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Abstract

We introduce the mesh signature primitive as an anonymous signature that borrows from
ring signatures, but with added modularity and a much richer language for expressing signer
ambiguity. The language can represent complex access structures, and in particular allows
individual signature components to be replaced with modular certificate chains. As a result,
withholding one’s public key from view is no longer a shield against being named as a possible
cosignatory; and hence, a mesh signature may be used as a ring signature substitute with
compulsory enrollment.

We give an efficient construction based on bilinear maps in the common random string model.
Our mesh signatures have linear size, achieve everlasting perfect anonymity, and as a special case
induce the most efficient and first unconditionally anonymous ring signatures without random
oracles or trusted setup authorities. We prove non-repudiation from a mild extension of the
SDH assumption, which we introduce and justify meticulously.

1 Introduction

We introduce mesh signatures, which are similar in spirit and purpose to the ring signatures of
Rivest, Shamir, and Tauman [27], and extend them in a few crucial ways.

Ring signatures are pseudonymous signatures that are issued in the name of a “ring” of users,
and created by one of them without the participation of the others, in a way that preserves the insti-
gator’s anonymity. The canonical application is for an individual “to leak a secret” non-repudiably
on behalf of a crowd. Technically, ring signatures can be viewed as a witness-indistinguishable
disjunction of regular signatures, but because of this, only people who have previously published
a verification key are eligible to be enrolled in such a crowd. Ring signatures can thus only ever
implicate individuals who, by the very act of publishing their key, are proclaiming their consent.

Mesh signatures generalize this notion to mononote access structures representable as a tree,
whose interior nodes are And, Or, and Threshold gates, and whose leaves are regular “atomic”
signatures. The access structure can be satisfied using different combinations of atomic signatures;
once created, the mesh signature will not reveal what particular subset was used. The atomic
signatures may be “static” and reusable, as opposed to fresh; hence PKI certificates are eligible
even if the mesh signer lacks the CA’s signing key. Since furthermore the access structure is
powerful enough to express disjunctions of certificate chains, we are no longer beholden to the prior
publication of all the ring keys. As a toy example, suppose that Alice wants to implicate Bob,
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who may or may not have a verification key on record. Alice can still produce the following mesh
signature,

σ = [VKAlice : Msg1] or ([VKCertAuth : VKBob] and [VKBob : Msg2]) .

All that Alice needs to create σ is her own private key and CertAuth’s certificate verification key.
Even if Bob has published no verification key of his own, the mesh signature σ implicates him via
the certificate [VKCertAuth : VKBob] that binds his name to the string VKBob. The certificate may
be real or fake; no one can tell. Conversely, Bob could have created σ himself to implicate Alice,
using his own private key and a valid certificate; although in this case her public key would have to
be known to the verifier since it is not explicitly certified by σ. Another feature of mesh signatures
is that they provide threshold gates, which makes it easy to scale such constructs as,

σ = 2-out-of-3 in {[CEO : secret-memo] , [CFO : secret-memo] , [COO : secret-memo]} .

Threshold gates like this can feed or be fed from other gates as in the earlier example. The
unconditional anonymity of mesh signatures guarantees that, as long as the signature σ is valid,
there is no way to tell the true and false clauses apart in the formula expressed by σ.

We can immediately see how much more practical mesh signatures are than ring signatures:
instead of requiring that each and everyone generate and publish their public key in a ring scheme,
here we just need one trustworthy certificate authority (or preferably a few) to publish their keys in
the mesh scheme—a natural demand to place on certificate authorities, though not on individuals.

To make the use of certificate chains truly believable, it is important that mesh signatures
be “modular”, or constructible non-interactively from reusable constituent atomic signatures, i.e.,
without necessarily requiring the private keys. In our case, the atomic signatures are Boneh-Boyen
short signatures [4] with independent keys in a common random bilinear context.

1.1 Related Work

The original ring signature primitive was defined in [27], to enable secret leaking that is at once
authenticated (by a crowd) and anonymous (within the crowd). Whereas that construction [27]
was based on trapdoor permutations, a number of alternatives have subsequently been proposed,
based on bilinear pairings [6], discrete logarithms [21], factoring (Strong-RSA specifically) [16], or
hybrids [1]; all these constructions are set in the random oracle model. Most have linear size in the
ring membership count, except [16] which squeezes it all in constant size using accumulators in the
random oracle model.

A number of general protocols bear similarities with our new primitive. Perhaps the first such
scheme is an anonymous authentication protocol of [15] that supports access structures and can
be turned into a signature using the Fiat-Shamir heuristic. Another is an interactive anonymous
authentication protocol, called deniable ring authentication [26], that combines the anonymity of
ring signatures with the non-transferability of deniable authentication [18], and supports threshold
and access structures. Among specific constructions in the random oracle model, we note the
distributed ring signatures of [22] which let coalitions of users cooperate in an interactive signing
protocol, and the hierarchical identity-based ring signatures of [32], which add signer ambiguity to
the notion of hierarchical identity-based signature. Additionally, we mention that mesh signatures
could in principle be realized using signatures of knowledge [11], which allow the knowledge of a
witness to an NP statement to serve as a signing key, in the common random string model.

Another related notion that has received much attention is that of group signatures, originally
introduced in [12], and which also provides for the anonymous creation of signatures on behalf of
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a crowd. The main difference is that group signatures require the anonymity to be revocable by a
group manager, who also controls enrollment into the group. Group membership is often immutable
although this restriction has been relaxed in [9]. There exist efficient constant-size group signature
schemes, with random oracles [5], from interactive assumptions [2], and in the standard model [8].

Efficient ring signatures constructions without random oracles have also been proposed recently,
such as [14], [3], and [28]. The construction of [14] uses bilinear groups and is efficient but relies
on a cumbersome assumption stated without justification. The results of [3] include an impractical
scheme from non-interactive Zaps [17], but also two efficient constructions (based on [10] or [31]
signatures) for rings of size two, and a discussion of security models for ring signatures.

Probably the most closely related to our work is the very recent ring scheme of [28] which can
efficiently create linear-size ring signatures in the “trusted parameters” model; unforgeability is
based on computational Diffie-Hellman, and anonymity on the decisional Subgroup [7] assumption.
Because of the latter, the scheme requires a bilinear map in a group of composite order with a
hidden factorization; such a group is set up explicitly by a central authority, which afterwards
must erase the factorization to ensure anonymity. It may be possible to use ideas from [20] and
base anonymity on the decisional Linear [5] assumption, which would no longer require secret-coin
trusted parameters (TP) but only a public-coin common random string (CRS), as in our scheme;
however anonymity would still remain computational. The main advantage of [28] over our ring
scheme is that unforgeability rests on a weaker assumption.

2 Definitions and Security Models

Intuitively, a mesh signature is a non-interactive witness-indistinguishable proof that some mono-
tone boolean expression Υ is true, where each input of Υ is notionally labeled with a key & message
pair and is true only if the mesh signer is in possession of a valid atomic signature on the stated
message under the stated key.

A mesh signature scheme should satisfy two security properties. First, it should be anonymous
(ideally, unconditionally so), i.e., it should not reveal what assignment to the inputs of Υ caused it
to be satisfied. Second, it should be unforgeable, i.e., the creation of a valid mesh signature must
be predicated on the possession of a set of valid atomic signatures sufficient to satisfy Υ.

2.1 Recursive Mesh Signature Specification

We use ` to denote the number of atomic clauses in a mesh structure (in a ring signature, this would
be equal to the number of users in the ring). Let Υ be the expression generated by the following
grammar, with propositional-logic semantics, under the restriction that, for each i = 1, ..., `, the
production expr ::= Li corresponding to the symbol Li be used at most once (in other words, no
Li may appear more than once in the written expression of Υ):

expr ::= L1 | ... | L` input symbols (these productions are single-use each)
| ≥t{expr1, ...,exprm} t-out-of-m threshold, with 1 < t < m
| ∧{expr1, ...,exprm} m-wise conjunction, with 1 < m
| ∨{expr1, ...,exprm} m-wise disjunction, with 1 < m

Equivalently, we call Υ an “arborescent monotone threshold circuit” with ` Boolean inputs L1, ..., L`

and one Boolean output denoted Υ(L1, ..., L`). It is apparent by induction that Υ is always a non-
trivial monotone function of its inputs, and in particular Υ(⊥, ...,⊥) = ⊥ and Υ(>, ...,>) = >.
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We use expressions of this form to state the meaning of mesh signatures. The signer specifies the
circuit Υ, and assigns to each symbol Lj an atomic proposition [VK : Msg] to convey the meaning:
“This is Msg signed under VK.” The mesh signature then simply expresses that Υ(L1, ..., L`) = >
holds for the stated interpretation of the Li (without revealing their individual truth values). For
the example in the introduction, Υ = L1 ∨ (L2 ∧ L3) where L1 denotes [VKAlice : Msg1], etc.

Multiplicity of Clauses. For simplicity, we require that the clauses of Υ share no public key, i.e.,
for any two distinct Li = [VKi : Msgi] and Lj =

[
VKj : Msgj

]
appearing in Υ, we have VKi 6= VKj .

To mitigate this technicality, we expressly allow users to own multiple keys, which means that
expressions Υ with a plurality of clauses involving the same user can easily be constructed.

By the same token, certificate authorities should be willing to translate any certificate issued
under one of their keys into an equivalent certificate signed with any other of their own keys (or,
perhaps, issue all the equivalent certificates at once).

2.2 Anonymity Model

The strongest notion of anonymity defined in [3], “anonymity against full key exposure”, in the
context of ring signatures, requires that the signer remain anonymous following full exposure of all
the private keys, after their use. It is however a constrained notion of anonymity because the keys
are not chosen by the adversary, and are only revealed a posteriori. We contend that, since the
motivating application of ring and mesh schemes is to leak secrets, it is crucial that anonymity be
unconditional and everlasting, subsequently to the exposure of all secrets, for the long-term peace
of mind of the signer. We thus insist on perfect (i.e., information theoretic) anonymity, even upon
prior disclosure of the signer’s and every user’s secret keys.

Precisely, we require that the identity of the signer be statistically independent, conditionally
on all public keys and the mesh formula, of all long-term secrets held by all parties in the system
(and the random bits used to create those keys, though it makes no difference in our construction).

We exclude from the above requirement any ephemeral randomness used for signing, for the
reason that there is no way to prevent the signer to prove willingly that she herself created a
particular signature: revealing the ephemerals used to create a signature is but one way to do this.
By contrast, the signer must be protected againt coerced disclosure, which is why independence
from her long-term keys is crucial (and should not rely on the common random string’s cleanliness).

Anonymity, Unlinkability, and Randomization. A mesh signature σ is most generally con-
structeed from a set of atomic signatures σi for the selected clauses [VKi : Msgi] assigned the truth
value >. As we will see, mesh signatures are not unique, in part because of the “extrinsic” random-
ization due to the mesh signing process, but also because the atomic signatures themselves bring
to the table their own “intrinsic” randomization (which will have to be faked for all clauses set to
⊥). Therefore it is a legitimate concern to wonder how the intrinsic randomization associated with
the atomic signatures interacts with the requirements of unconditional anonymity.

To fix ideas, suppose that a mesh signature σ contains a (valid or invalid) atomic signature on
a clause [VK1 : Msg1] with intrinsic randomization t1. Later, someone exposes an atomic signature
σ1 on the same clause and with the same randomization t1. Is this evidence that σ1 was used to
construct σ, thereby putting the anonymity of the mesh signer in jeopardy? The answer is ‘no’, as
long as the owner of VK1 could have created σ1 after seeing t1. Conversely, if σ had been revealed
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subsequently to σ1, one could not infer that σ1 was used in the creation of σ, as long as σ could
plausibly have been created ex post facto to match the exposed randomization.

In general, if the intrinsic randomization of the atomic signature can be chosen freely and is
conveyed in the clear, then matching randomization merely implies awareness and not linkability,
i.e., it shows that the second signature was created with knowledge of the (randomization of the)
first, but not that the two were actually created from each other, or by the same signer.

2.3 Unforgeability Model

The strongest notion of unforgeability defined in [3], “unforgeability with respect to insider corrup-
tion”, for ring signatures, gives the adversary the ability to corrupt users dynamically, and include
its own public keys when making ring signature queries. Since the point of mesh signatures is to
implicate uncooperative users, it is judicious to allow them to choose their keys maliciously.

However, as a compromise for unconditional anonymity, we relax the fully dynamic corruption
model into an enhanced static one, in which the honest users are static and created ahead of time by
a challenger, and the corrupted users are under the full control of an adversary who can bring them
to life dynamically. We also need to specify what constitutes a valid forgery. For ring signatures,
a forgery is any signature by a ring without adversarially controlled users. For mesh signatures,
however, this would be overly restrictive, since it would exclude such forgeries as,

Υ = ([U1 : m1] ∧ [U3 : m3]) ∨ ([U2 : m2] ∧ [U4 : m4]) ,

where U1 and U2 are honest users, and U3 and U4 are corrupted. Since Υ nominally entails
Υ′ = [U1 : m1]∨ [U2 : m2], a forger who signs Υ lacking the imprimatur of both U1 and U2 should be
deemed successful. The same reasoning would continue to apply if the forger legitimately obtained
an atomic signature on [U3 : m3] even though U3 were honest. We capture these circumstances by
deeming admissible any forgery on a statement Υ if there exists a well-formed (and thus non-trivial)
formula Υ′ that contains no clause under the forger’s control and such that Υ⇒ Υ′.

To see where this comes from, for all corrupted users and all issued atomic signatures, let us
set the corresponding literal Li ← >, which is the most that the adversary can do in legitimacy.
If Υ then evaluates to >, the forgery is inadmissible; otherwise, Υ will reduce to some well-formed
formula Υ′ that contains non-adversarial clauses exclusively. Hence, the existence of Υ′ simply
demands that Υ be unsatisfiable by the volition of the adversarial users alone. We distill all of
this into the following existential unforgeability game, and define the adversary’s advantage as the
probability of outputting an admissible valid forgery.

Challenger setup: the challenger designates a number ` of public keys, corresponding
to the honest target users under the challenger’s control.

