
This is the full version of the extended abstract which appeared in:
Advances in Cryptology – Proceedings of CRYPTO ’02 (August 18-22, Santa Barbara, California, USA)
M. Yung Ed. Springer-Verlag, LNCS 2442, pages 465–480.

Threshold Ring Signatures and Applications to
Ad-hoc Groups (Full version)

Emmanuel Bresson1, Jacques Stern1 and Michael Szydlo2

1 Dépt d’informatique, École normale supérieure, 75230 Paris Cedex 05, France
{Emmanuel.Bresson,Jacques.Stern}@ens.fr

2 RSA Laboratories, 20 Crosby Drive, Bedford, MA 01730, USA
mszydlo@rsasecurity.com

Abstract. In this paper, we investigate the recent paradigm for group
signatures proposed by Rivest et al . at Asiacrypt ’01. We first improve on
their ring signature paradigm by showing that it holds under a strictly
weaker assumption, namely the random oracle model rather than the
ideal cipher. Then we provide extensions to make ring signatures suit-
able in practical situations, such as threshold schemes or ad-hoc groups.
Finally we propose an efficient scheme for threshold scenarios based on a
combinatorial method and provably secure in the random oracle model.

1 Introduction

In many multi-user cryptographic applications, anonymity is required to ensure
that information about the user is not revealed. Typical examples are electronic
voting [5,15], digital lotteries [18,22], or e-cash applications [8,11]. In these ap-
plications releasing private information is highly undesirable and may result in
a large financial loss. The concept of group signatures introduced in 1991 [12],
allows a registered member of a predefined group to produce anonymous sig-
natures on behalf of the group. However, this anonymity can be revoked by an
authority if needed. The extra trapdoor information stored by the authority is
used to reveal the identity of the actual signer. This mechanism provides some
level of security for non-signing members in case of dispute. Hence, group sig-
natures are only the appropriate tool when members have agreed to cooperate.
The distinct but related concept of ring signature has recently been formalized
by Rivest et al [25]. This concept is of particular interest when the members do
not agree to cooperate since the scheme requires neither a group manager, nor
a setup procedure, nor the action of a non-signing member.

A ring signature specifies a set of possible signers and a proof that is intended
to convince any verifier that the author of the signature belongs to this set, while
hiding his identity. The scheme is said to be signer ambiguous in the sense that
the verifier cannot tell which user in this set actually produces the signature –
keep in mind that there is no manager who can revoke the anonymity.

More precisely, these schemes differ in several ways from classical group sig-
nature schemes. First of all, there is no pre-defined group, no manager, no group

c© IACR 2002.

mailto:emmanuel@bresson.org

2 Emmanuel Bresson, Jacques Stern and Michael Szydlo

public key, no setup / registration / revocation procedures at all. Instead, for
any message, any user may add his name to any set of other users he chooses,
and produce a ring signature on it which reveals only that the anonymous author
(in fact, himself) belongs to this set. This is infeasible with standard group sig-
natures where the possible signers, by definition, are registered members of the
group. In particular, the non-signing members may even be completely unaware
that they are involved in such signature.

Secondly, the absence of a revocation manager allows unconditional anonymi-
ty. This is not achievable in typical group signatures for which there must be some
trap-door information to be used by the authority. Hence, group signatures can
only ensure computational anonymity. This slight difference might at first appear
minor however unconditional anonymity is more suitable in some situations like
authentication of very sensitive information, or long-term protection – e.g., even
if RSA is broken, the anonymity remains.

Thirdly, ring signatures can be made extremely efficient. While previously
proposed group signature schemes heavily use asymmetric computations, such as
zero-knowledge proofs of knowledge or proofs or membership, the ring signature
scheme proposed in [25] is very fast. This latter scheme only requires one modular
exponentiation for signing and an additional linear number of multiplications in
signing and verifying. This must be considered of a real interest and makes the
scheme very practical to implement.

Using ring signatures in ad-hoc groups. The steadily growing importance of
portable devices and mobile applications has spawned new types of groups of
interacting parties: ad-hoc groups [2,23]. The highly dynamic nature of such
groups raises new challenges for networking [23]. Ad-hoc networks may be de-
scribed as networks with minimal infrastructure, lacking fixed routers or stable
links. Instead, the nodes themselves route the messages, effectively spontaneously
creating a network as the need arises. Furthermore, such ad-hoc networks are of-
ten mobile, dynamic in nature and are also a challenging environment for secure
group communication.

Such ad-hoc networks inherently deal with spontaneous ad-hoc groups; how-
ever, we claim it makes complete sense to consider ad-groups over traditional
networks. Indeed even over fixed networks wherein the infrastructure physically
routes the traffic, dynamic ad-hoc groups must be seen as of particular interest.
We illustrate this by a group of users over the Internet. They spontaneously de-
cide they wish to communicate sensitive data andneed a suite of protocols which
do not involve any trusted third party or certification authority, and namely
from scratch but their respective public keys (which are likely to have been is-
sued by completely independent means). Security goals have to be considered in
a new context. Although communicating over a traditional network, the lack of
cryptographic infrastructure may expose such ad-hoc groups to specific security
attacks such as Trojan horses since an attacker might successfully come inside
the group.

Ring signatures are perfectly suited to such a setting, since no setup protocol
is required to use them while in group signatures, a setup procedure takes time

Threshold Ring Signatures and Applications to Ad-hoc Groups 3

which is linear in the number of members, each of them having to perform
intensive computations such as Zero-Knowledge proofs.

Now assume that in order to create a certain signature at least k out of the
n parties need to combine their knowledge. Combining the shares must not re-
veal the actual private key. The correctness of the signature would, as usual, be
verifiable using the public keys. Threshold cryptography [17] allows n parties to
share the ability to perform a cryptographic operation (e.g., creating a digital
signature). Any k parties can perform the operation jointly, whereas it is infea-
sible for at most k− 1 parties to do so. We consider the use of ring signatures in
this ad-hoc threshold setting, and begin by defining the security notions useful
for protocols involving such ad-hoc groups. We claim using ring signature for ad-
hoc threshold schemes is perfectly relevant and is worth to be properly defined.
The paradigm of ring signatures provides us with first building block. It gives
a recipe for a single member of an ad-hoc group to sign anonymously on behalf
of the group. Our flexible construction extends the solution of [25] to solve the
threshold problem; in fact it is a solution for all custom signatures on an ad-hoc
group.

It is of prime importance to note that protocols involving such ad-hoc groups
deal with a wider class of cryptographic objectives than is generally considered
in the literature. As an example, consider the following scenario. Alice, Bob and
Carol have respectively certified ECDSA, RSA and GQ signature keys. Two of
them want to prove that “at least two out of the three A, B, C signed a message
m”, and the third one is not cooperating. How can this goal be achieved with-
out consulting a cryptographic expert? Ring signature combined with threshold
cryptography is here of great help.

Contributions. In this paper we significantly improve the ring signature scheme
proposed by Rivest et al. [25]. We first show that security can be based on strictly
weaker complexity assumptions, without sacrificing efficiency. Furthermore, this
greatly simplifies the security proof provided in [25].

Next, we show how the ring signature paradigm and the stand alone protocol
of [25] extend to a generic building block to make new schemes, in a multi-signer
threshold setting. To achieve this aim, we formalize the notion of ad-hoc group
signature, which is also of independent interest for general multi-party protocols
relying on limited public key infrastructure. We define a formal security model to
deal with such extended signatures, and we provide an interesting composition
theorem which may be used to prove security for classical threshold structures,
and in fact, to achieve arbitrary statements on any ad-hoc group. In case of
threshold subgroups, the result remains very efficient for small threshold values
and is provably secure, based on RSA, under the strictly weaker assumption of
random oracles. In that construction, we use a combinatorial notion we call fair
partition, which is of independent interest.

