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Abstract. Secure multi-party computation has been considered by the cryptographic community for a num-
ber of years. Until recently it has been a purely theoretical area, with few implementations with which to test
various ideas. This has led to a number of optimisations being proposed which are quite restricted in their
application. In this paper we describe an implementation of the two-party case, using Yao’s garbled circuits,
and present various algorithmic protocol improvements. These optimisations are analysed both theoretically
and empirically, using experiments of various adversarial situations. Our experimental data is provided for
reasonably large circuits, including one which performs an AES encryption, a problem which we discuss in the
context of various possible applications.

1 Introduction

That secure multi-party computation can be executed at all is considered one of the main results of
the theory of cryptography. Starting with Yao’s seminal work [37] many authors have looked at various
optimisations and extensions to the basic concept, for both the two-party and the multi-party settings,
see for example [8, 11, 12, 20, 23, 26, 36]. Until recently all work on secure multi-party computation has
been essentially of a theoretical nature, focusing on feasibility results. However in the last few years a
number of practical implementations have appeared [6, 7, 25, 27, 4].

There are many different protocols for secure multi-party computation. Our work focuses on imple-
mentation of secure computation and therefore we only mention protocols which have been previously
implemented. Secure multi-party computation essentially comes in two flavours. The first approach is
typically based upon secret sharing and operates on an arithmetic circuit representation of the computed
function, such as in the BGW (Ben-Or, Goldwasser and Wigderson) or CCD (Chaum, Crepeau and
Damg̊ard) protocols [5, 9]. This approach is usually applied when there is an honest majority among the
participants (which can only exist if more than two parties participate in the protocol). An alternative
approach represents the function as a binary circuit. This approach was used in the original two-party
garbled circuit construction of Yao [37], and in the GMW (Goldreich, Micali and Wigderson) multi-party
protocol [12].

The arithmetic circuit method is better at representing addition and multiplication operations, where
parties have additive shares of secret values, but cannot be used to compute comparisons unless the
shares are converted to shares of the binary representation of the values. This approach has been used to
great effect in the SIMAP project [7], which has resulted in a “real-life” application of secure multi-party
computation to the Danish sugar beet industry [6].

The binary circuit approach handles arithmetic operations, especially multiplications, less efficiently,
but can easily compute binary operations such as comparisons. This second approach, which forms the
basis of Yao’s construction for the two party case, has been implemented by Malkhi et al. in the Fairplay
system [27]. That system also provides a method to compile a given functionality from a representation



in a high-level language into a circuit, which is then interpreted by a run-time environment that performs
the secure evaluation of this functionality. FairplayMP, an extension of Fairplay to the case of more than
two parties using a modified version of the protocol of Beaver et al. [3] has recently been released [4].
All these implementations provide security against semi-honest adversaries only. A major advantage of
the binary circuit based systems (Fairplay and FairplayMP) is that they run in a constant number of
communication rounds, whereas the SIMAP system has the advantage of being able to process arithmetic
operations very efficiently.

Efficient extensions of Yao’s construction to more relevant adversarial models have been a topic of
research interest in the last few years. There are several constructions which aim to secure the protocol
against malicious adversaries without using generic zero-knowledge protocols. We will focus on the con-
struction of Lindell and Pinkas [23] which is efficient and provides fully simulatable security according
to the definition of Canetti [8]4. A definition of a weaker class of corruption, “covert adversaries”, and
a protocol secure against this type of behavior, was provided by Aumann and Lindell [1]. In [25] an
implementation of the basic Lindell–Pinkas protocol was reported upon and experimental data in various
security models was provided.

In this paper we improve on the implementation of [25] in a number of ways. The resulting set of quan-
titative improvements results in qualitative conclusions: (1) We demonstrate that two-party computation,
secure against malicious adversaries, is truly practical, and we experimentally identify the performance
bottlenecks which remain after our optimisations. This result should direct further research to the issues
which have the largest effect on performance. (2) We experiment with a secure computation of the AES
standard, and show that it is indeed feasible, even with security against malicious adversaries. There
are a number of applications of such an implementation, some of which we describe below. (3) We pro-
vide the first implementation of a protocol with security against covert adversaries and we compare the
performance of all 3 types of protocols: malicious, covert and semi-honest.

A more detailed summary of our main results is as follows:

– We improve the communication cost for transmitting the circuits between the parties. In the case
when we model the underlying key derivation functions (KDFs) as correlation robust (see discussion
below), using the technique of [21] we are able to transmit no information for the XOR gates within
the circuit. In this situation we are also able to reduce the data which needs to be sent by 25% for the
other gates. When we are not willing to model the KDFs as correlation robust, and we only assume
they are psuedo-random functions, we are unable to perform the free XOR optimisation. However we
are able to reduce the communication cost for all gates by 50%. Unlike other methods used to improve
communication, like [14], our improvement makes a marginal impact on computational costs. We will
return to this in a later section.

– In addition to the theoretical analysis we provide experimental data for evaluating “real life” circuits,
in both the honest-but-curious, covert and malicious adversary cases; also for the two different methods
in the literature that construct the auxillary circuits in the covert and malicious cases (see [25] and
Appendix sec:extension). The implementation for the malicious setting is based on the construction
of Lindell and Pinkas [23] which provides security in the sense of full simulatability. Therefore the
resulting construction can be used as a black-box primitive in more complex applications. The use
of our optimisations results in a considerable performance boost compared to previous experimental
results published in [25].
Our optimisations change the performance bottleneck to a different part of the computation; namely,
the verification of garbled circuits generated by the circuit constructor. This observation is important
for focusing future research on the issues that affect the overhead the most.

4 This construction may be preferable over other two-party protocols with security against malicious adversaries. The
construction of Mohassel and Franklin [26] only protects privacy and is not fully simulatable. The construction of Jarecki
and Shmatikov [20] requires the use of public-key operations, rather than symmetric key operations, for any gate of
the circuit. The construction of Nielsen and Orlandi [32], too, uses public key operations, or rather public-key based
commitments, for each key of every wire of the circuit. A precise practical comparison between the different approaches
is beyond the scope of the current paper



– We experiment with secure evaluation of a circuit which computes an AES encryption of a single
block. The secure computation of AES involves one party which knows the key, and a different party
which has an input block. The second party learns the encryption of the block, while the first party
learns nothing. We demonstrate the feasibility of computing this function in the semi-honest, covert
and malicious settings.

1.1 Secure Computation of AES

As aluded to above, we present experimental results for a circuit which evaluates the AES encryption of
a single block. The secure computation of AES involves one party which knows the key, and a different
party which has an input block. The second party learns the encryption of the block, while the first party
learns nothing.

The fact that a secure computation of AES is feasible, and can run in a matter of seconds, is quite sur-
prising. This function is much more complex than say, the millionaires problem, which merely compares
two numbers. The circuit used to implement AES is composed of over 30,000 gates. Smaller hardware im-
plementations are known, but they typically reuse gates by performing different parts of the computation
with the same gate in different clock cycles; this is something which one cannot do with Yao circuits.

Application 1, OPRF: A secure computation of a pseudo-random function, denoted OPRF for “obliv-
ious prf”, has been defined in [10] and used there for secure keyword based searches. It had actually
been used even earlier for implementing oblivious transfer with adaptive queries [29]. OPRF was subse-
quently used in different constructions, such as protocols for set intersection and pattern matching secure
against malicious and covert adversaries [16], or protocols for private itemset support counting [22]. It
was also used in a recent system for secure collaborative large-scale data aggregation for identifying
denial-of-service attacks [34].

Earlier OPRF constructions were described based on a circuit construction and Yao’s protocol, for
example in [2], but were not considered a task that one would like to implement. A recent OPRF protocol
is based on the Naor-Reingold pseudo-random function [31], which is a number theoretic construction
whose security depends on the DDH assumption or on the hardness of factoring. That protocol is secure
against semi-honest adversaries (whereas we show security against malicious adversaries). In terms of
overhead, a secure protocol applying the NR OPRF to ` bit inputs requires about ` public-key operations,
which is about the same number of public-key operations as in our protocol. There are, however, several
advantages for using a symmetric key based OPRF, such as our AES based construction:

Multiple plain invocations of the function. An OPRF is typically used in protocols where the PRF
is evaluated many times by a certain party, and then the other party runs an OPRF protocol to learn
the value of the pseudo-random function applied to a certain value. For example, the first party
might compute many encryptions and publish a list of the ciphertexts. The second party uses OPRF
to obtain the encryption of a specific value, and checks whether it appears in the list of ciphertexts. If
the Naor-Reingold function is used as the PRF, then the first party must perform exponentiations for
each of the many invocations of the PRF that it must perform. If AES is used then these encryptions
can be computed very efficiently.