Interaction: the following occurs interactively, in any order, driven by the adversary.

Adversary setup: the adversary reveals polynomially many public keys, one at
a time, corresponding to the users under the adversary’s control.

Mesh signature queries: the adversary makes up to q mesh signature queries
on specifications Υj that involve at least one honest user.

Atomic signature queries: The adversary also makes up to q atomic signatures
queries on clauses

[
VKi : Msgj

]
for every honest user.

The challenger accepts or responds to each request before accepting the next one.
The q mesh queries and the q ` atomic queries may be interleaved arbitrarily.
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Signature forgery: the adversary produces a forged signature whose specification Υ
satisfies ∀j,Υ 6= Υj and implies a well-formed formula Υ′ on the honest users, i.e.,
Υ(L1, ..., L`, ...)⇒ Υ′(L1, ..., L`), obtained by setting to “true” (>) every literal Li

whose clause [VKi : Msgi] involves an adversarial key or matches an atomic query.

We define the adversary’s advantage at mesh unforgeability as its probability of winning the game.

In the adversary setup, one must recognize that the adversary might try to claim some of the
challenger’s keys as its own (perhaps re-randomized to make it less obvious). Since the same is
possible in the real world, and is readily detectable by the challenger, we take no step to forbid it.

Mesh Unforgeability vs. Ring Unforgeability. The mesh security model allows the forger to
make arbitrary atomic signature queries on behalf of the honest users: this is because mesh signa-
tures must be constructible from any satisfying set of atomic signatures (such as PKI certificates)
without requiring the private keys.

For ring signatures, atomic signature queries are superfluous, and we can obtain a tighter proof
of security without them, mainly because we reduce the number of queries from (`+ 1) q to just q.
Hence, we define existential unforgeability for ring signatures as for mesh signatures, but without
atomic signature queries (also, regular signatures can always be emulated using rings of size one).

3 Framework and Computational Assumption

We write Fp for the finite field of prime order p, and F×p = Fp \ {0} for its multiplicative group of
order p− 1. Let a bilinear context G = (p,G, Ĝ,Gt, g, ĝ, e), where e : G× Ĝ→ Gt is a pairing [25].
We use the “hat-notation” (as in ĝ) to indicate that an element belongs to Ĝ rather than G.

3.1 Review of the SDH Assumption

The complexity assumption we shall need is inspired from the Strong Diffie-Hellman assumption
proposed in [4], which we now review. The q-SDH problem in a (bilinear) group G is stated:

(Original SDH) Given elements g, gα, gα2
, ..., gαq ∈ G, choose w ∈ Fp and output (w, g1/(α+w)).

The SDH assumption then posits that the q-SDH problem above is intractable for q = O(poly(κ)).
What makes this assumption special is that the problem admits not one but exponentially many
“independent” solutions, which are all equally hard to find. Hence the modified q-SDH problem:

(Modified SDH) Given g, gα ∈ G and q− 1 pairs (wj , g
1/(α+wj)), output another (w, g1/(α+w)).

It is known from [4] that if the original q-SDH problem is hard, then so is the modified problem.

Although the SDH problem statement does not require a bilinear group, it is because the bilinear
map provides an efficient Decision Diffie-Hellman procedure [23] that the correctness of an SDH
solution can be decided openly. Specifically, given g and gα, deciding whether (w, u) = (c, g1/(α+w))
amounts to checking the equality e(u, ĝα ĝw) = e(g, ĝ), basically a DDH a test that anyone can
perform from public information. The short signature scheme of [4] relies on this.
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3.2 Poly-SDH : for Better Use of the Pairing

The verifiability of SDH solutions with a simple DDH test suggests that more general assumptions
could be made, based on the observation that the pairing is a powerful tool that can be used to
decide more complex relations that are not efficiently reducible to DDH. For example, a natural
generalization of the SDH problem is that of finding ` pairs (wi, ui = gri/(α+wi)) for i = 1, ..., `,
such that

∑`
i=1 ri = 1 (mod p). Purported solutions can then be verified using the equation,∏̀

i=1

e(ui, ĝ
α ĝwi) = e(g, ĝ) . (1)

Clearly, when ` = 1, this is identical to the SDH problem. For larger values of `, the adversary is
given to spread the exponent inversion task across multiple pairs, by means of linear combination.

Unfortunately, for ` > 1, the problem is in fact trivial, because Equation (1) admits spurious
solutions that do not require the solver to know the secret α and invert the exponent: for example,
for ` = 2 the solution w1 = 1, u1 = g, w2 = 0, u2 = g−1 satisfies the equality regardless of α.

To remedy the preceding problem, we change the solver’s task slightly, and ask that the ` pairs
to be output involve ` independent secrets α1, ..., α` that appear once each, i.e., find,(

wi, ui = g
ri

αi+wi

)
: i = 1, ..., ` , s.t.

∑̀
i=1

ri = 1 (mod p) .

To decide whether a solution ((w1, u1), ..., (w`, u`)) to the new problem is correct, one needs,
besides the generators g and ĝ, the ` group elements (ĝ1, ..., ĝ`) = (ĝα1 , ..., ĝα`). The verification
equation is then, ∏̀

i=1

e(ui, ĝi ĝ
wi) = e(g, ĝ) . (2)

Notice that (1) is a special case of (2) where α1 = ... = α` = α; however, for the security of the
assumption it is important that the αi be independently and uniformly distributed. Despite the
added variables, we stress that Equation (2) is no more expensive to verify.

Based on the previous observations, the (q, `)-Poly-SDH problem can be informally stated as:

(Poly-SDH) Given g, gα1 , ..., gα` ∈ G and q ` pairs (wi,j , g
1/(αi+wi,j)) for 1 ≤ i ≤ ` and 1 ≤ j ≤ q,

choose fresh w1, ..., w` ∈ Fp and output ` pairs (wi, g
ri/(αi+wi)) such that

∑`
i=1 ri = 1.

The αi and wi,j in the instance are drawn from a uniform distribution. The wi and ri are chosen
by the respondent. We require that ∀i,∀j, wi 6= wi,j , lest the task be easy. The exponents ri need
not be revealed, since Equation (2) can establish that a solution is correct, and thus that

∑
i ri = 1,

without having to see the ri.

We have chosen to state the (q, `)-Poly-SDH problem in a form analogue to Modified SDH,
rather than Original SDH. There are several justifications for this:

• the modified form results in a weaker assumption (as Original SDH implies Modified SDH);
• it has a clear input/output symmetry which simplifies the security reductions;
• its instances are more concisely stated when more than one iterator is needed (i and j);
• the modified problem form is impervious to a (benign) generic analysis described in [13],

which relies on the availability of g, gα, and gαd
for certain d, as in Original SDH instances.

The reason why there are no undesirably easy solutions to the (q, `)-Poly-SDH problem will become
apparent as we prove generic hardness in Section 3.3. See also Appendix A.1 for formal definitions.
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3.3 Generic Hardness of Poly-SDH

We now take some time to explain why the Poly-SDH assumption based on Equation (2) is plausible,
unlike our first attempt from Equation (1) that was so easily broken. We give a heuristic argument
based on the impossibility of efficient generic attacks. Specifically, we show that finding a solution
to the (q, `)-Poly-SDH problem will require, on expectation, Ω(

√
p/q `) generic group operations.

The generic group model [29] assumes the lack of any structure beyond that of an (Abelian)
cyclic group, restricting all manipulations on group elements to the group operation and its inverse
(i.e., multiplication and division if the group is written multiplicatively). In the bilinear version of
the model [4], one can also compute a pairing e : G×Ĝ→ Gt, as well as an isomorphism ψ : Ĝ→ G
(for “type-1” and “type-2” contexts) and its inverse ψ−1 : G→ Ĝ (for “type-1” only).

Let us assume that G = Ĝ, which only makes the attack easier. Recall that the Poly-SDH
instance furnishes g, gα1 , ..., gα` , and a large number of pairs (wi,j , ui,j = g

1/(αi+wi,j)). Based on
this information, the attacker must output ` pairs (wi, ui = gri/(αi+wi)) such that

∑
i ri = 1, and

where wi is distinct from all wi,j with the same index i.

First, notice that the pairing e is useful to verify a solution, but not really to find one. This is
because e ranges into Gt, and once we have landed in Gt we can never leave it. Also, ψ and ψ−1

just model the identity function since we have already assumed that G = Ĝ. We can thus focus on
multiplication and division in the multiplicative group G of prime order p.

Next, observe that all the group elements that can be created from g, {gαi}, and {g1/(αi+wi,j)}
are of the form g

π(α1,...,α`)

∆ , where π ∈ Fp[α1, ..., α`]q`+1 is any multivariate polynomial in α1, ..., α` of
total degree at most q `+ 1, and where ∆ is the common denominator ∆ =

∏`
i=1

∏q
j=1 (αi + wi,j).

We need to produce ` elements ui = gri/(αi+wi) and the corresponding wi. Our task is thus to find
` polynomials π1, ..., π` ∈ Fp[α1, ..., α`]q`+1 such that πi/∆ = ri/(αi + wi) for some

∑
i ri = 1, i.e.,

such that, ∑̀
i=1

(αi + wi)πi = ∆ =
∏̀
i=1

q∏
j=1

(αi + wi,j) .

We show that there can be no such polynomials πi using a linear change of variable. For all
i = 1, ..., ` and j = 1, ..., q, we define α′i = αi + wi and w′i,j = wi,j − wi. Notice that all w′i,j 6= 0.
Our new task becomes to find ` polynomials π′1, ..., π

′
` of degree ≤ q `+1 in the variables α′1, ..., α

′
`,

such that, ∑̀
i=1

α′i π
′
i = ∆ =

∏̀
i=1

q∏
j=1

(α′i + w′i,j) .

Clearly, all the monomials in the left-hand side have degree in α′1, ..., α
′
` at least 1. On the other

hand, all w′i,j are non-zero, so the right-hand side yields a non-vanishing independent (degree-0)
term equal to

∏
i

∏
j w

′
i,j =

∏
i

∏
j (wi,j − wi) 6= 0, which is a contradiction.

The contradiction shows that the equations above cannot be satisfied identically in Fp[α′1, ..., α
′
`]

or Fp[α1, ..., α`], which proves that the polynomials π′i and thus πi cannot exist. A standard
argument then shows that the equations can only be satisfied in Fp for certain assignments of
α1, ..., α` ∈ Fp: the polynomial roots. Since the αi are chosen at random, we can bound the
probability of hitting those roots. We find that, if q ` < O( 3

√
p), it will take qG = Ω(

√
ε p/q `)

operations to solve (q, `)-Poly-SDH with probability ε in generic groups of order p.

We give a precise theorem and a complete proof based on this argument in Appendix A.4.
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3.4 Pluri-SDH : a Weaker Assumption

Although we will need the Poly-SDH assumption to prove security of mesh signatures, ring signa-
tures can be based on a slightly weaker assumption, due to the lack of atomic signature queries.
Recall that in the (q, `)-Poly-SDH problem, we are given ` generators gαi as well as ` series of q
solution pairs (wi,j , ui,j = g

1/αi+wi,j ). Our weaker assumption is similar, except that we only give
out a single series of solution pairs, conventionally for an extra generator of index i = 0.

We define the (q, `, 1)-Pluri-SDH problem as a relaxed version of (q, `+ 1)-Poly-SDH:

(Pluri-SDH) Given generators g, gα0 , ..., gα` ∈ G and q pairs (w0,j , g
1/(α0+w0,j)) for 1 ≤ j ≤ q,

choose fresh w0, ..., w` ∈ Fp and output `+ 1 pairs (wi, g
ri/(αi+wi)) such that

∑`
i=0 ri = 1.

See also Appendix A.2 for formal definitions, including that of the (q, `, `′)-Pluri-SDH problem
which is stated in an obvious way for `′ ≥ 1.

Generic Complexity. Regarding generic complexity, we can show that for q ` < O( 3
√
p), a

generic algorithm can solve the (q, `, 1)-Pluri-SDH problem with constant probability ε in a generic
group of prime order p only by performing qG = Ω(

√
ε p/q) generic group operations on expectation.

A precise theorem for (q, `, 1)-Pluri-SDH and (q, `, `′)-Pluri-SDH is given in Appendix A.5.

3.5 Comparing SDH with Pluri-SDH and Poly-SDH

An interesting fact about the (q, `, 1)-Pluri-SDH problem in generic bilinear groups is that it is
quantitatively as difficult as the (modified) q-SDH problem: in particular, the generic lower bounds
are essentially the same as those found in [4], and do not strongly depend on `. In other words,
allowing the opponent to make `-wise linear combinations has little adverse effect on generic security,
provided that care has been taken to structure the problem to rule out all of the trivial solutions.
A similar comparison can be made for the full (q, `)-Poly-SDH problem, except that the relevant
benchmark here is the q`-SDH problem. Although we appear to lose a factor ` in the number of
allowed queries with respect to SDH, it will be a wash if the security reduction of interest allows `
times as many queries, which will be the case of our mesh unforgeability simulator.

The main difference between SDH and Pluri-SDH/Poly-SDH is thus not one of hardness. It is
that the former is useful in any “Gap-DH” group where the Diffie-Hellman problem has a decision
procedure, while Pluri-SDH and Poly-SDH require a group with an actually computable pairing
(or at least an oracle for comparing products of pairings) in order to verify its solutions.

4 Special Case : Ring Signatures

We first describe a ring signature based on Pluri-SDH as a special case of our technique. It is more
efficient than other provably secure ring signature schemes without random oracles, and the first
of those schemes to offer unconditional anonymity. It is set in the “public-coin” common random
string model, i.e., without trusted parameters or setup authority.

Initialization: Given a security parameter κ and a public random string K ∈ {0, 1}poly(κ), the
parties generate from K a common bilinear instance G = (p, G, Ĝ, Gt, g, ĝ, e)← G(1κ;K)
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and a collision-resistant hash function H : {0, 1}∗ → Fp shared by all. Since G has prime
order and no hidden structure, it can safely be generated from public coins.

The string K is also used to generate three random elements Â0, B̂0, and Ĉ0 in Ĝ. These
elements define a public verification key “in the sky” whose matching signing key is undefined.

