities,
using a method we recently developed [54], summarized here
for completeness: First, for each pair of developers, let their
communications occur at the successive time t1, t2, . . . , tn
in reality. Denote the n − 1 ordered inter-communication
time intervals by ∆tk = tk+1 − tk, with k = 1, 2, . . . , n − 1.
Then, randomly rearrange them to get a new sequence of
time intervals, denoted by ∆tak, k = 1, 2, . . . , n− 1. Finally,
weld these new ordered time intervals together to get a new
time-series ta1 , t

a
2 , . . . , t

a
n, satisfying{

tak = tk, k = 1,
tak = tak−1 + ∆tak−1, k ≥ 2.

(8)

Such simulated email communication time-series have the
same distribution of time intervals as the empirical one. We
generate simulated E-curves with the above, and then cal-
culate the correlation coefficients between the real C-curves
and the corresponding simulated E-curves for comparison.

Note that, to make the argument that synchronous de-
velopments occurs more frequently than by chance, we also
randomize the commit activities for each developer by the
same method, while keeping the order of each activity and
the associated files they access. Then, we enumerate the
simulated C-bursts for all pairs of developers and compare
them with the numbers of real C-bursts. In both cases, the
communication or committing activities are randomized one
hundred times.

4. RESULTS AND DISCUSSION
We obtained data for 31 OSS projects from the Apache

Software Foundation on March 24th, 2012. For each project,
the commit activities of developers on different files are gath-
ered from the corresponding Git repository while the email
communication activities are gathered from the online de-
veloper mailing lists. For each commit activity, we recorded
the developer ID, file ID, file type, the exact submitting time
in seconds, and the numbers of added and deleted LOC in
each file. For each communication activity, we recorded the
sender ID, receiver ID, and the sending time in seconds.
Note that, developers may have multiple aliases, which were
resolved by using a semi-automatic approach [5]. In this
paper, we focus on the six projects with most developers:
Ant, Axis2 java, Cxf, Derby, Lucene, and Openejb, in order
to get most meaningful statistical results. Several of their
basic properties are presented in Table 12.

2The full data is available at:
http://www.cs.ucdavis.edu/~filkov/ICSEData.zip

Table 2: T-tests of the difference between C-bursts
in real and simulated data for developer pairs, with
different time-windows.

Project ξ (day) Real Simulated P-value

Ant
1 4.8868 0.5226 <0.00001
5 5.8178 1.1538 <0.00001
10 5.2654 1.3572 <0.00001

Axis2 java
1 2.4983 0.3529 <0.00001
5 2.8045 0.7335 <0.00001
10 2.5207 0.8570 <0.00001

Cxf
1 5.1783 0.3028 <0.00001
5 5.6818 0.6620 <0.00001
10 4.8298 0.7658 <0.00001

Derby
1 2.3100 0.5715 <0.00001
5 4.1624 1.5424 <0.00001
10 4.8635 1.9674 <0.00001

Lucene
1 3.6504 0.5967 <0.00001
5 4.3571 0.9328 <0.00001
10 3.8118 0.9279 <0.00001

Openejb
1 2.4800 0.3261 <0.00001
5 3.5442 0.7192 <0.00001
10 3.6379 0.8404 <0.00001

4.1 Synchronous Development Is Real
Based on the methods described above, we identify the C-

bursts for each pair of developers. To show that synchronous
development is a significant emergence rather than a random
phenomenon that developers committed to the same files
at close time just by chance, we created simulated commit
time-series for each developer with our null model. Then,
by the same method, we also generated C-bursts for each
pair of developers based on their simulated co-commit time-
series. We find that developers exhibit synchronous devel-
opment much more frequently than in the simulated case,
as indicated by the T-test results presented in Table 2. This
answers in the positive Research Question 1. Note that the
number of C-bursts between a pair of developers is depen-
dent on the time window, e.g., it goes to zero when ξ → 0,
i.e., developers cannot commit to the same files at the ex-
actly same time, and it goes to one when ξ → ∞, if they
commit to at least one common file over the whole project
history. In reality, there may be several C-bursts for a pair
of developers.

There are some practical limitations on the size of the
burst time-window. It cannot be too narrow, otherwise the
daily work-rhythm and different time zones may have a sig-
nificant effect on the results. It also cannot be too wide,
otherwise the development cannot be considered synchro-
nized. Therefore, we chose 1 ≤ ξ ≤ 10 in this paper.

225

Table 3: The fraction of C-bursts in which at least one .java file was committed to by both developers.

Projects Ratio of .java (%)
Coverage ratio on C-bursts (%) under different time-windows (day)

1 2 3 4 5 6 7 8 9 10
Ant 64.6% 47.9% 47.9% 49.3% 50.3% 49.8% 51.1% 51.3% 52.1% 51.9% 51.9%
Axis2 java 60.4% 72.3% 73.7% 74.2% 74.5% 74.5% 74.6% 74.4% 73.9% 73.9% 73.9%
Cxf 55.9% 75.7% 75.1% 75.9% 75.8% 75.8% 76.3% 76.3% 76.7% 76.9% 76.2%
Derby 49.4% 75.1% 76.2% 76.4% 76.5% 77.2% 77.5% 78.1% 79.3% 79.4% 79.7%
Lucene 73.2% 41.4% 42.8% 42.9% 45.0% 43.7% 41.7% 41.7% 42.2% 43.7% 42.9%
Openejb 79.4% 57.5% 56.6% 56.3% 57.5% 56.9% 55.2% 54.2% 53.8% 53.8% 53.6%