Range. The range of the outputs of the NR PRF is a group in which the DDH assumption holds, e.g., a
subgroup of Z∗

p . The output of AES is the set of all 128 bit long strings. The fact that each bit string
is a potential output of the function might be required for some applications.

Permutation. AES is a pseudo-random permutation, while the NR function is a function. Furthermore,
the range of the inputs of the NR function is different than the range of its outputs. There might be
applications which require the usage of a pseudo-random permutation rather than a pseudo-random
function.

Assumptions. The Naor-Reingold PRF construction is based on number theoretic assumptions. This is
uncommon for symmetric cryptographic functions, and can even be considered a weakness. It might
be that the mathematical elegance of number theoretic assumptions makes it easier to break them,
compared to breaking AES.



It is easy to add security against malicious or covert adversaries for our secure computation of AES. In
fact, we show below experimental results for these implementations. This is not unique for our OPRF
implementation, as it was shown in [16] that similar security can be achieved for the NR based OPRF
by using OT protocols with corresponding security guarantee.

Application 2, Side Channel Protection: In [13] the authors introduce “one-time programs”, which
are programs that can only be executed once and then “self-destruct”. This type of programs can be used
for different cryptographic applications, and in particular can replace some of the applications of software
obfuscation, and can support one-time proofs which can only be verified once. An important advantage of
this construction is that the execution of the program reveals no side-channel information, and therefore
provides a strong security guarantee against side-channel attacks. The construction of one-time programs
must use a simple memory device which essentially implements a one-time oblivious transfer. The rest of
the computation is essentially done using a garbled Yao circuit, where the one-time program is executed
on inputs of the device’s choosing using the data held in the one-time-memory.

One of the main applications of smart cards is to compute symmetric encryptions, and therefore the
ability to compute AES encryptions by Yao circuits has immediate application in the above scenario.
It enables smart cards to perform a one-time computation, secure against side-channel attacks, of AES.
This is particularly true since in the one-time program setting the Yao circuit evaluation need only be
secure against semi-honest adversaries. We show below that for semi-honest adversaries the AES circuit
can be evaluated very efficiently, in around two seconds, making the method of [13] eminently practical.

Application 3, Blind MACs and Blind Encryption: One can think of the operation of obtaining the
AES encryption of a message, under the other party’s secret key, as a blind MAC or a blind encryption.
Currently one-time encryption or MACs are used in the setting of secure two-party computation in order
to hide and authenticate an output of a circuit, where this output is sent to a party other than the circuit
evaluator, or to a different circuit performing another computation (in particular, while implementing
reactive computation). In that setting it must be decided in advance which circuit receives the output of
each other circuit, in order to plug the same key into a circuit C and a circuit C ′ which receives encrypted
or authenticated information from C. Computing the encryption or authentication with a key that can be
used multiple times, rather than a one-time primitive, enables to arbitrarily route the output of circuits
to other circuits, even in an adaptive order which is decided while the protocol is executed.

Application 4, Third Party Operations on Encrypted Data: We essentially show that secure eval-
uation of encryption and decryption can be implemented using circuits. This enables secure computation
of homomorphic operations on encrypted data. This is done by a circuit which receives two ciphertexts
from one party and a key from the other party, decrypts the ciphertexts, applies some arbitrary mathe-
matical operation to the plaintexts, and then encrypts the result.

1.2 Paper Organization

The paper is organized as follows: In Section 2 we present the basics behind the Yao protocol that we
will require. This section is deliberately compact and provides a sketch since the ideas presented here are
covered better elsewhere. However we fix some notation and concepts which we will use later on.

In Section 3 we present a number of optimisations which reduce the effective size of the circuits. In
Section 4 we describe an optimisation (due to [21]) which enables the evaluation of XOR gates with
no communication and no computation overhead, assuming the underlying KDF used in the Yao con-
struction is correlation robust. In this case we present an additional new optimisation which reduces the
communication sent for all other gates by 25%. In Section 5 we describe another new technique based on
secret sharing that can reduce the size of the garbled tables by 50 percent, but which cannot be applied
together with the “free XOR” optimisation. This optimisation can be applied when one is unwilling to
model the KDFs as correlation robust, or when the proportion of XOR gates within the circuit is not
particularly high.

Finally in Section 6 we present our experimental results. We feel that the results we present are
the most extensive results obtained so far in the case of secure two-party computation. In particular



our experimental results are for a size of problem which is indicative of a magnitude which could have
practical relevance, as described above Our experimental results point to a number of places in which
further research needs to be carried out.

The appendices deal with a number of issues which are for the interested reader, but which would
detract from the main thrust of our presentation.

2 Yao’s Garbled Circuit Construction

Two-party secure function evaluation makes use of the famous garbled circuit construction of Yao [37]
which we briefly overview in this section. The basic idea is to encode the function to be computed via a
binary circuit and then to securely evaluate the circuit on the players’ inputs.

2.1 Garbled Circuits

We consider two parties, denoted as P1 and P2, who wish to compute a function securely which is
represented as a simple binary circuit. First assume the circuit consists of only a single gate with two
input wires and one output wire. We denote the input wires by w1 and w2, and the output wire by w3.
The input to w1 is denoted by b1 and is known to P1, similarly P2 knows the input to w2 and this is given
by b2. Each gate has a unique identifier Gid; this enables a circuit fan out of greater than one, i.e., it
enables the output wire of one gate to be used in more than one other gate. We require that P2 evaluates
the gate on the two inputs, without P1 learning anything, and without P2 determining the value b1, bar
what it can deduce from the output of the gate and its own input. We define the output of the gate by
the function G(b1, b2) ∈ {0, 1}.

The construction of Yao works as follows. P1 encodes, or garbles, each wire wi by selecting two
different cryptographic keys k0

i and k1
i of length t. Here t is a computational security parameter which

suffices for the length of a symmetric encryption scheme. A random permutation πi of {0, 1} is associated
to each wire. The garbled value of wire wi is then represented by kbi

i ‖ci, where ci = πi(bi). We call the
value ci the “external value” of the wire, note that this value is completely independent of the actual
value of the wire bi.

An encryption function Es
k1,k2

(m) is selected which has as input two keys of length t, a message m,
and some additional information s. The additional information s must be unique per invocation of the
encryption function, i.e., it is used only once for any choice of keys. The gate itself is then replaced by a
four entry table indexed by the values of c1 and c2, and given by

c1, c2 : E
Gid‖c1‖c2
k

b1
1 ,k

b2
2

(
k

G(b1,b2)
3 ‖c3

)
,

where c1 = π1(b1), c2 = π2(b2), and c3 = π3(G(b1, b2)). Each entry in the table corresponds to a combi-
nation of the values of the input wires and contains the encryption of the corresponding garbled output
value. The resulting look up table, or set of look up tables in general, is called the “garbled circuit”.

Player P1 then sends to P2 the garbled circuit, the key corresponding to its input value kb1
1 , the value

c1 = π1(b1), and the permutation π3. The parties engage in an oblivious transfer (OT) protocol so that
P2 learns the value of kb2

2 ‖c2, where c2 = π2(b2). Player P2 can then decrypt the entry in the look up
table indexed by (c1, c2) using kb1

1 and kb2
2 ; revealing the value of k

G(b1,b2)
3 ‖c3. P2 determines the value of

G(b1, b2) by using the mapping π−1
3 from c3 to {0, 1}.

In the general case the circuit consists of multiple gates. Player P1 chooses random garbled values for
all wires and uses them for constructing tables for all gates. It sends these tables, i.e., the garbled circuit,
to P2 and in addition provides P2 with the garbled values and the c values of P1’s inputs, and with the
permutations π used to encode the output wires of the circuit. Player P2 uses invocations of oblivious
transfer to learn the garbled values and c values of its own inputs to the circuit. Given these values, P2

can evaluate the gates in the first level of the circuit, compute the garbled values and the c values of
their output wires. Player P2 can then continue with this process and compute the garbled values of all



wires in the circuit. Finally P2 uses the π permutations of the output wires of the circuit to compute the
real output values of the circuit. If P1 additionally requires some output from the circuit then this can
be dealt with by standard mechanisms, as described in Appendix C.

One could use more general gates than 2-to-1 gates, such as n-to-m gates with 2n entries. However
the optimisations we shall present in this paper are most effective when applied to 2-to-1 gates. While we
found that more general gates can improve the performance of a naive Yao circuit protocol, they actually
decrease the performance of the optimisations. Hence the rest of this paper is restricted to 2-to-1 gates.

2.2 Required Implementation Details

Having described the basic theoretical description of Yao’s protocol and its extensions, we now present a
number of implementation details which are needed to understand some of our optimisations. The basic
implementation choice of the underlying encryption scheme to be used is the same as the implementation
described in [25].