Related work. Informal notions of ring signatures were discussed simultaneously
with the appearance of group signatures [12,13] but the concept itself has only
been formalized recently in [25].

4 Emmanuel Bresson, Jacques Stern and Michael Szydlo

Many schemes have been proposed for group signatures, offering various addi-
tional properties [20,21,24] as well as increasing efficiency [3,9,10]. The first group
signature scheme to be provably secure against coalition attacks [4] appeared in
a paper by Ateniese et al . [3]. The related Witness hiding zero knowledge proofs
were treated in [14], and an application to group signatures (without a manager)
was discussed at the end of this same article. This, and another construction [16]
can also be seen as ring signature schemes. However, the scheme by Rivest et
al . [25] is the most efficient one.

While it is well-known that theoretical very general witness-hiding signature
constructions are realizable, they are also widely believed to be completely im-
practical. In fact, presenting an efficient general signature construction comple-
ments the general theory which, for example, tells us that arbitrary statements
in NP can be proven in zero knowledge. Our work combines the known gen-
eral techniques with some novel constructions and specializes to the case where
custom signatures are required in an environment with only a pre-existing PKI.
The constructions herein are adaptable to both ad-hoc and traditional threshold
structures via a standard procedure which produces custom signatures, complete
with a specialization of the security proof and efficiency analysis.

Thus, this work is at the crossroad of three corresponding trends in cryptog-
raphy research: provable security, custom protocol design, efficiency analysis.

The organization of the rest of the paper is as follows: we review the concept
of ring signature in section 2 and explain how improve it in section 3. Next in
section 4, we extend the notion, and we propose two schemes. The first one in
section 5 is based on secret sharing and is proved secure in section 6. The second
one in section 7 is more efficient; we prove its security in section 8.

2 Overview of Ring Signatures

In this section, we follow the formalization proposed by Rivest, Shamir and
Tauman in [25].

2.1 Definitions

One assumes that each user has received (via a PKI or a certificate) a public
key Pk, for which the corresponding secret key is denoted Sk. A ring signature
scheme consists of the following algorithms.

– Ring-sign. A probabilistic algorithm which, on input a message m, the
public keys P1, . . . , Pr of the r ring members, together with the secret key
Ss of a specific member, produces a ring signature σ for the message m.

– Ring-verify. A deterministic algorithm which on input (m,σ) (where σ
includes the public key of all the possible signers), outputs either “True” or
“False”.

Threshold Ring Signatures and Applications to Ad-hoc Groups 5

Properties. A ring signature scheme must satisfy the usual correctness and
unforgeability properties: a fairly-generated ring signature should be accepted
as valid with respect to the specified ring with overwhelming probability; and it
must be infeasible for any user, except with negligible probability, to generate a
valid ring signature with respect to a ring he does not belong to.

We also require the signature to be anonymous, in the sense that no verifier
should be able to guess the actual signer’s identity with probability greater than
1/r + ε, where r is the size of the ring, and ε is negligible.

Note that the size of the ring signature grows linearly with the size of the
specified group: this is inherent to the notion, since the ring membership is not
known in advance, and therefore, has to be provided as a part of the signature.

Combining Functions. The formal concept of a ring signature can be related
to an abstract concept called combining functions. We slightly modified the def-
inition given in [25] as follows.

Definition 1 (Combining functions). A combining function Ck,v(y1, . . . , yn)
takes as input a key k, an initialization value v, and a list of arbitrary values of
the same length `. It outputs a single value z ∈ {0, 1}`, such that for any k, v, any
index s and any fixed values of {yi}i 6=s, Ck,v is a permutation over {0, 1}`, when
seen as a function of ys. Moreover, this permutation is efficiently computable as
well as its inverse.

The authors of [25] proposed a combining function based on a symmetric
encryption scheme E modeled by a (keyed) random permutation

z=Ck,v(y1, . . . , yn) = Ek

(
yn ⊕ Ek

(
yn−1 ⊕ Ek

(
· · · ⊕ Ek(y1 ⊕ v) . . .

)))
(1)

For any index s, we can easily verify that Ck,v is a combining function by
rewriting equation (1) as follows:

ys = E−1
k

(
ys+1 ⊕ . . . E−1

k

(
yn ⊕ E−1

k (z)
))
⊕ Ek

(
ys−1 ⊕ . . . Ek(y1 ⊕ v) . . .

))
2.2 Ring Signatures by Rivest et al. [25]

We denote by `, `b, `0 three security parameters. We consider a symmetric en-
cryption scheme E defined over {0, 1}` using `0-bit keys and a hash function
H that maps arbitrary strings on `0-bit strings. In fact, we use H to define the
symmetric key for E. Finally, we assume that each user Pi uses a regular signa-
ture scheme built on a trapdoor one-way permutation fi such as RSA [27] and
that the modulus has length `b < `; typically, we choose `− `b ≥ 160. All these
assumptions follow [25].

The scheme proposed by Rivest, Shamir and Tauman is based on combining
functions as described above. In that scheme, the inputs yi to the combining
function are computed as fi(xi) for some xi ∈ {0, 1}`b . A ring signature on

6 Emmanuel Bresson, Jacques Stern and Michael Szydlo

��� ��� � ���	��
���

� �

� �

����� ������
���

� �� �

������ ��� ���� ��������

� � ��

� � ��

Fig. 1. The ring signature paradigm. The equation is verified if z = v. Given all the

yi’s, the verifier just goes along the ring and checks z
?
= v. The signer chooses v first,

goes clockwise from 1 through is − 1 and counter-clockwise from n through is + 1. His
trap-door allows him to extract xis .

a message m consists in a tuple (v, x1, . . . , xn). Setting z = CH(m),v(f1(x1),
. . . , fn(xn)), the signature is valid iff z = v.

As explained in the previous section, for any message m, any fixed values v
and {xi}i 6=s, one can efficiently compute the value ys such that the combining
function outputs v. Now using his knowledge of the trapdoor for function fs,
member Ps (the actual signer) is able to compute xs such that fs(xs) = ys. This
is illustrated on Figure 1.

However, the RSA moduli ni involved in the scheme are different. An adapta-
tion has to be made in order to combine them efficiently. One extends the RSA
trapdoor permutation fi(x) = xei mod ni in order that all fi’s have identical
domain. Briefly speaking, one defines:

gi(x) =
{
qini + fi(ri) if (qi + 1)ni ≤ 2`

x otherwise

where x = qini + ri, with 0 ≤ ri < ni. That is, the input x is sliced into `b-
bit long parts which then go through the RSA function. The probability that a
random input is unchanged becomes negligible as ` − `b increases. See [25] for
more details.

If the trap-door one-way functions are RSA functions with public exponent
equal to 3, the scheme is very efficient, requiring only one modular exponentia-
tion (and a linear number of multiplications) for signing, and only two modular
multiplications per ring member for verification.

Threshold Ring Signatures and Applications to Ad-hoc Groups 7

2.3 Assumptions and Security

The authors proved unconditional anonymity, in an information-theoretic sense.
They showed that even an infinitely powerful adversary cannot guess the identity
of the signer with probability greater than 1/r. This is due to the fact that for
any k = H(m) and any z = v the equation (1) has exactly (2`)r−1 solutions
which can be obtained with equal probability regardless of the signer’s identity.