1***** 2***** 3 4***** 5***** 6***** 7***** 8**** 9 10
−100

−80

−60

−40

−20

0

20

40

60

80

100

120

ξ(day)

∆
L

Ant

Inside co−commit bursts

Outside co−commit bursts

(a)
1***** 2***** 3***** 4*** 5**** 6***** 7***** 8***** 9*****10*****

−200

−150

−100

−50

0

50

100

150

ξ(day)

∆
L

Axis2_java

(b)
1***** 2***** 3***** 4***** 5***** 6***** 7***** 8***** 9*****10*****

−100

0

100

200

300

400

ξ(day)

∆
L

Cxf

(c)

1 2 3 4** 5* 6* 7* 8* 9 10
−80

−60

−40

−20

0

20

40

60

80

100

120

ξ(day)

∆
L

Derby

(d)
1 2 3** 4 5 6 7 8***** 9***** 10***

−40

−20

0

20

40

60

ξ(day)

∆
L

Lucene

(e)
1***** 2***** 3***** 4***** 5***** 6***** 7***** 8***** 9*****10*****

−150

−100

−50

0

50

100

150

200

ξ(day)

∆
L

Openejb

(f)

Figure 1: The box-and-whisker diagrams of the average ∆L per commit during and outside of co-commit
bursts, under different time-windows, on the x-axis, where *=“p < 0.05”,**=“p < 0.01”,***=“p < 0.001”,
****=“p < 0.0001”, and *****=“p < 0.00001”.

4.2 Synchronous Development, Code Growth,
and Effort

Before we present the main results, it is worthwhile to
first investigate the file types where synchronous develop-
ments occurred. Generally, there are always dozens of file
types in each OSS project, including .java, .xml, .txt, and
so on. As expected, most C-bursts involved .java source
files, i.e., most pairwise developers committed to at least
one .java file when they work synchronously. The ratios of
.java files and the coverage ratios of these files on C-bursts
(over all C-bursts) for the six OSS projects under different
time-windows are presented in Table 3. We can see that,
besides synchronous development on source code, develop-
ers also spent at least one quarter of their C-burst time on
other kinds of files, e.g., writing documentation. Since .java
files are dominant in these OSS projects and most of the cre-
ations of developers are reflected in their contributed source
codes stored in these files, in this part, we will mainly focus
on the effect of synchronous development on .java files.

Here, we also do not consider all the .java files, because
some of them may be committed to by developers separately
all the time and never be committed to by more than one
developer in the same C-burst, and thus they cannot provide
useful information for our study on identifying synchronous
development commit. Therefore, we will just focus on those

.java files that were committed to by two or more devel-
opers in at least one same C-burst. For an OSS project,
we gather a list of files such that each is co-committed to
within C-bursts by two or more developers at some times
and committed to by a single developer outside of C-bursts
at some others. Then, we obtain the synchronous and non-
synchronous commit activities for all developers on each of
these files, and calculate the average number of added LOC,
LAdd, deleted LOC, LDelete, and ∆L and ∆W per commit.

Figure 1 shows the box-and-whisker diagrams of ∆L dur-
ing and outside of co-commit bursts, under different time-
windows from one day to ten days to visualize their differ-
ences in the six projects. We also use the T-test to ascertain
if the differences are significant. The statistical significance
for each case is marked on the x-axis. E.g., “4*****” on
the x-axis of Figure 1 (a) means that the developers in the
project Ant produce more lines of code per commit during
co-commit bursts, with significance p < 0.00001 when the
time window is set to ξ = 4.

In general, we can see that for the four of six projects, in-
cluding Ant, Axis2 java, Cxf, and Openejb, the overall code
grows faster during synchronous development, in most cases,
answering largely positively Research Question 2. More in-
terestingly, we find that, for those relatively older projects
including Ant, Axis2 java, and Openejb, synchronous de-

226

1***** 2***** 3 4***** 5***** 6***** 7***** 8**** 9 10

0

20

40

60

80

100

120

ξ(day)

L
D
el
et
e

Ant

Inside co−commit bursts

Outside co−commit bursts

(a)
1***** 2***** 3***** 4***** 5***** 6***** 7***** 8***** 9*****10*****

0

20

40

60

80

100

120

140

160

180

ξ(day)

L
D
el
et
e

Axis2_java

(b)
1***** 2***** 3***** 4***** 5***** 6***** 7***** 8***** 9*****10*****

0

20

40

60

80

100

120

140

ξ(day)

L
D
el
et
e

Cxf

(c)

1** 2*** 3***** 4*** 5*** 6**** 7***** 8***** 9*****10*****

0

20

40

60

80

100

120

ξ(day)

L
D
el
et
e

Derby

(d)
1** 2**** 3***** 4*** 5***** 6***** 7***** 8* 9** 10***

0

10

20

30

40

50

60

70

80

90

100

ξ(day)

L
D
el
et
e

Lucene

(e)
1***** 2***** 3***** 4***** 5***** 6***** 7***** 8***** 9*****10*****

0

20

40

60

80

100

120

140

160

180

ξ(day)

L
D
el
et
e

Openejb

(f)

Figure 2: The box-and-whisker diagrams of the average LDelete, number of deleted LOC, per commit during
and outside of co-commit bursts, under different time-windows, on the x-axis, where *=“p < 0.05”,**=“p <
0.01”,***=“p < 0.001”, ****=“p < 0.0001”, and *****=“p < 0.00001”.

velopment has positive ∆L while non-synchronous develop-
ment has negative ∆L, in most cases. For the relatively
younger projects Cxf and Derby, most commit activities,
synchronous or not, have positive ∆L. This interesting find-
ing may indicate that these projects are in different stages of
development. The less significant results in Lucene may be
partly attributed to the relatively fewer files and the lower
coverage ratio of .java files on C-bursts in this project. Con-
sidering all types of files together, we can still observe signif-
icantly faster code growth during synchronous development
in that project when ξ = 3, 6, 7.