Oblivious transfer: Unlike [25] we do not use the OT scheme of Hazay and Lindell (HL) [17]. Instead
we use the OT scheme of Peikert et al. (PVW)[33]. This scheme is UC-secure and hence requires the
setup of a Common Reference String (CRS) of a few hundred bits. For our experiments we assume that
this is given to the parties. (Alternatively, the parties can run a coin-tossing protocol to generate the
CRS, which is possible due to the nature of the CRS used in the PVW scheme.) The batched method
of PVW is more efficient per OT than the batched method of HL, especially on the receiver’s side. In
particular the CRS can be used for any number of invocations of the OT, whereas the method in HL
requires the maximum number of OT’s being executed to be known before the setup is performed. (The
setup in HL also requires two ZK-proofs as opposed to a CRS being created in PVW.) The OT stage is
not our computational bottleneck, and is unlikely to be, unless one is in the rare situation of having a
circuit with a large number of inputs for P2 and yet a relatively small number of gates. Thus we do not
consider optimisations of OT schemes which are secure against only semi-honest or covert adversaries,
since the fully secure OT is efficient enough.

Encryption scheme: The only implementation detail we will need from [25] is that the encryption
scheme is implemented via

Es
k1,k2

(m) = m⊕KDF|m|(k1, k2, s)

where KDF is a key deriviation function, whose |m| bits of output are independent of the two input keys
in isolation, and which depends on the value of s. We will instantiate this function as follows5

KDF`(k1, k2, s) = H(k1‖s)1...` ⊕H(k2‖s)1...`.

Even if H is a Merkle–Damg̊ard type hash function this will be secure (with the associated issues of length
extension), since we are only applying the function to fixed length inputs. Indeed, in our experiments we
implement H using SHA-256.

Modeling the hash function, and correlation robustness: In this paper we need to model the
underlying hash function H in two ways. In the first we make the usual assumption that it behaves as a
pseudo-random function, namely that H(k‖s) is an invocation of a pseudo-random function keyed by k,
with the input s. However one of our optimisations requires that we make a stronger assumption on the
hash function, namely that it is correlation robust. This later property can be stated formaly as follows:
5 In [25] two instantiations were presented, depending on whether we are working in the random oracle model (ROM) or

standard model, via truncating, or extending, the output of a suitable hash function H in the standard way as follows

KDF`(k1, k2, s) =


H(k1‖k2‖s)1...` H is modeled as an RO,
H(k1‖s)1...` ⊕H(k2‖s)1...` H is modeled as a PRF.

The difference is that the security analysis in the ROM works even if we feed related keys to different invocations of the
function. Namely, it is possible to compute, say, H(k1‖k2), H(k1‖k′2), H(k′1‖k2) and H(k′1‖k′2) and claim that knowledge
of k1, k2 does not disclose information about any of the values except H(k1‖k2). This is impossible in the standard model.
Therefore if H() is modeled as a prf it must be invoked separately with each key.



Definition 1 (Correlation robustness [18]). An efficiently computable function H : {0, 1}∗ → {0, 1}`

is correlation robust if the following distribution is pseudo-random: (t1, . . . , tm,H(t1⊕ r), . . . ,H(tm⊕ r)),
where t1, . . . , tm and r are chosen at random, and m is polynomial in the security parameter.

This can also be stated by saying that the function fr(x) = H(x ⊕ r) is a weak pseudo-random
function. The definition also implies that the distribution of (H(t1), . . . ,H(tm),H(t1⊕ r), . . . ,H(tm⊕ r))
is pseudo-random.

The correlation-robustness assumption is satisfied by a random oracle (or rather by a very weak form
of it: a non-programmable, non-extractable random oracle). However, assuming correlation robustness
seems as a much weaker requirement than assuming the existance of random oracles. In particular, this
assumption is falsifiable according to the definition of Naor [28], meaning that given a candidate function
H it is possible to design a challenge which can be broken if H is not correlation robust, whereas it is
impossible to design a similar challenge with regards to the modeling of H as a random oracle. This
assumption has been introduced in [18] and was used there for providing security against malicious
adversaries for a method of extending oblivious transfer. The correlation robustness assumption has been
recently used in the context of oblivious transfer [15, 19] and in the context of secure computation [21,
32].

For our construction, as we deal with circuits with arbitrary fan out, we require a slightly modified
definition. Namely that for any set S = {s1, . . . , s|S|} of size which is of the same order as the number
gates, the distribution of (t1, . . . , tm, 〈H((t1 ⊕ r)‖s1), . . . ,H((tm ⊕ r)‖s1))〉, 〈H((t1 ⊕ r)‖s2), . . . ,H((tm ⊕
r)‖s2))〉, . . . , 〈H((t1⊕r)‖s|S|), . . . ,H((tm⊕r)‖s|S|))〉 is pseudo-random, where t1 . . . , tm and r are chosen
at random. In other words, all the pads that are used for encrypting table entries are pseudo-random. If
one is willing to assume this then our optimisations provide highly efficient protocols. We also provide
optimisations for when the user is unwilling to make such an assumption.

3 Structural Optimisations of the Circuit

Yao’s protocol operates on functions which are described as a boolean circuit, and its overhead depends
on the size of the circuit. A convenient way of generating a representation of a function in this form is
to use a compiler which translates a description of a function in a high-level language to a description
as a binary circuit. The Fairplay system provides a compiler for this task which operates on functions
described in a high-level language called Secure Function Description Language (SFDL) [27, 4]. We use
that compiler as the basis of our experiments, but use our own run-time environment to execute the
protocol.

There are a number of general circuit simplifications which can be performed to the output of the
Fairplay compiler. We have implemented a number of these, based on two basic ideas: (1) identifying
component circuits which can be replaced by simpler combinations of gates, and (2) identifying com-
plicated components whose output must always be zero, or one; this allows for the component to be
removed and other subsequent components to be further simplified. A combination of these techniques
is surprisingly effective, and allows us to produce circuits which are often 60 percent more efficient than
the circuit produced by the Fairplay compiler.

Many of the techniques used are ad-hoc, but the following technique is particularly effective. First, by
a technique akin to common sub-expression elimination, we identify sets of gates which can be replaced
by a single 3-to-1 gate, and then replace the 3-to-1 gate with a set of 2-to-1 gates which was chosen
to minimize the number of non-XOR gates. This is particularly effective when combined with our later
technique of Section 4, in the case of correlation robust KDFs, to remove the cost of any XOR gates;
however the technique is also successful in the more general case as well. We call a gate even if its truth
table has an even number of ‘1’ entries (for example, a XOR gate is even), otherwise it is called odd (an
OR gate, for example, is odd). We show in Appendix A that it is possible to replace any 3-to-1 even gate
with at most a single 2-to-1 non-XOR gate and at most three XOR gates. The optimal transformation
rules, which we found by exhaustive search, are listed in Appendix A.



4 Optimisations with Free XORs, when the KDF is Correlation Robust

In [21] Kolesnikov and Schneider present an optimisation based on the correlation robustness assumption,
which allows XOR gates to be evaluated for free, thus doing away with the need to evaluate or transmit
the garbled tables for such gates. The optimisation requires that there is a global random value R of
bit length t, known only to P1, such that for all garbled wires wi it holds that k1

i = k0
i ⊕ R. In other

words, the garbling of the 1 value of a wire, is determined purely from XOR-ing the garbled 0 value with
the value R. Note that a similar property holds for the external values of the wire: πi(1) = πi(0) ⊕ 1.
With this convention we have that a XOR gate can be implemented by simply XOR-ing together the two
garbled input values, and the two external values. Namely, for a XOR gate mapping wires w1 and w2 to
wire w3, it holds that k3 = k1 ⊕ k2 and c3 = c1 ⊕ c2. For a full proof of this optimisation see [21]. Note
that [21] states the proof in the random oracle model, but it can be easily seen, as noted in [21], that the
proof can be based on the correlation robustness assumption.

Garbled Row Reduction – GRR: The above solution is ideal for XOR gates, but in addition we would
like to reduce the size of the tables of the non-XOR gates as well. The following simple optimisation (which
was pointed out in [30]) provides a 25 percent reduction in the sizes of the tables needed to represent
two-input gates. We can do this in a way which still allows the use of the above trick for free XOR gates.
(In general, this method provides a 1/2n reduction in the size of n-to-1 gates, but we will only describe
it in detail for the two input case.)