The unforgeability of the ring signature is based on the hardness of inverting
the extended RSA permutations gi defined above; this is easily seen equivalent
to RSA assumption since only someone who knows how to invert fi can invert
gi on more than a negligible fraction of the inputs.

The proof provided in [25] holds in the ideal-cipher model. In this model, one
assumes the existence of a family of keyed random permutations Ek. That is, for
each parameter k, Ek and E−1

k are random permutations over {0, 1}`; access to
these permutations is modeled via oracle queries. The ideal-cipher model is very
strong, and to the best of our knowledge it is strictly stronger than the random
oracle model [7]. See [6] for a discussion.

The sketch of the proof is as follows. One wants to use a forger against the
ring signature scheme to invert one of the RSA permutations. That is, we are
given a value y ∈ {0, 1}` and we want to extract its `-bit “cubic” root. To do
so, we try to slip y as a “gap” between two consecutive E functions along the
ring. Doing so, the exclusive OR between the input and the output of these E
functions is set to y, and then, with non-negligible probability, the forger will
have to extract the cubic root of y. Such a slip is feasible at index i only if a
query “arriving” to i is asked after the other query “arriving” to or “starting”
form i. The proof relies on the following lemma, which proves that this is always
the case in a forgery. We refer to it as the ring lemma:

Lemma 1 (Ring lemma). In any forgery output by an adversary, there must
be an index between two cyclically consecutive occurrences of E in which the
queries were computed in one of the following three ways:

– The oracle for the i-th E was queried in the “clockwise” direction and the
oracle for the (i+ 1)-st E was queried in the “counterclockwise” direction.

– Both E’s were queried in the “clockwise” direction, but the i-th E was queried
after the (i+ 1)-st E.

– Both E’s were queried in the “counterclockwise” direction, but the i-th E was
queried before the (i+ 1)-st E.

The proof provided in [25] is based on this lemma; one has to “guess” the
index where such a situation will occur as well as the two queries involved.
Thus, the guess is correct with probability at least 1/rQ2

E , where QE is the
number of ideal-cipher queries. The concrete security of the scheme is related to
the security of inverting (extended) RSA by this multiplicative factor.

8 Emmanuel Bresson, Jacques Stern and Michael Szydlo

3 Modifications of the Existing Scheme

In this section, we explain how to significantly improve the scheme by Rivest et
al . by removing the assumption of an ideal-cipher and obtaining at the same
time a simplified proof with exactly the same security bound.

Let us first recall the ring equation that characterizes the verification of a
ring signature:

v = Ck,v(y1, . . . , yn)

= Ek

(
yn ⊕ Ek

(
yn−1 ⊕ Ek

(
· · · ⊕ Ek(y1 ⊕ v) . . .

)))
where k = H(m)

A Simple Observation. The main idea consists in verifying the ring equation
from another starting point than index 1 so that one just needs to go“clockwise”.
For instance, the signer can put an index of his choice i0 within the signature,
indicating the ring equation should start with Ek(yi0 ⊕ v) ⊕ This slight
modification allows us to remove the assumption that E is a random permuta-
tion; instead, we will only need a hash function, and thus we can simply replace
EH(m)(x) by H(m,x).

3.1 Modified Algorithms and Simplified Security Proof

We can use this observation to simplify the original scheme. The idea is to have
a signer Ps compute successive values along the ring, starting from his own index
is. He chooses a random seed σ, and goes along the ring, hashing m‖σ, XOR-
ing with gis+1(xis+1), concatenate with m and hash, and so on. Of course, we
consider index n+ 1 as being 1. We denote the successive values as follows:

vis+1 = H(m,σ), vis+2 = H(m, vis+1 ⊕ gis+1(xis+1)),
. vis = H(m, vis−1 ⊕ gis−1(xis−1))

Just before “closing” the ring, the signer uses his secret key to extract the last
input. That is, he computes xis such that vis ⊕ gis(xis) = σ. Then, in order to
make the signature anonymous, he chooses at random an index i0, and outputs
a modified signature (i0, vi0 , x1, . . . , xn). The verification is straightforward, the
only point is that the verifier starts at index i0 with value vi0 . The efficiency is
unchanged.

The resulting proof of unforgeability is significantly simplified, since we do not
use ideal-ciphers anymore, but only a hash function. Indeed, the proof provided
in [25] is essentially based on lemma 1. In the original scheme, the difficulty
lies in the fact that a forger can go both clockwise and counter-clockwise along
the ring. When using hash functions only, the ring lemma becomes trivial: there
always exist two cyclically consecutive queries such that the leading one has been
asked before the trailing one. Thus, the security bound is unchanged, while the
complexity assumptions are weakened.

Threshold Ring Signatures and Applications to Ad-hoc Groups 9

3.2 How to Simulate a Ring

Another interesting variant in Rivest’s scheme [25] is the following; the original
scheme defines a ring signature as valid if satisfying z = v. However this is purely
arbitrary and not necessary as it for the security. Indeed, such a condition can
be replaced by any other condition fixing the “gap” between z and v, provided
that such a “gap” cannot be chosen by a forger. For instance, one can require
that z = v ⊕ Ek(0) instead of z = v.

More precisely, let γ be a publicly known `-bit “gap value” (for instance γ = 0
or γ = Ek(0)). We can easily produce ring signatures with only a hashing-oracle
as above, but now such that γ appears as a “gap” between z and v, or, more
generally, between any two consecutive indices, at any specified position iγ . The
algorithm is modified in that, when arriving at index iγ , the verifier just replaces
viγ with viγ ⊕γ before continuing hashing and going along the ring. The figure 2
below illustrates this.

�����
� ��� � ����� 	�
 ��� �

 ��������� � ����� ��� � � ��� �
��� !�"� # $ %&�'� !� �

(� ��) * +���,�$ �-
. /
� � �10 2 � ��� 0 2 �

� � � 0 2 	�
 � � 0 2 �

� ��3

����3

� ��3 0 2

����3 0 2

� ��4

� � 4 �
� � 45	�
 � 46�

.
� � 4 0 2

Fig. 2. The modified ring. The signer starts from its own index is and a seed value σ
and he closes the ring when computing vis , using his trapdoor. The verifier starts from
i0 with value vi0 and checks whether the last hash outputs vi0 . A “simulator” starts
from iγ and a seed σγ to define γ at closure only, when computing viγ . H is a public
hash function.

Doing so, the symmetry of the ring is somewhat broken, but in a crucial man-
ner, since it allows us to simulate a ring signature, provided we can choose the

10 Emmanuel Bresson, Jacques Stern and Michael Szydlo

value of γ freely. Viewing the gap value as a “challenge” (as in an identification
scheme) the ring signature can be simulated if, and only if, the challenge can be
chosen. This feature will be in crucial importance in the next section.

Modified Combining Functions. We are going to use a generalized version
of the combining functions; Given a “gap” value γ, occurring at index iγ , and a
starting index i0, we denote this modified function as Cv,i0,m:

Cv,i0,m(iγ , γ, y1, . . . , yn) =
H(m, yi0−1 ⊕H(m, yi0−2 ⊕ . . .H(m, γ ⊕ yγ ⊕H(· · · ⊕ H(m, yi0 ⊕ v) . . .))︸ ︷︷ ︸

viγ+1 is computed from γ⊕yγ⊕viγ

. . .))