Similarly, we considered ∆W = LAdd+LDelete, as a proxy
for the total effort expended by developers. We found that
for all projects except Cxf ∆W was significantly smaller dur-
ing synchronous development than at other times. Again,
we hypothesize that the age of the project might be a sig-
nificant determinant to these results, but that needs further
study. We omit the boxplots due to space constraints.

Figure 2 shows the box-and-whisker diagrams of LDelete
during and outside of co-commit bursts, under different time-
windows. We can see that, for all six projects, developers
delete significantly fewer LOC when they participate in syn-
chronous development in large majority of the cases, answer-
ing positively Research Question 3. Note that we also did
these experiments by considering all types of files together,
and obtained similar results.

4.2.1 Case Study
To illustrate what goes on during synchronous develop-

ment, we looked at the content of emails between a pair of
developers in Derby. They have the most E-bursts that are
close to their C-bursts in the project, i.e., when the time
window is set to be ξ = 1 (day), we find 84 E-bursts near
and 184 E-bursts far from their C-bursts. An E-burst is
considered near a C-burst if their time periods overlap or
the gap between them is not larger than some threshold.

Here, the threshold is set to be 10 days, in order to get a
comparable number of E-bursts near C-bursts. Although
much coordination among developers may not be explicitly
addressed in their emails, we still find a number of such ex-
amples in the examined emails. We find that the developers
provide suggestions3 to improve the current work in 33/84
E-bursts near C-bursts, while the number significantly de-
creases to 17/184 for those far from C-bursts. Due to space
considerations we just provide the following two examples.

Case #1 in Derby [2010/05/12 2:58 PM]
Message: I think this code either should be changed
to work regardless of, or the assumption that
should be documented in the comments.
Reply: As a consequence of this patch, it may
arise I have not been able to figure out but
it may arise when we re-enable we may want to
handle this situation more gracefully. For instance, we
may want to add two need kinds of Restriction subclasses
to model the boolean literals.

Case #2 in Derby [2010/12/08 6:08 PM]
Message: I have found to be a very useful class
for I would like to and then expose it as part
of Derby’s public api.
Reply: That reminds me why we decided not to include
...... I would prefer a solution that didn’t require code
changes in the application when moving from one Java
version to another.

3Such suggestions always include the words such as we
should probably, we may want to add, we could perhaps have,
I would prefer, in addition to we need to, we would then
do something like this, would it be better/worthwhile, it would
be nice to, here are some options for, etc.

227

Table 4: Correlation test for the numbers of C-
bursts and E-bursts under different time-windows
(day). Here, RL and RU denote the lower and upper
bounds, respectively, for a 95% confidence interval
for the correlation coefficient.

Project ξ R RL RU p-value

Ant
1 0.7874 0.7613 0.8110 <0.00001
5 0.7848 0.7584 0.8087 <0.00001
10 0.7712 0.7441 0.7958 <0.00001

Axis2 java
1 0.6577 0.6345 0.6798 <0.00001
5 0.7008 0.6802 0.7203 <0.00001
10 0.6718 0.6497 0.6929 <0.00001

Cxf
1 0.7336 0.7035 0.7611 <0.00001
5 0.7850 0.7599 0.8078 <0.00001
10 0.7903 0.7657 0.8126 <0.00001

Derby
1 0.7272 0.6870 0.7630 <0.00001
5 0.7324 0.6928 0.7676 <0.00001
10 0.7305 0.6906 0.7659 <0.00001

Lucene
1 0.7523 0.7192 0.7819 <0.00001
5 0.7752 0.7447 0.8024 <0.00001
10 0.7404 0.7070 0.7706 <0.00001

Openejb
1 0.5080 0.4458 0.5653 <0.00001
5 0.6039 0.5518 0.6513 <0.00001
10 0.6065 0.5562 0.6524 <0.00001

Case #1 indicates that developers remind each other to do
more related work, and sometimes to add more comments to
make their work more clear for both of them. And case #2
indicates that developers indeed prefer solutions that didn’t
require more code changes, i.e., they delete less code. Such
suggestions are provided more frequently when the develop-
ers work synchronously than at other times, in support of
the numerical results on Research Question 2 and Research
Question 3.

4.3 The Role of Communication
As we established above, synchronous development is more

than a random phenomenon, therefore, communication is ex-
pected to play an important role in this process. In other
words, we expect that more communication is needed to
achieve and maintain synchronous development, and that
these two activities synchronize each other, i.e., they occur
close together in time.

First, by the correlation test for the numbers of C-bursts
and E-bursts, we find that these values in all the six projects
under different time-windows are significantly correlated with
each other with relatively high correlation coefficients (>0.5)
and small p-values (<0.00001), as presented in Table 4, an-
swering Research Question 4. In fact, when we consider all
pairs of developers in the six projects together, the relation-
ship between the number of C-bursts, denoted by NC and
that of E-bursts, denoted by NE , for pairwise developers
can be fitted very well with the following linear model:

NC = αNE + β, (9)

with parameters (95% confidence bounds) equal to α =
0.2727 (0.2645, 0.2810) and β = 0.1331 (0.0369, 0.2293)
when the time-window is set to be ξ = 5 (day), which means
that, on average, we would expect one burst of co-commits
to the same files for every four bursts of email communica-
tions between two developers in these projects. The data

Figure 3: The relationship between the numbers of
C-bursts and E-bursts, where each point is a pair
of developers. All the developers in the six projects
are considered together here and the time-window
is set to be ξ = 5 (day). The data are fitted by a lin-
ear function and smoothed by moving averages, with
span set to 11. The circled samples are discussed in
the case studies.

and fit are shown in Figure 3, where we also show the good-
ness of fit, including SSE, R-square, Adjusted R-square, and
RMSE. In addition to the data, on the plot we also show the
data smoothed by moving averages, with span of 11. The
overall, strongly linear, trend, is in support of Eq. (9) being a
suitable model here. The large variance of the original data
suggests that some developers may have unusual behavior,
discussed carefully in our case studies.