The observation is that instead of defining the two garbled values of the output wires randomly, we
can define one of them as a function of garbled values of the two input wires which result in this output
value. In other words, we choose an input pair (b1, b2) ∈ {0, 1}2, and define the garbled output value of
G(b1, b2) to be a function of the garbled values of b1 and b2. The gate table therefore need not store an
entry for the input combination (b1, b2). In the evaluation phase, if the evaluator has the garbled values
of the pair (b1, b2) it can compute the corresponding garbled output directly, without consulting the gate
table.

Suppose the gate maps wire w1 and wire w2 to wire w3. As before we let k0
i and k1

i denote the garbled
wire values, G(b1, b2) denote the function being implemented by the gate, and we set the external value of
the wire to be ci = πi(bi). We then define the garbled output value corresponding to the output resulting
from the external input values (c0, c1) = (0, 0) as

k
G(π−1

1 (0),π−1
2 (0))

3 ‖c3 = KDFt+1

(
k

π−1
1 (0)

1 , k
π−1
2 (0)

2 ,Gid‖0‖0
)

.

In other words, the garbled value is exactly equal to the pseudo-random mask that was used to hide it
in the basic protocol. Note that this operation also defines the external value c3 of this output value. We
therefore define π3 such that c3 = π3(G(π−1

1 (0), π−1
2 (0))). The other garbled value of the output wire,

k
1−G(π−1

1 (0),π−1
2 (0))

3 is then chosen as in the free XOR method above, to enable the evaluation of XOR
gates for free. The table is then constructed in the standard way except that we do not store, or transmit,
its first entry.

On evaluating the garbled gate the evaluator proceeds as in the standard algorithm except when it
wishes to access the first entry of the table, i.e., when the external values of both input wires are 0, namely
c1 = c2 = 0. In that case it possesses the garbled values kb1

1 and kb2
2 , where b1 = π−1

1 (0) and b2 = π−1
2 (0).

It uses them to compute k
G(b1,b2)
3 and c3 = π3(G(b1, b2)), by computing KDFt+1

(
kb1

1 , kb2
2 , 0‖0‖Gid

)
as

defined in the equation above.
We will denote this optimisation as Garbled Row Reduction, GRR for short, in our future discussions.

Security: We sketch why the above optimisation maintains security. Recall that the proof of security
for Yao’s protocol given in [24] shows security against a corrupt P2 based on a hybrid argument, and on
a claim that for each gate it is infeasible to distinguish between a correct garbled table of this gate and a
table which encrypts the same value in all four entries. In order for this argument to apply to the GRR
optimisation, it is required to show that it is infeasible to find out if the garbled value assigned to the



first table entry, k
G(π−1

1 (0),π−1
2 (0))

3 ‖c3 is equal to the values encrypted in the other entries. However this
value is equal to the mask that is used to encrypt the first entry in Yao’s original protocol, and we know
that if a polynomial adversary is given only a single pair of garbled input values then the masks that are
used for encrypting the other entries of the table are pseudo-random. Therefore the claim follows.

5 Optimisations without Free Xors, when the KDF is not Correlation Robust

One may not want to assume the KDF is correlation robust, or perhaps the proportion of XOR gates in
the circuit is so low that making this assumption is not as effective. In these situations, too, we would
like to reduce the overhead required by the Yao circuit. This section describes an optimisation which
reduces the size of every two-input gate by 50%, but which, unfortunately, cannot be combined with the
free XOR method of Section 4.

The underlying idea is that if we are not using the free XOR trick then the two values of the output
wire can be chosen independently.6 The 50% reduction in the size of the gate tables is based on Shamir
secret sharing [35]. It makes use of a finite field F2t . Recall that t is the bit length of the keys used to
represent the garbled values of the wires. We can therefore interpret keys as elements of F2t and vice
versa. We also interpret small integers such as 1, 2, 3 etc. as elements in F2t . For example if we think of
F2t as F2[X]/(f(X)), for some polynomial of degree t, then the integer 3 can be interpreted as x + 1.

As before we assume a garbled table indexed by the external values, c1 and c2, and each entry
corresponds to the value being output, on input of the values kb1

1 and kb2
2 where bi = π−1

i (ci). We set the
rows of the gate table to be numbered 1, . . . , 4, and therefore set r = 2c1 + c2 + 1 to be the row number
of table entry (c1, c2). We define the value used to mask this entry as

Kr||Mr = KDFt+1(kb1
1 , kb2

2 , s) (1)

where s = Gid‖c1‖c2, Kr is a bit string of length t bits and Mr is a single bit used to mask the external
value of the output. We use a different method for optimising odd and even gates. The truth table of
each gate, and therefore also the information whether the gate is odd or even, is known to the circuit
evaluator. Therefore it can compute each gate according to the right method. (The only information
hidden from the evaluator is the values passing on intermediate wires of the circuit.)

5.1 Odd 2-to-1 Gates

Suppose we are implementing an OR-gate, where the external values of c1 = 0 and c2 = 0 correspond
to the real input values (0, 0), the other cases will follow immediately from the following. This means
that the values r = 2, 3 and 4 should evaluate to the same output value k1

3, whilst r = 1 should evaluate
to the output value k0

3. We first define over F2t a polynomial P (X) of degree two, by interpolating the
polynomial which intersects the three points (2,K2), (3,K3) and (4,K4), where each Kr value was defined
according to equation (1). (This is the value which in the other constructions was used to mask entry r
of the table.) The garbled output value k1

3 is defined to be k1
3 = P (0). We also compute K5 = P (5) and

K6 = P (6). We then define a second polynomial Q(X), also of degree two, by interpolating the polynomial
which intersects the three points (1,K1), (5,K5) and (6,K6), where K1 was defined according to equation
(1). The garbled output value k0

3 is now defined by k0
3 = Q(0). The garbled table is replaced by the two

values (K5,K6). In addition, for each of the four original rows, the external value for the output wire in
the rth row is encrypted using the bit Mr, defined in equation (1). The total amount of data sent for the
gate is therefore 2t + 4 bits.

Player P2 then, given two key values kb1
1 and kb2

2 plus two external values c1 and c2, computes, using
equation (1) the value of Kr and Mr for r = 2c1 + c2 + 1. Recall that the evaluator knows r but not b1

or b2. It then uses the two supplied values of K5 and K6 to interpolate the polynomial passing through
6 This allows for possible extensions of the GRR method, and in Appendix B we detail another optimisation method, which

we call Garbled Table Reduction (GTR), which reduces the size for the garbled tables needed to represent odd 2-to-1
gates by 1/3, and the size of tables of even 2-to-1 gates by 1/2.



the points (r, Kr), (5,K5) and (6,K6). The result is either Q(X) or P (X), depending on whether r = 1
or not. Player P2 then recovers the associated secret value kb3

3 , by evaluating the polynomial at the point
X = 0. Using Mr the evaluator can also decrypt the encryption of the external value of the output wire
and so obtains c3. Hence the evaluator recovers the correct value of the output wire.

5.2 Even 2-to-1 Gates

The only non-trivial even 2-to-1 gates are the XOR and NXOR gate, since all other gates can be replaced
by wires. Again let us assume the external input values c1 = 0 and c2 = 0 correspond to the real input
values (0, 0), and assume we are dealing with a XOR gate. Then the entries 1 and 4 in the standard

garbled table will correspond to the same output key, namely k
π−1
3 (0)

3 . Any other case will follow from
the following description.

Player P1 first creates a linear polynomial P (X) over F2t which interpolates the two points (1,K1)

and (4,K4). The value of k
π−1
3 (0)

3 is defined to be equal to P (0). If the external value of this output value
is 0 then we store P (5) into the first row of the new table of this gate, otherwise we store P (5) as the
second entry. Then P1 creates another linear polynomial Q(X) which interpolates the two points (2,K2)

and (3,K3). The value of k
π−1
3 (1)

3 is then defined to be Q(0), and the value Q(5) is stored in the remaining
row of our new table. The external values of the output wires are now encrypted and stored, using the
Mr values as before as a seperate sub-table of 4 bits in length. Thus, the total amount of data required
to represent the gate is 2t + 4 bits.

Player P2 given two key values kb1
1 and kb2

2 plus two external values c1 and c2, computes the value of
Kr and Mr. Using Mr it can determine the external value of the output wire. If this external value is
zero then using the first entry of our garbled table and the value of Kr, the evaluator recovers P (X) and

hence P (0) = k
π−1
3 (0)

3 . If the external value is one then using the second entry of the table and the value

Kr, the evaluator recovers Q(X) and hence Q(0) = k
π−1
3 (1)

3 .

Security: We sketch why the above optimisations maintain security. Given a pair of garbled values of
the input wires, P2 can compute a garbled output value, but cannot distinguish the other garbled output
value from random. This is because that other garbled value is defined using a linear combination with
a value which is unknown to P2. This fact can be used in a, somewhat modified, security proof in the
spirit of the proof of Yao’s protocol in [24].

