
Attribute-Based Encryption with

Non-Monotonic Access Structures

Rafail Ostrovsky Amit Sahai∗ Brent Waters †

Abstract

We construct an Attribute-Based Encryption (ABE) scheme that allows a user’s private key
to be expressed in terms of any access formula over attributes. Previous ABE schemes were
limited to expressing only monotonic access structures. We provide a proof of security for our
scheme based on the Decisional Bilinear Diffie-Hellman (BDH) assumption. Furthermore, the
performance of our new scheme compares favorably with existing, less-expressive schemes.

1 Introduction

Several distributed file and information systems require complex access-control mechanisms, where
access decisions depend upon attributes of the protected data and access policies assigned to users.
Traditionally, such access-control mechanisms have been enforced by a server that acts as a trusted
reference monitor; the monitor will allow a user to view data only if his access policy allows it. While
the use of trusted servers allows for a relatively straightforward solution, there is a large downside
to this approach — both the servers and their storage must be trusted and remain uncompromised.
With the increasing number of worm attacks and other forms of intrusion, maintaining the security
of any particular host is becoming increasingly difficult. This problem is exacerbated in larger
systems where sensitive data must be replicated across several servers because of scalability and
survivability concerns.

A natural solution to this problem is to encrypt stored data in order to reduce data vulnerability
in the event that a storage server is compromised. However, traditional public-key encryption
methods require that data be encrypted to one particular user’s public key and are unsuitable for
expressing more complex access control policies.1

Attribute-Based Encryption. Recently, Sahai and Waters [21] addressed this issue by introduc-
ing the concept of Attribute-Based Encryption (ABE). In Attribute-Based Encryption an encryptor
will associate encrypted data with a set of attributes. An authority will issue users different private

∗This research was supported in part by an Alfred P. Sloan Foundation Research Fellowship, an Intel equipment
grant, a Cyber-TA Army grant, and NSF ITR/Cybertrust grants 0205594, 0456717 and 0627781.

†Supported by NSF CNS-0524252 and the US Army Research Office under the CyberTA Grant No. W911NF-06-
1-0316.

1There have been several proposals for achieving greater access control from public key systems (see, e.g. [24, 9]).
However, these systems were unable to achieve the critical property of security against collusion attacks, where
multiple users share their private key information. Indeed, simple and devastating collusion attacks are easy to
mount against the systems of [24, 9] involving as few as two colluding users. In this paper, we focus only on solutions
that are able to provide security against collusion attacks.

1

keys, where a user’s private key is associated with an access structure over attributes and reflects
the access policy ascribed to the user.

The original ABE construction of Sahai and Waters is somewhat limited in that it only permits
an authority to issue private keys that express threshold access policies, in which a certain number
of specified attributes need to be present in the ciphertext in order for a user to decrypt. Goyal
et al. [16] greatly increased the expressibility of Attribute-Based Encryption systems by creating a
new ABE scheme in which users’ private keys can express any monotone access formula consisting
of AND, OR, or threshold gates.

While the work of Goyal et al. is a large step forward in the capability of Attribute-Based
Encryption systems, one fundamental limitation of their techniques is that there is no satisfactory
method to represent negative constraints in a key’s access formula. This is particularly a problem in
scenarios where conflicts of interest naturally arise. Consider the following example. A university
is conducting a peer-review evaluation, where each department will be critiqued by a panel of
professors from other departments. Bob, who is a member of the panel this year from the Biology
department, will need to read (possibly sensitive) comments about other departments and assimilate
them for his written review. In an Attribute-Based Encryption system the comments will be labeled
with descriptive attributes; for example, a comment on the History department might be encrypted
with the attributes: “History”,“year=2007”,“dept-review”. In the Goyal et al. scheme Bob
might receive a private key for the policy “year=2007” AND “dept-review”, which would
allow him to see all comments from this current year. However, in this setting it is important that
Bob should not be able to view comments written about his own department. Therefore, the policy
we would actually like to ascribe to Bob’s key is “year=2007” AND “dept-review” AND
(NOT “Biology”).

One way that we might try to handle this issue is to include explicit attributes that indicate
the absence of attributes in the ciphertext. For example, the attribute “not:Biology” can be
included in a ciphertext to indicate that the ciphertext is not related to the Biology department.
However, this solution is undesirable for two reasons. First, the ciphertext overhead will become
huge in many applications as it needs to explicitly include negative attributes for everything that it
does not relate to. The feedback about the History department would need to include the attributes
“not:Aeronautics”, “not:Anthropology”, “not:Art History”,. . . , “not:World Stud-
ies” as well as explicit negative attributes for every subject that does not describe the ciphertext.
In addition, a user encrypting a message might not be aware of many attributes, and new attributes
might come into use in the system after the ciphertext is created. In our example, a user creat-
ing a comment on the History department might be unaware of a newly created Otolaryngology2

department.
The above example illustrates the limitations on system design imposed by the inability of

current ABE systems to effectively support negation. Indeed, this limitation appears to be a fun-
damental characteristic of current ABE systems, which use techniques from secret-sharing schemes
as a core component of their design. It is well known that secret-sharing schemes are limited to
expressing monotonic access structures because a participating party can always choose not to
contribute his share and therefore act like he is not present.

Our Contribution. In this work we present a new Attribute-Based Encryption scheme where
private keys can represent any access formula over attributes, including non-monotone ones. In

2Otolaryngology is the branch of medicine that specializes in ear, nose, throat, head, and neck disorders.

2

particular, our construction can handle any access structure that can be represented by a boolean
formula involving AND, OR, NOT, and threshold operations.