The ring equation is verified if Cv,i0,m(.) = v. The “gap” value being included
in the arguments, this modification generalizes the definition given in [25]; in
the original scheme, we have i0 = iγ = 1 and γ = 0. In the remaining of our
paper, and without loss of generality, we assume that i0 is fixed (the verifier
always starts from 1), as well as iγ (the gap appears between indices n and
1, that is v1 = H(vn ⊕ yn ⊕ γ)). We will omit iγ in the notations and use
Cv,i0,m(γ, y1, . . . , yn). Also we (abusively) denote by:

ys = C−1
s,γ,m(σs, y1, . . . , yn)

the solution that a signer Ps computes using seed σs as illustrated in Figure 2.
Keep in mind, however, that ys must not be considered as an argument to this
function.

4 Threshold and Ad-Hoc Ring Signature Schemes

In this section, we formalize the definition and security requirements for extended
ring signatures, which we call threshold ring signatures. Traditional “t-out-of-n”
threshold structures may be viewed as a special case of more general access struc-
tures, for which any criteria of minimum collaboration may be specified. In this
section we also formally define such ad-hoc groups and the security requirements
of the corresponding ad-hoc signatures.

4.1 Preliminaries

Assume that t users want to leak some juicy information, so that any verifier
will be convinced that at least t users among a select group vouch for its validity.
Simply constructing t ring signatures clearly does not prove that the message
has been signed by different signers. A threshold ring signature scheme effec-
tively proves that a certain minimum number of users of a certain group must
have actually collaborated to produce the signature, while hiding the precise
membership of the subgroup. Similarly, an ad-hoc signature might be used to
modify the meaning of such a signature by giving certain members increased
importance.

Threshold Ring Signatures and Applications to Ad-hoc Groups 11

Definition 2. A threshold ring signature scheme consists of two algorithms:

– T-ring-sign algorithm. On input a message m, a ring of n users includ-
ing n public keys, and the secret keys of t members, it outputs a (t, n)-ring
signature σ on the message m. The value of t as well as the n public keys of
all concerned ring members are included in σ.

– T-ring-verify algorithm. On input a message m and a signature σ, it
outputs either “True” or “False”.

We emphasize that there is no key-generation; only existing PKI is used.
The natural formalization for ad-hoc signatures follows that of threshold

signatures. In both cases there are some users Ai who want to cooperate, and
some others who do not cooperate, say Bi. However for the more general case,
not all potential signers have equal standing. The definition of ad-hoc group
captures the specification of a particular access structure. That is, it specifies
which subsets of potential signers should be allowed to create a valid signature.

Definition 3. An Ad-hoc group, Σ, is a list of n users, including n certified
public keys, accompanied by a list of subsets Sj of these users, called the accept-
able subsets. This second list may be optionally replaced with a predicate defining
exactly which subsets are acceptable.

Informally, an ad-hoc signature is one which retains maximal anonymity, yet
proves that the signing members all belong to at least one acceptable subset.
The signature and verification algorithms are therefore relative to this structure.

Ad-hoc-sign algorithm. On input a message m, a specification of an ad-hoc
group Σ (n users with some acceptable subsets), it outputs an ad-hoc-ring
signature σ on the message m. The ad-hoc group structure Σ as well as the
n public keys of all concerned ring members are included in σ.

Ad-hoc-verify algorithm. On input a message m and a signature σ, it out-
puts “True” if σ is a valid ad-hoc-ring-signature on m, relative to the user
list and acceptable subset list specified in Σ, and “False” otherwise.

4.2 The Boolean Structure of Ad-Hoc Signatures.

Here we make some remarks on the structure of arbitrary ad-hoc signatures,
and draw parallels with threshold ring signatures. The standard threshold ring
signature construction contains all of the techniques needed for general ad-hoc
signatures, and is presented in detail in Section 7. The observations here serve to
indicate exactly how the details of threshold ring signatures apply in the general
case. We prefer this exposition, which provides an inclusive proof of security, yet
appeals to the reader’s intuition of familiar threshold structures.

A threshold ring signature scheme is clearly a special case of a general ad-hoc
ring signature; out of all subgroups of the n members, every subgroup consisting
of at least t members is an acceptable subset. One approach, though far from
the most efficient one, is to list all acceptable subgroups and prove that one is
contained in the set of the cooperating signers. For each subgroup, we form the

12 Emmanuel Bresson, Jacques Stern and Michael Szydlo

concatenation of the signatures of all concerned players; obviously such values
can be simulated. Then we use a meta-ring mechanism to prove that at least
one of these |Σ| (concatenation of) values has not been simulated but rather
computed using as many private keys as needed. Indeed, such meta-ring shows
that at least an acceptable subset has simultaneously received agreement and
cooperation from all its members. Thus one can prove for example that player
P1 has signed m, OR P2 AND P3 AND P4 have, OR P2 AND P5 have. We
observe that any collection of acceptable subsets may be (recursively) described
in this way, by using the boolean operations AND, OR.

More complex signatures may be constructed recursively. Because we have
shown how to simulate a ring, and the same trivially holds for sequential compo-
sition (AND), an ad-hoc signature may serve as a node in a larger, meta-ring. For
a general ad-hoc signature, a particular specification of the acceptable subsets
in terms of boolean operations corresponds to a particular (nested) composite
ring structure. This specification of acceptable subsets may be accomplished in
multiple ways using AND and OR, yet some methods are more efficient than
others.

4.3 Our Security Model

We now derive a security model from [25]. We first focus on standard threshold
signatures, and proceed to the general case.
Threshold Security: First of all, we want the signature to be anonymous, in
the sense that no information is leaked about the group of actual signers, apart
from the fact that they were at least t among the n specified ring members.

Next, we define the unforgeability property by considering the following ad-
versarial model. The adversary A is given the public keys of n users P1, . . . , Pn as
well as access to the hash function H. Also, A is given access to a signing oracle,
which can be queried to threshold-sign any message. During the attack, A can
corrupt some users in order to obtain their private secret key, and is allowed to
do so adaptively. Doing so, we include collusion attacks.

A t-forger against a threshold ring signature scheme is a probabilistic polyno-
mial-time Turing machine A, that is able to sign a message on behalf of t users,
having corrupted up to t − 1 users, under an adaptive chosen message attack.
The scheme is t-CMA-secure (threshold Chosen-Message Attack -secure) if no
t-forger A can succeed with non-negligible probability. If we denote the number
of hash queries by qH and the number of signing queries by qS , such a probability
is denoted by Succcma

t,qH ,qS (`), where ` is the security parameter.
General Ad-hoc Security: The above security definitions generalize naturally
as follows. First, the scheme should be anonymous, in the sense that no infor-
mation will be leaked about the group of signers except that some subset of
signers forms an acceptable subset. For the unforgeability property, we apply the
same adversarial model as in the threshold setting, except thatA can corrupt any
number of users, provided that no set of corrupted users contains an acceptable
subset.

Threshold Ring Signatures and Applications to Ad-hoc Groups 13

A Σ-forger against a signature scheme for the ad-hoc group Σ is a proba-
bilistic polynomial-time Turing machine A, that is able to sign a message on
behalf of a Σ-acceptable subset, having corrupted no acceptable subset in its en-
tirety, under an adaptive chosen message attack. The scheme is Σ-CMA-secure
(ad-hoc group Chosen-Message Attack -secure) if no Σ-forger can succeed with
non-negligible probability. Analogously to above, such a probability is denoted
by Succcma

Σ,qH ,qS (`), where ` is the security parameter.

5 A solution using secret sharing

In this section, we follow the idea suggested by the authors of [26]. Our idea is
to use Shamir secret sharing scheme [28] to perform a threshold proof. In such
a proof, the “challenge” is shared in order to prove knowledge of a minimum
number of secrets [14]. The challenge to share depends on the group on behalf
of which the signature is produced.