For notational convenience, we suppose for now that the isomorphism ψ : Ĝ→ G is efficiently
computable in the instance G, and we let A0 = ψ(Â0), B0 = ψ(B̂0), and C0 = ψ(Ĉ0) in G.
This temporary restriction will be lifted later in this section.

Key generation: To create a key pair, User #i draws a triple (ai, bi, ci) ∈ (F×p )3 as signing key,
and posts (Ai, Bi, Ci, Âi, B̂i, Ĉi) = (gai , gbi , gci , ĝai , ĝbi , ĝci) ∈ G3×Ĝ3 as verification key.

In case ψ : Ĝ→ G is easy to compute, users publish only (Âi, B̂i, Ĉi) to avoid redundancy.

Ring signature: To create a ring signature on message m1, ...,m` ∈ Fp attributed to a ring
of ` users, any member of the ring would proceed as follows. W.l.o.g., suppose that the
signer is User #` in the ring R = (1, ..., `). The signer selects 2 ` + 1 random integers
s0, s1, ..., s`−1, t0, t1, ..., t` ∈ Fp, and outputs the signature,

σ =

 gs0 , ..., gs`−1 ,

(
g ·

`−1∏
i=0

(AiB
mi
i Cti

i )−si

) 1
a`+b` m`+c` t`

, t0, ..., t`

 ∈ G`+1 × F`+1
p ,

where m1, ...,m` are the messages to be signed, and m0 = H((1,m1), ..., (`,m`)), a collision-
resistant hash of the statement expressed by the signature.

Ring verification: To verify a signature σ = (S1, ..., S`, t1, ..., t`), test the equality,

∏̀
i=0

e(Si, Âi B̂
mi
i Ĉti

i ) = e(g, ĝ) ,

where R = (1, ..., `) is the signature ring, m1, ...,m` are the messages being signed, and
m0 = H((1,m1), ..., (`,m`)).

Consistency of the algorithms is readily verified. Note that the scheme is trivially modified to force
all messages m1, ...,m` to be the same, as in the traditional definition of ring signatures.

The purpose of including in the final signature a collision-resistant hash m0 of the ring and all
the messages, ostensibly binding m0 to the public key “in the sky”, is to prevent outsiders from
appending new components to an existing signature, which would otherwise give an easy forgery
(though perhaps a rather benign one). The second reason is that the key “in the sky” is useful in
the security proof, and lets us rely on a weaker assumption.

4.1 No Trusted Setup

We emphasize that the public string K has no hidden structure whatsoever, and can be drawn by
public coin flipping, or in any way that does not grant anyone undue advantage in the computation
of discrete logarithms in G or of atomic signatures under the random key “in the sky” (either of
which would defeat unforgeability but not anonymity).

The absence of secret coins marks the distinction between the common random string (CRS)
model and the more stringent trusted parameters (TP) model. In the former, the CRS has no special
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structure and can be drawn in the open, or derived from public observations of natural phenomena.
In the latter, the TP must be crafted in a special way from secret coins by some trusted setup
authority, which must exist in the real world, and must voluntarily erase that privileged information
once it has completed its business, while convincing the other players that it is not cheating.

To reiterate, no trusted setup agent, either centralized or distributed, is needed in our system.

4.2 Anonymity

Independently of setup assumptions, our ring signatures have irrevocable or everlasting, perfect,
unconditional anonymity (i.e., with forward security against coerced disclosure of the long-term
signing keys, and the randomness that created them, of all users in the system).

Theorem 1. The ring signature has everlasting perfect anonymity.

Proof. See Appendix B.1

4.3 Unforgeability

We then have existential unforgeability in the common random string model based on our computa-
tional assumption. More precisely, we can give two alternative reductions: one establishes security
in the ring forgery game provided that the (q, `, 1)-Pluri-SDH problem is hard; the other proves
security in the more demanding mesh forgery game from the hardness of (q, `+1)-Poly-SDH. Here,
we recall from Section 2.3 that a mesh forger can also make atomic signature queries to the honest
users in addition to mesh (or ring) queries, whereas a ring forger makes no atomic queries.

We now state the ring result, which is the most appropriate in the context of ring signatures.
In Appendix B.2, however, we shall state and prove the stronger result instead, because parts of
that proof will be reused when proving security of the full mesh scheme of Section 5.

Theorem 2. The ring signature is existentially unforgeable under an adaptive attack, against
a static adversary that makes no more than q adaptive ring signature queries, provided that the
(q, `, 1)-Pluri-SDH assumption holds in G, in the common random string model.

Proof. See Appendix B.2

4.4 Withholding the Isomorphism

Since the most general types of bilinear instance G may fail to provide both an efficient isomorphism
ψ : Ĝ→ G and an efficient sampling procedure in Ĝ, it is useful to modify the ring scheme in order
to relax these requirements. Although we can typically rely on one or the other [19], it is easy to
eliminate both requirements at once in the following way.

• First, we redefine the random key “in the sky” to consist just of A0, B0, and C0, to be sampled
directly in G from the common random seed K (skipping Ĝ altogether).

• Next, we modify the group element of index 0 in the signature, ĝs0 ∈ Ĝ replacing gs0 ∈ G.
The signature becomes, e.g., with User #` as the signer: σ = (Ŝ0, ..., S`, t0, ..., t`) = ĝs0 , gs1 , ..., gs`−1 ,

(
g ·

`−1∏
i=0

(AiB
mi
i Cti

i )−si

) 1
a`+b` m`+c` t`

, t0, ..., t`

 ∈ Ĝ×G` × F`+1
p ,
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• Last, we exchange the arguments under the pairing of index 0 and amend the verification
equation into,

e(A0B
m0
0 Ct0

0 , Ŝ0) ·
∏̀
i=1

e(Si, Âi B̂
mi
i Ĉti

i ) = e(g, ĝ) .

It is easy to see that the security theorems continue to hold in the modified ring signature scheme.
On the one hand, anonymity is unconditional and thus insensitive to the existence of some efficient
algorithm for ψ or for sampling in Ĝ. On the other hand, unforgeability relies no more on the
presence of such algorithms than on their absence, as an inspection of the proof would show.

4.5 Removing the Key “In the Sky”

A (tenuous) argument can be made that having a public key “in the sky” entails a stronger flavor
of CRS than the mere sharing of a bilinear instance G and a collision-resistant hash function H.

The crux of the argument is that, for someone who controls the CRS, it is much easier to implant
a trapdoor into the public key VK0 than to prepare G for the subsequent efficient computation
of discrete logarithms: the former can be done by constructing VK0 from an explicit signing key
(as the simulator does in the unforgeability proof), whereas the latter might involve the infeasible
pre-computation of an exponential-size lookup table for the baby-step giant-step algorithm in G.
A counterargument is that, if the CRS is truly random, then all of this is equally hard for everyone.
Either way, both flavors of the CRS model seem much more palatable than the TP model.

Notwithstanding, the key “in the sky” can be eliminated altogether if we remove from the
ring signature the component [VK0 : h] where h = H((VK1,m1), ..., (VK`,m`)), change one of the
remaining clauses from [VKi : mi] into [VKi : 0‖h], and change all the other remaining clauses from
[VKi : mi] into [VKi : 1‖mi]; it does not matter which clause is selected to host h. The signing
mechanism is unchanged, except for the removal of S0 and t0, and the fact that one of the mi cedes
to 0‖h and the others to 1‖mi. Unforgeability then follows from hardness of (q, `)-Poly-SDH.

5 General Case : Mesh Signatures

We now describe our mesh signature scheme, based on the Poly-SDH assumption. We proceed in
stages: we first define a few useful notions, which we then use to describe the actual system.

5.1 Flattened Mesh Representation

Recall that a mesh signature is characterized by an expression Υ generated by the grammar,

Υ ::= N

N ::= L1 | ... | L` | ≥t{N1, ..., Nm} | ∧ {N1, ..., Nm} | ∨ {N1, ..., Nm} .

To harmonize the notation with the scheme description, we need to consider an extra literal L0

whose meaning is unimportant for now, and let Υ̃ be as above with `+ 1 input literals L0, ..., L`.

We show how to convert the recursive expression of Υ̃ into a representation as a list of ` + 1
polynomials in ` + 1 variables (or fewer, depending on the structure of Υ̃), akin to Linear Secret
Sharing Structures [24, 30].
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The principle is as follows. To each input symbol Li we associate a degree-1 homogeneous
polynomial πi =

∑`
j=0 yi,j Zj , where the variables Z0, ..., Z` are common to all polynomials and the

coefficients yi,j are elements of Fp. The polynomials are such that, if the formula Υ̃ is satisfied by
setting some subset of symbols to >, then the span of the corresponding polynomials will contain
the pure monomial Z0; conversely, any set of polynomials whose span contains the monomial Z0

indicates a satisfying assignment.

The following algorithm computes such a representation from Υ̃. Proceeding recursively, it
assigns temporary polynomials to the interior nodes as it walks down the tree from the root to the
leaves (i.e., from the output gate to the input symbols):

1. Initialize a counter kc ← 0.

The counter kc is used for allocating new variables, so that each Zk+kc is always a “fresh”
variable that is never used before or after in the algorithm.

2. Label the root node N0 with the polynomial πN0 ← Z0.

3. Select a non-leaf node N with non-empty label πN 6= ∅.

(a) Denote by N1, ..., Nm the m ≥ 2 children of N .

(b) If N is ∨{N1, ..., Nm}, then ∀i = 1, ...,m let πNi = πN .

(c) If N is ∧{N1, ..., Nm}, then ∀i = 1, ...,m let πNi = πN +
∑m−1

k=1 li,k Zk+kc where li,k ∈ Fp.
The selection of li,k is explained below.

(d) If N is ≥t{N1, ..., Nm}, then ∀i = 1, ...,m let πNi = πN +
∑t−1

k=1 li,k Zk+kc where li,k ∈ Fp.

(e) Label each child Ni with the polynomial πNi .

(f) Unlabel node N , i.e., set πN ← ∅.
(g) Increment kc ← kc + t− 1 (using t = 1 for an ∨-gate, and t = m for an ∧-gate).

(h) Continue at Step 3 if an eligible node remains, otherwise skip to Step 4.

4. Let ϑ← kc and output the polynomials (π0, ..., π`) associated with the leaf nodes L0, ..., L`.

Each polynomial πi is represented as a vector of coefficients (yi,0, ..., yi,ϑ) ∈ Fϑ+1
p such that

πi =
∑ϑ

k=0 yi,k Zk is the result of the sequence of operations in Steps 3b, 3c and 3d.

We note that the only variables with non-zero coefficients in the output polynomials are Z0, ..., Zϑ,
where ϑ = kc is the final counter value and may be equal to or lesser than `.

In Steps 3c and 3d, the coefficients li,k must ensure that no linear relation exists in any set of πi

of size < m or < t. (By construction, m or t of them will always be linearly dependent.) To ensure
this property, we let (li,k) form a Vandermonde matrix in Fm×(m−1)

p or Fm×(t−1)
p , i.e., set li,k = ak

i

for distinct ai ∈ Fp; independence follows from the existence of polynomial interpolation. We also
require that (li,k) be constructed deterministically, so that anyone can verify that the πi faithfully
encode Υ̃ simply by reproducing the process.

The following lemma shows the equivalence between the recursive specification of Υ̃ and its
flattened representation. It is adapted from a classic result [24] for Linear Secret Sharing Structures,
and proven by induction on the structure of Υ̃. We refer to the literature [30] for further details.
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Lemma 3. [24] Let Υ̃ be an arborescent monotone threshold circuit, and π0, ..., π` a flattened
representation of it per the above algorithm. A minimal truth assignment χ : {L0, ..., L`} → {⊥,>}
satisfies Υ̃(χ(L0), ..., χ(L`)) = > if and only if there exist in Fp coefficients ν0, ..., ν` such that,

∑̀
i=0

νi πi = Z0 , and ∀i : νi = 0 ⇐⇒ χ(Li) = ⊥ .

5.2 Information-Theoretic Blinding

In the signature scheme (yet to be described), we use both the polynomials (π0, ..., π`) and the
linear combination (ν0, ..., ν`) from Lemma 3: the latter to create a signature, and the former to
indicate how to verify it. However, since the linear coefficients νi reveal which of the Li are true,
they must be kept secret. In the actual signature, these coefficients appear not as integers but
as exponents of elements of G, and are thus already computationally hidden; however, this is not
enough and we need to take an extra step to ensure information-theoretic hiding.

By Lemma 3 we know that
∑`

i=0 νi πi = Z0, where each νi ∈ Fp and each πi ∈ Fp[Z0, ..., Zϑ]1.
We hide the linear coefficients νi using random blinding terms (h0, ..., h`) such that

∑`
i=0 hi πi = 0.

Since
∑`

i=0 (νi + hi)πi = Z0, the blinded coefficients νi+hi still bear witness that Υ̃(L0, ..., L`) = >.
However, these witnesses have been rendered information-theoretically indistinguishable, because
the distribution of (ν0 + h0, ..., ν` + h`) is conditionally independent of the truth values of the Li

given that Υ̃(L0, ..., L`) = >.

The difficulty is that no scalar hi will satisfy
∑`

i=0 hi πi = 0 when the πi contain uninstantiated
variables. However, given a specific set of πi, it is easy to build hi that have polynomial values.

1. Draw a random vector ~s = (s1, ..., s`) ∈ F`
p of scalar coefficients.

2. For i = 1, ..., `, define hi = −si π0, and set the remaining term h0 =
∑`

j=1 sj πj .

In the actual scheme, these polynomials are evaluated “in the exponent” for unknown assignments
to the Zk, but regardless of their values we have

∑`
i=0 hi πi = (

∑`
j=1 sj πj)π0+

∑`
i=1 (−si π0)πi = 0,

and so the blinding terms (h0, ..., h`) meet our requirements.

Remark that the random vector ~s can be chosen independently of the πi. This is important
for the actual signature scheme, where the relevant polynomials will have coefficients that involve
discrete logarithms not known explicitly (in addition to the Zk being instantiated as discrete loga-
rithms of random group elements). In spite of this, we will be able to select a suitable vector ~s and
compute the blinding terms hi “in the exponent”.