As mentioned above, the main technical obstacle we overcome is finding a way to make use
of secret sharing schemes to yield non-monotonic access structures. At a high level, the technical
novelty in our work lies in finding a way to (implicitly) make a share “available” to the decryptor
only if a given attribute is not present among the attributes of the ciphertext. To accomplish this
we adapt an idea from the broadcast revocation scheme of Naor and Pinkas [18] to our setting of
Attribute-Based Encryption based on bilinear groups. Every negative attribute node in a key is
tied to a degree d polynomial (in the exponent) that was created by the authority at setup (where
d is the maximum number of attributes used to describe a ciphertext). To access the secret share
corresponding to this node, the decryptor will need to make use of at least d+1 different points from
the polynomial in order to perform an interpolation, where we map attributes to distinct points on
the polynomial. The decryption algorithm will be able to gather d different points of the polynomial
from the attributes of the ciphertext. To get the remaining point, the decryptor must examine the
one point that corresponds to the negative attribute in this particular node of the access formula.
If this attribute is distinct from all the attributes in the ciphertext — that is, if the attribute is
not present — then the decryptor will have d + 1 points of the polynomial and be able to decrypt;
otherwise, if the key’s attribute appears in the ciphertext, then the decryption algorithm will have
only d points (one particular point will have been given twice) and the decryption algorithm will
not be able to interpolate the polynomial and thereby access the secret share corresponding to the
node. In designing our construction several challenges arise from adapting these negation techniques
while preserving the collusion resistance features that are necessary for Attribute-Based Encryption
systems.

1.1 Related Work

Sahai and Waters [21] introduced the concept of Attribute-Based Encryption, as we use the term
here (see below for a brief discussion of other related notions). In ABE systems an encrypted
ciphertext is associated with a set of attributes, and a user’s private key will reflect an access policy
over attributes. A user will be able to decrypt if and only if the ciphertext’s attributes satisfy
the key’s policy. Attribute-Based Encryption is closely related to the concept of Identity-Based
Encryption (IBE) [7, 23, 15], which was introduced by Shamir in 1984 [23]. One can actually view
IBE as a special case of ABE in which ciphertexts are associated with one attribute, the “identity”
of the recipient, and a private key’s policy demands that one particular attribute, the key holder’s
identity, be present in the ciphertext for decryption.

The original construction of Sahai and Waters [21] was limited to expressing threshold access
policies. Goyal et al. [16] subsequently increased the expressibility of ABE systems by allowing the
private key to express any monotonic access structure over attributes.

Other works have examined different variants of ABE. Pirretti et al. [19] examined methods for
applying the Sahai-Waters system into practice and gave an implementation of the construction.
Chase [13] gave a “multi-authority” construction in which a user’s key is constructed by combining
components received from different authorities. Bethencourt, Sahai, and Waters [4] gave a con-
struction for “Ciphertext-Policy” Attribute-Based Encryption. In their construction the roles of
the ciphertexts and keys are reversed in the sense that attributes are used to describe the features
of a key holder, and an encryptor will associate an access policy with the ciphertext.

Attribute-Based Encryption makes use of techniques from secret-sharing schemes [17, 10, 22,

3

5, 3]. The idea of combining secret-sharing schemes and encryption to achieve access control with
respect to policies has a long history (for some recent work in this direction, see [24, 9]). In this
previous work, what we call “collusion” was actually seen as a desirable feature – it would be
necessary for multiple entities with different attributes/credentials to come together in order to
access encrypted data. This is of course problematic in our scenario; indeed, the elusive property
of resistance to collusion attacks is considered a defining property of the Sahai-Waters notion of
ABE.

1.2 Organization

In Section 2 we give background information on our security definitions and assumptions. Next,
we give our construction in Section 3. Then, we prove our scheme secure in Section 4. Finally, we
conclude in Section 5.

2 Background

We first give formal definitions for the security of (key-policy) Attribute-Based Encryption (ABE),
following [21, 16]. Then we give background information on bilinear maps and our cryptographic
assumption. Finally, we give some background on linear secret-sharing schemes.

2.1 Definitions

Definition 1 (Access Structure [2]) Let {P1, P2, . . . , Pn} be a set of parties. A collection A ⊆
2{P1,P2,...,Pn} is monotone if ∀B,C : if B ∈ A and B ⊆ C then C ∈ A. An access structure
(respectively, monotonic access structure) is a collection (respectively, monotone collection) A of
non-empty subsets of {P1, P2, . . . , Pn}, i.e., A ⊆ 2{P1,P2,...,Pn}\{∅}. The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets.

A (key-policy) Attribute-Based Encryption scheme consists of four algorithms.

Setup. This is a randomized algorithm that takes no input other than the implicit security
parameter. It outputs the public parameters PK and a master key MK.

Encryption. This is a randomized algorithm that takes as input a message M , a set of attributes
γ, and the public parameters PK. It outputs the ciphertext E.

Key Generation. This is a randomized algorithm that takes as input an access structure A, the
master key MK, and the public parameters PK. It outputs a decryption key D.

Decryption. This algorithm takes as input the ciphertext E that was encrypted under a set γ
of attributes, the decryption key D for access control structure A, and the public parameters PK.
It outputs the message M if γ ∈ A.

We now discuss the security of an ABE scheme. Following [21, 16], we define the selective-set
model for proving the security of the attribute based under chosen plaintext attack. This model
can be seen as analogous to the selective-ID model [11, 12, 6] used in identity-based encryption

4

(IBE) schemes [23, 7, 15].