6 Some Experimental Results

We now present some experimental results. In our results we separate out precomputation time, i.e.,
generating the required garbled circuits, from the rest of the computation. This is because it depends on
the application whether one should consider this time as part of the computation time or not.

There are two major conclusions of our experiments. Firstly, assuming the KDF is correlation robust
then the GRR optimisation produces the most efficient implementation. Secondly we conclude that
rather large circuits can be practically evaluated using the methods described. Thus secure two-party
computation has become more of a reality than one might previously have thought.

Example 1 – Evaluation a Simple Circuit: First we present results for a simple circuit, where we
took the circuit for which each of P1 and P2’s input is a 32-bit integer. The output for P2 should be the
single bit resulting from the application of the comparison operator on the inputs. The output for P1 will
be a six bit integer resulting from the scalar product of the bits of the two inputs, i.e. the number of ones
in the string obtained from forming the bit-wise “and” of the two strings.

Applying the Fairplay compiler to this functionality we obtain a circuit with 689 gates. We produce
two circuits from this output; the first, denoted C2,3, is to allow comparison with the existing state of the
art, namely the methods of [25]. This is a circuit which uses 2-to-1 and 3-to-1 gates and has 245 gates.



The second circuit we use, denoted Cxor, replaces, via the techniques of Section 3, all complex gates with
2-to-1 gates, and tries to minimise the number of non-XOR gates in the circuit. This circut has 531 gates,
240 of which are non-XOR gates. An extra six gates are needed in each circuit so as to encode P1’s for
tranmission back to P1, without P2 learning the value.

The above circuit sizes are purely to implement the functionality, they do not include the extra wires
and gates required to transmit P1’s output back to P1 (for details of how this is done see Appendix C), nor
do they include the extension of the circuit to cope with P2’s input in the case of Covert and Malicious
adversaries. (We refer to the two methods for encoding P2’s input as the independent inputs and the
random combinations methods. For the details of these methods see [23] or Appendix D.1). The sizes of
the extended circuits, and the resulting run-times are given in Table 1, which measures the total elapsed
wall times in seconds for the various cases.

The calculations were performed on two machines with Intel Core 2 Duo’s running at 3.0 GHz, with
4GB of RAM connected by a 1GB ethernet. The hash function H() used in the protocol was implemented
as SHA-256.

Table 1. Experimental Results For Example 1 (Times are in seconds)

Input No. % XOR Precomp Send OT Calc Total Total
Adv. Enc. Method Gates Gates Time Time Time Time Time KBytes

Semi- Base 251 11 0 0 2 0 2 46
Honest PRF-SS 537 55 0 0 1 0 1 34

CoR-GRR 537 55 0 0 1 0 1 22
ROM-GRR 537 55 0 0 1 0 1 22

Covert Indep. Base 419 38 7 1 4 6 18 1188
Inputs PRF-SS 705 61 8 0 2 7 17 969

CoR-GRR 705 61 6 1 3 5 15 682
ROM-GRR 705 61 1 1 2 0 4 629

Covert Random Base 1247 79 9 2 4 7 22 2275
Comb. PRF-SS 1535 82 9 1 3 7 20 1646

CoR-GRR 1555 82 7 1 3 5 16 682
ROM-GRR 1555 82 1 1 3 0 5 629

Malic. Indep. Base 1571 83 171 80 47 54 352 180599
Inputs PRF-SS 1857 85 175 79 39 67 360 173942

CoR-GRR 1857 85 147 78 37 39 301 164323
ROM-GRR 1857 85 141 71 37 38 287 161741

Malic. Random Base 3029 89 163 75 19 64 321 167276
Comb. PRF-SS 2799 90 161 74 16 69 320 158904

CoR-GRR 2781 90 117 75 16 39 247 140265
ROM-GRR 2802 90 117 69 16 37 239 137609

The column of “Total KBytes” contains the total number of kilobytes of data which were transferred
during the run of the protocol. The column “Method” details the type of computation used, as follows:

– Base: Denotes the optimisations proposed in [25], extended to the case of Covert and Honest adver-
saries, which we use for comparison purposes, as our baseline implementation. This uses the C2,3 circuit
mentioned above, the KDF which is secure in the standard model, and the OT of Hazay-Lindell [17]
as opposed to that of Peikert et al. [33].

– PRF-SS: This denotes using the secret sharing based method of Section 5, to reduce the size of the
garbled tables. For this the KDF is assumed to be a PRF, but not correlation robust.

– CoR-GRR: This denotes an implementation which is only secure assuming the KDF is correlation
robust. It uses the free XOR trick and the method of Garbled Row Reduction, from Section 4, to
reduce the size of the remaining garbled tables.

– ROM-GRR: As above for CoR-GRR but all hash functions used are modelled as random oracles. This
means we can implement our KDF via a single hash function call, based on the method described in
Footnote 5.



The column denoted “No. of gates” describes the number of gates, and the percentage of XOR gates, in
the extended circuit (which transfers P1’s outputs and applies the extension described in Appendix D.1,
encoding P2’s input).

For the Covert and Malicious cases the “Input Enc.” column denotes whether we use the Independent
Inputs technique or the Random Combinations technique for the extended circuit construction. See
Appendix D for details, as well as for explanation of the following choice of parameters. In the covert case
we selected s1 = 16 and s2 = 4 since we require s2 ≈ log2 s1, so as to balance the probabilities of cheating
for the two ways in which player one can cheat. For a similar reason we use s1 = 160 and s2 = 40 in the
case of malicious adversaries, where we require, conjecturally, s2 = s1/4. From the table we can deduce
the following conclusions:

– The running time in the semi-honest setting is about 10-20 times faster than in the covert setting,
which is in turn about 15-20 times faster than in the malicious setting.

– For the Covert case the choice of the Independent Inputs technique for the extension of the circuit
is slightly better due to the small value of s2, whilst for the Malicious case the technique of Random
Combinations is clearly better.

– A lot of the extra data needed to be transmitted in the Malicious case is related to the large number
of commitments and decommitments which need to be transmitted. Thus our optimisation techniques
are less effective in the Malicious case. This points to a clear direction for future research in optimising
the Malicious case.

– If one is not willing to assume that the KDF is correlation robust we see that using our technique
based on secret sharing can reduce the amount of data being transmitted, compared to the base
scheme, without increasing the computational cost.

– In all cases we see that the correlation robust variant using Garbled-Row-Reduction is the most
efficient variant. The extra efficiency comes from the free XOR’s which reduce both the number
of encryption/decryptions which need to be performed and also the amount of data needing to be
transmitted.

– Note that if we assume the random oracle model, and so could implement our KDF via a single hash
function call then for Covert adversaries the protocols run significantly faster. That this does not
apply as much to the Malicious case is due to the fact that most of the time in the Malicious case is
spent with creating, sending and verifying the various commitments.

We pause to compare our two optimisations with the optimisation in bandwidth suggested in [14].
In our system P1, the circuit constructor, sends commitments to all circuits that it constructs and to its
own inputs, and a random subset of these committed values are checked by P2. In [14] it is suggested that
P1 commits to a random seed, and uses this to generate the circuit. Then only the commitment to this
seed, and eventually its decommitment, need to be transmitted. This means that P2 needs to compute
the circuit given the seed. Whilst this optimisation clearly significantly reduces the consumed bandwidth,
it actually leads to a significant increase in the time needed to perform the protocol. To see this consider
our Covert experiments in Table 1. The optimisation in [14] would reduce practically to zero, the entry
for the “Send Time” column, but P2 would now need to recompute almost all of the calculations in the
“Precomp Time” column. Thus the technique of [14] is only to be compared to ours in the situation
where bandwidth is very expensive and CPU time is very cheap.

Before passing onto our larger example we note the following. If we let p denote the proportion of
XOR gates within a circuit, and we let N denote the amount of data needed to be sent per circuit in
the standard Yao construction, then the average amount of data needed to be sent per circuit gate when
using the free XOR gates and GRR methods is 3/4 · (1− p) ·N . Whereas if we do not use the free XOR
gate method and instead use the method based on secret sharing, this value becomes N/2. Hence, if
we are willing to assume correlation robust KDFs, then the method which uses secret sharing and does
not use the free XOR method, will be more efficient as long as the fraction of XOR gates, p, is smaller
than 1/3. However as can be seen from the column entitled “% XOR Gates”, this proportion is generally
much larger than 1/3, especially in the case of Covert and Malicious adversaries where we have had
to extend the circuit by a large linear component. This expansion is performed to cope with possible



adversarial behaviour related to P2’s input, see the full version for details. One should note that these
theoretical estimates of bandwidth are never achieved fully in practice due to overheads in the underlying
data transmission mechanism and the fact that they assume a bit-oriented communication mechanism,
whereas practical communication is performed in bytes. Hence the saving we achieve in gate transmission
is about 5-10% less than one would predict purely by theory.