5.3 Construction

The full mesh signature scheme can now be described as follows.

Initialization: Given a security parameter κ and a public random string K ∈ {0, 1}poly(κ), all
participants generate the common bilinear instance G = (p,G, Ĝ,Gt, g, ĝ, e) ← G(1κ;K).
Here, we require that the accompanying isomorphism ψ : Ĝ→ G be efficiently computable.

The string K also indicates a hash function H : {0, 1}∗ → Fp from a collision-resistant family.

Given a mesh size parameter λ, the string K then specifies λ+ 1 elements ĝ0, ĝ1, ..., ĝλ in Ĝ,
on which the efficient algorithm for ψ can be applied to obtain the images g0, g1, ..., gλ in G.
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Additionally, K defines λ+ 1 random triples (Â0,k, B̂0,k, Ĉ0,k) ∈ Ĝ3 for k ∈ {0, ..., λ}; these
elements together constitute a public verification key “in the sky” with no known signing key.
We define A0,k = ψ(Â0,k), B0,k = ψ(B̂0,k), C0,k = ψ(Ĉ0,k), in G, again easy to compute.

Key generation: To create a key pair, User #i draws a triple (ai, bi, ci) ∈ (F×p )3 as signing key.
User #i computes for each k ∈ {0, ..., λ} the triple (Âi,k, B̂i,k, Ĉi,k) = (ĝai

k , ĝ
bi
k , ĝ

ci
k ) ∈ Ĝ3,

and lets these 3 (λ+ 1) group elements constitute his or her verification key.

For simplicity, we write (Ai,k, Bi,k, Ci,k) = (ψ(Âi,k), ψ(B̂i,k), ψ(Ĉi,k)) = (gai
k , g

bi
k , g

ci
k ) ∈ G3,

which anyone can compute from the verification key of User #i thanks to ψ.

Mesh signature: Consider the following mesh signature prototype information:

• ` statements [VKi : Msgi], assumed w.l.o.g. to involve the public keys of Users #1, ..., `,
and whose propositional truth values are denoted by the literals Li for i = 1, ..., `.

• an arborescent monotone threshold circuit Υ where each literal L1, ..., L` is an input leaf;
and an assignment χ : {L1, ..., L`} → {⊥,>} that satifies Υ(L1, ..., L`) = >;

• ∀i = 1, ..., ` such that χ(Li) = >, a valid Boneh-Boyen signature in G, given as a pair,(
ui = g

1
a+b w+c ti , ti

)
, for some ti ∈ Fp ,

where w = Msgi and (a, b, c) is the signing key for the statement [VKi : Msgi].

• Optionally, a prescribed value ti ∈ Fp for any or all indices i such that χ(Li) = ⊥.

To create a mesh signature based on the preceding data, the signer firsts extends Υ into a
new specification that involves the verification key “in the sky”:

1. Hash the public mesh specification to get Msg0 = H([VK1 : Msg1] , ..., [VK` : Msg`] ,Υ),
and implicitly associate the literal L0 to the clause [VK0 : Msg0].

2. Construct Υ̃ = L0 ∨Υ, a well-formed arborescent monotone threshold circuit.

3. Extend χ so that χ(L0) = ⊥, as we lack the corresponding atomic signature.

The signer then builds the mesh signature from the circuit Υ̃, the assignment χ, and the
atomic signatures (ui, ti) known for such i that χ(Li) = >, as follows:

4. Create a flattened representation of Υ̃ and χ as discussed in Section 5.1. Accordingly,
let π0, ..., π` ∈ Fp[Z0, ..., Zϑ] be public degree-1 multivariate polynomials that encode Υ̃,
and ν0, ..., ν` ∈ Fp the secret scalar coefficients of a linear combination that expresses χ.
Explicitly determine all the coefficients yj,k ∈ Fp in all polynomials πj =

∑ϑ
k=0 yj,k Zk.

5. Create a random blinding vector ~s = (s1, ..., s`) ∈ F`
p as in Section 5.2.

6. ∀i ∈ {0, ..., `} : χ(Li) = ⊥, randomly draw ti ∈ Fp or use the optionally prescribed value,
and arbitrarily fix ui = g0 = 1 ∈ G.
(Recall that for χ(Li) = >, the ti and ui are supplied with the atomic signatures.)

7. For all j = 0, ..., ` and k = 0, ..., ϑ, calculate,

vj,k =
(
Aj,k B

mj

j,k C
tj
j,k

)yj,k

, vj =
ϑ∏

k=0

vj,k , setting mj = Msgj .

(Notice that if we instantiate Zk = dlogg(gk), then we get vj = g(aj+bj mj+cj tj) πj .)
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8. Compute, for i = 1, ..., `, and k = 0, ..., ϑ, respectively,

Si = ui
νi v0

−si , Pk =
∏̀
j=1

vj,k
sj .

(The value of any intervening ui such that χ(Li) = ⊥ is unimportant since then νi = 0;
this is true in particular for the user “in the sky” of index 0.)

9. Output the mesh signature, consisting of the statement Υ and the tuple,

σ = ( t0, ..., t`, S1, ..., S`, P0, ..., Pϑ ) ∈ F`+1
p ×G`+ϑ+1 .

Mesh verification: A fully qualified mesh signature package consists of:

• a list of `+ 1 propositions [VK0 : Msg0] , ..., [VK` : Msg`] viewed as inputs to,

• an arborescent monotone threshold circuit Υ̃ : {⊥,>}`+1 → {⊥,>},
• a mesh signature σ = (t0, ..., t`, S1, ..., S`, P0, ..., Pϑ) ∈ F`+1

p ×G`+ϑ+1.

To verify such a signature, the verifier proceeds as follows:

1. Ascertain that Υ̃(>, ?, ..., ?) = >, extract from Υ̃(L0, ..., L`) the sub-circuit Υ(L1, ..., L`)
such that Υ̃ = Υ ∨ L0, and verify that Msg0 = H([VK1 : Msg1] , ..., [VK` : Msg`] ,Υ).

2. Recompute the polynomials (π0, ..., π`) representating the formula Υ̃ by reproducing the
deterministic conversion of Section 5.1.

3. For i = 0, ..., `, determine the coefficients yi,k ∈ Fp of the polynomials πi =
∑ϑ

k=0 yi,k Zk.

4. For i = 0, ..., ` and k = 0, ..., ϑ, retrieve (Âi,k, B̂i,k, Ĉi,k) from the key VKi, and calculate,

v̂i,k =
(
Âi,k B̂

mi
i,k Ĉ

ti
i,k

)yi,k

, v̂i =
ϑ∏

k=0

v̂i,k , setting mi = Msgi .

5. Using the pairing, verify the equalities, for all k = 0, ..., ϑ,

e (Pk, v̂0) ·
∏̀
i=1

e (Si, v̂i,k) =

{
e(g, ĝ0) for k = 0
1 otherwise

.

6. Accept the signature as valid if and only if all ϑ+ 1 preceding equalities hold in Gt.

(Optional) Probabilistic check: Mesh signatures can be verified using fewer total pairings, at
the cost of some additional random bits and exponentiations. In the same setting as above, it
suffices to replace the end of the verification algorithm from Step 5 onward by the following:

5′. Using the pairing, for d0 = 1 and random d1, ..., dϑ ∈ Fp, verify the single equality,

e

(
ϑ∏

k=0

P dk
k , v̂0

)
·
∏̀
i=1

e

(
Si,

ϑ∏
k=0

v̂dk
i,k

)
= e(g, ĝ0) .

6′. Accept the signature as valid if and only if the preceding equality holds in Gt.
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5.4 Security

We state the correctness, anonymity, and unforgeability theorems for the mesh scheme. A corollary
to the latter is also given, based on a weaker assumption, for the case where only a subset of the
honest users are willing to answer atomic signature queries (e.g., certificate authorities).

Theorem 4. The mesh signature is consistent.

Proof. For any list of public polynomials π0, ..., π` and secret coefficients ν0, ..., ν` that respectively
encode per Lemma 3 a well-formed mesh specification Υ̃ and an assignment χ that satisfies it, we
need to show that a signature created by the above algorithm will be accepted by the same. A
straightforward sequence of substitutions in the scheme description shows this to be the case.

Theorem 5. The mesh signature has everlasting perfect anonymity.

Proof. See Appendix C.1

Theorem 6. The mesh signature is existentially unforgeable under an adaptive attack, against a
static adversary that makes no more than q mesh signature queries, and no more than q atomic
signature queries to each of the ` honest users, adaptively, provided that the (q, ` + 1)-Poly-SDH
assumption holds in G, in the common random string model.

Proof. See Appendix C.2

Corollary 7. The mesh signature is existentially unforgeable under an adaptive attack, against a
static adversary that makes no more than q mesh signature queries, and no more than q atomic
signature queries to each of `′ among a total of ` + `′ honest users, adaptively, provided that the
(q, `, `′ + 1)-Pluri-SDH assumption holds in G, in the common random string model.

5.5 Optimizations for Shorter Keys and CRS

All verification keys (including the one “in the sky”) can be shortened to 2/3 their original length,
because the private keys’ bi are always known to the simulators and do not contribute to security:
we can set bi = 1 and omit the publication of B̂i,k = ĝbi

k = ĝk. This holds in the ring scheme, too.

We can furthermore compress the key “in the sky” to just two elements of Ĝ, if we observe
that for Υ̃ = Υ ∨ L0 the encoding algorithm of Section 5.1 always gives π0 = Z0, i.e., y0,0 = 1 and
y0,k = 0 for k 6= 0. This means that the tuples (Â0,k, B̂0,k, Ĉ0,k) for k 6= 0 are in fact never used.
Since it is safe to set B̂0,0 = ĝ, the key “in the sky” can shrink to a mere random pair (Â0,0, Ĉ0,0).

6 Conclusion

We have introduced mesh signatures as a generalization of ring signatures with a richer language
for expressing signer ambiguity. Mesh signatures scale to large crowds with many co-signers and
independent certificate authorities; they can even implicate unwilling individuals who, by withhold-
ing their ring public key, would have otherwise remained out of reach. Because in principle mesh
signatures require neither trusted setup nor centralized authorities, they provide a credible answer
to the question of how to leak a secret authoritatively.
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We have constructed a simple and practical mesh signature scheme in prime order bilinear
groups, that achieves everlasting unconditional anonymity, and existential unforgeability in the
common random string model, without trusted setup authority. To obtain this result, we introduced
a new complexity assumption, which we prove sound in the generic model; it is in the spirit of
the SDH assumption, but better exploits the group structure of the values computed by pairing.
Incidentally, we obtain a very efficient and the first unconditionally anonymous ring signature
without random oracles as a special case of our construction.
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A The Poly-SDH and the Pluri-SDH Assumptions

We gave informal definitions of the Poly-SDH and Pluri-SDH assumptions in Section 3.2 and 3.4.
Next, we give concrete and asymptotic definitions of the Poly-SDH and Pluri-SDH assumptions,
whose generic hardness we prove in Appendices A.4 and A.5.

A.1 Formal Poly-SDH Definitions

Our formal statement of the (q, `)-Poly-SDH problem that applies to canonical bilinear groups of all
types, whether G = Ĝ or G 6= Ĝ. In general, most of the group elements that appear in the problem
instance will belong in G, and the solution will also be asked in that group. Several elements must
also be given in Ĝ, mainly to enable the pairing-based verification of the solutions; but rather than
require the isomorphism ψ : Ĝ→ G to be efficiently computable and let the user do the translation,
we shall give these elements in both groups explicitly.

Definition 8. In a bilinear context G = (p,G, Ĝ,Gt, g, ĝ, e), the (q, `)-Poly-SDH problem is:

Given, ∀i = 1, ..., `, ∀j = 1, ..., q, gαi ∈ G, ĝαi ∈ Ĝ, and (wi,j , g
1

αi+wi,j ) ∈ Fp ×G,

output ∀i, (wi, g
ri

αi+wi ), subject to:
∑`

i=1 ri = 1 (mod p), ∀i, ∀j, wi 6= wi,j .

The advantage of an algorithm A in solving the (q, `)-Poly-SDH problem is defined as,

AdvPolySDH
A = Pr

A
 g, (gαi)

1≤i≤`
, ( wi,j , g

1
αi+wi,j )

1≤i≤`

1≤j≤q

ĝ, (ĝαi)
1≤i≤`

 =
(
wi, g

ri
αi+wi

)
1≤i≤`

:
∑̀
i=1

ri = 1


The probability is over the random choice of generators g ∈ G \ {1} and ĝ ∈ Ĝ \ {1}, of exponents
α1, ..., α` ∈ F×p , of integers wi,j ∈ Fp \ {−αi}, and the random bits consumed by A. (Nevertheless,
we allow g and/or ĝ to be given externally, as it is convenient in type-1 and type-2 bilinear contexts
to take g = ψ(ĝ) under a fixed isomorphism ψ.)

Definition 9. We say that the (q, `, t, ε)-Poly-SDH assumption holds in G = (p,G, Ĝ,Gt, g, ĝ, e) if
no t-time and ε-advantagerandomized algorithm solves the (q, `)-Poly-SDH problem in G.
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A.2 Formal Pluri-SDH Definitions

As in the previous case, we formally define the (q, `, 1)-Pluri-SDH problem for bilinear groups of all
types, whether symmetric (G = Ĝ) or asymmetric (G 6= Ĝ), with or without efficient isomorphism
(ψ : Ĝ→ G), at the cost of some possible redundancy in the instance statement in some cases.

Definition 10. In a bilinear context G = (p,G, Ĝ,Gt, g, ĝ, e), the (q, `, 1)-Pluri-SDH problem is:

Given: ∀i = 0, ..., `, (gαi , ĝαi) ∈ G× Ĝ, and: ∀j = 1, ..., q, (w0,j , g
1

α0+w0,j ) ∈ Fp×G,

output: ∀i, (wi, g
ri

αi+wi ), subject to:
∑`

i=0 ri = 1 (mod p), and: ∀j, w0 6= w0,j .