Selective-Set Model for ABE

Init The adversary declares the set of attributes, γ, that he wishes to be challenged upon.
Setup The challenger runs the Setup algorithm of ABE and gives the public parameters to the
adversary.
Phase 1 The adversary is allowed to issue queries for private keys for many access structures
Aj , where γ /∈ Aj for all j.
Challenge The adversary submits two equal-length messages M0 and M1. The challenger flips
a random coin b, and encrypts Mb with γ. The ciphertext is passed to the adversary.
Phase 2 Phase 1 is repeated.
Guess The adversary outputs a guess b′ of b.

The advantage of an adversary A in this game is defined as Pr[b′ = b]− 1
2 .

We note that the model can easily be extended to handle chosen-ciphertext attacks by allowing
for decryption queries in Phase 1 and Phase 2.

Definition 2 An attribute-based encryption scheme is secure in the selective-set model of security
if all polynomial time adversaries have at most a negligible advantage in the selective-set game.

2.2 Bilinear Maps

We present a few facts related to groups with efficiently computable bilinear maps.
Let G and GT be two multiplicative cyclic groups of prime order p. Let g be a generator of G

and e be a bilinear map, e : G×G → GT . The bilinear map e has the following properties:

1. Bilinearity: for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non degeneracy: e(g, g) 6= 1.

We say that G is a bilinear group if the group operation in G and the bilinear map e : G×G → GT

are both efficiently computable. Notice that the map e is symmetric since e(ga, gb) = e(g, g)ab =
e(gb, ga).

2.3 The Decisional Bilinear Diffie-Hellman (BDH) Assumption

Let a, b, c, z ∈ Zp be chosen at random and g be a generator of G. The decisional BDH as-
sumption [6, 21] is that no probabilistic polynomial-time algorithm B can distinguish the tuple
(g,A = ga, B = gb, C = gc, e(g, g)abc) from the tuple (g,A = ga, B = gb, C = gc, e(g, g)z) with more
than a negligible advantage. The advantage of B is∣∣∣Pr[B(A,B, C, e(g, g)abc) = 0]− Pr[B(A,B, C, e(g, g)z)] = 0

∣∣∣
where the probability is taken over the random choice of the generator g, the random choice of
a, b, c, z in Zp, and the random bits consumed by B.

5

2.4 Linear Secret-Sharing Schemes

We will make essential use of linear secret-sharing schemes. We adapt our definitions from those
given in [2]:

Definition 3 (Linear Secret-Sharing Schemes (LSSS)) A secret-sharing scheme Π over a set
of parties P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.

2. There exists a matrix M called the share-generating matrix for Π. The matrix M has ` rows
and n + 1 columns. For all i = 1, . . . , `, the i’th row of M is labeled with a party named
x̆i ∈ P. When we consider the column vector v = (s, r1, r2, . . . , rn), where s ∈ Zp is the secret
to be shared, and r1, . . . , rn ∈ Zp are randomly chosen, then Mv is the vector of ` shares of
the secret s according to Π. The share (Mv)i belongs to party x̆i.

It is shown in [2] that every linear secret sharing-scheme according to the above definition also
enjoys the linear reconstruction property, defined as follows: Suppose that Π is an LSSS for the
access structure A. Let S ∈ A be any authorized set, and let I ⊂ {1, 2, . . . , `} be defined as
I = {i : x̆i ∈ S}. Then, there exist constants {ω ∈ Zp}i∈I such that, if {λi} are valid shares of any
secret s according to Π, then

∑
i∈I ωiλi = s.

Furthermore, it is shown in [2] that these constants {ωi} can be found in time polynomial in
the size of the share-generating matrix M .

3 Our Construction

In showing how to construct an Attribute-Based Encryption system with non-monotone access for-
mulas, we begin by describing a “core” construction, in which the we assume that every ciphertext
is annotated with exactly d attributes. We then show how to remove that restriction and still
achieve systems parameters that compare favorably with the less-expressive ABE system of Goyal
et al. [16].

We choose to first describe our construction in generality; we describe our access policies in
terms of monotonic access structures with negative attributes. (This will actually allow for more
general policies than non-monotone formulas.) Later, we show how to instantiate our constructions
to yield ABE schemes for any (monotone or non-monotone) boolean formula.

Moving from monotonic access structures to non-monotonic access structures. As
alluded to in the introduction we can think about ABE non-monotonic access structures in terms
of ABE monotonic access structures with negative attributes. The challenge in designing our
construction will be how to realize this concept without requiring a ciphertext to explicitly include
negative attributes for each attribute not present. Before we describe our construction we develop
some notation for describing how non-monotonic access structures can be described in terms of
monotonic access structures with negative shares, without blowing up the share sizes.

Assume we are given a family of linear secret-sharing schemes {ΠA}A∈A for a set of possible
monotone access structures A. Note that, of course, all access structures in A must necessarily
be monotonic because these access structures correspond to secret-sharing schemes. However, we
assume that for each access structure A ∈ A, the set of parties P underlying the access structure

6

has the following properties: The names of the parties in P may be of two types: either the name
is normal (like x) or it is primed (like x′), and if x ∈ P then x′ ∈ P and vice versa. We will
conceptually associate primed parties as representing the negation of unprimed parties. We will
sometimes write x̆ to refer to a party in P that may be primed or unprimed.

Then, we can define the following family Ã of possibly non-monotonic access structures. For
each access structure A ∈ A over a set of parties P, we define a possibly non-monotonic access
structure NM(A) over the set of parties P̃, where P̃ is the set of all unprimed parties in P. First,
for every set S̃ ⊂ P̃ we define N(S̃) ⊂ P as follows: First, all parties in S̃ are in N(S̃), so S̃ ⊂ N(S̃).
Second, for each party x ∈ P̃ such that x /∈ S̃, we have that x′ ∈ N(S̃). Essentially, N(S̃) consists
of all the parties in S plus the primes (or negation) of all the parties in the universe that are not
included in S.