Example 2 - Evaluating AES: As our second example we created a circuit which computes an AES
encryption of a single 128-bit block with respect to a 128-bit key. Here P1’s input is the secret key, and
P2’s input is the message block. We require that P2 learns the encryption of its message under P1’s secret
key, and that P1 learns nothing. Compiling such a circuit using the Fairplay compiler, and applying
various optimisations, resulted in a circuit, which we denote by C

(1)
2 , with 33880 gates, where each gate

is a 2-to-1 gate. This circuit was derived in a way to try to minimize the number of non-XOR gates.
Again, we stress, the above circuit size purely implements the AES functionality, it does not include the
extension of the circuit to cope with P2’s input in the case of Covert and Malicious adversaries. Note
that the key schedule takes up only about 15% of the circuit, hence encrypting a sequence of message
blocks as in CBC-Mode encryption will scale almost linearly with respect to our data.

We repeated our experiments from above, but in Table 2 we only present the times for the most
efficient choice for the input encoding. Thus we only look at the Independent Inputs technique for Covert
adversaries, and the Random Combinations technique for Malicious adversaries.

Table 2. Experimental Results for Example 2 (Again times are in seconds)

Input No. % XOR Precomp Send OT Calc Total Total
Adv. Enc. Method Gates Gates Time Time Time Time Time KBytes

Semi- Base 28216 56 5 2 4 3 14 3162
Honest PRF-SS 33880 66 5 1 3 3 12 1752

CoR-GRR 33880 66 2 1 2 2 7 503
ROM-GRR 33880 66 1 1 3 2 7 503

Covert Indep. Base 28600 56 96 47 18 45 206 51899
Inputs PRF-SS 34264 67 92 36 13 50 191 29380

CoR-GRR 34264 67 40 21 11 23 95 9078
ROM-GRR 34264 67 22 21 11 6 60 8942

Malic. Random Base 40253 69 1250 448 39 887 2624 987442
Comb. PRF-SS 45944 75 1184 392 34 829 2439 711729

CoR-GRR 45960 75 483 270 34 361 1148 406010
ROM-GRR 45881 75 453 276 35 350 1114 417907

We conclude that performing the Yao protocol is certainly feasible on complicated functionalities
such as AES encryption. For the case of honest and covert adversaries we again see that the computation
and bandwidth consumed, when we use correlation robust KDFs and the GRR method, greatly reduces
in comparison to the base case. If one is not willing to assume correlation robust KDFs (or use the
ROM) then our secret sharing based optimisation greatly reduces the bandwidth without affecting the
run times. For the malicious case the improvement in the secret sharing based version is less pronounced
due to the large number of commitments which need to be transmitted and opened. This clearly points
to the place where future optimisation research needs to be performed, namely in reducing the number
of commitments needed in the situation of malicious adversaries. However even without such future
optimisation we note that performance can be significantly reduced by taking advantage of the inherent
parallelism in the algorithm in the Malicious case (in which P1 generates many commitments and P2

verifies a subset of them). For web service or cloud computing applications, where server farms are
common place, an improvement in computational time by a factor around s1 could be expected.

We end by noting that many application domains of a secure evaluation of AES, for example the
one-time program example mentioned earlier from [13], require only security against semi-honest adver-
saries. Hence, such applications are already within the reach of practical realisation. Furthermore, this



application requires no computation of the OT or data to be sent. Thus the party generating the one-
time-program will take the time needed in our Precomp Time column, and the evaluator (after querying
the one-time-memory) will take the time needed in the Calc Time column.
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A Even 3-to-1 Gates

We replace even 3-to-1 gates with inputs a, b, c by at most one 2-to-1 gate and at most three XOR gates.
It is easy to see that the optimal topology for replacing a non-trivial even 3-to-1 gate (written in postfix
notation) is

(((λ)XOR, (µ)XOR)[τ ]), ν)XOR,

where λ, µ, ν ⊆ {a, b, c}, and τ is the gate table of an odd 2-to-1 gate. Based on this structure we computed
by brute-force enumeration of all (23)3 · 42 = 8192 possibilities the optimal replacement for non-trivial
even 3-to-1 gates.

In the following, the optimal replacements are listed. The first column is the even gate table, i.e.,
the ith element of the string is equal to the value of the function evaluated by the gate G(a, b, c) for
i = 4a + 2b + c. The second column is the corresponding functionally equivalent replacement in postfix
notation. For example the bitstring 00001010 represents the function a ∧ (¬c) which can be represented
by the 2-to-1 gate with the binary string representation 0100 with inputs c and a. Thus 00001010 is
equivalent to (c, a)[0100].

00000000 0

00000011 (b,a)[0001]

00000101 (c,a)[0001]

00000110 ((b,c)[0110],a)[0001]

00001001 ((b,c)[0110],a)[0100]

00001010 (c,a)[0100]

00001100 (b,a)[0100]

00001111 a

00010001 (c,b)[0001]

00010010 (b,(a,c)[0110])[0001]

00010100 (c,(a,b)[0110])[0001]

00010111 (((b,c)[0110],(a,c)[0110])[0001],c)[0110]

00011000 ((b,c)[0110],(a,c)[0110])[0100]

00011011 ((c,(a,b)[0110])[0001],a)[0110]

00011101 ((b,(a,c)[0110])[0001],a)[0110]

00011110 ((c,b)[0001],a)[0110]

00100001 (b,(a,c)[0110])[0010]

00100010 (c,b)[0100]

00100100 ((b,c)[0110],(a,c)[0110])[0010]

00100111 ((c,(a,b)[0110])[0001],b)[0110]

00101000 (c,(a,b)[0110])[0100]

00101011 (((b,c)[0110],(a,c)[0110])[0100],b)[0110]

00101101 ((c,b)[0100],a)[0110]

00101110 ((b,(a,c)[0110])[0010],a)[0110]

00110000 (b,a)[0010]

00110011 b

00110101 (((b,c)[0110],a)[0001],b)[0110]

00110110 ((c,a)[0001],b)[0110]

00111001 ((c,a)[0100],b)[0110]

00111010 (((b,c)[0110],a)[0100],b)[0110]

00111100 (a,b)[0110]

00111111 (b,a)[0111]

01000001 (c,(a,b)[0110])[0010]

01000010 ((b,c)[0110],(a,c)[0110])[0001]

01000100 (c,b)[0010]

01000111 ((b,(a,c)[0110])[0001],c)[0110]

01001000 (b,(a,c)[0110])[0100]

01001011 ((c,b)[0010],a)[0110]

01001101 (((b,c)[0110],(a,c)[0110])[0001],a)[0110]

01001110 ((c,(a,b)[0110])[0010],a)[0110]

01010000 (c,a)[0010]

01010011 (((b,c)[0110],a)[0001],c)[0110]

01010101 c

01010110 ((b,a)[0001],c)[0110]



01011001 ((b,a)[0100],c)[0110]

01011010 (a,c)[0110]

01011100 (((b,c)[0110],a)[0100],c)[0110]

01011111 (c,a)[0111]

01100000 ((b,c)[0110],a)[0010]

01100011 ((c,a)[0010],b)[0110]

01100101 ((b,a)[0010],c)[0110]

01100110 (b,c)[0110]

01101001 ((a,b)[0110],c)[0110]

01101010 ((b,a)[0111],c)[0110]

01101100 ((c,a)[0111],b)[0110]

01101111 ((b,c)[0110],a)[0111]

01110001 (((b,c)[0110],(a,c)[0110])[0001],b)[0110]

01110010 ((c,(a,b)[0110])[0010],b)[0110]

01110100 ((b,(a,c)[0110])[0010],c)[0110]

01110111 (c,b)[0111]

01111000 ((c,b)[0111],a)[0110]

01111011 (b,(a,c)[0110])[0111]

01111101 (c,(a,b)[0110])[0111]

01111110 ((b,c)[0110],(a,c)[0110])[0111]

10000001 ((b,c)[0110],(a,c)[0110])[1000]

10000010 (c,(a,b)[0110])[1000]

10000100 (b,(a,c)[0110])[1000]

10000111 ((c,b)[1000],a)[0110]

10001000 (c,b)[1000]

10001011 ((b,(a,c)[0110])[1000],a)[0110]

10001101 ((c,(a,b)[0110])[1000],a)[0110]

10001110 (((b,c)[0110],(a,c)[0110])[1000],a)[0110]

10010000 ((b,c)[0110],a)[1000]

10010011 ((c,a)[1000],b)[0110]