Because the number of E-bursts is a monotonically de-
creasing function of the time-window, the parameter α may
steadily increase as the time-window increases. For exam-
ple, we find that this parameter will be α = 0.1216 (0.1168,
0.1263) and α = 0.3538 (0.3442, 0.3634) when the time-
window is set to be ξ = 1 (day) and ξ = 10 (day), re-
spectively. Since we only consider the strictest synchronous
development that developers must co-commit to the exactly
same files at close times, it is not surprising to observe that
the slope of the linear model is much smaller than 1 even
for a large time-window. This is because, in reality, commu-
nications between developers may be about co-committing
synchronously on functionally related [24], rather than ex-
actly the same files, which we do not consider here.

4.3.1 Case Study
Although the numbers of C-bursts and E-bursts are lin-

early correlated on average, we can still find pairs of de-
velopers that have extremely high ratios of C-bursts versus
E-bursts, and vice-versa, which may be determined by their
distinct roles in these projects, as indicated in Figure 3.

We selected five pairs of developers with the highest C-
to E-burst ratios under the condition that the number of E-
bursts is larger than 50, and find that the associated seven
developers are distributed in two projects, Ant and Cxf, and
centered by two Apache PMC chairs who spent quite a bit
of time on committing to files in these projects. We present
two of their emails in the following to show that they seem
engaged in commit activities to an extraordinary degree.

228

Case #3 in Ant [2003/07/16 1:44 PM]
Message: The other possibility is to write a routine of
the type public static file which
Reply: I have something close to that almost ready to
commit 8-). It’s a little bit more than that

Case #4 in Cxf [2008/01/24 9:12 AM]
Message: I somehow neglected to commit most of what
I thought I committed last night
Reply: I figured you were doing something with I
just did the bare minimum to get the build building and
cruise control to stop spamming me.

We also selected five pairs of developers with the lowest
ratio of C-bursts to E-bursts under the same condition and
at the same time have at least one C-burst. We find that
the associated nine developers are distributed in Ant, Derby,
and Openejb. The pair of developers with the lowest ratio
are from Ant and one of them is an adviser rather than a
committer at most time, as described on the Ant webpage:
He has been involved non-stop with the Ant user community
...... He is opinionated, always striving for the best possible
design. His role is also reflected in the content of his emails,
one of which is selected as follows.

Case #5 in Ant [2006/10/24 8:56 AM]
Message: Contributor would be anybody who con-
tributes to the project in any way...... not necessarily
code contributions, it could be contributions to docu-
mentation or “just” discussions on the mailing lists.
Reply: Yes, I might contribute ideas and opinion,
but I don’t foresee having enough bandwidth for more.

4.4 Synchronous Development and Commu-
nication Are Coupled

Finally, how closely do synchronous development and com-
munication activities follow each other? Recall, we use C-
curves and E-curves as smoothed versions of the correspond-
ing bursts, Eqs. (5) and (6), respectively, and then measure
the synchronization4 between synchronous development and
email communication activities by calculating the correla-
tion coefficient between the corresponding C-curves and E-
curves, Eq. (7). The value of the correlation coefficient tends
to 1 if the numbers of C-bursts and E-bursts are exactly the
same and they occur together at very close times, while it
tends to 0 if these two kinds of activities are independent
from each other.

We calculate the correlation coefficients of C-curves and
the corresponding E-curves for all pairs of developers with
numbers of C-bursts and E-bursts both larger than five for
the six projects, and then compare them with the results ob-
tained from the corresponding simulated curves created by
our null model. The results are presented in Table 5, where
we can see that the correlation coefficients in the real case
are indeed significantly larger than those in the simulated

4The synchronization we discuss here is not the strict syn-
chronization from mathematics, which is always expected to
be realized in infinite time.

Table 5: T-test for the difference between the corre-
lation coefficients of C-curves and the corresponding
E-curves in the real and simulated cases. Here, only
the pairwise developers with both numbers of C-
bursts and E-bursts larger than five are considered.

Projects Real Simulated T-value p-value

Ant 0.4065 −8.9× 10−3 14.2 <0.00001
Axis2 java 0.3642 9.4× 10−3 15.7 <0.00001
Cxf 0.2861 −1.4× 10−2 8.6 <0.00001
Derby 0.2537 −9.3× 10−3 9.3 <0.00001
Lucene 0.3669 −7.5× 10−3 11.0 <0.00001
Openejb 0.3207 1.8× 10−3 7.1 <0.00001

case with relatively small p-values (<0.00001), which indi-
cates the significant synchronization between the two kinds
of activities, answering Research Question 5. Here, it is ex-
pected that the correlation coefficients tend to 0 in the simu-
lated case because the random mechanism of the null model
makes the synchronous development and simulated email
communication activities independent from each other. In
this experiment, we set the time-window ξ = 1 (day) and
the curve parameter σ = 10, and the results are stable to
changes to other appropriate values. Note that correlation
coefficient tends to 0 when σ → 0 and tends to 1 when
σ →∞, therefore σ cannot be chosen too small or too large.