Finally, we define NM(A) by specifying that S̃ is authorized in NM(A) iff N(S̃) is authorized in
A. The set of these NM(A) access structures is Ã. Therefore, the non-monotonic access structure
NM(A) will have only unprimed parties in its access sets. For each access set X in NM(A) there
will be a set in A that has the elements in X plus primed elements for each party not in X.

We will show how to use a linear secret sharing scheme Π for the monotonic access structure A
to yield an ABE key for the (possibly non-monotonic) access structure NM(A). Again, we stress
that the share sizes of Π only depend on the size of the non-monotonic access structure NM(A).

Mathematical Background. Let G be a bilinear group of prime order p, and let g be a generator
of G. In addition, let e : G × G → GT denote the bilinear map. A security parameter, κ, will
determine the size of the groups. We will also implicitly make use of Lagrange coefficients: for
any i ∈ Zp and a set, S, of elements in Zp: define ∆i,S(x) =

∏
j∈S,j 6=i

x−j
i−j . We will associate each

attribute with a unique element in Z∗
p. (This could be accomplished by means of a collision-resistant

hash function H : {0, 1}∗ → Z∗
p.)

Our main construction follows.

3.1 Main Construction

Setup(d). In the basic construction, a parameter d specifies how many attributes every ciphertext
has. (We will show later how this constraint can be removed with only a small loss in efficiency.)
Two secrets α, β are chosen uniformly at random from Zp, and we denote g1 = gα and g2 = gβ . In
addition, two polynomials h(x) and q(x) of degree d are chosen at random subject to the constraint
that q(0) = β. (There is no constraint on h(x).) The public parameters PK are (g, g1; g2 =
gq(0), gq(1), gq(2), . . . , gq(d); gh(0), gh(1), . . . , gh(d)). The master key MK is α.

These public parameters define two publicly computable functions T, V : Zp → G. The function
T (x) maps to gxd

2 · gh(x), and the function V (x) maps to gq(x). Note that both gh(x) and gq(x) can
be evaluated from the public parameters by interpolation in the exponent. (For further details on
how to do this using Lagrange coefficients, see, e.g., [21, 16].)
Encryption (M,γ, PK). To encrypt a message M ∈ GT under a set of d attributes γ ⊂ Z∗

p, choose
a random value s ∈ Zp and output the ciphertext as

E =
(
γ, E(1) = Me(g1, g2)s, E(2) = gs, {E(3)

x = T (x)s}x∈γ , {E(4)
x = V (x)s}x∈γ

)

7

Key Generation (Ã,MK,PK). This algorithm outputs a key that enables the user to decrypt
an encrypted message only if the attributes of that ciphertext satisfy the access structure Ã. We
require that the access structure Ã is NM(A) for some monotonic access structure A, over a set P
of attributes, associated with a linear secret-sharing scheme Π. First, we apply the linear secret-
sharing mechanism Π to obtain shares {λi} of the secret α. We denote the party corresponding
to the share λi as x̆i ∈ P, where xi is the attribute underlying x̆i. Note that x̆i can be primed
(negated) or unprimed (non negated). For each i, we also choose a random value ri ∈ Zp.

The private key D will consist of the following group elements: For every i such that x̆i is not
primed (i.e., is a non-negated attribute), we have

Di = (D(1)
i = gλi

2 · T (xi)ri , D
(2)
i = gri)

For every i such that x̆i is primed (i.e., is a negated attribute), we have

Di = (D(3)
i = gλi+ri

2 , D
(4)
i = V (xi)ri , D

(5)
i = gri)

The key D consists of Di for all shares i.
Decryption (E,D). Given a ciphertext E and a decryption key D, the following procedure is
executed: (All notation here is taken from the above descriptions of E and D, unless the notation
is introduced below.) First, the key holder checks if γ ∈ Ã (we assume that this can be checked
efficiently). If not, the output is ⊥. If γ ∈ Ã, then we recall that Ã = NM(A), where A is an access
structure, over a set of parties P, for a linear secret sharing-scheme Π. Denote γ′ = N(γ) ∈ A,
and let I = {i : x̆i ∈ γ′}. Since γ′ is authorized, an efficient procedure associated with the linear
secret-sharing scheme yields a set of coefficients Ω = {ωi}i∈I such that

∑
i∈I ωiλi = α. (Note,

however, that these λi are not known to the decryption procedure, so neither is α.)
For every positive (non negated) attribute x̆i ∈ γ′ (so xi ∈ γ), the decryption procedure

computes the following:

Zi = e
(
D

(1)
i , E(2)

)
/e

(
D

(2)
i , E

(3)
i

)
= e

(
gλi
2 · T (xi)ri , gs

)
/e (gri , T (x)s)

= e (g2, g)sλi

For every negated attribute x̆i ∈ γ′ (so xi /∈ γ), the decryption procedure computes the following:
We consider the set γi = γ∪{xi}. Note that |γi| = d+1 and recall that the degree of the polynomial
q underlying the function V is d. Using the points in γi as an interpolation set, compute Lagrangian

8

coefficients {σx}x∈γi such that
∑

x∈γi
σxq(x) = q(0) = β. Now, perform the following computation:

Zi =
e
(
D

(3)
i , E(2)

)
e
(
D

(5)
i ,

∏
x∈γ

(
E

(4)
x

)σx
)
· e

(
D

(4)
i , E(2)

)σxi

=
e
(
gλi+ri
2 , gs

)
e
(
gri ,

∏
x∈γ (V (x)s)σx

)
· e (V (xi)ri , gs)σxi

=
e
(
gλi
2 , gs

)
· e (gri

2 , gs)

e
(
gri , gs

P
x∈γ σxq(x)

)
· e

(
griσxiq(xi), gs

)
=

e (g2, g)sλi · e (g, g)risβ

e(g, g)ris
P

x∈γ′ σxq(x)

= e (g2, g)sλi

Finally, the decryption is obtained by computing

E(1)∏
i∈I Zωi

i

=
Me(g2, g)sα

e(g2, g)sα
= M

Note on Efficiency. We note that encryption requires only a single pairing, which may be pre-
computed, regardless of the number of attributes associated with a ciphertext. We also note that
decryption requires two or three pairings per share utilized in decryption, depending on whether
the share corresponds to a non-negated attribute or a negated attribute, respectively.