The advantage of an algorithm A in solving the (q, `, 1)-Pluri-SDH problem is defined as,

AdvPluriSDH
A = Pr

A
 g, (gαi)

0≤i≤`
, ( w0,j , g

1
α0+w0,j )

1≤j≤q

ĝ, (ĝαi)
0≤i≤`

 =
(
wi, g

ri
αi+wi

)
0≤i≤`

:
∑̀
i=0

ri = 1


The probability is over the random choice of g ∈ G \ {1} and ĝ ∈ Ĝ \ {1}, of α0, ..., α` ∈ F×p , of
w0,j ∈ Fp \{−α0}, and over the random bits consumed by A. (We allow g and/or ĝ to be externally
given, as it is convenient in some bilinear contexts to take g = ψ(ĝ) under a fixed isomorphism ψ.)

Definition 11. We say the (q, `, 1, t, ε)-Pluri-SDH assumption to hold in G = (p,G, Ĝ,Gt, g, ĝ, e)
if no t-time and ε-advantage randomized algorithm solves the (q, `, 1)-Pluri-SDH problem in G.

A Spectrum of Assumptions from Pluri-SDH to Poly-SDH. Given the clear similarity
between the (q, `+1)-Poly-SDH and (q, `, 1)-Pluri-SDH problems, it is natural to consider a gener-
alized notion of Pluri-SDH with `+ `′ random generators in total, only `′ of which would be given
with accompanying series of solution pairs. (In the basic Pluri-SDH problem, we had `′ = 1.)

Definition 12. In a bilinear context G = (p,G, Ĝ,Gt, g, ĝ, e), the (q, `, `′)-Pluri-SDH problem is
(using positive and negative indices i 6= 0 to differentiate the two types of generators):

Given: ∀i′ = 1, ..., `, (gαi′ , ĝαi′ ) ∈ G× Ĝ,

and: ∀i′′ = −`′, ...,−1, ∀j = 1, ..., q, (gαi′′ , ĝαi′′ ) ∈ G×Ĝ, (wi′′,j , g
1

αi′′+wi′′,j ) ∈ Fp×G,

output: ∀i = −`′, ...,−1, 1, ..., `, (wi, g
ri

αi+wi ),
subject to:

∑
i∈{−`′,...,`}\{0} ri = 1 (mod p), and also: ∀i < 0, ∀j, wi 6= wi,j .

The advantage of an algorithm A in solving the (q, `, `′)-Pluri-SDH problem is defined as,

AdvPluriSDH
A = Pr

A

g, (gαi)

i=−`′,...,
−1,1,...,`

, ( w0,j , g
1

αi+wi,j )
1≤j≤q

i=−`′,...,
−1,1,...,`

ĝ, (ĝαi)
i=−`′,...,
−1,1,...,`

 =
(
wi, g

ri
αi+wi

)
i

:
∑

i

ri = 1


The probability is over the random choice of g ∈ G \ {1} and ĝ ∈ Ĝ \ {1}, of all αi ∈ F×p , of all
wi,j ∈ Fp \{−αi}, and over the random bits consumed by A. (We allow g and/or ĝ to be externally
given, as it is convenient in some bilinear contexts to take g = ψ(ĝ) under a fixed isomorphism ψ.)

Definition 13. We say the (q, `, `′, t, ε)-Pluri-SDH assumption to hold in G = (p,G, Ĝ,Gt, g, ĝ, e)
if no t-time and ε-advantage randomized algorithm solves the (q, `, `′)-Pluri-SDH problem in G.

The generalized (q, `, `′)-Pluri-SDH problem is useful to prove security of the mesh scheme in
the case where there are ` + `′ honest users, but only `′ of them are willing to answer queries for
atomic signatures (e.g., because there are so many certificate authorities).
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A.3 Asymptotic Definitions

For completeness, we also give a complexity-theoretic statement of either assumption, based on
the asymptotic limit in an infinite family of bilinear groups. All our security theorems are easy to
restate in terms of the asymptotic definition.

Definition 14. We say that the Poly-SDH assumption holds for a bilinear instance generaror G if,
for any polynomial functions q(·), `(·), t(·), ε(·), and any algorithm A, there exists a threshold κ∗,
beyond which for all values of the security parameter κ > κ∗, the (q(κ), `(κ), t(κ), ε(κ))-Poly-SDH
assumption holds against A in all bilinear instances G generated by G(1κ).

Definition 15. We say that the Pluri-SDH assumption holds for a bilinear instance generaror G if,
for any polynomial functions q(·), `(·), `′(·), t(·), ε(·), and any algorithm A, there exists a threshold
κ∗, beyond which for all values of the security parameter κ > κ∗, the (q(κ), `(κ), `′(κ), t(κ), ε(κ))-
Pluri-SDH assumption holds against A in all bilinear instances G generated by G(1κ).

A.4 Generic-Group Complexity of Poly-SDH

We now give a complete proof that the Poly-SDH assumption (and hence, also the weaker Pluri-
SDH assumption) is sound in the generic group model in the sense of Shoup [29]. The proof is
based on the argument given in Section 3.3.

In this model, slightly extended to incorporate bilinearity, the groups G, Ĝ, and Gt are assumed
to have a generic presentation, i.e., only canonical operations may be performed on their elements
(the group operations in each of G, Ĝ, and Gt, the isomorphism from Ĝ to G and its inverse, and
of course the pairing). Specifically, the solver A performs the canonical operations by interacting
with an oracle O, in such a way that A only sees arbitrary representations of the group elements.
This is modeled using encoding functions f , f̂ , and ft, one for each group, and by representing any
group element h ∈ G as the string f(h) when interacting with A (and similarly for elements of the
other groups). A is otherwise computationally unbounded.

The following theorem gives an upper bound on the success probability of any generic Poly-SDH
attacker A, or equivalently, a lower bound on the complexity of solving Poly-SDH generically.

Theorem 16. Let A be a computationally unbounded algorithm for the (q, `)-Poly-SDH problem
in generic bilinear groups of prime order p, that makes at most qG generic group oracle queries in
total (i.e., for e, ψ, ψ−1, and ∗ in G, Ĝ, and Gt). Then,

Pr

AO
 f(g), f(gαi)

1≤i≤`
, ( wi,j , f(g

1
αi+wi,j ) )

1≤i≤`

1≤j≤q

f̂(ĝ), f̂(ĝαi)
1≤i≤`

 =
(
wi, f(g

ri
αi+wi )

)
1≤i≤`

:
∑̀
i=1

ri = 1


= AdvPolySDH

A ≤ (qG + q `+ 2 `+ 2)2 (q `)
p− 1

= O(
q2G q `+ (q `)3

p
) .

In order to be as general as possible, we state and prove the theorem assuming the solver is
given access to both ψ and ψ−1, as in type-1 bilinear groups. Since the withholding of one or both
of these capabilities can only hurt A, the same theorem gives us valid bounds for type-2 and type-3
groups without needing another proof (albeit, at the cost of a small slack factor).
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Proof. We merely sketch the oracle simulation, which follows a similar routine as in [4]; the subse-
quent analysis will be the core of the argument.

We construct an algorithm B that simulates the generic group oracle O without committing to
values for the αi, and analyze what A can extract from it. Internally, B keeps track of the group
elements by their discrete logarithms to the generators g ∈ G, ĝ ∈ Ĝ, and gt = e(g, ĝ) ∈ Gt. Since
the variables α1, ..., α` are left undetermined, in all generality these discrete logs will be multivariate
expressions in Fp[α1, ..., α`], which we denote by ρk, ρ̂k, or ρ′k, depending on the group. Externally,
B maps the corresponding group elements to random strings it gives to A: in the group G it
associates ρi to fi = f(gρi), in Ĝ it maps ρ̂i to f̂i = f̂(ĝρ̂i), and in Gt it maps ρ′i to f ′i = ft(g

ρ′i
t ).

To initiate the interaction, B must provide A with an instance of the (q, `)-Poly-SDH problem.
To do so, B picks random wi,j ∈ Fp for i = 1, ..., ` and j = 1, ..., q, and creates:

• two strings, f0 and f̂0, which it binds to the constants ρ0 = 1 and ρ̂0 = 1 respectively;
• 2 ` strings, fi and f̂i for i = 1, ..., `, bound to the expressions ρi = αi and ρ̂i = αi respectively;
• q ` strings, fk for k = i+j ` where i = 1, ..., ` and j = 1, ..., q, bound to the terms ρk = 1

αi+wi,j
.

For simplicity, and to avoid dealing with ratios, we reduce all the expressions to the common
denominator ∆ =

∏`
i=1

∏q
j=1 (αi + wi,j): for all k, we define πk = ρk ∆, π̂k = ρ̂k ∆, and π′k = ρ′k ∆.

Observe that all of these are polynomials in Fp[α1, ..., α`] of degree ≤ q `+ 1.

B gives to A all the strings fk and f̂k created above (but not the corresponding polynomials).
B also initializes three counters: n← (q `+ `+ 1), n̂← (`+ 1), and nt ← 0.

A then makes a total of qG adaptive queries to the generic group oracle, of the following kinds:

Group operations: Suppose A wants to compute the product of two operands in the group
G represented as fi and fj . To answer, B retrieves the polynomials πi and πj that these
strings correspond to (the same string may appear under multiple indices i, but in all cases
the associated polynomial will be the same, so there is no inconsistency). It calculates the
polynomial sum πn = πi + πj ∈ Fp[α]. If the result πn is already present in the G-mapping,
the corresponding string is copied into fn, otherwise a new string is created; then the entry
(πn, fn) is added to the mapping. Finally, B gives fn to A, and then increments n← n+ 1.

If A had wanted the ratio in lieu of the product, B would have let πn = πi − πj ∈ Fp[α].

Group operation queries in Ĝ or Gt are serviced analogously, using the relevant mappings.

Isomorphisms: Suppose A wants to map an operand f̂i in Ĝ to its image in G by the isomorphism.
To answer, B proceeds as above to retrieve the polynomial π̂i, assigns πn = π̂i, and lets fn be
the copy of an existing string or a new string depending on whether πn was already present in
the G-mapping. It adds (πn, fn) to the mapping, gives fn to A, then increments n← n+ 1.

Inverse isomorphism queries are answered similarly, after exchanging the roles of G and Ĝ.

Pairing: Suppose A wants to compute the bilinear map between fi in G and f̂j in Ĝ. To answer,
B retrieves the polynomials πi and π̂j , computes the polynomial product πnt = πi ·πj ∈ Fp[α],
determines whether πnt already exists in the Gt-mapping, and accordingly lets fnt be a clone
of the corresponding string or a new string. It adds (πnt , fnt) to the mapping, gives fnt to A,
then increments nt ← nt + 1.

W.l.o.g., we have assumed that A only queried B on legitimate strings that were previously revealed,
and similarly assume that it outputs its solution in terms of such strings exclusively.
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After qG queries, A returns a solution to the Poly-SDH instance, in the form of ` pairs
(w1, fk1), ..., (w`, fk`

) where 0 ≤ ki < n. We denote by πki
the formal polynomials that cor-

respond to the generic representations fki
.

To verify the solution, B randomly selects α∗i ∈ F×p for each i, and evaluates the formal polyno-
mials under the assignment (α1, ..., α`) = (α∗1, ..., α

∗
` ). The validation equation is,

∑̀
i=1

(αi + wi) ρki
(α1, ..., α`) = 1 , i.e.,

∑̀
i=1

(αi + wi)πki
(α1, ..., α`) = ∆ . (?)

A wins the game outright if Equation (?) holds in Fp under the random assignment.

A wins by default if any two distinct polynomials representing elements of the same group (e.g.,
πi 6= πj , or π̂i 6= π̂j , or π′i 6= π′j) evaluate to the same value in Fp under the assignment (viz.,
πi(α∗1, ..., α

∗
` ) = πj(α∗1, ..., α

∗
` ), etc.): if this is the case, B’s simulation is flawed since it portrayed as

distinct two instances of the same group element.

A loses the game barring the two scenarios above. We shall bound the probability of either
event, below.

Notice that all polynomials π used by B to represent an element in G or Ĝ have degree ≤ q `+1,
since they are constructed using sums and differences from an initial set of polynomials with this
property (the polynomials of highest degrees are πi = ρi ∆ = αi ∆ for i = 1, ..., `, of degree q `+1).
In the target group Gt, the polynomials can be of degree ≤ 2 q ` + 2, which is the highest degree
that the product of two polynomials of degree ≤ q `+ 1 can attain.

To bound the probability that A makes a correct answer, we bound the probability that Equa-
tion (?) will be satisfied. First, we show that it cannot hold identically in Fp[α1, ..., α`]. Consider
the following change of variables: for all i = 1, ..., ` and j = 1, ..., q, we define α′i = αi + wi and
w′i,j = wi,j − wi, where we note that w′i,j 6= 0 because of the constraints on the wi. The change of
variable is well-defined and unambiguous, and lets us rewrite Equation (?) as,∑̀

i=1

α′i πki
(α′1 − w1, ..., α

′
` − w′1) = ∆ =

∏̀
i=1

q∏
j=1

(αi + wi,j) =
∏̀
i=1

q∏
j=1

(α′i + w′i,j) . (??)

Equation (??) cannot hold identically in Fp[α′1, ..., α
′
`] since the left-hand side has no independent

term while the right-hand side contains the independent term
∏

i

∏
j w

′
i,j =

∏
i

∏
j (wi,j − wi) 6= 0.

Equation (?) then does not hold identically either, in Fp[α1, ..., α`], which means that it is a non-
trivial polynomial equation of degree ≤ q ` + 2. For a random assignment of (α1, ..., α`) ∈ (F×p )`,
Equation (?) will thus be satisfied in Fp with probability ≤ q `+2

p−1 .

To bound the probability that A wins by default, recall that all the polynomials representing
elements in G and Ĝ have degree ≤ q ` + 1, and those in Gt have degree ≤ 2 q ` + 2. Again using
the standard argument on the probability of satisfying polynomial equations, and combining all
of these with the union bound, we find that the probability that there is at least one flaw in B’s
simulation is ≤

(
n
2

) q `+1
p−1 +

(
n̂
2

) q `+1
p−1 +

(
nt

2

) 2 q `+2
p−1 .