4.4.1 Case Study
The synchronization between email communication and

synchronous development is also partly reflected in the con-
tents of some C-bursts and the accompanied E-bursts be-
tween developers. We manually sample two such cases in
Lucene as examples to see whether the developers discussed
the same files that they both committed to in the C-burst.
The time-window is set to be ξ = 1 (day). The first C-burst
occurred on Oct 30, 2009, from 12:45 PM to 5:11 PM with
the accompanied E-burst from 9:36 AM, Oct 29 to 9:37 PM,
Oct 30. And the second C-burst occurred from 8:29 AM,
Nov 16 to 3:03 PM, Nov 17 with the accompanied E-burst
from 4:42 PM, Nov 15 to 9:54, Nov 17.

We find that the two pairs of developers commit to the
same file RussianLowerCaseFilter.java and StandardTokeniz-
erImpl.jflex in the respective C-bursts, while the accompa-
nied E-bursts indeed recorded the discussion of the devel-
opers about these files and the related ones. Part of their
discussions in the E-bursts are listed below.

Case #6 in Lucene [2009/10/30 8:35 AM]
Message: Hey I just now noticed this. I don’t think
we should remove RussianLowerCaseFilter......
Reply: Woops sorry that was my bad – I didn’t realize
it’d just been deprecated – I’ll restore it! Restore
RussianLowerCaseFilter

Case #7 in Lucene [2009/11/16 9:45 PM]
Message: I still recommend we add a file then How-
ToRegenJflex.txt or something that
Reply: OK, I checked. The JFLEX file in tunk was 1.4
generated...... I saved the old version and extends
StandardTokenizerImpl

229

4.4.2 Measuring Communication Tool Effects
The significant synchronization between synchronous de-

velopment and email communication indicates that there
are a considerable number of C-bursts that overlap with or
closely follow E-bursts. For a C-burst between two develop-
ers, denote by tsC and teC its start and end time, respectively,
then it is called Email-inspired C-burst if we can find an E-
burst between this pair of developers with its start and end
time equal to tsE and teE , respectively, satisfying that the
time intervals [tsC − ξ, teC] and [tsE , t

e
E] overlap. For a given

project, denote by NC
Real and NC

Inspired the average num-
bers of C-bursts and Email-inspired C-bursts between pairs
of developers in the real case, and by NC

Simulated the aver-
age number of C-bursts between the corresponding pairwise
developers in the simulated case. Then, the relative email
usage when developing code with each other synchronously
can be measured by

PE =
NC
Inspired

NC
Real −NC

Simulated

. (10)

We find that developers are more likely to use email to coor-
dinate with each other in Derby and Lucene, while the usage
of email is lower in Cxf and Openejb, as shown in Figure 4.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ξ(day)

P
E

Ant

Axis2_java

Cxf

Derby

Lucene

Openejb

Figure 4: Email use during synchronous develop-
ment.

One of the reasons may be that the latter two projects
provide other communication tools for users conspicuously.
For example, Cxf provides the link to the Chinese language
CXF User’s List available at Google Groups on its web-
site, and Openejb has a communication group on Twitter
(@OpenEJB). However, the higher ratio of email communi-
cations adopted by Derby and Lucene doesn’t make the de-
velopers in these two projects easier to generate more lines of
codes when developing synchronously, as indicated by Fig-
ure 1. This phenomenon is interesting and suggests that,
comparing with the other more real-time communication
tools, email may not be the best choice to coordinate the
work between developers.

Note that here the value of PE may be larger than 1 if
developers frequently communicate with each other by email
and the time-window is large enough. If there are several
alternative communication tools, and assuming one can get
all the communication records, this metric can be used to
measure the tendency of developers to use these tools to
coordinate their work with others.

5. THREATS TO VALIDITY
There are a number of threats to this study. The six

OSS projects are selected from the same foundation and are
all written in java, which may limit the generalization of
the results. The methods therefore need to be tested on a
greater variety of OSS projects in the future.

We use LOC per commit, rather than per unit time, to
measure the code contribution of developers as it relates
to synchronous development, because it is much harder to
know the exact amount of time that developers took to write
those lines. We acknowledge that LOC is more about the
effort of developers than the code quality. Ideally, it is bet-
ter to use alternative measurements, e.g., the development
time of tasks [24] and the number of merge conflicts, to
check the benefits of synchronous development, however,
such measurements are relatively more difficult to obtain.
We believe that as we defined them, code growth, ∆L, to-
gether with effort, ∆W , are suitable to measure the effects
of synchronous development given the current data sets, es-
pecially since LOC has been used extensively to measure
the productivity of developers. Thus, LOC per commit is a
proxy of code contribution per developer. Our results indi-
cate that developers indeed become more efficient when they
synchronously collaborate with each other, i.e., contribute to
more code growth with less effort, which is well supported
by the clues found in their emails that developers reminded
each other more frequently to expand the current work and
make fewer changes to the original code when they develop
synchronously.

It may be argued that the code base grows more during C-
bursts because developers collaborate more on code that is of
significant size or complexity, e.g. adding new features, while
cleaning up code may not require synchronous development,
hence more lines get deleted in solo mode. However, this
assumption is not simple to validate.