3.2 Amortizing the Cost of Multiple Systems

In practice we might actually have several different Attribute-Based Encryption systems run by
different authorities. In this setting we might want to minimize the size of the public key material
that users need to maintain, since each authority will need to post its public key. We can mitigate
this cost by using a shared trusted party and applying a similar technique to that of the Broadcast
Encryption scheme of Boneh, Gentry, and Waters [8].

We first observe that once the public key material is published an authority only needs to
know α in order to create private keys. In addition, only one element, g1 = gα depends upon
α. Therefore, a trusted party then can create all public key material except g1. This public key
material will be shared across several different systems. An authority X that wishes to create his
own system simply chooses his own αX private key and creates a public key g1,X = gαX . A user
encrypting a ciphertext under this authority’s system will use g1,X in addition to the shared public
key material. The added public key material for a whole new system is just one group element.

3.3 Removing Fixed Attribute Restriction

The drawback of using our main construction directly in a system is that it imposes a “one size
fits all” restriction in that each ciphertext must have exactly d attributes. We describe how to get
around these restrictions and maintain efficient performance.

9

First, we note that a ciphertext will often be associated with s attributes where s is less than d,
the maximum number of attributes in our construction. A simple technique is for the encryption
algorithm to create d − s “filler” attributes for strings that have no semantic meaning in the
system. For a ciphertext with s real attributes, the encryption algorithm can just add the attributes
“Filler:1”,“Filler:2”,“Filler:d− s”.

A more problematic issue is that a system will need to accommodate ciphertexts that might
have a large maximum, n, number of attributes. This will mean that ciphertexts with a relatively
small number of attributes will have unnecessarily high ciphertext overhead. To mitigate this
issue in a system we can use k different constructions that respectively accommodate d1, . . . , dk

attributes. When encrypting a ciphertext with s attributes the decryption algorithm will simply
use the encryption system with the smallest di such that di ≥ s, and then only di−s filler attributes
will be necessary.

Consider the case when there are a maximum of n attributes for any ciphertext. For simplicity
we assume n = 2k for some k. Then we can create a system that uses k parallel encryption systems,
where encryption system i is set up for di = 2i attributes. The aggregate system has performance
that compares favorably with existing systems: ciphertexts for s attributes will have O(s) group
elements, the public key material will consist of O(n) group elements, and the private keys for
an access structure of t shares will have O(t · lg(n)) group elements (a copy for each encryption
system) is kept. We point out that all these efficiency parameters, other than the private key size,
are identical to the less-expressive scheme of Goyal et al.3

3.4 Realizing Any Access Formula

Our main construction shows how to create private keys that can be represented by any linear secret-
sharing scheme that uses both negative and non negative attributes. It is a relatively straightforward
exercise to show that these techniques are powerful enough to express any access formula. To do
so, we first use repeated applications of DeMorgan’s law to transform any access formula into a
monotonic one with negative attributes. Then, we can represent the access formula in terms of
a secret-sharing scheme in a way similar to [16]. We leave the details of this transformation to
Appendix A.

3.5 Ciphertext-Policy ABE

We also note that our techniques can be applied to the Ciphertext-Policy Attribute-Based Encryp-
tion (CP-ABE) scheme of Bethencourt, Sahai, and Waters [4]. The primary modification is that
the polynomial for the revocation scheme will be embedded by the encryptor in the negated nodes
of the encryption policy. The attributes will then be represented in the tree.

One disadvantage of the BSW scheme is that its proof is in the generic group model. This
stems from the fact that their scheme allows for arbitrary access formulas in the ciphertext policy.
Since the challenge ciphertext policy may be bigger than the public parameters, it is difficult to
“program” the challenge ciphertext into the public parameters. However, for more restricted CP-
ABE schemes that are less expressive there exists schemes proved on concrete assumptions. The
original threshold scheme of Sahai and Waters [21] was written before the distinction of Key-Policy
versus Ciphertext-Policy was made explicit; however, it can be interpreted in either way. Using the

3This claim applies to the Large Universe scheme of Goyal et al. that does not use the random oracle heuristic.
The authors noted that in the random oracle model they can reduce the public parameter size.

10

Sahai-Waters large-universe construction we can realize a non-monotonic CP-ABE scheme with k-
of-n threshold policies, where n is fixed and k can be determined by the encryptor by using “dummy
attributes”. Pirretti et al. [19] show tradeoffs that can be made between key and ciphertext sizes
and Cheung and Newport provide another realization [14] with similar properties.

4 Proof of Security

We prove that the security of our main construction in the attribute-based selective-set model
reduces to the hardness of the Decisional BDH assumption.

Theorem 1 If an adversary can break our scheme with advantage ε in the attribute-based selective-
set model of security, then a simulator can be constructed to play the Decisional BDH game with
advantage ε/2.