(The denominators are p−1 rather than p to reflect that the αi are random in F×p and not in Fp:
conceivably, the adversary could exploit this by forcing all polynomial solutions to be non-zero.)
Now, if we take the union bound over the two events, and bring into account the loop invariant,
(n+ n̂+ nt) = (q `+ 2 `+ 2 + qG), we thus establish,

AdvPolySDH
A ≤

(
n
2

) q `+1
p−1 +

(
n̂
2

) q `+1
p−1 +

(
nt

2

) 2 q `+2
p−1 + q `+1+2

p−1 ≤ (qG + q `+ 2 `+ 2)2 (q `)/(p− 1),

i.e., AdvPolySDH
A = O(q2G q `/p+ (q `)3/p).
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We can state the generic hardness of the asymptotic Poly-SDH assumption much more simply,
as follows.

Corollary 17. All algorithms that solve (q, `)-Poly-SDH problems with constant probability ε > 0
in generic bilinear groups of order p such that q ` < O( 3

√
p) require Ω(

√
ε p/q `) generic operations.

A.5 Generic-Group Complexity of Pluri-SDH

Essentially the same proof as in Appendix A.4 gives the following generic-group complexity lower
bounds for the Pluri-SDH assumption. We give the bounds for the general (q, `, `′)-Pluri-SDH
problem, and note that they also apply if we set `′ = 1, which is the relevant assumption for the
ring signature proof.

Theorem 18. Let A be a computationally unbounded algorithm for the (q, `, `′)-Pluri-SDH problem
in generic bilinear groups of prime order p, that makes qG queries to a generic group oracle. Then,

Pr

AO


f(g), f(gαi)
i=−`′,...,
−1,1,...,`

, ( wi,j , f(g
1

αi+wi,j ) )
1≤j≤q

i=−`′,...,
−1,1,...,`

f̂(ĝ), f̂(ĝαi)
i=−`′,...,
−1,1,...,`

 =
(
wi, f(g

ri
αi+wi )

)
i

:
∑

i

ri = 1


= AdvPluriSDH

A ≤ (qG + q `′ + 2 `′ + 2 `)2 (q `′ + `)
p− 1

= O(
q2G (q `′ + `) + (q `′ + `)3

p
) .

Proof. The proof is analogous to that of Theorem 16.

We can restate the generic hardness of the asymptotic Pluri-SDH assumption more concisely:

Corollary 19. Any algorithm that solves the (q, `, `′)-Pluri-SDH problem with constant probability
ε > 0 in generic bilinear groups of prime order p such that ` ≤ q `′ < O( 3

√
p) requires Ω(

√
ε p/q `′)

generic group operations.

A.6 On Selecting the Group Order

A recent analysis of SDH shows that it may be helpful (but not required) to ensure that p− 1 and
p+ 1 have large prime factors [13]. It is shown how to recover α generically from an Original SDH
instance, in time as low as Θ(log p

√
p/q) for certain values of q provided that p ± 1 is smooth.

Conversely, it is also conjectured that for “safe” p the generic time complexity should be brought
back up to Θ(

√
p), on a par with the discrete logarithm bound.

Parameterizing the system based on this conjecture (rather than the generic bound from [4])
is enticing because it entails smaller group sizes for a prescribed security level. However, requiring
multiple primality constraints to be satisfied at once when constructing a pairing-friendly curve
will undoubtedly complicate the construction. This may be a reason to disregard the conjecture,
and instead use the generic bounds when parameterizing an SDH-based system.

These concerns do not carry over to the assumptions we made, for the main reason that the
analysis from [13] does not seem to generalize to them. Specifically, the analysis from [13] was
crucially based on Original SDH instances (given as a series of powers), rather than Modified SDH
(given as a list of example solutions). Since we stated Poly-SDH and Pluri-SDH in the same “list
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of solutions” form as the latter, the recommendations on the choice of p should not be of great
concern here.

We emphasize also that our generic complexity bounds are true for all primes p.

B Ring Scheme Security Proofs

This section focuses on the security properties of the special-case ring signature scheme of Section 4.

B.1 Anonymity of the Ring Scheme

We prove Theorem 1 using an information-theoretic argument.

Proof of Theorem 1. We need to show that it is impossible to determine which ring member pro-
duced a signature, even if all the secret keys are revealed. Observe that the distribution of σ
is uniform over the (2 `+ 1)-dimensional variety of G`+1 × F`+1

p defined by the ring verification
equation, i.e.,

P(σ) = U

(
(S0, ..., S`, t0, ..., t`) ∈ G`+1 × F`+1

p :
∏̀
i=0

e(Si, Âi B̂
mi
i Ĉti

i ) = e(g, ĝ)

)
.

Conditionally on the public information, the random variable σ is jointly independent of the signer
identity and all the secret data (including the random coins used to generate the signing keys).
The theorem follows immediately.

The reader will notice that the independence does not extend conditionally on the ephemerals si

that were used to create the signature. Even though it is in the interest of the signer to erase those
immediately, a powerful adversary could possibly recompute them (by solving a discrete logarithm,
as infeasible as it sounds), so one may ask how this affects anonymity. The answer is that is does
not, because there are many possible sets of ephemerals, one for each member of the ring, and by
Theorem 1 none of them can be preferred over any other based on public or secret information. 1

B.2 Unforgeability of the Ring Scheme

We now prove a stronger version of Theorem 2 where the forger is given to make atomic signature
queries, based on the stronger (q, `+ 1)-Poly-SDH assumption in G. (The simpler Theorem 2 can
be proven along the same lines.) The precise statement of the theorem we prove is as follows.

Theorem 20. The ring signature is existentially unforgeable under an adaptive attack, against a
static adversary that makes no more than q ring signature queries, and q atomic signature queries
to each one of the ` honest users, adaptively, provided that the (q, `+1)-Poly-SDH assumption holds
in G, in the common random string model.

1There remains the possibility that the signer could reveal the ephemerals voluntarily to revoke her own anonymity,
but this falls outside of the purview of Theorem 1: the same outcome can be achieved generically in all ring signatures.
To do so, the signer would append to the message being ring-signed, a one-time signature verification key, an encrypted
signature of the same under her public key, and a signature of a hash of the decryption key under the one-time key;
she could then provably de-anonymize herself by revealing the decryption key.
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Proof. Let G = (p,G, Ĝ,Gt, g, ĝ, e) be some bilinear instance with a computable isomorphism
ψ : Ĝ→ G. Suppose that H : {0, 1}∗ → Fp is a collision-resistant hash function.

We are given a random instance of the (q, `+ 1)-Poly-SDH problem in G, stated as `+ 1 pairs
(gi = gαi , ĝi = ĝαi) for i = 0, ..., `, and (`+ 1) q pairs (wi,j , ui,j = g

1/αi+wi,j ) for i = 0, ..., ` and
j = 1, ..., q. Our task is to output ` + 1 pairs (w∗i , u

∗
i = gr∗i/αi+w∗i ) for i = 0, ..., `, for some public

choice of w∗i such that w∗i /∈ {wi,1, ..., wi,q} for all i = 0, ..., `, and some secret choice of r∗i such that∑`
i=0 r

∗
i = 1 (mod p).

We construct an algorithm B that solves such instances of the Poly-SDH problem by interacting
with a black-box forgerA for the ring scheme. For simplicity, we give sequential numbers in {1, 2, ...}
to all users (i.e., potential ring members). Since the adversary is static, we suppose w.l.o.g. that
the target users will consist of the set {1, ..., `}, and that the target ring will be R∗ = {1, ..., `}.

Indeed, per the model of Section 2.3, any forgery would have to bear on a ring R∗ that is a subset
of {1, ..., `}: this is because, for ring signatures, a well-formed specification Υ is a flat disjunction of
user/message clauses, and only with all users in the set {1, ..., `} can it imply another disjunction
Υ′ that remains within the set (we can enlarge any subset to the whole set, but no further). We
acknowledge that any target ring R∗ ⊆ {1, ..., `} would be fair game for the adversary, but since a
larger ring only makes the forgery easier, we can take it as the whole set R∗ = {1, ..., `}, w.l.o.g.

In this setting, we use the index i = 0 for the key “in the sky”, and assume that B has ownership
of the first ` users with 1 ≤ i ≤ `, and that A controls all the others with `+1 ≤ i ≤ Imax for some
polynomial bound Imax. Each player reveals the public keys of the users in its custody, first B, and
then A, without revealing the private keys.

For generality and homogeneity of notation, we will allow each ring signature component to
bear on an arbitrary message in Fp, i.e., we do not require that the messages be the same.

Regular Simulation. We first describe a “regular” simulation that B can use when the adversary
A does not behave in a pathological manner (to be made precise later). The reduction follows.

To start, the simulator B must fix the common random string from the distribution expected by A.
First, B publishes the bilinear instance G and the isomorphism ψ. Next, B chooses random
b0, c0 ∈ F×p and publishes (Â0, B̂0, Ĉ0) = (ĝ0, ĝb0 , ĝc0) as the public key “in the sky”; this
implicitly reveals (A0, B0, C0) = (g0, gb0 , gc0). Last, B publishes the description of H.

B gives A the public keys of the first ` users. To do so, for each i = 1, ..., `, it draws random
bi, ci ∈ F×p and publishes the tuple (Ai, Bi, Ci, Âi, B̂i, Ĉi) = (gi, g

bi , gci , ĝi, ĝ
bi , ĝci).

A gives B the public keys (Ai, Bi, Ci, Âi, B̂i, Ĉi) of the users it controls, i = (`+ 1), ..., Imax.
Here, Imax is the total number of users, which must be polynomially bounded.

Per the unforgeability model, A is allowed to give those values to B interactively, interleaved
with the signature queries described below. We only require that A reveal a public key before
it makes any signature query that involves that key.

A makes qS distinct ring signatures queries to B, one at a time, proceeding adaptively. To exhaust
the quota of queries that are available to A, we assume w.l.o.g. that qS = q.

For j = 1, ..., qS, the j-th query is a pair (Mj , Rj) where Rj is a ring and Mj is a vector of
messages to be signed by that ring. Let n be the number of users in the ring. Let thus Rj =
{i1, ..., in} ⊆ {1, ..., Imax}, and Mj = (m1, ...,mn) ∈ Fn

p . We require that Rj ∩ {1, ..., `} 6= ∅;
otherwise the simulator is not supposed to respond and the query will be denied.
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B responds to a well-formed j-th query as follows.

Select n random exponents s1, ..., sn ∈ Fp, and n random integers t1, ..., tn ∈ Fp. Compute
m0 = H((i1,m1), ..., (in,mn)) and set t0 = (w0,j − b0m0)/c0. Here, b0 and c0 are the secret
exponents chosen during setup, and w0,j is taken from (w0,j , u0,j) in the problem instance.

B replies to A by returning the signature σj = (S0, ..., Sn, t0, ..., tn), which is given by,

σj =


(
u0,j ·

n∏
k=1

(Aik B
mk
ik

Btk
ik

)−sk

)
,
(
A0B

m0
0 Ct0

0

)s1
, ...,

(
A0B

m0
0 Ct0

0

)sn
,

t0, t1, ..., tn

 .

Note that σj is properly randomized and passes the validity test:
∏n

k=0 e(Sk, Âik B̂
mk
ik

Ĉtk
ik

) =

e
(
g

1
α0+w0,j

∏n
k=1 (Aik B

mk
ik

Ctk
ik

)−sk , Â0 B̂
m0
0 Ĉt0

0

)
·
∏n

k=1 e
(
(A0B

m0
0 Ct0

0 )sk , Âik B̂
mk
ik

Ĉtk
ik

)
=

e
(
g

1
α0+w0,j , Â0 B̂

m0
0 Ĉt0

0

)
= e

(
g

1
α0+w0,j , ĝα0+w0,j

)
= e(g, ĝ), as required.

A can also make qS,i distinct atomic signature queries for each user i = 1, ..., ` controlled by B.
These queries can be adaptative and interleaved with the ring signature queries. Again to
exhaust the quota of queries that are available to A, we assume w.l.o.g. that qS,i = q for
i = 1, ..., `.

B responds to the j-th query (i,m) to the i-th user, by retrieving the pair (wi,j , ui,j) from the
Poly-SDH instance, computing t = (wi,j − bim)/ci, and returning the Boneh-Boyen signature
(ui,j , t) to A.

A eventually outputs a forgery σ∗ on some list of messages M∗ = (m∗
1, ...,m

∗
` ) attributed to

the target ring R∗ = {1, ..., `}. To preclude trivial forgeries, we demand that (M∗ 6= Mj) ∨
(R∗ 6= Rj) for all queries (Mj , Rj) previously made by A.

The forgery is a signature of the form σ∗ = (S∗0 , ..., S
∗
` , t

∗
0, ..., t

∗
` ) and must necessarily satisfy,

for m∗
0 = H((1,m∗

1), ..., (`,m
∗
` )),

∏̀
i=0

e
(
S∗i , Âi B̂

m∗
i

i Ĉ
t∗i
i

)
= e(g, ĝ) .

It follows that there exist ` unknown exponents r∗1, ..., r
∗
` ∈ Fp such that,

S0 =
(
g

1
α0+b0 m∗

0+c0 t∗0

)1−
P`

k=1 r∗k
, and Si =

(
g

1
αi+bi m∗

i
+ci t∗

i

)r∗i
for i = 1, ..., ` .

Thus, if we compute w∗i = bim
∗
i + ci t

∗
i for i = 0, ..., `, and formally define r∗0 = 1−

∑`
k=1 r

∗
k,

we obtain the following solution to the Poly-SDH problem instance,

( (w∗0, S
∗
0), ..., (w∗` , S

∗
` ) ) =

( (
w∗0, u

∗
0 = g

r∗0
α0+w∗0

)
, ...,

(
w∗` , u

∗
` = g

r∗`
α`+w∗

`

) )
.

B can compute all the w∗i and u∗i , even though it does not know any of the r∗i .
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The preceding reduction will succeed to produce a solution to the given Poly-SDH instance, when
the adversary’s forgery is such that w∗i /∈ {wi,1, ..., wi,q} for all i = 0, ..., `.