Another threat is that we only consider email communi-
cation here, while in fact developers may coordinate their
work via other communication tools. Such incompleteness
of data doesn’t influence the results on RQ1, RQ2, and RQ3,
since they only involve commit activities. However, it may
indeed influence the results on RQ4 and RQ5 in the fol-
lowing several aspects. For RQ4, the slope of the linear
relationship between the numbers of C-bursts and E-bursts,
and the variance of the original data, as shown in Figure 3,
may be overestimated, since more E-bursts can be expected
when considering more communication records and devel-
opers may have different preference to use different commu-
nication tools. For RQ5, the positive correlation between
C-curves and E-curves may also be overestimated when de-
velopers are more likely to communicate with each other by
email when collaborating on same files synchronously and
by other tools otherwise.

6. RELATED WORK
Collaboration in Socio-Technical Systems Two in-

dividuals are collaborating if they contribute to the same
component of a particular socio-technical system. E.g., col-
laboration among scientists is mainly reflected in their co-
authored papers [39, 40], while among musicians or actors
in their joint performances [18, 49].

Collaboration in OSS projects has different levels of mean-
ing due to the hierarchical structure of the artifact. Develop-

230

ers can be considered to collaborate when they have simply
worked on the same OSS projects [26, 42]. On the other
hand, if we are interested in a particular project and hope
to observe its generative process more carefully, the collab-
oration between developers can be seen in the co-commit
activities on same files in this project [46]. There may also
be other, more general collaborative activities, such as shar-
ing programming knowledge through communication tools
not officially documented in the project [33], but such con-
tributions are difficult to quantify.

In most of these studies, developers are considered to col-
laborate with each other all the time if they contribute to
the same projects or commit to the same files. In contrast,
here we allow that developers collaborate with each other
at some time and work alone at other times, and quantify
those using C-bursts.

Synchronization in Nature and Society Synchroniza-
tion is a very common phenomenon in nature, underlying
most of the coordination processes on which biological sys-
tems rely, e.g., fireflies that flash in unison [37] and neural
activities in cognitive processing [17]. Recently, similar syn-
chronization mechanisms were used to explain the formation
of collective opinion [44] and the mimicry of online user ac-
tions [10]. As pointed out by Choudhury et al., understand-
ing social synchrony can be helpful in identifying suitable
time points for intervention, e.g., viral marketing [10].

One of the most remarkable features of OSS projects is
that voluntary developers can work on the same artifacts re-
motely, which presents extra challenges for the coordination
between them due to the lack of face-to-face communica-
tion [23]. Recently, real-time remote communication tools,
such as Twitter, has been used to coordinate or synchro-
nize the work of developers, meanwhile, OSS sites like Ad-
vogato [32] and GitHub [14] already provide user profiles so
developers can better understand the current focus of others,
and, thus, enable them to synchronize their commits.

Social individuals benefit from synchronous behaviors [53].
For example, synchronized flashing helps male fireflies find
females more frequently [8], while synchronized nonverbal
cues can influence face-to-face communication in a posi-
tive manner [29]. Dabbish et al. suggested that awareness
of others’ work can increase the efficiency of coordination
among developers, using case interviews [14]. On the other
hand, Herbsleb et al. [24] described coordination as a dis-
tributed constraint satisfaction problem (DCSP) and found
that dense constraints, in terms of dependencies between de-
velopers or between software components, slow down devel-
opment, but don’t significantly affect productivity. In this
paper, we define synchronous development between develop-
ers and find that developers indeed benefit from synchronous
development in terms of code contribution.

Communication in Synchronization Processes It is
well-known that communication plays an essential role in
synchronization processes [1], i.e., individuals can acquire
the current states of their neighbors via communication,
and adjust their own states correspondingly. OSS projects
blanket adopt or recommend for adoption to their partic-
ipants communication tools like email, Facebook, Twitter,
etc. [51]. Some researchers even advocate for the creation of
Software Immersion Environments where project artifacts
are arranged in physical 3D space [15], so that developers
can communicate and coordinate more directly, like in a real
world face-to-face communication.

There are still debates on the effect of communication on
working efficiency. For example, Herbsleb and Grinter [21]
found that lack of communication between software devel-
opers introduced more coordination problems. Gutwin et
al. [20] supported this viewpoint and suggested that dis-
tributed developers do need to maintain awareness of one
another by interviews and analyzing email messages in three
successful OSS projects, i.e., NetBSD, Apache httpd, and
Subversion. On the other hand, however, it is also argued
that social communication have some negative effect on the
efficiency of work-related activities [35], since both commu-
nication and working activities may compete for the time
resources of individuals [36, 56]. As a result, a large number
of companies have begun monitoring the usage of emails or
office telephones, and employees face consequences for mis-
using them [11]. There is research that focuses on the design
of large systems with smaller communication overhead [2].

Communications are also used to build social networks in
OSS projects [5, 7, 48], evoking the studies to identify the
relationship between social structure and code properties [3,
55]. In this paper, we reveal strong correlation between com-
munication and synchronous development, which can help
to better understand when and how much communication is
necessary for efficient code development in OSS.

7. CONCLUSIONS
In summary, we find that synchronous development is far

more than a chance occurrence and plays an important role
in the development of OSS projects. We identified and quan-
tified the positive effect of synchronous development on the
contributions of developers and quantified its strong corre-
lation with email communication activities. Thus, this work
can help to better understand the role of communication
in the development process. Moreover, we also provide a
plausible metric to characterize the preference of develop-
ers to use a particular communication tool to coordinate
their work. The contrast between larger project growth and
smaller LOC effort expended during synchronous collabora-
tion is an interesting finding, which can influence the way
distributed development is understood and conducted.