Proof:
Suppose there exists a polynomial-time adversary A that can attack our scheme in the selective-

set model with advantage ε. We build a simulator B that can play the Decisional BDH game with
advantage ε/2. The simulation proceeds as follows:

We first let the challenger set the groups G and GT with an efficient bilinear map, e. The chal-
lenger flips a fair binary coin µ, outside of B’s view. If µ = 0, the challenger sets (g,A, B, C,Z) =
(g, ga, gb, gc, e(g, g)abc); otherwise, it sets (g,A, B, C,Z) = (g, ga, gb, gc, e(g, g)z) for random a, b, c, z.

Init The simulator B runs A. A chooses the challenge set, γ, a set of d members of Z∗
p.

Setup The simulator assigns the public parameters g1 = A and g2 = B, thereby implicitly
setting α = a and β = b. It then chooses a random degree d polynomial f(x) and fixes a degree
d polynomial u(x) as follows: set u(x) = −xd for all x ∈ γ and u(x) 6= −xd for some (arbitrary)
other x /∈ γ. Because −xd and u(x) are two degree d polynomials, they will have at most d points
in common or they are the same polynomial. This construction ensures that ∀x, u(x) = −xd if and
only if x ∈ γ.

The simulator will now implicitly set the polynomials h and q as follows: First, h(x) =
βu(x)+f(x). Now, let’s write γ = {x1, x2, . . . , xd}. Then, the simulator chooses d points θx1 , . . . , θxd

uniformly at random from Zp, and implicitly sets q(x) such that q(0) = β, while q(xi) = θxi for
i = 1, 2, . . . , d. Thus, the simulator outputs the following group elements for the public key:
For i = 1, . . . , d, it sets outputs gq(i) by interpolation in the exponent using {θxi} and B. For
i = 0, 1, . . . , d, it sets gh(i) = g

u(i)
2 gf(i). Observe that these values are (jointly) distributed iden-

tically to their distribution in the actual scheme. Note that implicitly we have T (x) = g
xd+u(x)
2 gf(x).

Phase 1 A adaptively makes requests for several access structures such that γ passes through
none of them. Suppose A makes a request for the secret key for an access structure Ã where
Ã(γ) = 0. Note that by assumption, Ã is given as NM(A) for some monotonic access structure
A, over a set P of parties (whose names will be attributes), associated with a linear secret-sharing
scheme Π.

Let M be the share-generating matrix for Π: Recall, M is a matrix over Zp with ` rows and
n + 1 columns. For all i = 1, . . . , `, the i’th row of M is labeled with a party named x̆i ∈ P, where

11

xi is the attribute underlying x̆i. Note that x̆i can be primed (negated) or unprimed (non-negated).
When we consider the column vector v = (s, r1, r2, . . . , rn), where s is the secret to be shared, and
r1, . . . , rn ∈ Zp are randomly chosen, then Mv is the vector of ` shares of the secret s according to
Π.

We make use of the following well-known observation about linear secret-sharing schemes (see,
e.g. [2]4): If S ⊂ P is a set of parties, then these parties can reconstruct the secret iff the column
vector (1, 0, 0, . . . , 0) is in the span of the rows of MS , where MS is the submatrix of M containing
only those rows that are labeled by a party in S. Note that since Ã(γ) = 0, we know that A(γ′) = 0,
where γ′ = N(γ). Thus, we know that (1, 0, . . . , 0) is linearly independent of the rows of Mγ′ .

During key generation, a secret sharing of the secret α = a is supposed to be selected. In this
simulation, however, we will choose this sharing (implicitly) in a slightly different manner, as we
describe now: First, we pick a uniformly random vector v = (v1, . . . , vn+1) ∈ Zn+1

p . Now, we make
use of the following simple proposition [1, 20] from linear algebra:

Proposition 1 A vector π is linearly independent of a set of vectors represented by a matrix N if
and only if there exists a vector w such that Nw = ~0 while π · w = 1.

Since (1, 0, . . . , 0) is independent of Mγ′ , there exists a vector w = (w1, . . . , wn+1) such that
Mγ′w = ~0 and (1, 0, . . . , 0) ·w = w1 = 1. Such a vector can be efficiently computed [1, 20]. Now we
define the vector u = v +(a− v1)w. (Note that u is distributed uniformly subject to the constraint
that u1 = a.) We will implicitly use the shares ~λ = Mu. This has the property that for any λi

such that x̆i ∈ γ′, we have that λi = Miu = Miv has no dependence on a.
Now that we have established how to distribute shares to “parties”, which map to negated or

non negated attributes, we need to show how to generate the key material.
We first describe how to generate decryption key material corresponding to negated parties

x̆i = x′i. Note that by definition, x̆i ∈ γ′ if and only if xi /∈ γ.

• If xi ∈ γ, then since x̆i /∈ γ′, we have that λi may depend linearly on a. However, by the
simulator’s choices at setup, recall that q(xi) = θxi . The simulator now chooses r′i ∈ Zp at
random, and implicitly sets ri = −λi + r′i. Thus, it outputs the following:

Di = (D(3)
i = g

r′i
2 , D

(4)
i = gθxi ·(−λi+r′i), D

(5)
i = g−λi+r′i)

Note that the simulator can compute the latter two of these elements using A.

• If xi /∈ γ, then since x̆i ∈ γ′, we have that λi is independent of any secrets and is completely
known to the simulator. In this case, the simulator chooses ri ∈ Zp at random, and outputs
the following:

Di = (D(3)
i = gλi+ri

2 , D
(4)
i = V (xi)ri , D

(5)
i = gri)

Note that the simulator can compute the second element using B; indeed V () is publicly
computable given the public parameters already produced by the simulation.

We now describe how to give key material corresponding to non negated parties x̆i = xi. The
simulated key construction techniques for non negated parties is similar to previous work [16, 21].

4Here, we are essentially exploiting the equivalence between linear secret-sharing schemes and monotone span
programs, as proven in [2]. The proof in [2] is for a slightly different formulation, but applies here as well.