10010101 ((b,a)[1000],c)[0110]

10010110 ((a,b)[0110],c)[1001]

10011001 (b,c)[1001]

10011010 ((b,a)[1101],c)[0110]

10011100 ((c,a)[1101],b)[0110]

10011111 ((b,c)[0110],a)[1101]

10100000 (c,a)[1000]

10100011 (((b,c)[0110],a)[1000],b)[0110]

10100101 (a,c)[1001]

10100110 ((b,a)[1011],c)[0110]

10101001 ((b,a)[1110],c)[0110]

10101010 c[10]

10101100 (((b,c)[0110],a)[1101],b)[0110]

10101111 (c,a)[1101]

10110001 ((c,(a,b)[0110])[1000],b)[0110]

10110010 (((b,c)[0110],(a,c)[0110])[1000],b)[0110]

10110100 ((c,b)[1101],a)[0110]

10110111 (b,(a,c)[0110])[1011]

10111000 ((b,(a,c)[0110])[1011],a)[0110]

10111011 (c,b)[1101]

10111101 ((b,c)[0110],(a,c)[0110])[1110]

10111110 (c,(a,b)[0110])[1101]

11000000 (b,a)[1000]

11000011 (a,b)[1001]

11000101 (((b,c)[0110],a)[1000],c)[0110]

11000110 ((c,a)[1011],b)[0110]

11001001 ((c,a)[1110],b)[0110]

11001010 (((b,c)[0110],a)[1101],c)[0110]

11001100 b[10]

11001111 (b,a)[1101]

11010001 ((b,(a,c)[0110])[1000],c)[0110]

11010010 ((c,b)[1011],a)[0110]

11010100 (((b,c)[0110],(a,c)[0110])[1000],c)[0110]

11010111 (c,(a,b)[0110])[1011]

11011000 ((c,(a,b)[0110])[1011],a)[0110]

11011011 ((b,c)[0110],(a,c)[0110])[1101]

11011101 (c,b)[1011]

11011110 (b,(a,c)[0110])[1101]

11100001 ((c,b)[1110],a)[0110]

11100010 ((b,(a,c)[0110])[1011],c)[0110]

11100100 ((c,(a,b)[0110])[1011],b)[0110]

11100111 ((b,c)[0110],(a,c)[0110])[1011]

11101000 (((b,c)[0110],(a,c)[0110])[1101],b)[0110]

11101011 (c,(a,b)[0110])[1110]

11101101 (b,(a,c)[0110])[1110]

11101110 (c,b)[1110]

11110000 a[10]

11110011 (b,a)[1011]

11110101 (c,a)[1011]

11110110 ((b,c)[0110],a)[1011]

11111001 ((b,c)[0110],a)[1110]

11111010 (c,a)[1110]

11111100 (b,a)[1110]

11111111 1

B Garbled Table Reduction

We now turn to another way of reducing the size of the garbled tables in the case where the KDF is
modeled as a PRF, which is similar to the GRR method used in the case of a KDF which is correlation
robust. In order to reduce the size of the tables by more than 25% we must use the values of the input
wires to define both garbled values of the output wire, rather than defining a single value, as in the
optimisation in Section 4 above. Applying this method to “odd” gates with two inputs reduces the size
of the tables by a factor of 1/3, while applying it to “even” gates reduces their size by 1/2.

B.1 Odd 2-to-1 Gates

We first restrict to 2-to-1 gates which are “odd”. There are 8 such gates, including the OR, NOR, AND
or NAND gates. Each gate of this type has three input combinations resulting in one output value, and
a single input combination resulting in the other output value. Let us denote the former set of input
combinations as the “set-of-three” (e.g., the set-of-three of an OR gate includes the input pairs (0,1),
(1,0) and (1,1)). It is important not to disclose to the evaluator any information about the real values
that pass through the gates. In particular, the evaluator must not learn whether the input values belong
to the set-of-three.

Consider the output value which is output for each of the input combinations in the set-of-three.
We divide the corresponding garbled value to three parts and define each of them to be a function of a
different input combination from the set-of-three. As a result, a table entry corresponding to any of these



input combinations should store only the encryptions of the other two thirds of the garbled value. In the
evaluation phase, the evaluator will use the pair of garbled input values in order to directly compute one
third of the garbled output value, and to decrypt the table entry which contains the other two thirds
of this value. As for the remaining input combination, i.e., the one not in the set-of-three, we define
an arbitrary third of the corresponding output value as a function of this combination, and store the
remaining two thirds in the table. As a result, each entry of the table is 2/3 of its original length.

As before we let t denote the bit-length of the garbled values. Let us assume wlog that t is divisible
by 3. We divide the garbled values to three equal parts. Denote the parts of the garbled values as
kb

3 = Xb
1‖Xb

2‖Xb
3, for b = 0, 1.

We first map each input pair to an index of one third of the garbled value of the output wire. Namely,
we choose for every gate a random function γ(b1, b2) → {1, 2, 3} subject to the constraint that γ does
not map any two input combinations from the set-of-three to the same value. We should have actually
referred to this function as γGid, since a separate function is chosen for every gate, but we chose to keep
the notation simpler.

Consider first the garbled value corresponding to the output value of the set-of-three. The j’th third
of this value (for j = 1, 2, 3) is defined as X

G(b,b′)
j = KDFt/3(kb

1, k
b′
2 , π1(b)‖π2(b′)‖Gid‖0), where (b, b′) =

γ−1(j). In other words, this third of the garbled output value is defined as a function of the garbled values
of (b, b′) in the set-of-three. Now, consider the input combination (b1, b2) which is not in the set-of-three.
Let j = γ(b1, b2). We define the value of the jth third of the corresponding garbled value to be

X
G(b1,b2)
j = KDFt/3

(
kb1

1 , kb2
2 , π1(b1)‖π2(b2)‖Gid‖0

)
.

We choose random values for the remain two thirds of this garbled value.
The garbled table stores, for each input combination, the index of the third of the garbled output value

which is directly defined by the corresponding input values, and an encryption of the other two thirds
of the output value. We list below the contents of an entry (c1, c2) in the table. This entry corresponds
to actual input values b1 = π−1

1 (c1), b2 = π−1
2 (c2). Let us also define j1(b1, b2), j2(b1, b2) ∈ {1, 2, 3} as the

indexes of the two thirds of the output value whose encryptions are stored in the table entry (namely,
these values satisfy that {j1(b1, b2), j2(b1, b2), γ(b1, b2)} = {1, 2, 3}, and j1(b1, b2) < j2(b1, b2)). The table
stores the entry

c1, c2 :
(
γ(b1, b2)‖XG(b1,b2)

j1(b1,b2)‖X
G(b1,b2)
j2(b1,b2)‖c3

)
⊕KDF2t/3+3

(
kb1

1 , kb2
2 , c1‖c2‖Gid‖1

)
,

Thus instead of storing t + 1 bits, each table entry only stores 2t/3 + 3 bits. Hence, we save around 1/3
of the required space for the tables.

On evaluating the garbled gate the evaluator uses his input to unmask the corresponding entry of the
table. The entry reveals the value of the index j, and the values of the other two thirds of the garbled
output value. The evaluator then computes the remaining third of the garbled value, Xj , by applying
the KDF to his known values, i.e., computing KDF(kb1

1 , kb2
2 , π1(b1)‖π2(b2)‖Gid‖0). Note that the same

operation is performed for every input combination, regardless of whether it is in the set-of-three or not.

B.2 Even 2-to-1 Gates

We first define b
(i)
1 and b

(i)
2 for i = 1, 2, 3, 4 via G(b(1)

1 , b
(1)
2 ) = G(b(3)

1 , b
(3)
2 ) and G(b(2)

1 , b
(2)
2 ) = G(b(4)

1 , b
(4)
2 ).

We then define for j = 1 and j = 2.

k
G(b

(j)
1 ,b

(j)
2 )

3 ‖sj = KDFl+1

(
k

b
(j)
1

1 , k
b
(j)
2

2 , π1(b
(j)
1 )‖π2(b

(j)
2 )‖Gid‖0

)
.

The first l bits define the two garbled values of the output wire, and the final l + 1 bits define the value
sj . Now for the rows corresponding to the two external value pairs

(c1, c2) ∈
{(

π1(b
(1)
1 ), π2(b

(1)
2 )

)
,
(
π1(b

(2)
1 ), π2(b

(2)
2 )

)}



we store in the garbled table the encryption of the external value of the wire, that is,

c1, c2 :
(
π3(G(b(1)

1 , b
(1)
2 ))⊕ s1, π3(G(b(2)

2 , b
(2)
2 ))⊕ s2

)
.