This work can be expanded in several ways. First, syn-
chronous development can be generalized beyond co-commit
to the same files at close time, to include functionally re-
lated files too, based on the dependence relationship be-
tween them. Second, larger-scale synchronous developments
can be revealed by similar methods since we expect that, in
many cases, more than two developers are needed to solve
more complex programming problems. Such a synchronous
development network can provide more information about
the organizational structure and then help to better under-
stand the collaboration mechanisms in large systems. Third,
alternative measurements, such as development time, the
number of merge conflicts, and the number of bugs, can be
used to measure the effects of synchronous development on
coordination efficiency more comprehensively.

8. ACKNOWLEDGMENTS
The authors gratefully acknowledge support from the Air

Force Office of Scientific Research, award FA955-11-1-0246.
QX acknowledges support from the National Natural Science
Foundation of China (Grant No. 61004097, 61273212) and
the China Scholarship Council (CSC).

231

9. REFERENCES
[1] A. Arenas, A. Dı́az-Guilera, J. Kurths, Y. Moreno,

and C. Zhou. Synchronization in complex networks.
Physics Reports, 469(3):93–153, 2008.

[2] C. Baldwin and K. Clark. Design Rules. MIT Press,
Cambridge, MA, 2000.

[3] N. Bettenburg and A. E. Hassan. Studying the impact
of social structures on software quality. In Proceedings
of 18th IEEE International Conference on Program
Comprehension, pages 124–133. IEEE, 2010.

[4] N. Bettenburg, S. Just, A. Schröter, C. Weiss,
R. Premraj, and T. Zimmermann. What makes a good
bug report? In Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, pages 308–318. ACM, 2008.

[5] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and
A. Swaminathan. Mining email social networks. In
Proceedings of the 3rd International Workshop on
Mining Software Repositories, pages 137–143. ACM,
2006.

[6] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan,
and G. Hsu. Open borders? Immigration in open
source projects. In Proceedings of the 4th International
Workshop on Mining Software Repositories. IEEE,
2007.

[7] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and
P. Devanbu. Latent social structure in open source
projects. In Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, pages 24–35. ACM, 2008.

[8] J. Buck. Synchronous rhythmic flashing of fireflies. II.
The Quarterly Review of Biology, 63(3):265–289, 1988.

[9] S. Chatterjee and B. Price. Regression Analysis by
Example. John Wiley & Sons, New York, NY, 1991.

[10] M. D. Choudhury, H. Sundaram, A. John, and D. D.
Seligmann. Social synchrony: Predicting mimicry of
user actions in online social media. In Proceedings of
the 12th International Conference on Computational
Science and Engineering, pages 151–158. IEEE, 2009.

[11] C. A. Ciocchetti. Monitoring employee e-mail:
Efficient workplaces vs. employee privacy. Duke Law &
Technology Review, 0026, 2001.

[12] T. G. Cummings. Handbook of Organization
Development. Sage Publications, Thousand Oaks, CA,
2008.

[13] M. A. Cusumano and R. W. Selby. How microsoft
builds software. Communications of the ACM,
40(6):53–61, 1997.

[14] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social
coding in GitHub: Transparency and collaboration in
an open software repository. In Proceedings of the
2012 ACM Conference on Computer Supported
Cooperative Work, pages 1277–1286. ACM, 2012.

[15] S. E. Dossick. A Virtual Environment Framework For
Software Engineering. PhD Thesis, Department of
Computer Science, Columbia University, 2000.

[16] Y. Fang and D. Neufeld. Understanding sustained
participation in open source software projects. Journal
of Management Information Systems, 25(4):9–50,
2009.

[17] P. Fries. A mechanism for cognitive dynamics:
Neuronal communication through neuronal coherence.

TRENDS in Cognitive Sciences, 9(10):474–480, 2005.

[18] P. Gleiser and L. Danon. Community structure in jazz.
Advances in Complex Systems, 6(4):565–573, 2003.

[19] A. Goldberg. Collaborative software engineering.
Journal of Object Technology, 1(1):1–19, 2002.

[20] C. Gutwin, R. Penner, and K. Schneider. Group
awareness in distributed software development. In
Proceedings of the 2004 ACM Conference on
Computer Supported Cooperative Work, pages 72–81.
ACM, 2004.

[21] J. Herbsleb and R. Grinter. Architectures,
coordination, and distance: Conway’s law and beyond.
IEEE Software, 16(5):63–70, 1999.

[22] J. D. Herbsleb. Global software engineering: The
future of socio-technical coordination. In Proceedings
of the 2007 Future of Software Engineering, pages
188–198. IEEE, 2007.

[23] J. D. Herbsleb and R. E. Grinter. Splitting the
organization and integrating the code: Conway’s law
revisited. In Proceedings of the 21st International
Conference on Software Engineering, pages 85–95.
ACM, 1999.

[24] J. D. Herbsleb, A. Mockus, and J. A. Roberts.
Collaboration in software engineering projects: A
theory of coordination. In Proceedings of the 27th
International Conference on Information Systems,
2006.

[25] L. Hossain and D. Zhu. Social networks and
coordination performance of distributed software
development teams. The Journal of High Technology
Management Research, 20(1):52–61, 2009.

[26] D. Hu and J. L. Zhao. A comparison of evaluation
networks and collaboration networks in open source
software communities. In Proceedings of the 14th
Americas Conference on Information Systems, pages
1–8. AIS, 2008.

[27] H. C. Jiau and C. H. Kao. Assessing the efficacy of
user and developer activities in facilitating the
development of OSS projects. Journal of Software
Maintenance and Evolution: Research and Practice,
21(5):287–314, 2009.