We first expose our scheme, and prove its security in the ideal-cipher model
in section 6. In section 5.4, we discuss the efficiency of the new scheme.

5.1 Preliminaries

We apply this idea to the RSA variant of [25]. Here we consider an encryption
scheme E using `0-bit length keys as well as an additional parameter i (which
is just an index ranking over [1, n]). Another possibility could be to define many
symmetric keys by ki = H(m, i) and to use a different key for each index. We
prefer to use the more convenient notation Ek,i(·).

5.2 Ring signatures for an arbitrary subgroup

We are now explain how to generate ring signatures for an arbitrary subgroup
of ring members, according to a threshold value t which can also be chosen at
signing time.

Let m be a message m to be signed, and t members. For simplicity we index
the members with numbers 1, . . . , t. We denote P1, . . . , Pn the public keys of all
ring members.

Signing algorithm The signature algorithm, derived from [25], performs the
following steps:

1. Compute the symmetric key for E: k ← H(m)
2. Compute value at origin: v ← H(P1, . . . , Pn).
3. Choose random seeds.

For i = t+ 1, . . . , n, Do xi
R← {0, 1}` and yi ← gi(xi).

4. Compute a sharing polynomial.
Compute a polynomial f over GF (2`) s.t.
deg(f) = n− t, f(0) = v and For i = t+ 1, . . . , n : f(i) = Ek,i(yi).

14 Emmanuel Bresson, Jacques Stern and Michael Szydlo

5. Solve the remaining equations.
For i = 1, . . . , t, Do xi ← g−1

i (E−1
k,i (f(i))).

6. Output the signature.
(m,P1, . . . , Pn, v, x1, . . . , xn, f).

Note that one need not transmit v, since it can be recovered. We omit v in
the rest of this section.

Verification algorithm On receiving a tuple (m,P1, . . . , Pn, x1, . . . , xn, f), the
verifying algorithm performs the following steps:

1. Recover the symmetric key: k ← H(m).
2. Recover yi’s: For i = 1, . . . , n, Do yi ← gi(xi).
3. Verify the equations.

f(0) ?= H(P1, . . . , Pn)
For i = 1, . . . , n, f(i) ?= Ek,i(yi).

If the signature is correct, the verifier accepts it as a “t-out-of-n” signature,
where t = n− deg(f).

5.3 Security result

We now prove that the scheme is secure in the ideal-cipher model.

Completeness and Anonymity It is straightforward that t distinct members
are able to produce a signature which is accepted as valid on behalf of t signers.

Let t be the number of actual signers. The signing algorithm chooses a poly-
nomial f of degree n − t at random and any polynomial of degree n − t can
be obtained by interpolating n− t values over {0, 1}`. This holds independently
from the signing group’s membership; then, the group of signers is uncondition-
ally anonymous.

Unforgeability

Theorem 1 (Threshold unforgeability). Let A be a t-forger against the
scheme, running in time τ , making qH H-queries, qE symmetric encryption
queries, under an adaptive chosen-message attack with qS signing queries. We
have:

Succcma
τ,t,qH ,qE ,qS (`) ≤ (n− t+ 1)qE

(
n

t− 1

)
Succow

RSA(`) +
(
n

t

)(
qE
n− t

)n−t
qE
2`

The proof appears in section 6. The main idea is that with non-negligible
probability, a forger outputs a forgery for which the polynomial f is such that
at least t values f(i) were asked to the E−1 oracle. If the forger has corrupted
at most t− 1 users, then with high probability, we can use it to invert one of the
corresponding one-way permutations.

Threshold Ring Signatures and Applications to Ad-hoc Groups 15

5.4 Discussion

If we use RSA with exponent of 3 for all members, the scheme remains efficient:

– Generating a “t-out-of-n” threshold signature requires essentially O(n − t)
modular multiplications, O(t) modular exponentiations and n polynomial
evaluations.

– Verifying such a signature requires 2n modular multiplications, and n poly-
nomial evaluations.

However the upper-bound given above is quite bad. The security proof ap-
pears more difficult than suggested in [26]. Moreover a non-uniform term appears
in the reduction, which forces the size of signature to be very long. More precisely,
we want the following expression to be negligible:(

n

t

)(
qE
n− t

)n−t
qE
2`

We have in mind situations in which qE is an order of magnitude larger than
n, t. Thus, ` must be much larger than n log qE . This leads to signature sizes at
least O(n2), which is not satisfying.

6 Proof of theorem 1

Proof. We have to prove that a correct signature is necessarily produced by at
least the claimed number of users, say t. We consider an adversary A that can
mount an adaptive chosen message attack, as described above, and is able to
succeed with probability ε. We construct from A an adversary B against the
one-wayness of the extended RSA function.
B is given a modulus n0, an exponent e0 and a value y0 and is going to

compute x0 such that g(x0) = y0 where g is the extended RSA permutation
over {0, 1}`, as defined in section 2.3. It chooses at random an index i0 ∈ [1, n]
and a subset I0 ⊂ [1, n] of cardinality t − 1 such that i0 /∈ I0. B hopes that the
corrupted players will be those in I0. B sets Pi0 ’s public key to (n0, e0), generates
t−1 pairs of matching private/public keys for all users in I0, and sets other users’
public keys at random – the corresponding secret keys will not be used. B also
chooses a random integer q0 in [1, qE] where qE is the number of both E-queries
and E−1-queries the adversary A is allowed to make. Then A is initialized with
random coins and is given all the public keys.
B simulates the random oracle H in a straightforward way, answering a ran-

dom value for each new query, and maintaining a list of already queried messages.
It also simulates the symmetric encryptions Ek,i, in such way that it is consis-
tent with a random permutation (see Fig. 3). For simplicity, and without loss of
generality, we do not allow A to make a query Ek,i(x) if it has already got x as
answer for a query E−1

k,i (y).
Note that B must remember whether x was answered on a E−1-query for y,

or the opposite. B answers the encryption and decryption-queries using a random

16 Emmanuel Bresson, Jacques Stern and Michael Szydlo

Encryption function Ek,i
query k, i, x−−−−−−−−−−−−−−−→ If ∃y|(k, i, x, ∗, y) ∈ E- list Then

Return y

Else Return y
R←∈ {0, 1}`

y←−−−−−−−−−−−−−−− E-list← E- list‖(k, i, x,→, y).

Decryption function E−1
k,i

query k, i, y−−−−−−−−−−−−−−−→ If ∃x|(k, i, x, ∗, y) ∈ E- list Then

Return x
Else Decrement q0

If q0 = 0 Then x← y0

Else x
R←∈ {0, 1}`

Return x
x←−−−−−−−−−−−−−−− E-list← E- list‖(k, i, x,←, y).

E-list

Members Meaning

(k, i, x,→, y) Ek,i(x) = y;
Ek,i-query has been made on x
and answered by y

(k, i, x,←, y) E−1
k,i (y) = x;

E−1
k,i-query has been made on y

and answered by x

Fig. 3. Encryption-oracle simulation.

value for each new query. However, on the q0-th new decryption-query, B answers
with y0. Recall that y0 is uniformly distributed over {0, 1}`.

Finally, B can simulate a signing oracle for an arbitrary subgroup of signers,
simply by choosing randomly the components of the signature, and by adapting
its answers to the E or E−1-queries. More precisely, when queried on a message
mi for a subgroup Pi of ti users, B simulatesH(mi) andH(Pi) to fix a symmetric
key k and a value v, and then chooses at random a polynomial f over GF (2`) of
degree n− ti such that f(0) = v. Finally, B chooses n random values xi1, . . . , xin
and fixes for j = 1, . . . , n the permutation Ek,i(gj(xij)) to be f(i). Provided that
H is collision resistant, B remains always able to maintain correctly the E-list if
the same message is not queried twice.
A is allowed to query for the secret key of a player, at any time, obtaining up

to t− 1 secret keys. Such queries are answered in a straightforward way, except
if asked to a player Pj , j /∈ I0. In that case, B halts and outputs “Fail”. The
probability of correctly guessing the subset I0 of corrupted players is at most
1/
(
n
t−1

)
.