The remaining rows are calculated in the standard way.
The evaluator can recover the garbled wire values. If the evaluator is given keys corresponding to one

of the standard table rows, then the usual method can be used. Otherwise the evaluator can run the
KDF to obtain the garbled wire value, and uses the l + 1 output bit of the KDF to decrypt the external
wire value, stored in the garbled table.

C Multiple Outputs

In general the two parties have inputs x1 and x2. Player P1 wishes to determine the output of f1(x1, x2),
whilst player P2 wishes to determine the output of f2(x1, x2). As we have just described we only have
a method for player P2, which is the player computing the circuit, to obtain the output of the function
f2(x1, x2). This method must be extended to enable P1 to obtain its own output f1(x1, x2). This can be
achieved by requiring P2 to compute f1(x1, x2) and send it to P1. More accurately, in the semi-honest case
P2 computes and sends an encryption of f1(x1, x2) which only P1 can decrypt, while in the malicious and
covert cases P2 computes an encrypted and authenticated copy of f1(x1, x2), which only P1 can decrypt
and verify. The encryption and authentication keys are used only a single time an therefore it is possible
to use one-time schemes.

We describe here the method for the malicious case. This method has been described before, the
novelty in our work is a modification that uses a MAC which has an efficient circuit based implementation.
We assume the inputs of the two players are, respectively, n1 and n2 bits long, and that the output bit
lengths of the two functions are m1 and m2, respectively. The keys used for encrypting and authenticating
P1’s output are supplied by P1, and therefore the input of P1 is extended to be n1 + 3 · m1 bits long,
and shall be denoted by x1, a, b and c where |x1| = n1 and |a| = |b| = |c| = m1. The new circuit should
produce the output of the function

G(x1, a, b, c, x2) = (e‖m)‖f2(x1, x2),

where the value e acts as an encryption of f1(x1, x2) whilst m acts as an authentication tag. For this
purpose, we use

e = f1(x1, x2)⊕ c, and m = (a⊗ e)⊕ b.

By ⊗ we denote the convolution operator modulo 2, i.e., for bits strings a and e of length m1 we have

(a⊗ e)j =
m1−1⊕
i=0

ai · ei+j .

Consequently, m is an authentication tag based on a one-time MAC which is computed very efficiently
by a binary circuit (using m1

2 AND gates and m1
2 XOR gates). The computation of this MAC is much

more efficient than, say, a binary circuit computing the one-time MAC function a · c+ b over a finite field.
The advantage of using the convolution, as opposed to multiplication in a finite field, such as F2m1 , is
that we do not need to worry about a different circuit for each value of m1, the circuit construction is
highly regular. The additional XOR gates needed in computing the convolution will produce a negligible
cost, and will indeed produce no-extra cost given some of our later optimisations in the case of correlation
robust KDFs. The circuit G has an output size of 2m1 + m2 bits. This circuit is then evaluated, player
P2 obtains his output and then sends back the two values e and m to player P1. Player P1 checks the
authentication tag m and obtains f1(x1, x2) by decrypting e.

Note in the case of semi-honest adversaries we only need to compute the value e (using m1 XOR
gates), and the authentication tag m (the computation of which requires 2m1

2 gates) can be ignored.
Thus for semi-honest adversaries the circuit becomes considerably simpler.



D Malicious and Covert Adversaries

The protocol in Section 2 is only secure against so-called semi-honest adversaries, namely ones which are
guaranteed to follow the protocol but who wish to break the secrecy. In [23] a protocol which is secure
against malicious adversaries is given, whilst in [1] another protocol is given for covert adversaries. As
mentioned earlier in Section 1, we only investigate these protocols in our work. In both these cases we
try to protect against adversaries who may deviate from the protocol. In the case of security against
malicious adversaries we require the honest party is guaranteed the other party has not deviated, except
for a negligible probability. Whereas in the case of covert adversaries we require that the honest party
detects the other party is deviating with a “reasonable” probability.

The methods of [1, 23] for converting the semi-honest protocol to higher levels of security follow two
basic conversions. These are controlled by two security parameters s1 and s2, although the precise details
of the protocols differ. First the original circuit is replaced by a new circuit which has an increased number
of input wires for player P2. The expansion in the number of input wires for player P2 is controlled by
the security parameter s2. We examine it in more detail in Section D.1 and in our experimental results.

Player P1 then generates s1 garbled circuits which are passed to P2, along with various commitments.
Then by a process of cut-and-choose various circuits are selected for evaluation. The precise details of
each protocol we leave to [23] and [1].

In the case of malicious adversaries it is conjectured in [25] that the probability of a malicious adversary
being able to defeat the malicious protocol is bounded by max(2−s1/4, 2−s2). Thus in the malicious case
it makes sense to take s2 = s1/4. In [1] it is argued that the probability of a covert adversary being able
to defeat the covert protocol without being detected is bounded by

1− (1− 1/s1)(1− 2−s2+1).

The probability 1/s1 is related to a covert P1 being able to generate an invalid circuit without P2

detecting, and the probability 2−s2 is related to the covert P2 being able to subvert the oblivious transfer
without being detected. Hence, the probability of defeating the protocol is more accurately bounded by
max(1/s1, 2−s2). Thus in the covert case it makes sense to take s2 ≈ log2 s1. Typical values for s1 and s2

in the malicious case could be s1 = 160 and s2 = 40, ensuring that cheating probability is limited below
2−40, whereas for the covert case we could take s1 = 16 and s2 = 4, limiting the cheating probability at
2−4. Recall that s1 is the number of copies of the circuit that must be communicated between the parties.

D.1 P2’s input circuit

As mentioned earlier, for the malicious and covert cases we need to replace the n2 input wires of P2 with
a new set of n′

2 input wires. We will let x
(i)
2 for i = 1, . . . , n2 denote the original input wires for P2, and

x′
2
(i) for i = 1, . . . , n′

2 denote the new input wires. The reasons for this are explained in [23]. The main
idea is that each of the original input wires is defined to be an XOR of a subset of the new input wires.
Therefore, any assignment to the first original input wire, can be realized using many assignments to the
new input wires. Therefore potential attacks of P2 which might learn a value of a new input wire do not
disclose information about any of the original input wires. There are two techniques proposed in [23] to
perform this “expansion”, which we shall now elaborate on. The first technique uses more input wires
than the second one and as a result, requires the players to compute more OTs. However, the second
technique is preferable in terms of the number of XOR gates that it uses. Both techniques depend on a
statistical security parameter s2, and, as proved in [23], reduce the cheating probability to roughly 2−s2 .

Independent Inputs Technique: Here s2 new input wires are assigned to each original input wire,
which is defined to be the XOR of these new input wires. Namely, we set n′

2 = s2 · n2 and set

x
(i)
2 =

s2⊕
j=1

x′
2
(s2·(i−1)+j).

To sum up, the circuit has s2 ·n2 new input wires, and an additional s2 ·n2 XOR gates added to it. Each
of the new input wires is used in computing only one of the original input wires.



Random Combinations Technique: Here new input wires are reused in the sense that each of the
original input wires is defined to be the XOR of a random subset of the set of new wires. The number of
new input wires is n′

2 = max(4n2, 8s2), which is smaller than s2 · n2, the number of new wires used by
the previous technique. Each original input wire is defined to be a random linear combination of the new
input wires. In other words, the system uses a random n2×n′

2 binary matrix A = (ai,j) that defines which
linear combination of new input wires is assigned to each original input wire. The mapping between the
original and the new input wires is given by

x2(i) =
n′2⊕

j=1

ai,j · x′
2
(j).

Thus the circuit has roughly an extra n2n
′
2/2 = max(2n2

2, 4n2s2) XOR gates added to it. This number is
greater than the s2 ·n2 XOR gates used by the previous technique. Note that this number of gates might
be larger than the entire original circuit. This happens in particular, if the size of the original circuit is
linear in the number of its inputs n2, as in the comparison circuit for the classical millionaires’ problem.

In [25] a method is presented which reduces the number of additional XOR gates needed for the
Random Combinations Technique by about 60%, by identifying common sub-expressions of multiple
XOR expressions and reusing them. Still, their number will be larger than in the Independent Inputs
Technique. Applying that technique, the total number of new inputs is n′

2 = max(4n2, 8s2), and the
number of new XOR gates is 0.3n2n

′
2.

It is unclear in any given implementation exactly which technique is more efficient, since the run-
times depend on the precise values of n2 and s2, and the relative costs of trading more OT’s for less
XOR gates. The value of s2 will not only be affected by the desired security level, but also by whether
we are protecting against malicious or covert adversaries, as detailed in our experiments, in the malicious
case we set s2 to be be equal to 40, and in the covert case we use s2 = 4. Our experiments detail the
performance of both techniques in different settings.