[28] S. H. Kan. Metrics and Models in Software Quality
Engineering. Addison-Wesley, Boston, MA, 2002.

[29] A. Kendon. Movement coordination in social
interaction: Some examples described. Acta
Psychologica, 32:101–125, 1970.

[30] R. E. Kraut and L. A. Streeter. Coordination in
software development. Communications of the ACM,
38(3):69–81, 1995.

[31] F. Lanubile, C. Ebert, R. Prikladnicki, and
A. Vizcáıno. Collaboration tools for global software
engineering. IEEE Software, 27(2):52–55, 2010.

[32] R. Levien. Attack-resistant trust metrics. In
Computing with Social Trust, pages 121–132. Springer,
2009.

[33] P. Liang, A. Jansen, and P. Avgeriou. Collaborative
software architecting through knowledge sharing. In
Collaborative Software Engineering, pages 343–367.
Springer, 2010.

[34] K. Luther, K. Caine, K. Ziegler, and A. Bruckman.
Why it works (when it works): Success factors in
online creative collaboration. In Proceedings of the

232

16th ACM International Conference on Supporting
Group Work, pages 1–10. ACM, 2010.

[35] R. S. Mano and G. S. Mesch. E-mail characteristics,
work performance and distress. Computers in Human
Behavior, 26(1):61–69, 2010.

[36] L. Marulanda-Carter and T. W. Jackson. Effects of
e-mail addiction and interruptions on employees.
Journal of Systems and Information Technology,
14(1):82–94, 2012.

[37] R. E. Mirollo and S. H. Strogatz. Synchronization of
pulse-coupled biological oscillators. SIAM Journal on
Applied Mathematics, 50(6):1645–1662, 1990.

[38] B. S. Moon. A gaussian smoothing algorithm to
generate trend curves. Korean Journal of
Computational and Applied Mathematics,
8(3):507–518, 2001.

[39] M. E. J. Newman. Scientific collaboration networks. I.
Network construction and fundamental results.
Physical Review E, 64(1):016131, 2001.

[40] M. E. J. Newman. The structure of scientific
collaboration networks. Proceedings of the National
Academy of Sciences, 98(2):404–409, 2001.

[41] W. Oh and S. Jeon. Membership dynamics and
network stability in the open-source community: The
Ising perspective. In Proceedings of the 25th
International Conference on Information Systems,
pages 413–426. AIS, 2004.

[42] M. Ohira, N. Ohsugi, T. Ohoka, and K. Matsumoto.
Accelerating cross-project knowledge collaboration
using collaborative filtering and social networks. In
ACM SIGSOFT Software Engineering Notes,
volume 30, pages 1–5. ACM, 2005.

[43] M. Pinzger and H. C. Gall. Dynamic analysis of
communication and collaboration in OSS projects. In
Collaborative Software Engineering, pages 265–284.
Springer, 2010.

[44] A. Pluchino, V. Latora, and A. Rapisarda. Changing
opinions in a changing world: A new perspective in
sociophysics. International Journal of Modern Physics
C, 16(4):515–531, 2005.

[45] P. N. Robillard and M. P. Robillard. Types of
collaborative work in software engineering. The
Journal of Systems and Software, 53(3):219–224, 2000.

[46] M. Schwind and C. Wegmann. SVNNAT: Measuring
collaboration in software development networks. In

Proceedings of the 10th IEEE Conference on
E-Commerce Technology and the 5th IEEE Conference
on Enterprise Computing, E-Commerce and
E-Services, pages 97–104. IEEE, 2008.

[47] M. E. Sosa, S. D. Eppinger, M. Pich, D. G.
McKendrick, and S. K. Stout. Factors that influence
technical communication in distributed product
development: an empirical study in the
telecommunications industry. IEEE Transactions on
Engineering Management, 49(1):45–58, 2002.

[48] S. L. Toral, M. R. M.-Torres, and F. Barrero. Analysis
of virtual communities supporting OSS projects using
social network analysis. Information and Software
Technology, 52(3):296–303, 2010.

[49] D. J. Watts and S. H. Strogatz. Collective dynamics of
‘small-world’ networks. Nature, 393:440–442, 1998.

[50] M. Wermelinger and Y. Yu. Analyzing the evolution
of eclipse plugins. In Proceedings of the 5th
International Working Conference on Mining Software
Repositories, pages 133–136. ACM, 2008.

[51] J. Whitehead, I. Mistŕık, J. Grundy, and A. Hoek.
Collaborative software engineering: Concepts and
techniques. In Collaborative Software Engineering,
pages 1–30. Springer, 2010.

[52] J. Wu, T. C. N. Graham, and P. W. Smith. A study of
collaboration in software design. In Proceedings of the
2nd International Symposium on Empirical Software
Engineering, pages 304–313. IEEE, 2003.

[53] Q. Xuan and V. Filkov. Synchrony in social groups
and its benefits. In Handbook of Human Computation,
pages 791–802. Springer, 2013.

[54] Q. Xuan, M. Gharehyazie, P. T. Devanbu, and
V. Filkov. Measuring the effect of social
communications on individual working rhythms: A
case study of open source software. In Proceedings of
the 2012 ASE International Conference on Social
Informatics, pages 78–85. IEEE, 2012.

[55] M. S. Zanetti, I. Scholtes, C. J. Tessone, and
F. Schweitzer. Categorizing bugs with social networks:
A case study on four open source software
communities. In Proceedings of the 35th International
Conference on Software Engineering, pages 1032–1041.
ACM, 2013.

[56] D. Zelikovich. The negative effect of e-mails at work.
Review of International Comparative Management,
12(3):575–585, 2011.

233