In that latter case, with probability ε, adversary A outputs a t-forgery (m∗,
P1, . . . , Pn, x1, . . . , xn, f

∗). We denote for each index i, yi = gi(xi). By defini-

Threshold Ring Signatures and Applications to Ad-hoc Groups 17

tion, we have f∗(0) = v = H(P1, . . . , Pn) and for all i, f∗(i) = Ek,i(yi) where
deg(f∗) = n− t and k = H(m∗). If gi0(xi0) = y0, then B outputs xi0 ; otherwise,
it outputs “Fail”.

We now analyze the success probability of B.
Let us denote by Eξ the E-list maintained by B, restricted to the first ξ

E-queries (without taking in account the E−1-queries). Let us define for any
polynomial f and any ξ ∈ [1, qE]:

Φξ(f) = #{i ∈ [1, n] | ∃x, (H(m∗), i, x,→, f(i)) ∈ Eξ}

Hence, Φξ(f) is the number of indices i for which f(i) can be found in the
first ξ answers to E-queries. And let us denote:

ϕ(f) = min{ξ | Φξ(f) = n− t} if such a minimum exists.

That is, ϕ(f) is the index after which one has asked enough E-queries to
entirely define f . Keep in mind that deg(f) = n − t and f(0) is fixed. Now we
give an upper bound for the number of polynomials f such that ϕ(f) = q0. We
define qi as the number of E-queries made with index i as a second parameter.
Of course we have

∑
i qi ≤ qE .

The number of polynomial f such that ϕ(f) = q0 can be estimated as follows.
We first fix n − t indices I = {i1, . . . , in−t} in [1, n]. For each of these indices,
there are at most qi possible values, corresponding to answers to E-queries. Then
we get as an upper bound:(

n

n− t

)∏
i∈I

qi ≤
(
n

t

)(
qE
n− t

)n−t
We observe now that for any polynomial f verifying ϕ(f) = q0, the proba-

bility that there exists another Ek,i-query for which the answer equals f(i) is at
most qE/2`.

It follows that with probability at least

ε− qE
2`

(
n

t

)(
qE
n− t

)n−t
adversary A produces a forgery such that ΦqE (f∗) ≤ n − t which mean that
no more than n − t E-queries involve f∗(i) as result. Thus there are at least t
indices for which A made an E−1-query on f∗(i). Let us denote by I∗ the set of
these indices.

Since less than t users have been corrupted, there exists a index i∗ ∈ I∗

such that A did not corrupt player Pi∗ . Let q∗ be the index of the E−1-query
made on f∗(i∗), with probability greater than 1/qE , we have q∗ = q0. And with
probability greater than 1/(n− t+ 1), we have i∗ = i0.

In that latter case, xi∗ satisfies gi0(xi∗) = E−1
k,i∗(f

∗(i∗)) = y0, which means
that xi∗ is a preimage of y0 by the extended RSA permutation defined with
exponent e0 and modulus n0.

18 Emmanuel Bresson, Jacques Stern and Michael Szydlo

Conditioning by the fact the set of corrupted players I0 was correctly guessed
(which holds with probability at least 1/

(
n
t−1

)
), we obtain the success probability

of B:

(
Succcma

τ,t,qH ,qE ,qE (`)−
(
n

t

)(
qE
n− t

)n−t
qE
2`

)
1

(n− t+ 1)qE
(
n
t−1

) ≤ Succow
RSA(`)

ut

7 An Efficient Threshold Ring Signature Scheme

In this section, we describe a methodology to achieve the threshold ring signa-
tures with size O(nlogn), while remaining essentially efficient in terms of sign-
ing/verifying. We not only provide details for signature composition, efficiency
tracking, but also present a particularly efficient specification of the acceptable
subsets by using fair partitions. Moreover, our solution is provably secure in the
random oracle model.

Outline. Consider a ring of r members, and among them two users who want to
demonstrate that they have been cooperating to produce a ring signature. The
idea is to split the group into two disjoint sub-groups, and to show that each of
these sub-groups contains one signer. However doing so may compromise perfect
anonymity since such split restricts the anonymity of each user to a sub-ring.
The solution consists in splitting the group many times, in such a way that there
always exists a split for which any two users are in two different sub-rings. Then
all of these splits are used as nodes in a super-ring. The super ring proves that
at least one split has been solved, that is, two sub-rings has been individually
solved. For the other splits, one will have to simulate a correct ring signature,
for every unsolved sub-ring.

7.1 Fair Partitions of a Ring

Before describing our scheme, we introduce a few notations. Let t be an integer
and π = (π1, . . . , πt) denote a partition of [1, n] in t subsets; π defines a partition
of the ring R = (P1, . . . , Pn) in t sub-rings R1 through Rt. Finally, the i-th bit
of a string x is denoted by [x]i.

Case t = 2. Let π = {π1, π2} be a partition of [1, n] and Pa and Pb two users
that want to produce a “2-out-of-n” signature on a message m. If Pa and Pb
belongs to distinct sub-rings, for instance, Pa ∈ R1 and Pb ∈ R2, then they are
able to produce two correct ring signatures, relatively to R1 and R2 respectively.
In that case, we say that π is a fair partition for indices {a, b}. If is not the case,
for instance {Pa, Pb} ⊂ R1, then it is infeasible for Pa and Pb to produce a valid
ring signature with respect to R2.

Threshold Ring Signatures and Applications to Ad-hoc Groups 19

To ensure anonymity, we need to provide a set Π of partitions such that
for any indices a and b in [1, n], there exists a fair partition π ∈ Π for {a, b}.
A (2, n)-ring signature is a meta-ring over Π, which prove that for at least one
partition π, both underlying sub-rings can be solved at the same time. Such a set
can be efficiently constructed as stated in the (straightforward) following lemma:

Lemma 2. For any integer n, there exists a set Πn of dlog2 ne partitions satis-
fying the above requirements.

Proof. Any set of size n < 2q can be mapped without collision over q-bit strings.
Let us define for i ∈ [1, q], πi = (π1

i , π
2
i) as follows: πji = {σ ∈ {0, 1}q | [σ]i =

j− 1} with j ∈ {1, 2}. If a and b are two distinct elements of {1, n}, there exists
an index i0 ∈ [1, q] such that [a]i0 6= [b]i0 . It is easy to see that πi0 is a fair
partition for {a, b}. ut

General case. We generalize the previous definitions as follows. Let π =
(π1, . . . , πt) a partition of [1, n] in t subsets and I = {i1, . . . , it} a set of t indices
in {1, n}. If all integers in I belongs to t different sub-sets, for instance ij ∈ πj ,
we say that π is a fair partition for I. Intuitively, a secret is known in every
sub-ring Rj defined by π.

Now, to ensure anonymity, we need to provide a set Π of partitions such that
there exists a fair partition for any set of cardinality t.