12

• If xi ∈ γ, then since λi has no dependence on any unknown secrets, we simply choose ri ∈ Zp,
and output Di = (D(1)

i = gλi
2 · T (xi)ri , D

(2)
i = gri).

• If xi /∈ γ, then we work as follows: Let g3 = gλi . Note that the simulator can compute g3

using A and g. Choose r′i ∈ Zp at random, and output the components of Di as follows:

D
(1)
i = g

−f(xi)

xd
i
+u(xi)

3 (gxd
i +u(xi)

2 gf(xi))r′i

D
(2)
i = g

−1

xd
i
+u(xi)

3 gr′i

The proof of the following claim can be found in Appendix B.

Claim 1 The simulation above produces valid decryption keys, that are furthermore distributed
identically to the decryption keys that would have been produced by the ABE scheme for the same
public parameters.

Challenge The adversary A, will submit two challenge messages M0 and M1 to the simulator.
The simulator flips a fair binary coin ν, and returns an encryption of Mν . The ciphertext is output
as

E =
(
γ, E(1) = MνZ,E(2) = C, {E(3)

x = Cf(x)}x∈γ , {E(4)
x = Cθx}x∈γ

)
If µ = 0 then Z = e(g, g)abc. Then by inspection, the ciphertext is a valid ciphertext for the message
Mν under the set γ.

Otherwise, if µ = 1, then Z = e(g, g)z. We then have E(1) = Mνe(g, g)z. Since z is random,
E(1) will be a random element of GT from the adversary’s viewpoint and the message contains no
information about Mν .

Phase 2 The simulator acts exactly as it did in Phase 1.

Guess A will submit a guess ν ′ of ν. If ν ′ = ν the simulator will output µ′ = 0 to indicate that
it was given a valid BDH-tuple; otherwise, it will output µ′ = 1 to indicate it was given a random
4-tuple.

As shown above, the simulator’s generation of public parameters and private keys is identical
to that of the actual scheme.

In the case where µ = 1 the adversary gains no information about ν. Therefore, we have Pr[ν 6=
ν ′|µ = 1] = 1

2 . Since the simulator guesses µ′ = 1 when ν 6= ν ′, we have Pr[µ′ = µ|µ = 1] = 1
2 .

If µ = 0 then the adversary sees an encryption of Mν . The adversary’s advantage in this
situation is ε by assumption. Therefore, we have Pr[ν = ν ′|µ = 0] = 1

2 + ε. Since the simulator
guesses µ′ = 0 when ν = ν ′, we have Pr[µ′ = µ|µ = 0] = 1

2 + ε.
The overall advantage of the simulator in the Decisional BDH game is 1

2 Pr[µ′ = µ|µ = 0] +
1
2 Pr[µ′ = µ|µ = 1]− 1

2 = 1
2(1

2 + ε) + 1
2

1
2 −

1
2 = 1

2ε. �

5 Conclusions and Future Directions

We presented the first Attribute-Based Encryption system that supports the expression of non-
monotone formulas in key policies. We achieved this through a novel application of revocation

13

methods into existing ABE schemes. In addition, the performance of our scheme compares very
favorably to that of existing, less-expressive ABE systems.

An important goal in ABE systems is to create even more expressive systems. Our work took
a significant step forward by allowing key policies that can express any access formula. Eventually,
we would like to have systems that can express any access circuit.

References

[1] H. Anton and C. Rorres. Elementary Linear Algebra, 9th Edition. 2005.

[2] A. Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Israel Institute
of Technology, Technion, Haifa, Israel, 1996.

[3] J. Benaloh and J. Leichter. Generalized Secret Sharing and Monotone Functions. In Advances
in Cryptology – CRYPTO, volume 403 of LNCS, pages 27–36. Springer, 1988.

[4] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryp-
tion. In Proceedings of the IEEE Symposium on Security and Privacy (To Appear), 2007.

[5] G. R. Blakley. Safeguarding cryptographic keys. In National Computer Conference, pages
313–317. American Federation of Information Processing Societies Proceedings, 1979.

[6] D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity Based Encryption Without
Random Oracles. In Advances in Cryptology – Eurocrypt, volume 3027 of LNCS, pages 223–
238. Springer, 2004.

[7] D. Boneh and M. Franklin. Identity Based Encryption from the Weil Pairing. In Advances in
Cryptology – CRYPTO, volume 2139 of LNCS, pages 213–229. Springer, 2001.

[8] D. Boneh, C. Gentry, and B. Waters. Collusion Resistant Broadcast Encryption with Short
Ciphertexts and Private Keys. In Advances in Cryptology – CRYPTO, volume 3621 of LNCS,
pages 258–275. Springer, 2005.

[9] Robert W. Bradshaw, Jason E. Holt, and Kent E. Seamons. Concealing complex policies with
hidden credentials. In ACM Conference on Computer and Communications Security, pages
146–157, 2004.

[10] E. F. Brickell. Some ideal secret sharing schemes. Journal of Combinatorial Mathematics and
Combinatorial Computing, 6:105–113, 1989.

[11] R. Canetti, S. Halevi, and J. Katz. A Forward-Secure Public-Key Encryption Scheme. In
Advances in Cryptology – Eurocrypt, volume 2656 of LNCS. Springer, 2003.

[12] R. Canetti, S. Halevi, and J. Katz. Chosen Ciphertext Security from Identity Based Encryp-
tion. In Advances in Cryptology – Eurocrypt, volume 3027 of LNCS, pages 207–222. Springer,
2004.

[13] Melissa Chase. Multi-authority attribute-based encryption. In The Fourth Theory of Cryptog-
raphy Conference (TCC 2007), 2007.