However, A could produce an anomalous forgery where w∗i∗ ∈ {wi∗,1, ..., wi∗,q} for some i∗ ≤ `,
either by luck or by design. The preceding simulation is useless in this case, since it would produce
an easy solution to the Poly-SDH problem that is explicitly forbidden. We use an “alternative”
simulation to deal with this anomaly.

Alternative Simulation. We construct an “alternative” reduction for the case where A’s forgery
causes the parameter w∗i∗ to land in the set {wi∗,1, ..., wi∗,q} of parameters explicitly listed in the
problem instance given to B. The simulation is as follows.

To start, the simulator B posts a common random string from the distribution expected by A.
To do so, B publishes the bilinear instance G and the isomorphism ψ; it chooses random
a0, b0 ∈ F×p and publishes (Â0, B̂0, Ĉ0) = (ĝa0 , ĝb0 , ĝ0); it also publishes a description of H.

B gives A the public keys of the first ` users. To do so, for each i = 1, ..., `, it draws random
ai, bi ∈ F×p and publishes the tuple (Ai, Bi, Ci, Âi, B̂i, Ĉi) = (gai , gbi , gi, ĝ

ai , ĝbi , ĝi).

A gives B the public keys (Ai, Bi, Ci, Âi, B̂i, Ĉi) of the users it controls, i = (`+ 1), ..., Imax.
Again, Imax is the total number of users, which must be polynomially bounded.

As before, A may keep introducing new keys after it has started making signature queries, as
long as public keys are revealed before queries that depend on them.

A makes q distinct ring signatures queries to B, proceeding adaptively. As before, the j-th query
is given as a pair (Mj , Rj) with Mj = (m1, ...,mn) ∈ (Fp)n for some n and Rj = {i1, ..., in} ⊆
{1, ..., Imax} such that Rj ∩ {1, ..., `} 6= ∅. Upon receiving this query, B responds as follows.

B computes m0 = H((i1,m1), ..., (in,mn)) and sets t0 = (a0 + b0m0)/w0,j using the j-th pair
(w0,j , u0,j) from the problem instance. B also computes Vj = Bm0

0 Ct0
0 and stores the tuple

(0, Vj , m0, t0, Mj , Rj) in some searchable database for future use.

B then chooses n random exponents s1, ..., sn ∈ Fp, and n random integers t1, ..., tn ∈ Fp,
and answers the query by giving to A the signature,

σj =


(
u

1/t0
0,j ·

n∏
k=1

(Aik B
mk
ik

Ctk
ik

)−sk

)
,
(
A0B

m0
0 Ct0

0

)s1
, ...,

(
A0B

m0
0 Ct0

0

)sn
,

t0, t1, ..., tn

 .

We show that the signature σj = (S0, ..., Sn, t0, ..., tn) has the correct distribution. First,
it has the requisite 2n + 1 degrees of freedom, and so is adequately randomized. Second,
in the verification equation, all the factors under the pairings cancel out, except for u1/t0

0,j .

Therefore, writing i0 = 0, we find,
∏n

k=0 e
(
Sk, Âik B̂

mk
ik

Ĉtk
ik

)
= e

(
(u1/t0

0,j ), Â0 B̂
m0
0 Ĉt0

0

)
=

e

(
g

w0,j/(a0+b0 m0)

α0+w0,j , ĝa0+b0 m0 ĝt0
0

)
= e

(
g

w0,j
α0+w0,j , ĝ

)
e
(
g

1
α0+w0,j , ĝα0

)
= e(g, ĝ), as required.

A also makes q distinct atomic signature queries for each of the users i = 1, ..., ` controlled by B.
These queries are adaptative and interleaved with the ring signature queries.

B responds to the j-th query (i,m) on behalf of the i-th user, as follows.
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It retrieves the fresh pair (wi,j , ui,j) from the Poly-SDH instance, and sets t = (ai + bim)/wi,j .
It also computes B also computes V = Bm

i Ct
i and stores the tuple (i, V, m, t, ∅, ∅) the

database for future use. It then returns the Boneh-Boyen signature (u1/t
i,j , t) to A.

A finally outputs a forgery σ∗ bearing on a message vector M∗ = (m∗
1, ...,m

∗
` ) and the target ring

R∗ = {1, ..., `}, provided that (M∗ 6= Mj) ∨ (R∗ 6= Rj) for all queries (Mj , Rj) made earlier.
We let m∗

0 = H((1,m∗
1), ..., (`,m

∗
` )).

The forgery σ∗ = (S∗0 , ..., S
∗
` , t

∗
0, ..., t

∗
` ) is not valid unless

∏`
i=0 e(Si, Âi B̂

m∗
i

i Ĉ
t∗i
i ) = e(g, ĝ),

i.e., there must exist r1, ..., r` ∈ Fp and r0 = 1−
∑`

k=1 rk such that,

Si =
(
g

1
ai+bi m∗

i
+αi t∗

i

)ri

for i = 0, ..., ` .

For i = 0, ..., `, let us define w∗i = bim
∗
i + ci t

∗
i for the value ci = dlogg(Ci) = αi that would

have given A the same view in the regular simulation. Let us also define w∗∗i = (ai + bim
∗
i )/t

∗
i

with ai and bi as chosen in the present simulation. Remark that B is unable to compute any
of the w∗i , but it can and does compute all the w∗∗i .

B exploits all of this as follows. It computes V ∗
i = (Bi)m∗

i (Ci)t∗i = gw∗
i for i = 0, ..., `, and

then searches the database for an entry (i, Vj , m
(j)
i , t

(j)
i , Mj , Rj) such that Vj = V ∗

i , or
equivalently, such that bim

(j)
i + αi t

(j)
i = w∗i .

There are three (possibly overlapping) possibilities:

1. An entry was found with Vj = V ∗
i and m(j)

i 6= m∗
i for some i: In this case, B can resolve

the Poly-SDH instance explicitly by recovering the secret exponent αi ∈ Fp,

αi =
(t∗i − t

(j)
i )

bi (m
(j)
i −m∗

i )
.

2. An entry was found with Vj = V ∗
0 and m

(j)
0 = m∗

0: In this case, B has found a collision
in the supposedly collision-resistant hash function H, since we have,

m
(j)
0 = m∗

0︷ ︸︸ ︷
H( f(Mj , Rj)︸ ︷︷ ︸ )

︷ ︸︸ ︷
H( f(M∗, R∗)︸ ︷︷ ︸ )

((i1,m
(j)
1 ), ..., (in,m

(j)
n )) 6= ((1,m∗

1), ..., (`,m
∗
` ))

.

3. An entry was found with Vj = V ∗
i andm(j)

i = m∗
i for i 6= 0: In this case, the ring signature

forgery includes a clause [VKi : m∗
i ] on which A had previously made an atomic signature

query (it being the j-th query to the i-th user). The forgery is therefore inadmissible
and this case may be discounted (regardless of whether Vj = V ∗

i or Vj 6= V ∗
i ).

4. No entry that matches the conditions was found in the database: This corresponds to
the event that ∀i,∀j, (w∗i 6= bim

(j)
i + ci t

(j)
i ) where ci = dlogg(Ci). In this case B is stuck,

but from the point of view of A this is precisely when the “regular” simulation will be
able to proceed to completion.
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Fair Prior Apportionment. Even though B will not know in advance which of the “regular” and
“alternative” simulation should be used, we can see that they all appear identical to the adversary,
so by a standard argument, if B makes a fair random choice at the onset, the final reduction will
be successful with probability 1

2 .

For completeness, we mention that the alternative simulation may succeed not by solving the
Poly-SDH instance but by finding a hash collision. Since it is possible to build (keyed) collision-
resistant hash function families from CDH, and thus from SDH or Poly-SDH, the theorem still
holds without the need for a hashing assumption.

C Mesh Scheme Security Proofs

This section focuses on the security properties of the general mesh signature scheme of Section 5.

C.1 Anonymity of the Mesh Scheme

We prove Theorem 5 using an information-theoretic argument.

Proof of Theorem 5. We need to show that it is impossible to determine which assignment caused
Υ̃ to be satisfied in the signature σ. By design of the blinding factors, the distribution of σ is the
uniform distribution U over the (2 `+ 1)-dimensional variety of F`+1

p ×G`+ϑ+1 defined by the mesh
verification equation, i.e.,

P(σ) = U



(t0, ..., t`, S1, ..., S`, P0, ..., Pϑ) ∈ F`+1
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,

where ∀i = 0, ..., ` the exponents yi,k come from the polynomial coefficients of πi =
∑ϑ

k=0 yi,k Zk,
whereas ∀k = 0, ..., ϑ the elements Âi,k, B̂i,k, Ĉi,k come from the public verification keys VKi.

First, we observe that P(σ) is indeed uniform over the stated (2 `+ 1)-dimensional variety.
Indeed, σ lives in a (2 `+ ϑ+ 2)-dimensional space and is subject to ϑ + 1 independent linear
constraints in the verification algorithm, so it has at most 2 ` + 1 degrees of freedom. Conversely,
for each joint random assigment to t0, ..., t` and s1, ..., s` there exists a distinct valid signature based
on that assignment, and so σ has at least 2 `+ 1 degrees of freedom, which are then as stated.

Next, we verify that P(σ) is indeed independent of the true signer, and more generally of the
secret linear combination ν0, ..., ν` that was used in the creation of σ (conditionally on Υ being
satisfied). This is immediate since the polynomials πi and their coefficients yi,k form a public
encoding of Υ determined independently of the truth value assignment χ from which the νi derive.
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Last, we note that the hash value Msg0 = H([VK1 : Msg1] , ..., [VK` : Msg`] ,Υ) and all ancillary
information adjoined to σ is itself a function of public information only. The theorem follows.

C.2 Unforgeability of the Mesh Scheme

We prove Theorem 6 from the (q, `+ 1)-Poly-SDH assumption in G.

Proof of Theorem 6. Let G = (p,G, Ĝ,Gt, g, ĝ, e) be a bilinear instance with a computable isomor-
phism ψ : Ĝ→ G, and suppose that H : {0, 1}∗ → Fp is a collision-resistant hash function.

As before, we are given a random instance of the (q, `+ 1)-Poly-SDH problem in G, stated as
`+ 1 pairs (gαi , ĝαi) for i = 0, ..., `, and (`+ 1) q pairs (wi,j , ui,j = g

1/αi+wi,j ) for i = 0, ..., ` and
j = 1, ..., q. Our task is to output ` + 1 pairs (w∗i , u

∗
i = gr∗i/αi+w∗i ) for i = 0, ..., `, for some public

choice of w∗i such that w∗0 /∈ {w0,1, ..., w0,q}, and some secret choice of r∗i such that
∑`

i=0 r
∗
i = 1

(mod p).

We construct an algorithm B that solves such instances of the Poly-SDH problem by interacting
with a black-box forger A for the mesh scheme. For simplicity, we give sequential numbers in
{1, 2, ...} to all users (that is, to all individuals that can be potentially named as mesh members).

Since the adversary is static, we suppose w.l.o.g. that the target users will consist of the set
{1, ..., `}. Per the mesh security model, a successful forgery must bear on a mesh expression Υ over
an arbitrary set of users, as long as it logically implies a weaker expression Υ′ that involves only
the users in {1, ..., `}, and no component that matches an earlier atomic query. Recall that this
is to ensure that Υ remains falsifiable even if the adversary sets all the literals under its control
to >, lest we accept a trivial forgery. Remark that a maximally weak such Υ′ representable in
the language is a disjunction over all target users in {1, ..., `}, i.e., the ring signature disjunction
Υ′′ = ∨`

i=1[VKi : Msgi]. Here, the clauses [VKi : Msgi] will be the same as in the original forgery,
except for those that were the object of earlier atomic queries in which case they are replaced by
[VKi : Msg′i] for some arbitrary Msg′i. Observe that Υ′′ specifies a ring signature forgery analogous
to that in the proof of Theorem 20.

Our strategy will thus be, first, to accept from A a forgery σ with formula Υ on some arbitrary
set of users. Next, we transform σ into a pseudo-signature σ′ with a weaker formula Υ′ defined
as a disjunction of the clauses [VKi : Msgi] from Υ that involve no adversarial user and match no
prior atomic signature query, i.e., only clauses under the simulator’s control are permitted in Υ′;
the result σ′ is a ring signature that is technically invalid because the clause [VK0 : m0] for the
“key in the sky” pertains to the original hash value m0 = H(...,Υ). Then, we transform σ′ into
an even weaker ring pseudo-signature σ′′ whose formula Υ′′ is a disjunction over the entire ring
R∗ = {1, ..., `} of all honest users: for the latter step we simply add a clause [VKi : Msg′i] for each
user of index i ≤ ` that is missing from Υ′; the messages Msg′i may be arbitrary and match Msgi

from the forgery, as long as we steer clear from all messages used in atomic queries made to VKi.
From σ′′, which still contains the original hash m0 but would otherwise be a valid ring signature,
B can compute a solution to the Poly-SDH instance exactly as in Theorem 20.

It suffices to show how to respond to well-formed mesh signatures and atomic signature queries
during the adaptive query phase, and then how to effect the final transformation σ 7→ σ′ 7→ σ′′

corresponding to Υ 7→ Υ′ 7→ Υ′′ at the end of the game.

Regular Simulation. We merely show how the regular mesh simulation generalizes that of the
basic ring signature.
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To start, B publishes the blinear instance G, the isomorphism ψ, and the hash function H.
Furthermore, B chooses λ+ 1 random exponents z0, ..., zλ ∈ F×p , and for each k publishes the
reference element ĝk = (ĝα0)zk , based on the value of ĝα0 given in the Poly-SDH instance.
This also induces gk = (gα0)zk = ψ(ĝk), for k = 0, ..., λ.

Additionally, B publishes the verification key “in the sky”, consisting of 3 (λ+ 1) elements
Â0,k = (ĝα0)a0,k , B̂0,k = ĝb0,k , Ĉ0,k = ĝc0,k with random a0,k, b0,k, c0,k ∈ F×p for k = 0, ..., λ.
(Notice that the Â0,k are powers of ĝα0 given in the Poly-SDH instance, while the B̂0,k and
Ĉ0,k are mere powers of ĝ.)