Definition 4. Let t < n be two integers. We say that a set Π of partitions of
[1, n] is a (n, t)-complete partitioning system if for any set I of cardinality t,
there exists a fair partition in Π for I:

∀I ⊂ [1, n], #(I) = t, ∃π = (π1, . . . , πt) ∈ Π, ∀j ∈ [1, t], #(I ∩ πj) = 1

To provide such a complete system, we use the notion of perfect hash function.
A perfect hash function for a set I is a mapping h : [1, n] → [1, t] which is 1-1
on I. A (n, t)-family of perfect hash functions, H, is such that that for any I of
size t, there exists h ∈ H which is perfect on I. It is thus clear that defining a
partition in t sub-rings for each member of a (n, t)-family makes a (n, t)-complete
partitioning system.

The following result has been proven in [1]:

Lemma 3. There exists a (n, t)-family of perfect hash functions which has size
of 2O(t) log n. Moreover each of these functions is efficiently computable.

7.2 Description of the new Scheme

We now describe formally our scheme. We are based on the notion of fair par-
tition, in case of a threshold scenario (which is likely to be used in practice).
Consider a (n, t)-complete partitioning system and a set of t signers. If π is fair

20 Emmanuel Bresson, Jacques Stern and Michael Szydlo

partition for this set, they can solve all the sub-rings defined by π. For the other
partitions, the sub-rings are just simulated and put along a super-ring.

We introduce another function G, viewed as a random hash function re-
turning (t × `)-bit strings and we denote p = 2t log n. We assume that for all
integers n and t ≤ n, a (n, t)-complete partitioning system is publicly avail-
able : Πn = {π1, . . . , πp}. Finally, we introduce the straightforward notation
Cv,io,m(γ, yj , j ∈ R) to properly deal with sub-rings.

Signing algorithm. We denote by Pi1 , . . . , Pit a subgroup of users that want
to sign a message m while proving there were at least t signers among n ring
members. The idea is to solve a collection of sub-ring signatures corresponding
to a fair partition (each signer belongs to a sub-ring), then to concatenate the
results and to apply a ring-like mechanism in order to prove that at least one
of the collection of sub-rings has been entirely solved. To do so, they proceed
as follows: We denote by πs a fair partition for I = {i1, . . . , it}. We assume for
simplicity that for each j ∈ [1, t], we have ij ∈ πjs
1. Choose random seeds for each sub-ring of each partition.

For i = 1, . . . , p, Do

For k = 1, . . . , t, Do vki
R← {0, 1}`.

2. Simulate rings for all partitions but πs.
For i = 1, . . . , p, i 6= s, Do

For j = 1, . . . , n, Do xji
R← {0, 1}`, and yji ← gj(x

j
i).

For k = 1, . . . , t, Do
zki ← Cvki ,1,m

(0, yji , j ∈ π
k
i (R)) and γki ← vki ⊕ zki .

3. Compute a “super-ring” with so-obtained gaps.

σs
R← {0, 1}t`, and us+1 ← G(σs)

� �

������� 	�

� ����� ��� ��	�

�������

��� � �! #"$�&%'"$��() �

* +

* ,

* -

. /10 2
3 �

Fig. 4. The ring composition paradigm. Here we have t = 3. If πs is a fair partition
w.r.t. three signers, they start from a seed σs and compute us. Finally they solve the
sub-rings in πs according to the obtained gaps γ1, . . . , γ3. The equation is verified in a
straightforward way, starting at any given index.

Threshold Ring Signatures and Applications to Ad-hoc Groups 21

For i = s+ 2, . . . , p, 1, . . . , s, Do
ui ← G

(
ui−1 ⊕ (γ1

i−1‖ . . . ‖γti−1)
)

4. Compute the gap values for sub-rings of πs by closing the super-ring.
(γ1
s‖ . . . ‖γts)← us ⊕ σs.

5. Solve the sub-rings for the fair partition πs.

For j ∈ [1, n]\I, Do xjs
R← {0, 1}`, and yjs ← gj(x

j
s).

For j ∈ I, Do

σk
R← {0, 1}` for k such that j ∈ πks

yjs ← C−1

j,γks ,m
(σk, y

j
s, j ∈ πks (R)) and xjs ← gj

−1(yjs).

6. Output the signature.

ν
R← [1, p] and output

(
ν, uν ,

⋃
1≤i≤p

(
x1
i , . . . , x

n
i , v

1
i , . . . , v

t
i

))
.

Verification algorithm. A t-out-of-n ring signature is verified as follows:

1. Compute all rings starting from index 1.
For i = 1, . . . , p, Do

For j = 1, . . . , n, Do yji ← gj(x
j
i).

For k = 1, . . . , t, Do
zki ← Cvki ,1,m

(0, yji , j ∈ π
k
i (R)), and γki ← vki ⊕ zki .

2. Verify the super-ring from index ν and obtained gaps.

uν
?
= G(γ1

ν−1‖ . . . ‖γtν−1 ⊕G(. . . G(γ1
ν‖ . . . ‖γtν ⊕ uν) . . .)).

This scheme uses a super ring to prove that at least one of the partition
is entirely solved. We may seen a ring (either sub-ring or super-ring) as an
“OR” connective, while the partitions are used to “AND” the signatures – by
concatenating the gaps γ1‖ . . . ‖γt before embedding them in the super-ring.
Thus, our construction can be described as a composition technique.

7.3 Security result.

Theorem 2. Our scheme is secure in the random oracle model against an adap-
tive chosen-message attacks involving qH and qG hash-queries to H and G re-
spectively, and qS signing queries, under the RSA assumption.

Succcma
t,τ,qH ,qG,qS (`) ≤ q2

Hq
2
Gt

2

(
n

t

)
Succow

RSA(`)

7.4 Discussion

We discuss here the efficiency of our threshold ring signature scheme. The size of
the signature grows with both the number of users n and the number of signers
t. More precisely, the size of such t-out-of-n signature is: 2O(t)dlog2 ne ×

(
t ∗

`+ n ∗ `
)

= O(`2tn log n). Signing requires t inversions of the g’s functions and
O(2tn log n) computations in the easy direction. This is clearly a more efficient
implementation than the generic solution wherein one lists all the subgroups of
cardinality t since this would lead to

(
n
t

)
= O(nt) size.

This is also more efficient than the secret sharing -based scheme we presented
in the previous section.

22 Emmanuel Bresson, Jacques Stern and Michael Szydlo

8 Proof of theorem 2

Proof. We have to prove that a correct signature is necessarily produced by at
least the claimed number of users, say t. We consider an adversary A that can
mount an adaptive chosen message attack, as described above, and is able to
succeed with probability ε. We construct from it an adversary B against the
one-wayness of the extended RSA function.

Let q = logn and p = 2t log n.
B is given a modulus n0, an exponent e0 and a value y0. It chooses at random

an index i0 ∈ [1, n] and a subset I0 ⊂ [1, n] of cardinality t− 1 such that i0 /∈ I0.
B hopes that the corrupted players will be those in I0. B sets Pi0 ’s public key
to (n0, e0), generates t− 1 pairs of matching private/public keys for all users in
I0, and sets other users’ public keys at random – the corresponding secret keys
will not be used. B chooses at random an integer t0 in [1, t]. It also chooses at
random two integers h0, h

′
0 in [1, qH], and two integers g0, g

′
0 in [1, qG], such that

g0 < g′0 < h0 < h′0 and qH and qG are the numbers of H-queries and G-queries
the adversary A is allowed to make, respectively. Finally, A is initialized with
random coins, and is given all the public keys.
B simulates the random oracles G and H in the usual way, answering a

random value for each new query, and maintaining a list of already queried
messages. However, we add the following rule. Let Γ0 be the XOR between the
argument of the g0-th query and the answer to the g′0-th query, and γ0 be the
substring of Γ0, corresponding to [Γ0]`(t0−1)+1 through [Γ0]`t0 . On the h′0-th H-
query, B answers with y0 ⊕ x0 if i0 < n and y0 ⊕ x0 ⊕ γ0 if i0 = n, where x0 is
the value the h0-th query was made on.
A is allowed to query for the secret key of up to t− 1 players, in an adaptive

way. Such queries are answered in a straightforward way, except if asked to a
player Pj , j /∈ I0. In that case, B halts and outputs “Fail”. The probability of
correctly guessing the subset I0 of corrupted players is at least 1/

(
n
t−1

)
.