14

[14] L. Cheung and C. Newport. Provably Secure Ciphertext Policy ABE. In ACM conference on
Computer and Communications Security (ACM CCS), 2007.

[15] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In IMA Int.
Conf., pages 360–363, 2001.

[16] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute Based Encryption for Fine-Grained
Access Conrol of Encrypted Data. In ACM conference on Computer and Communications
Security (ACM CCS), 2006.

[17] M. Ito, A. Saito, and T. Nishizeki. Secret Sharing Scheme Realizing General Access Structure.
In IEEE Globecom. IEEE, 1987.

[18] Moni Naor and Benny Pinkas. Efficient trace and revoke schemes. In Financial Cryptography,
pages 1–20, 2000.

[19] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters. Secure Atrribute-Based Systems. In
ACM conference on Computer and Communications Security (ACM CCS), 2006.

[20] V.V. Prasolov. Problems and Theorems in Linear Algebra. American Mathematical Society,
1994.

[21] A. Sahai and B. Waters. Fuzzy Identity Based Encryption. In Advances in Cryptology –
Eurocrypt, volume 3494 of LNCS, pages 457–473. Springer, 2005.

[22] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[23] A. Shamir. Identity Based Cryptosystems and Signature Schemes. In Advances in Cryptology
– CRYPTO, volume 196 of LNCS, pages 37–53. Springer, 1984.

[24] Nigel P. Smart. Access control using pairing based cryptography. In CT-RSA, pages 111–121,
2003.

A Realizing Any Access Formula

We show how our main construction above can be used to realize any access formula. Any formula
can be represented as an access tree T . Each interior node, y, in the tree will be either a threshold
gate, with threshold ky, and numy children, or a NOT of a threshold gate. We also assume that
the children of an interior node are ordered; we let parent(y) denote the parent of node y and we
let index(y) denote which child node of parent(y) node y is. In addition, each leaf will be either
an attribute or the NOT of an attribute. We note that using threshold gates captures the case of
AND and OR gates. We let attr(y) denote a leaf node’s attribute.

We first observe that by applying DeMorgan’s law we can transform a tree T ′ into a tree T
so that T represents the same access scheme as T ′, but has only NOTs at the leaves, where the
attributes are. The observation follows from the fact that a negative k of n threshold gate is
equivalent to a k + 1 of n threshold gate, where all the children are negated. We can transform the
tree T ′ by doing a pre-order traversal and applying this transformation to all interior nodes that
are negated. The result is a tree T that only has negated leaves. For the rest of this discussion

15

we assume that such a transformation has been applied and that only the leaves of T are negated,
interior nodes will consist only of positive threshold gates.

Now we need to show how to assign shares λy ∈ Zp to each leaf node in a (transformed) access
tree T for key generation and which ωy ∈ Zp values to use for a particular decryption. We essentially
assign each interior node a value on a random polynomial and recurse. We begin by assigning λy

values to all nodes in the system. First, we assign the root of the tree the value λroot = α. Then,
we repeat the following process until all nodes have been assigned. Pick an arbitrary interior node
y that has λy defined, but where the children of y are undefined. Then pick a random polynomial
qy(x) over Zp of degree kx − 1 with the restriction that qy(0) = λy. For each child node of z assign
λz = qy(indexz). After this is done the λy values for interior nodes can be discarded. For Each leaf
node y, λy is a share in the scheme for attribute attr(x) where the attribute is primed if the leaf
node is negated.

Finally, suppose there is an encryption to a set S of attributes and further suppose that there
is a satisfying assignment to the access tree T of a key. Then the ωi values can be derived by
recursively computing the Lagrangian coefficients of each satisfied node in the tree. We refer the
reader to the work of Goyal et al. [16] and Bethencourt, Sahai, and Waters [4] for details on this
and efficiency optimizations.

B Correctness of Simulation

Here we prove Claim 1.
Proof:

We will establish this claim by a case analysis. For key material corresponding to negated
parties x̆i:

• If xi ∈ γ, then let ri = −λi + r′i. Note that ri is distributed uniformly over Zp and is

independent of all other variables except r′i. Then observe that D
(3)
i = g

r′i
2 = gλi+ri

2 . Also,
D

(4)
i = gθxi ·(−λi+r′i) = V (xi)ri . And finally, D

(5)
i = g−λi+r′i = gri . Thus, this key material is

valid and distributed correctly.

• If xi /∈ γ, then the simulation produces key material using the same procedure as the ABE
scheme.

For key material corresponding to non negated parties x̆i:

• If xi ∈ γ, then the simulation produces key material using the same procedure as the ABE
scheme.

• If xi /∈ γ, then to see why the simulated key material is good, note that by our construction
of u(x), the value xd

i + u(xi) will be non-zero for all xi /∈ γ. Now let ri = r′i −
λi

xn
i +u(xi)

. Note
that ri is distributed uniformly over Zp and is independent of all other variables except r′i.

16

Then,

D
(1)
i = g

−f(xi)

xd
i
+u(xi)

3 (gxd
i +u(xi)

2 gf(xi))r′i

= g
−λif(xi)

xd
i
+u(xi) (gxd

i +u(xi)
2 gf(xi))r′i

= gλi
2 (gxd

i +u(xi)
2 gf(xi))

−λi
xd

i
+u(xi) (gxd

i +u(xi)
2 gf(xi))r′i

= gλi
2 (gxd

i +u(xi)
2 gf(xi))

r′i−
λi

xd
i
+u(xi)

= gλi
2 T (xi)ri

and

D
(2)
i = g

−1

xd
i
+u(xi)

3 gr′i = g
r′i−

λi
xd

i
+u(xi) = gri

�

17