B gives A the public keys of the first ` users. To do so, for each i = 1, ..., `, it draws random
exponents bi, ci ∈ F×p and publishes Âi,k = (ĝαi)zk , B̂i,k = ĝbi zk , Ĉi,k = ĝci zk for k = 0, ..., λ.
(Here, the Âi,k derive from the ĝαi from the Poly-SDH instance, whereas the B̂i,k and Ĉi,k

are known powers of ĝ.)

A gives B the public keys of the users it controls, of indices i = (`+ 1), ..., Imax, during the course
of queries. For each such i, a key consists of 3 (λ+ 1) elements Âi,k, B̂i,k, Ĉi,k, for k = 0, ..., λ.

It must be the case that dlogĝ0
(Âi,0) = ... = dlogĝλ

(Âi,λ), and similarly for the B̂i,k and the
Ĉi,k, which the simulator can easily verify using the pairing.

A makes qS = q distinct mesh signatures queries to B, one at a time, proceeding adaptively.

Each query is a well-formed mesh statement Υ to be signed by any coalition of users that
can satisfy Υ. Let n be the number of mesh literals L1, ..., Ln, and let the corresponding
clauses be [VKi1 : m1] , ..., [VKin : mn]. We require that Υ be unsatisfiable using only clauses
with user indices ij > `, otherwise the adversary should be able to create a signature without
having to query for it. (We remark that the simulator is still able to respond even in this
case, using the signing key “in the sky”, but chooses not to do so.)

The adversary may also specify, as part of the query, an atomic signature (uj , tj) on mj

for any number of users ij > ` in its control. This is to simulate the scenario where the
signer wishes to make use of atomic signatures on messages it knows, e.g., PKI certificates on
designated users’ keys, but lacks the ability to create different signatures on those messages.
(In the simulation, B simply ignores the given uj and uses the tj instead of random values.)

B responds to a well-formed j-th query very much as in the ring signature simulation of
Theorem 20. The differences are as follows.

First, B creates Υ̃ = Υ ∨ L0 where L0 corresponds to the proposition [VK0 : m0] with m0 =
H([VK1 : Msg1] , ..., [VKn : Msgn] ,Υ), per the mesh scheme. B computes a representation of
Υ̃ as a list of degree-1 polynomials π0, ..., πn ∈ Fp[Z0, ..., Zϑ] with coefficients yi,k ∈ Fp.

Next, B satisfies Υ̃ with a truth assignment such that χ(L0) = > and χ(Li) = ⊥ everywhere
else. Accordingly, B uses the (0, j)-th pair (w0,j , u0,j) from the Poly-SDH instance to obtain
an atomic signature onm0 under a combination of the keys “in the sky” expressed by the poly-
nomial π0. Precisely, it defines a0 =

∑ϑ
k=0 a0,k y0,k, b0 =

∑ϑ
k=0 b0,k y0,k, c0 =

∑ϑ
k=0 c0,k y0,k,

and builds the signature as: (u0 = u0,j
1/a0 , t0 = a0 w0,j−b0 m0

c0
). 2 3

2Notice that, unlike the user keys which have a lot of internal structure (exhibited by the many obvious discrete
log relations), the various components of the key “in the sky” are independently distributed and so a signature that
will verify under one triple (Â0,k1 , B̂0,k1 , B̂0,k1) will not verify under another (Â0,k2 , B̂0,k2 , B̂0,k2). What we need is
a signature that will verify for the particular combination of such triples given by the coefficients of π0.

3It can also be shown that for Υ̃ = Υ ∨ L0, the algorithm of Section 5.1 always gives π0 = Z0, and so we have
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Then, B runs the mesh signing algorithm as in the real scheme, based on the πi and νi it has.
Specifically, B takes t0, chooses t1, ..., tn at random (or uses the A-specified values for them),
and computes Si1 , ..., Sin and P0, ..., Pϑ as in the real scheme. It can do so without knowing
any signing key because νi = 0 for all users i 6= 0; however, the mesh prototype it obtains is
invalid precisely for that reason. (The only non-zero coefficient in the linear combination is
the coefficient ν0 that applies to the polynomial π0, but the signing algorithm of Section 5.3
purposely ignores it since in real life it is always zero. For Υ̃ = Υ ∨ L0, the algorithm of
Section 5.1 gives π0 = Z0, and thus ν0 = 1 per Lemma 3 since all other coefficients are zero.
The simulator needs to incorporate ν0 manually into the prototype signature.)

Thus, B has to amend the prototype to turn it into a valid mesh signature. This is done by
multiplying u0 into the component P0. Indeed, because the prototype so far contains only
blinding factors and no actual signature, the left-hand sides of all the verification equations
resolve to 1 ∈ Gt, including the main equation (the one involving P0), which should equate
to e(g, ĝ0) ∈ Gt instead. A substitution of uν0

0 P0 = u0 P0 for the prototype’s P0 effects the
desired correction without disturbing the other equations.

The resulting mesh signature is given to A. It is valid, and uniformly distributed over the
correct space, as we count 2n+ 1 degrees of freedom among its 2n+ ϑ+ 1 components.

A also makes qS,i = q distinct atomic signature queries for each user i = 1, ..., ` controlled by B;
these can be arbitrarily interleaved with the ring signature queries.

B responds to the j-th query (i,m) to the i-th user, by retrieving the (i, j)-th pair (wi,j , ui,j)
from the Poly-SDH instance, computing t = (wi,j − bim)/ci, and returning the Boneh-Boyen
signature (ui,j , t) to A.

A finally outputs a forgery σ = (t0, ..., tn, S1, ..., Sn, P0, ..., Pϑ) bearing on a well-formed mesh
statement Υ such that Υ ⇒ Υ′ for some other well-formed statement Υ′ that involves only
users of indices i ≤ ` and no clause that matches an earlier atomic query. W.l.o.g., we
can assume that Υ′ is a disjunction, since every well-formed formula in the language can be
weakened into a disjunction of its inputs.

B performs the first transformation Υ 7→ Υ′ by eliminating from σ the components of user
indices i > `, or those that match an atomic query, which will produce a ring pseudo-signature
σ′ on the disjunction Υ′. The process amounts to performing Gaussian elimination of every
variable Si that corresponds to an undesirable clause, in the linear system that lives “in
the exponents” of the verification equations. Each step of the Gaussian elimination will
“consume” exactly one of the ϑ supplemental verification equation (i.e., those that involve
some Pk for k 6= 0), with the aim of eliminating one of the remaining offending Si, thus chosen
as our “pivot”. As in classical Gaussian elimination, only an Si whose coefficient yi,k 6= 0 at
the end of a previous step can serve as pivot and hence be eliminated by consuming the next
equation in Pk. Remark that we do not eliminate P0. A straightforward argument shows
that if Υ ⇒ Υ′ where Υ′ represents a disjunction over L0, ..., L`, then a pseudo-signature
corresponding to Υ′ can be obtained by the Gaussian elimination process (“pseudo” because,
once again, the hash value m0 is not updated in the process). We now describe Gaussian
elimination “in the exponent”.

y0,k = 0 for k 6= 0. It follows that the public key “in the sky” only needs one triple (Â0,0, B̂0,0, B̂0,0) instead of
λ+1 ≥ ϑ+1 of them. We omit this optimization from the present proof to avoid further complicating the argument,
but since it greatly shortens the CRS we explicitly recommend its use in Section 5.5.
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Suppose w.l.o.g. that B seeks to eliminate Sn from σ, where Sn appears with exponent yn,ϑ 6= 0
in the equation that involves Pϑ, i.e.,

e (Pϑ, v̂0) ·
n∏

i=1

e
(
Si,

(
Âi,ϑ B̂

mi
i,ϑ Ĉ

ti
i,ϑ

)yi,ϑ
)

= 1 .

The idea is to find a linear combination that will cancel out Sn in the main equation, i.e.,

e (P0, v̂0) ·
n∏

i=1

e
(
Si,

(
Âi,0 B̂

mi
i,0 Ĉ

ti
i,0

)yi,0
)

= e(g, ĝ0) .

This is easy to do once we observe that (Âi,ϑ B̂
mi
i,ϑ Ĉ

ti
i,ϑ)z0 = (Âi,0 B̂

mi
i,0 Ĉ

ti
i,0)

zϑ for all i = 1, ..., n.
We raise both sides of the Pϑ equation (on top) to the power of ρ = yn,0 z0

yn,ϑ zϑ
, and divide the

result into the main equation, causing the pairing with Sn to vanish. We then consolidate
the new terms into the existing ones to preserve the form of the equation. That is, we let
P ′

0 = P0/P
ρ
ϑ replace the ratio of P0 and P ρ

ϑ , and for all i = 1, ..., n − 1, we merge the ratio

of e
(
Si, (Âi,0 B̂

mi
i,0 Ĉ

ti
i,0)

yi,0

)
and e

(
Si, (Âi,ϑ B̂

mi
i,ϑ Ĉ

ti
i,ϑ)yi,ϑ

)ρ
= e(Si, (Âi,0 B̂

mi
i,0 Ĉ

ti
i,0)

ρ
zϑ
z0

yi,ϑ),

into the one pairing e
(
Si, (Âi,0 B̂

mi
i,0 Ĉ

ti
i,0)

y′i,0
)

by letting y′i,0 = yi,0−ρ zϑ
z0
yi,ϑ = yi,0− yn,0

yn,ϑ
yi,ϑ.

Notice that y′n,0 = 0 is evidence that Sn has vanished from the equation.

We similarly eliminate Sn from each of the remaining verification equations, for k = 1, ..., ϑ−1,
using the same technique. This produces new points P ′

k to replace the old Pk, as well as new
exponents y′i,k for all i = 0, ..., n− 1 to replace the yi,k.

The signature σ has been transformed into (t0, ..., tn−1, S1, ..., Sn−1, P
′
0, ..., P

′
ϑ−1), which has

three fewer components.

After ϑ iterations of this process, we obtain a signature (t0, ..., tn−ϑ, S1, ..., Sn−ϑ, P
′′
0 ), which

corresponds to a mesh statement Υ′ which is a flat disjunction of n − ϑ + 1 inputs. We
have thus obtained a ring signature over a ring of size n − ϑ plus the user “in the sky”.
We can rename the component P ′′

0 as S0 and rearrange the signature into the familiar form
σ′ = (S0, ..., Sn−ϑ, t0, ..., tn−ϑ), which represents a disjunction, and should only contain target
users and honest clauses if the original forgery was admissible in the first place.

B then performs the second transformation Υ′ 7→ Υ′′. Starting from σ′, it expands the ring
to cover all ` users, by adding dummy signatures by the missing users on arbitrary messages:
this is done by adding Sj components for randomly chosen tj . Since these dummy signature
components need not (and must not) contribute to the final output, they consist only of a
blinding factor that is easy to cancel in an existing Si, using the usual reciprocity trick under
the pairing. We finally obtain a ring pseudo-signature σ′′ = (t0, ..., t`, S0, ..., S`) for the full
ring R∗ = {1, ..., `} of honest users plus the verification key “in the sky”.

The final step of the reduction is to turn σ′′ into a solution to the Poly-SDH problem. We
omit the description of this step as it is exactly the same as in the regular simulation in
Theorem 20, once B has removed whichever (known) exponent y′′i,0 still remains in each Si.

We already mentioned that the ring pseudo-signature σ′′ is technically invalid since the message
m0 beared by the key “in the sky” is the hash value m0 = H([VK1 : Msg1] , ..., [VKn : Msgn] ,Υ)
from the original mesh specification Υ, and not Υ′′. This does not affect the final reduction.

However, just as in the proof of Theorem 20, for some i ∈ {0, ..., `} the forgery message mi

could induce a value w∗i ∈ {wi,1, ..., wi,q} that was already given in the Poly-SDH instance (using
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the w∗i notation from Theorem 20). If the component Si can be eliminated by the above process,
then all is well. Otherwise, we need an alternative reduction from the same mold as in Theorem 20.

Alternative Simulation. The alternative reduction works only on a final forgery that “matches”
one of the Poly-SDH pairs that was given to the simulator, in the sense that it corresponds to a
value w∗0 ∈ {w0,1, ..., w0,q}. In this case, the simulator can either recover the Poly-SDH secret
exponent α0, or find a collision under the hash function H.

The simulation proceeds as in the ring signatures of Theorem 20, based on the same judicious
choice of known and unknown discrete logarithms to let the final reduction go through. As in the
regular simulation above, there are two main difficulties compared to the ring signature case:

1. We need to answer queries not for ring signatures but for more complicated mesh signatures.
This is easy to do by using the signing key “in the sky” and the method described in the
regular mesh simulation above, except for how the atomic signature of index 0 is created.
Here, the simulator knows the discrete logarithm of A0 and B0 instead of B0 and C0, and so
the atomic signature is constructed as in the altenative simulation for ring signatures.

Queries on atomic signatures for the ` honest users are answered using the lists of pairs for
values of i = 1, ..., `, as the altenative simulator in the ring proof.

2. We need to transform the final mesh forgery (provided it is admissible) into a ring forgery that
exactly covers the target users {1, ..., `}. The transformation operates in two steps analogous
to those of the regular mesh simulation, except for a minor modification: in order for the
final reduction to work, the simulator must arrange to know the discrete logarithms of the
private key components Âi and B̂i, instead of B̂i and Ĉi. However, this does not affect the
transformation, which exploits a different set of discrete logarithms, namely the zk.

Success Probability. The important point that justifies that either the regular or the alternative
simulation will give the desired result, is that in both cases the final reduced ring signature σ′′ still
contains a component of index 0 that bears on a hash m0 of the full unretouched mesh specification
Υ given by the forger (and with the pristine original randomizer t0, too). Since it is those values
and the given Poly-SDH instance that determine which of the regular and alternative simulations
will work, we have the desired perfect dichotomy.

We conclude that if B chooses one at random at the onset, the overall success probability of the
reduction (conditionally on A’s success) will be 1

2 .
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