Finally, B can simulate a signing oracle for an arbitrary subgroup of signers,
simply by choosing randomly the components of the signature, and by adapting
its answers to the G or H-queries.

With probability ε, adversary A outputs a t-forgery(
m∗, R, ν∗, u∗,

⋃
1≤i≤N

(
x1
i , . . . , x

n
i , v

1
i , . . . , v

t
i

))
By definition, we have:

u∗ = G(Γν∗−1 ⊕G(Γν∗−2 ⊕ · · · ⊕G(Γν∗ ⊕ u∗) . . .)),

where


zki = Cvki ,1,0,m

(
gj(x

j
i), j ∈ πki (R)

)
Γi = z1

i ⊕ v1
i ‖ . . . ‖zti ⊕ vti

for i = 1, . . . , p and k = 1, . . . , t.

We denote for each index i ∈ [1, p] and each index j ∈ [1, n], yji = gj(x
j
i). If

there exists an index i for which gi0(xi0i) = y0, then B outputs xi0i ; otherwise, it
outputs “Fail”.

Threshold Ring Signatures and Applications to Ad-hoc Groups 23

We now analyze the success probability of B. Along the super-ring, there
exists an index s∗ such that G(us∗ ⊕ Γs∗) was queried before G(us∗−1 ⊕ Γs∗−1).
With probability at least 1/q2

G, these queries were the g0-th and g′0-th queries,
respectively.

In that latter case, let us consider partition πs∗ . Since A cannot corrupt more
that t − 1 players, there exists an index t∗ ∈ [1, t] for which no player in πt

∗

s∗ is
corrupted. With probability 1/t, we have t∗ = t0. Also, from the definition of γ0,
the “gap” value in sub-ring πt

∗

s∗ is equal to γ0.
In that latter case, there exists an index i∗ in πt

∗

s∗(R) such that, H(ωi∗ ⊕ yi
∗

s∗)
was queried before H(ωi∗−1 ⊕ yi

∗−1
s∗), where the ω’s are the intermediate values

along the ring. With probability 1/q2
H , these queries were the h0-th and h′0-th

ones respectively. And with probability at least 1/(n − t + 1), we have i∗ = i0,
which means gi0(xi

∗

s∗) = y0.
Thus, the success probability for B is at least

Succow
RSA(B) ≥ 1

q2
Hq

2
G

1
t(n− t+ 1)

(
n
t−1

)Succcma
sign(A)

ut

9 Conclusion

This paper addresses the open problem of allowing a subgroup of t members to
sign anonymously on behalf of an ad-hoc ring. Our construction thus improves
on ring signatures, group signatures, threshold signatures and on the Bellare-
Rogaway paradigm for constructing composite protocols. Further work may focus
on some new research by R. Canetti on universally composable protocols.

Acknowledgments

The authors thank Moni Naor and Berry Schoenmakers for helpful discussions
and the anonymous referees for many extensive, detailed comments.

References

1. N. Alon, R. Yuster and U. Zwick. Color Coding. J. of ACM, (42):844–856. [19]
2. N. Asokan and P. Ginzboorg. Key Agreement in Ad-hoc Networks. Expanded

version of a talk given at the Nordsec ’99 Workshop, Kista, Sweden, Nov. 1999.
[2]

3. G. Ateniese, J. Camenisch, M. Joye, G. Tsudik. A practical and provably secure
coalition-resistant group signature scheme. In Crypto ’00, LNCS 1880, pp.
255–270. [4]

4. G. Ateniese and G. Tsudik. Some open issues and new directions in group
signature. In Financial Crypto ’99, LNCS 1648, pp. 196–211. [4]

24 Emmanuel Bresson, Jacques Stern and Michael Szydlo

5. O. Baudron, P.-A. Fouque, D. Pointcheval, G. Poupard, and J. Stern. Practical
multi-candidate election system. In PODC ’01. ACM, 2001. [1]

6. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In Eurocrypt ’00, LNCS 1807, pp. 139–155. [7]

7. M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for
designing efficient protocols. In ACM CCS ’93. [7]

8. S. Brands. Untraceable off-line cash in wallets with observers. In Crypto ’93,
LNCS 773, pp. 302–318. [1]

9. J. Camenish and M. Michels. Separability and efficiency for generic group
signature schemes. In Crypto ’99, LNCS 1666, pp. 106–121. [4]

10. J. Camenish and M. Stadler. Efficient group signatures schemes for large groups.
In Crypto ’97, LNCS 1294, pp. 410–424. [4]

11. D. Chaum and T. Pedersen. Wallet databases with observers. In Crypto ’92,
LNCS 740, pp. 89–105. [1]

12. D. Chaum, E. van Heyst. Group signatures. Eurocrypt ’91, LNCS 547, pp.
257–265. [1, 3]

13. L. Chen and T. Pedersen. New group signature schemes. In Eurocrypt ’94, LNCS
950, pp. 171–181. [3]

14. R. Cramer, I. Damg̊ard, B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In Crypto ’94, LNCS 839, pp.
174–187. [4, 13]

15. R. Cramer, M. Franklin, B. Schoenmakers, and M. Yung. Multi-authority
secret-ballot elections with linear work. In Eurocrypt ’96, LNCS 1070, pp. 72–83.
[1]

16. A. De Santis, G. Di Crescenzo, G. Persiano, and M. Yung. On monotone formula
closure of SZK. In FOCS ’94, pp. 454–465. [4]

17. Y. Desmedt and Y. Frankel. Threshold Cryptosystems. In Crypto ’89, LNCS 435,
pp. 307–315. [3]

18. D. Goldschlag and S. Stubblebine. Publicly verifiable lotteries: Applications of
delaying functions. In Financial Crypto ’98, LNCS 1465, pp. 214–226. [1]

19. Z. Haas and L. Zhou Securing Ad-Hoc Networks. In IEEE Networks, 13(6), 1999.
[]

20. S. Kim, S. Park, and D. Won. Convertible group signatures. In Asiacrypt ’96,
LNCS 1163, pp. 311–321. [4]

21. S. Kim, S. Park, and D. Won. Group signatures for hierarchical multigroups. In
ISW ’97, LNCS 1396, pp. 273–281. [4]

22. E. Kushilevitz and T. Rabin. Fair e-lotteries and e-casinos. In RSA Conference
2001, LNCS 2020, pp. 100–109. [1]

23. C. Perkins. Ad-hoc networking. Addison Wesley, 2001. [2]
24. H. Petersen. How to convert any digital signature scheme into a group signature

scheme. In Security Protocols ’97, LNCS 1361, pp. 67–78. [4]
25. R. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In Asiacrypt ’01,

LNCS 2248, pp. 552-565. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13]
26. R. Rivest, A. Shamir, Y. Tauman. How to leak a secret. Private Communication,

Oct. 2001. [13, 15]
27. R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures

and public-key cryptosystems. Com. of the ACM, 21(2):120–126, Feb. 1978. [5]
28. A. Shamir. How to share a secret. In Com. of the ACM, 22(11):612–613, 1979.

[13]

